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STRUCTURE THEOREMS ON RIEMANNIAN
SPACES SATISFYING R(X, Y) - R = 0.

I. THE LOCAL VERSION

Z. I. SZABO

Introduction
The curvature tensor R of a locally symmetric Riemannian space satisfies

R(X, Y) - R — 0 for all tangent vectors X and 7, where the linear endomor-
phism R(X, Y) acts on R as a derivation. This identity holds in a space of
recurrent curvature also.

The spaces with R(X9 Y) R = 0 have been investigated first by E. Cartan
[2] as these spaces can be considered as a direct generalization of the notion of
symmetric spaces. Further on remarkable results were obtained by the authors
A. Lichnerowicz [13], R. S. Couty [3], [4] and N. S. Sinjukov [19], [20], [21]. In
one of his papers K. Nomizu [15] conjectered that an irreducible, complete
Riemannian space with dim > 3 and with the above symmetric property of the
curvature tensor is always a locally symmetric space. But this conjecture was
refuted by H. Takagi [22] who constructed 3-dimensional complete irreducible
nonlocally-symmetric hypersurfaces with R(X, Y) R — 0. These two papers
were very stimulating for the further investigations. We also have to mention
the following authors in this field: S. Tanno [23], [24], [25], K. Sekigawa [16],
[17] and P. I. Kovaljev [9], [10], [11].

In the following we call a space satisfying R(X, Y) R = 0 a semi-symmet-
ric space. The main purpose of this paper is to determine all semi-symmetric
spaces in a structure theorem.

In §1 we give local decomposition theorems using the infinitesimal holo-
nomy group, and in §2 we give some basic formulas. We would like to make it
perfectly clear that the results of these chapters are concerning general
Riemannian spaces, and not only semi-symmetric spaces. In §3 we construct
several nonsymmetric semi-symmetric spaces and in §4 we show that every
semi-symmetric space can be decomposed locally on an everywhere dense open
subset into the direct product of locally symmetric spaces and of the spaces
constructed in §3.

Received October 30, 1981.
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1. Primitive holonomy groups and the local decomposition by means of

infinitesimal holonomy group

Let (Mw, g) be a Riemannian space of class C00, whose curvature tensor

field R( X, Y)Z satisfies the so-called Bianchi-identities:

) = -R(Y,X),

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0,

g{R(X, Y)Z, V) = -g(R(X, Y)V, Z),

g(R(X9 Y)Z, V) = g(R(Z, X)X, Y),

the first four identities are called the first Bianchi-identities, and the 5 th the

second Bianchi identity.

For a point p E Mn let us consider the linear set hp of skew-symmetric

endomorphisms in the tangent euclidean space (Tp(M\ g^) spanned by ele-

ments of the form R^(X, Y), i.e.,

(1.1) V

The Riemannian space (Mw, g) is said to be semi-symmetric iff for it

(1.2) VXVYR ~ VYVXR - V[XY]R = 0,

or by Ricci's identities, for every point/? E M and X, Y,U,V EL Tp(M),

[R^U, V), R^X, Y)] := R^U, V) ° *„(*, Y) - R^X, Y) o R{p(U, V)

(1.3) = %{%{U, V)X, Y) + R^X, R^U, V)Y).

For a semi-symmetric space hp is a Lie algebra with the bracket operation

[w, υ] — u o v — v o u. Furthermore if %p denotes the connected subgroup of

isometries in Tp(M) determined by the Lie algebra hp, then the curvature

tensor R^ is invariant under the action of %p, i.e., for every u E%p, X,Y, Z

€= Tp(M)

(1.4) (uR)(X, Y)Z:= uR(u~ιX9 u~xY)u~xZ = R(X, Y)Z

holds. In this chapter we consider a general C00 Riemannian manifold. For

such a space let hp be the Lie algebra generated by hp, and let %p be the

connected subgroup of isometries in Tp(M) determined by hp. Then from the

above considerations it obviously follows that a Riemannian space (M", g) is

semi-symmetric iff for every point p E M the group %p leaves the tensor

R(X, Y)Z invariantly.
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In the general case the group %p is called the primitive holonomy group at the

point p. It is a subgroup of the infinitesimal holonomy group and thus also of

the whole holonomy group. Let

(1.5)

be the irreducible decomposition of the tangent space with respect to % . Thus

the subspaces V^ are invariant under the action of % \ they are pairwise

orthogonal. Furthermore %p acts on Vp

(0) trivially, and its action is irreducible

on Vp

(i\ i > 0.

Definition 1.1. The decomposition (1.5) is called the F-decomposition of

the tangent space.

Because of the invariance of the subspaces Vp

(ι) we get

R(X, Y)Xi E V™ for Jjζ E Vp

(i) and X,YG Tp(M).

On the other hand if i φj, Xt E Vf\ X} E Vp

u\ then

o - * ( * „ ( * , γ)xi9 Xj) = g(nb( A;, XJ)X9 y),

and so R^X^ Xj) = 0. Thus for arbitrary vectors I ,7GΪ^(M)we get

(1.6) Rlp(X,Y)= ISfriXnYi),

where X = ΣJ"= i Xt and Y = Σr

i= x Yt are the decompositions of X and Y with

respect to the F-decomposition (1.5). It is plain that for every vectors Xp E Vp

(0)

and X G Tp(M) the equation R^(X0, X) = 0 holds. Furthermore for / φj we

get

„ ( ; , t)j -n^y, , Λ;)Λ; - n b(Λ), Λ Jy, = o,

ifXYGVfKX

which means that the action of endomorphisms of the form R^X^Y^,

Xi9 Yέ E Vp

(i\ is trivial on the subspace Vp

u) (where j φ /). Thus let hf be the

Lie algebra of skew-symmetric endomorphisms in Vp

(i) generated by the

elements of the form

(1.8) * b (*i,r,) : ^

and let %{

p

ι) be the connected subgroup of isometries in Vp

(i) referring to hψ.

Then the following statement is a simple consequence of the above considera-

tions.

Proposition 1.1. For a Riemannian manifold (Mn

9 g) let
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be the V-decomposition of the tangent space Tp(M),p G M. Then %p is the direct

product

(1.9) %p = %^ X%(

p

l)X' X%(

p

r)

of normal subgroups, where %^ is trivial on Vp

U) for i ψj, and is irreducible on

V^ for each i— 1, ,r, and %^0) consists only of the identity.

Now we state an important theorem.

Theorem 1.1 (The first stability theorem). For a C°° Riemannian space

(Mn, g) there can be chosen an everywhere dense open subset U of M, such that

on every arcwise connected component Ua of U for a certain order Vp

{0\

Vp

(l\- - -,Vp

(r\ p G Ua, of the invariant subspaces the subspaces Vp

(ι\ p G Ua,

have constant dimension, and the distributions p -> Vj;ι) are of class C°° for any

index i. Such a differentiate decomposition T(M) = F ( 0 ) 4- F ( 1 ) + + V(r)

of the tangent space is unique in the sense that if on an open set Q the

decomposition T(M) = K(0) + F ( 1 ) + + F ( r ) is of class C0 0, then the C°°

distributions F ( i ) are unique on Q up to an order.

Proof. First we need some preparation.

Let aιj(x), x G R* be a continuous field of symmetric n X ^-matrices on R*,

and let λj(x) < λ 2 (x) < < λn(x) be the (real) eigenvalue functions of the

matrix field. Then it is well known that for every position / the function λ (x)

is continuous in x. The same statement is true if aιj(x) is skew-symmetric and

continuous. In this case the eigenvalues are imaginary, i.e., they are of the form

λy( c) = μ-j(x)ι\ μ j(x) €= R. If we consider the ordered function system defined
by μx(x) < μ2(

χ) ^ ' " ^ Pni*)* ^en the real functions μt(x) are continuous

in x. The same holds also in the case if we consider a polynomial field of the

form

λ" + ai(x)Xn-1 + +an(x) = φ(λ, JC)

on Rk such that the functions at(x) are continuous in x G R*, and all the roots

are real (resp. imaginary) of the form λj(x) (resp. λj(x) = μj(x)i), where these

functions are defined by

λ,(x) < \x(x) ^ ^ \n(χ) (resp. μλ(χ) < μ2(x) μn(x)).

Then they are continuous in the variable x.

In the following lemma we examine the differentiability property of the

eigenvalue functions.

Lemma 1.1. Let aιj(x) be a Cr field of symmetric matrices on R*, and let us

define the i-th eigenvalue function X^
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Then there exists an everywhere dense open subset U of ΈLk on which every

function λj(x) is of class Cr. More precisely the function λ z (x) is of class Cr on

the maximal everywhere dense open subset Uι of Έtk on the arcwise connected

components U^ of which the multiplicity ofλ^x) is constant.

Proof. Turning to the characteristic polynomial of tfj(jc) we must prove the
following statement.

Let λw + ax(x)Xn~l + -- +an(X) = φ(λ, x\ x G Rk, be a polynomial field
such that the functions at{x) are of class Cr, and at every point x 6 R λ the
roots are real. Then the root function λf (x), defined by

are of class Cr on an everywhere dense open subset U of R*. More precisely
\t(x) is of class Cr on the maximal everywhere dense open subset U* of R* on
the arcwise connected components of which the multiplicity of λj(x) is
constant.

It is obvious that the open sets U (resp. [/') defined in the statement are
everywhere dense in R .̂

We shall prove by induction that the root λf (x) is of class Cr on £/α* which is
an arcwise connected component of U'. From this statement the others in the
lemma follow evidently.

The case n = 1 is trivial.
For a natural number p let us assume that the statement is true for n < p,

and let

be an arbitrary polynomial field of grade p. We prove that the statement holds
also for φ(λ, x).

Let us consider a component U£ with respect to λ,(.x). The multiplicity of
λj(x) is constant on ί/α

z. If this multiplicity is greater than one, then λf (x) is
the root of the derived polynomial

It is well known that the derived polynomial has only real roots. Furthermore
it can be seen that the multiplicity of Xt(x) is constant on ί/J with respect to
the derived polynomial. Thus by induction λ, (jc) is of class Cr on ί/j.



536 Z. I. SZABO

Now let us consider the case where λ^x) is only a simple root on ί/J. For a

vector Λf.: = (0,0, ,0, Λf , 0, ,0) and a point x E t£ we get

φ(λ /(x + A 7 ) ^ + ^ )
U = lim :

A

where the function Z p ~ 1 (λ / , x, Ay ) is defined by

Z " - ^ , *,*, ) := "S " Σ rar(x)λ"i(x + hJ)λrι~r-u(x).
r=\ u=0

Thus we get

Urn Z"-\\lt x, hj) = | f (λ,.(jc), JC) = pλ?-'(*) + +α p _,(x) .

Since λf-(jc) is a simple root on t/j, the above limit Zp~1(λ/, x,0) never

vanishes on ί/J. So we get that the limit

λf.(x + h •
lim

h •) -

exists on f/1 and that

4;

It can be seen that the function dλi/dxJ is continuous on t/J. By continuation

of the above procedure we get that λ,O) is of class C on t/j, thus proving our

assertion, q.e.d.

Now we turn to the examination of the eigenvectors.

Lemma 1.2. Let afix) be a symmetric n X n-matrix field of class Cr on Tϋk.

Furthermore, let U be the maximal everywhere dense open subset of ΈLk on the

arcwise connected components Ua of which the multiplicity of several eigenvalue

functions λj(x) is constant. Then arbitrary linearly independent eigenvectors

(e\p'e2\p>'">en\p) a t a fixed Point p E Ua can be extended to a Cr field

(ei>* * > O of linearly independent eigenvectors onto a whole neighborhood ofp.

More precisely let Uι be the maximal everywhere dense open subset ofRk on

the arcwise connected components ί/j of which the multiplicity of λf.(jc) is



STRUCTURE THEOREMS ON RIEMANNIAN SPACES 537

constant. Then any eigenvector e^\ p G Όι

a with eigenvalue λ (/?) can be

extended to a Cr field et of eigenvectors with eigenvalue \t(x) onto a neighbor-

hood of p.

Proof. We must prove only the last statement. Let ί/j be a component of

Ui on which the multiplicity of A,(x) is constant, say mt. Let p G ££' be a

point and let e^ be an eigenvector at/?. The rank of the characteristic matrix

is (n — m, ) on ££'. Let us assume (without the restriction of generality) that the

submatrix

B = ( * * ) > l^k,r<n- mt

is a maximal nonsingular matrix at/?. Then it is nonsingular in a neighborhood

V of p. If e\p denotes the components of e^9 then it is obvious that the vector

field e defined by its components ek by

ek := - Σ(b-lΫr Σ */< i f f c = l , ,Λ-m f.;

if A: > w —

is of class Cr on F and is suitable for the lemma, q.e.d.

Similar statements can be proved also for a skew-symmetric matrix field

aιj(x). In this case the eigenvalues are of the form λj(x) = μ>j(x)i, where the

functions μj(x) are defined by μλ(x) < μ2(
x) ^ ' ' ' ^ Pni*)' ^ ^ e compo-

nents of aιj(x) are of class C\ then on the maximal everywhere dense open

subset U of R* on the arcwise connected components of which the multiplicity

of every eigenvalue λ^ c) is constant, the functions μ7(*)> \(x) a r e a l s o of

class Cr.

For a skew-symmetric matrix field aιj(x) and for a point x ERk let

Rw = uo(x) + w^x) -f +ur(x) (direct sum)

be Jordan decomposition of R" with respect to aιj(x). I.e., WQC )̂ ^S ^ e maximal

0-space of a'-(x). Furthermore the 2-dimensional subspaces ut{x\ i > 1, are

invariant under the action of aιj(x), and this action is irreducible on ut(x\

i> \. Now we can formulate the following statement.

If x G £/, then the Jordan decomposition can be extended onto a neighbor-

hood Qofx such that the distributionsp -* wz(/?) are of class C r on g.

The proof of this statement is the same as before.

Now we return to the examination of the curvature tensor in a Riemannian

space. We examine it at a fixed point/?.
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By the Bianchi identities g(R(X, Y)V, Z) = g(R(V, Z)X9 Y) and R(X, Y)

= -R(Y9 X) the curvature R^ can be considered as a symmetric bilinear map

on the two-vectors Tp(M) Λ Tp(M). So the tensor with components Rij

kι'--

girRJ

rkl at/? can be considered as a symmetric linear endomorphism

j y Tp(M) A Tp(M) - Tp(M) Λ Tp(M)

of the two-vectors, where we consider the space Tp(M) Λ Tp(M) as an

euclidean space with the induced inner product (, )^ defined by

2 ( I Λ 7,FΛ Z> b = g]p(X, V)glp(Y, Z) - g]p(X9 Z)g]p(Y9 V).

Let us notice that the space Tp(M) Λ Tp(M) can be identified with the space

& of skew-symmetric linear endomorphisms in Tp(M) in a natural manner. If

we consider in 6E the natural inner product (,)[/, defined by

(A, £>^ = -Traced o B, A,B<Ξ&p,

then the identification TJM) Λ T(M) ^ φ X Λ 7 ^JTΛ 7is defined by

It is obvious that this identification is an isometry between the two euclidean

spaces.

Now if w is an arbitrary two-vector, and ί v £ ^ denotes its image by the

above identification, then let us consider a Jordan decomposition

(*) Tp(M) = u0 + uλ + ••• ur (direct sum)

of Tp(M) with respect to w. Then in the two-dimensional subspaces ui9 i > 0,

we can choose vectors Xi and Yt such that the two-vector w is of the form

1 = 1

Such a decomposition of w is called the Darboux's decomposition of w. We

mention that such a decomposition is not unique as it is shown by the

following consideration.

If the multiplicity of a nonnull eigenvalue λj = μji is greater than one, say

mJ9 then there exist exactly m} invariant subspaces wlV -9uim, ik > 0, in a

Jordan decomposition (*) such that w has just the eigenvalues ±λj — ±μ i on

uik. It is obvious that the Jordan decomposition of the subspace

is not unique. But if the eigenvalue λj = μji φ 0 is simple, then there is only

one subspace u} corresponding to λj (on which w has the eigenvalues ± λ y ) ,

and this subspace is unique for every Jordan decomposition (*). Thus ifλj φ 0
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is simple, then the two-vector Xj Λ Ύ. corresponding to λy is unique and always

occurs in every Darboux decomposition of w. This remark is important for the

next lemma.

The number r in (*) is the rank ofw.

Definition 1.2. The eigenvector w E Tp(M) Λ Tp(M) of the symmetric

endomorphism R^ is said to be irreducible iff any Darboux normal form

1 = 1

does not split into two non-trivial summands such that they are also eigenvec-

tors of R^.

Let w be an irreducible eigenvector of R^ with nonnull eigenvalue λy = μyz.

The skew-symmetric linear endomorphism w lies in the linear holonomy set λ ,

defined before the theorem. Let us consider once more the decomposition (*).

Since w leaves the subspaces V^J) invariant by Proposition 1.1 we can choose

such a decomposition (*) that any subspace ui9 i > 0, is contained in one of the

subspaces Vp

u\ But the subspaces uk, k > 0, must be contained in the same

invariant subspace V£J\ j > 0, because w is irreducible, and the subspaces uk

contained in the same space Vp

U) determine an eigenvector of R^. As the

subspaces uq, q > 0, not contained in Vp

(J) would determine another eigenvec-

tor, thus this part is null indeed. So we get that for an irreducible eigenvector

w E Tp(M) Λ Tp(M) of R^ with nonnull eigenvalue the nontrivial invariant

subspace

uλ + u2 + +ur

of w is contained in a single invariant subspace Vp^\ This is an important

property of the irreducible eigenvectors of R^.

It is also evident that one can choose a complete system of linearly independent

irreducible eigenvectors of R^ which form a basis in Tp(M) Λ Tp(M). Let

(w,, w2, ,wp, wp + 1, ,w(«)} be such a system, and let us assume that just the

first p vectors are corresponding to nonnull eigenvalues. For a vector wk,

1 < k < p, let us consider the decomposition (*), and the subspace u0 let us

denote it by Wk° and the subspace ux + u2 + * + ur by Wk

x. It is obvious that

we can construct the irreducible decomposition Tp(M) = V^ + Vj;x) + + J^(r)

also in the following manner.

Let us choose an arbitrary vector wk9 1 < kλ < p, and let us consider its

subspaces Wkχ and Wk\ constructed above. If for any wi9 iφkλ, the relation

Wkχ C W? holds, then obviously Wk\ is one of the invariant subspaces Vp

(k\ If

there exist vectors wkj9 wk^ -,wk{ such that 1 < kx <* p and Wk\ (£ Wk. hold,
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then let us consider the subspace

wi +wi + --+ wl.
A c , k2 *i

Now we repeat the above examination. If for any wt with / φ kj the relation

holds then Jϊ^1 + • + W\ is just the subspace Vp

{k\ But if there exists such a

H °̂ for which the above relation does not hold, then by extending the system

Wk,--',Wk with the element Wt

x and continuing the procedure we get a

maximal system wk, - 9wk. of eigenvectors such that for every index /,

1 < i <j, there is another index /', such that K i' < i and W) (jl W? holds.

Furthermore for every index i Ψ kl9- -,kjwe get the relation Wk/ C W?. It is

obvious that

and thus we get one of the invariant subspaces.

By the continuation of this procedure we can construct all other invariant

subspaces V£J\

We need this construction also in the following.

Lemma 1.3. For a C°° Riemannian manifold (Mn, g) there can be chosen an

everywhere dense open subset U2 of M and on U2 a system {w,, w2, svi^} of

eigenvector functions of R such that they are of class C 0 0, irreducible and linearly

independent so that they form a basis in Tp(M) Λ Tp(M) for any point p E U2.

Proof. Let Uλ be the maximal everywhere dense open subset of M on the

connected component of which the eigenvalue functions λ^x) of R have

constant multiplicity. By Lemmas 1.1 and 1.2 the λy(Λ:)'s are of class C°°

furthermore any eigenvector e^ at a point p E Uι with eigenvalue λ^/?) can

be extended to a C°° field e( of eigenvectors with eigenvalue λ, onto a

neighborhood of/?.

Let mx be the maximum of rank of irreducible eigenvectors over Uλ and let

p E U\ wλ]φ E Tp(M) Λ Tp(M) be an irreducible eigenvector, for which rank

(w1(/>) = m, holds. Let us extend the eigenvector w,^ to a C°° field w, of

eigenvectors onto a neighborhood oίp.

Now we prove that in the case m, > 1 the wx is irreducible in a neighbor-

hood Qι of p, and in the case mλ — 1 w,^ can be extended also to a C 0 0

irreducible eigenvector field.

Indeed, if mx > 1 then from the irreducibility of w1[/7 it follows that the

nontrivial partial sums in any Darboux normal form of w1[/7 do not intersect

the invariant subspaces of Rp. But the whole set of real partial sums of the
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w^'s Darboux normal forms is a compact set in TSM) Λ T(M). So by the

continuity of wι and of the invariant subspaces of R on ί/(see Lemma 1.2) we

get that this compact set does not intersect these invariant subspaces in a

neighborhood Qλ of p as well. Thus wx is irreducible on g 1 , and the first

statement is proved.

Now if m, = 1, then for every eigenvector w^, p E U\ there exists a

Darboux normal form which splits into the sum of eigenvectors of rank 1, and

thus every irreducible eigenvector is of rank 1. In this case let w,^ = I , , Λ 7,,

be an arbitrary irreducible eigenvector of Rp at a point p E U\ and let us

extend this vector to a C0 0 field of eigenvectors also. First we prove that

around p the wx can be written in the form

(**) wx = Xx Λ Yχ + wf,

where Xx Λ Y, and wf are of class C 0 0, and furthermore w*- = 0 holds.

Indeed the skew-symmetric linear endomorphism wx^ — Xx, A X2, in Tp(M)

has only two nonnull eigenvalues, the values μx[ resp. -μ,/. Thus μx[ is a simple

eigenvalue at /?, and it is a simple eigenvalue function in a neighborhood

Qι Q Uι of p because of the continuity of the eigenvalues. For q E Qι let

Xχ, Λ Yλ, be the uniquely determined two-vector corresponding to the simple

eigenvalue μx(q)i_. Thus the plane determined by XX\q Λ YlXq is invariant under

the action of vi^, and in this plane iv,^ has the eigenvalues ±μϊ(q)i. Since

μx(p)i is simple on Q\ Xx Λ 7 t is of class C°° on Q}. So the decomposition

(**) is correct indeed.

Since mx = 1, for an arbitrary point q E β 1 let us consider such a Darboux

normal form of w^q which splits into the sum of eigenvectors or rank 1. Since

the eigenvalue function μxi is simple on Q\ by a previous remark the

two-vector Xx<q Λ Yx> surely occurs in the considered Darboux normal form.

Thus XX\q Λ Yι{q is an irreducible eigenvector for every point q E Q\ and the

field Xx Λ Yx is of class C 0 0. This proves the second statement above. In the

next step we consider only the irreducible eigenvectors of R, which lie over Qι

and are linearly independent from wx. Let m2 be the maximum of the ranks of

these eigenvectors, and let w2[/,, p E Q\ be an eigenvector for which r a n k O ^ )

— m2 holds.

Let us extend w2(/7 to a C 0 0 field w2 of eigenvectors. It is linearly independent

of wx in a neighborhood of p also, It can be proved as before that in the case

m2 > 1, w2 is irreducible and linearly independent of wx in a neighborhood β 2

of /?, in the case m2 = 1, w2)/; can be extended to a C 0 0 field of eigenvectors

with rank 1 onto a whole neighborhood Q2 of p. Continuing the process we get

in the last (2)-th step a nonempty open subset QCl) and on it C 0 0 fields of

linearly independent and irreducible eigenvectors denoted by (wl9 H>2, ,Wφ).
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Now let us consider the closure of the open set Q("2) in M", and let us turn

complement, i.e., to the open setits

If this set is empty, then the proof is finished since Q("2) is suitable for the

lemma. If (M-closureίζ?^) is not empty, then by the above considerations

there can be chosen a suitable nonempty open subset S^ in the set and on 5r(")

suitable C°° fields (w l9 H>2, "»W(»)) of irreducible eigenvectors. Continuing the

process then by a standard application of the Zorn-lemma we get an every-

where dense open subset U2 in Mn and on U2 the system (wj, *,>%)) of

irreducible C 0 0 eigenvector fields of JR, which are suitable for the lemma,

q.e.d.

Let us consider a system {U2

9(wl9 κ>2, * ΊW(»))} constructed in the previous

lemma, and for a field w/ and/7 G U2 let us remember the subspaces W^ and

Wλj, which are respectively the null-space and the nontrivial invariant sub-

space corresponding to w^. The following lemma is obvious.

Lemma 1.4. Let {U2

9(wl9w29-">W(»))} be as before. Then there exists a

maximal everywhere dense open subset U3 of U2 such that on any connected

component U3 of U3 the subspaces

have constant dimension for any fixed sequence iλ9 z"2, ,is of indices, and thus

these distributions are of class C 0 0 .

Of course U3 is an everywhere dense open subset also in M.

Now we finish the proof of Theorem 1.1.

Let nλ be the maximum of the dimensions of the subspaces V^ι\ / > 0, on

ί/3, and let/? E U3 be a point, and V^k) be a subspace for which dimί^(A:) = nx

holds. Furthermore, let (wΛi^, -9wk^) be the system corresponding to V£k)

constructed before Lemma 1.3. Thus all the subspaces Wλk are contained in

V^k\ and furthermore for any index 1 <i<j there is an index /' < i such that

(1) K> $ K»
and that

(2) K*, £ K
for any index i Φ kt.

By the continuity of subspaces Wk the relation (1) holds also in a neighbor-

hood N 1 of/7, and as the value άim{VJ;k)) is maximum, also (2) must hold on

N 1 . So it is obvious that the distribution

K + K+ +K
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determines at every point q G TV1 a complete invariant subspaces V^k\ and
besides d imK^ = constant the distribution q -> V^k) is of class C°° on Nι.
Thus the distribution V(k) is suitable on Nι.

Now we continue the procedure.
Let n2 be the maximum of the numbers

d i m ( ^ ω ) , where q G N\j > 0 andy φ k,

and let V^J\ q G TV1, be such a subspace for which y φ k and dim(Fjy)) = w2

hold. We get as before that there is a unique C°° extension of F ( 7 ) to a
distribution Vu) onto a nonempty open set N2 C Nι. So in a finite number of
steps we get a nonempty open set iVr and the suitable C00 distributions F ( 0 ),
F ( l ) , F ( 2 ), , F ( r ) on Nr spanning the tangent spaces of M at the points of Nr.

Now if the open set

£/3\closure(iVr)

is not empty, then we chose in it a suitable nonempty open set endowed with
suitable C°° fields of distributions V\ , etc. Again with a standard applica-
tion of the Zorn-lemma we get a suitable open everywhere dense set U of U3

which is suitable also for the theorem. As we have seen in the above proof the
dif f erentiable decomposition

T(U) = F ( 0 ) + F ( 1 ) + ••• + F ( r )

is unique on ί/up to an order. Thus the proof of Theorem 1.1 is complete.
In the following proposition the formula of the form VF(oF(7) C Vw means

that for any C00 vector field Xt with Xt(p) G Vp

(l\ p G £/, the vector field
VxXj belongs to F ( / c ).

Proposition 1.2. The following formulas hold on the everywhere dense open

subset U defined in Theorem 1.1:

Vκ<o)F<°> C F<°\ VvvV™ C

V C F ( 0 ) + F ( / ) , V κ o)F ω C V^ ifi φj, ί; 7 7̂  0.

/. In the following the symbols Xi9 Yt, Zi9- , etc. stand for vector
fields on U, which have their values in F ( / ) . Now if / φ 0,y' Φ 0 and / Φj hold,
then by the second Bianchi identity we get

(vxR)(Yj, ZJ)QJ = - (vYR)(Zj, X,)Qj - (<VZR){X,, YJ)QJ,

and thus by (1.6),

xYj, ZJ)QJ + R(Yy, VXZJ)QJ + R(Yj, ZJ)VXIQJ

VYZJ, Xt)Qj + R{Zj, VYX,)QJ
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By Proposition 1.1 every term on the right side of the above equation belongs

to VU), so

But the primitive holonomy group %(

p

J) acts on Vp

u) irreducibly, so from the
definition it follows that around every point p E U the vector fields of the
form R(Yj, Zj)Qj span the distribution Vu\ Thus for every C00 vector field X}

holds, which proves the last formula.
Now if / φ 0, then we get the following from the second Bianchi identity:

,, Zt)vXaQ, + R(Z,, VγX0)Qi

By the same argument as before, the relation V ^ ^ €= V^ι\p E ί/, holds.
Finally if / φj and i, j Φ 0, then by the above relations we have

i.e., VXYO{F E F;°>, VXY0{P E F;°> + F^), vxYt E F;°> + F^>, which proves
the proposition completely.

Corollary. The C 0 0 distributions V(0) and Vφ) -f V(i) are involutive on U,

and their integral manifolds are totally geodesic. Moreover, the integral manifolds

of F ( 0 ) are of zero curvature.

The last statement was proved also by S. S. Chern and N. H. Kuiper [12].
In the following we give another so called Z-decomposition of a Riemannian

space different from the K-decomposition.
Let us consider again the everywhere dense open set U in M corresponding

to Theorem 1.1, and let V(i\ i φ 0, be a fixed distribution on U. For a point
p E U let us consider the subspace Zψ in Tp(U) spanned by the vectors of the
forms

(l. i i) xλ{p9 vxx2\p, vxyX2x3]p,' - ,vXλ,' - -,Vχ

where the vector fields Xt are C°° around p and belong to V(i\ In this manner
we construct the subspaces Z^ι) only for the indices i > 0. By definition let Z^0)

be the complete subspace in Tp(M) which is totally orthogonal to the subspace

.
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Definition 1.3. The subspace Vp

(0) is called the null-space of the curvature

at p, and the subspace Z^0) is the so called total null-space of curvature at p.

The number v(p) : = dim Vp

(0) is called the index of nullity of the curvature at

p, and the number u(p)'.= dim Tp(M) — dim Vp

(0) is called the index of

non-nullity of curvature at /?, i.e.,

u(p) = dimJ^ ( l ) + + d i m ^ ( r ) .

It is obvious that the relations Z^0) C Vp

(0) and Vp

0) C Zψ, i > 0, hold for

every point p E U.

Theorem 1.2 (The second stability theorem). The subspaces Z^\ p G U, are

pairwise orthogonal, and there can be chosen an everywhere dense open subset G

of Mn (which is also a subset of U) on the arcwise connected components of which

the subspaces Z^ for any index i have constant dimension and the distributions

p -* Z^ι) are of class C°° on G.

Proof. By the definition it is sufficient to prove the orthogonality for the

cases i, j > 1 only. The vector fields

Xl9X29- 9Xk9-', etc. (resp. Yl9 Y2,..., Yh.. .,etc.)

of class C 0 0 stand for fields tangent to V(i) (resp. VU)).

At first we prove a lemma.

Lemma 1.5. The vector fields of the form

are tangent to Z^\ i.e., for i φ j , i, j ^ O the relation VViZ
j C Z7 holds.

Proof. We can prove the statement by induction. By R(Xλ, YX)Y2 — 0 we

get

V^Vy,^ = V y iV^7 2 + V{XxYx]Y2 = V y7 2* + V y f 7 2 - VxΐY2,

where the fields 72* : = VXY2 and Yf : = VxYλ are tangent to V(J\ and the

field Xf : = VγXx is tangent to V(i\ Thus the first two terms above are

tangent to Z ω , and the third term is tangent to Vu\ So VxyYY2{p G Z{

p

j)

holds indeed.

Now we consider the general case.

From R(XX, Yx) = 0 we can write

V^Vy.V^ * * * VYYk+λ = Vy]VXlVy2 VYYk+λ + V [ X l 7 l ] V y 2 VYYk+λ.

As the vector field VxYλ '-= Yf is tangent to Vu\ and the field VYXX '-= Xf

to V(i\ by the induction hypothesis it can be proved that the vector field

Vγ,Vy, VγYk+\ is tangent to Z o ) . q.e.d.
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Secondly we prove that the vector fields of the form

VyiVy2 Vy/*+ 1, k>0,

are orthogonal to F ( ι ) . We prove this statement by induction.

For k = 0 and k — 1 the statement is evident from (1.10).

Now if the statement is true for fields of the form Vy2 Vy/ f e + n *hen by

the induction hypotheses we get

g(X, Vy,Vy2 VγYk+l) = -g(VYιX, Vy2 V y / H l ) = 0,

where the field Xis tangent to V(i\ and thus the field V y ^ i s also tangent to

F ( / ) . This equation proves the statement.

Using induction again we can prove that the vector fields of the form

VjV^ Vx Xk+\ are orthogonal to the fields of the form v y VγYι+\.

For k — 0 the proof is given above. Now if the fields of the form v x

• v x Xk+\ are orthogonal to the field of the form V y V y VYYι+\, then

by this induction hypothesis and Lemma 1.5 we get

g{vxyX2 ' * VxXk+u V7] VYYι+λ)

= s(^x2 * * * VXkXk+ι, VXlVYl VΎkYι+λ) = 0,

as the field V^Vy VγYι+λ is tangent to Z ( Λ This proves the first part of

the theorem completely.

The last part of the theorem is obvious, because every distribution Z ( ί ) is

spanned by the differentiable vector fields of the form (1.11). Thus for a Z ( / )

the maximal open set G' on the arcwise connected components of which the

function dim(Z^y)) is constant is everywhere dense in U and so also in Mn. It is

evident, that on the everywhere dense open set

G : = G1 Π G2 Π ••• ΠGr

the distributions p -» Zψ are of class C0 0, which proves the theorem com-

pletely.

Definition 1.4. The decomposition

T(G) = Z ( 0 ) + Z ( 1 ) + ••• + Z ( r )

is called the Z-decomposition of the tangent space over the set G.

Proposition 1.3. The distributions Z ( / ) are totally parallel on G. Thus they are

involutive, and the integral manifolds are totally geodesic.

Proof. In Lemma 1.5 we have seen the relations v κ o Z ( y ) C Z ( 7 ) only for

the cases z, j Φ 0. Thus we must prove the relations v κ c ) Z ( 0 ) C Z ( 0 ) for / > 0,

and VVΦ)Z(J) C Zu) for j > 0.

The first formula is obvious, as

g(v^)Z<0>, z ω ) = -g(Zv\ vκ<ozω) = _g(Zv\ z<») = 0 for; > o.
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The formula VK«>)Z(7) C Zu\j > 1, can be proved in a similar manner as the

corresponding formula in Lemma 1.5. In this case

holds, where X is tangent to F ( 0 ) . As [X, Yλ] is tangent to F ( 0 ) + F ω using

induction we get the above relation.

Finally for formula vK(c»Z(0) we get

) = o,
which proves the assertion completely, q.e.d.

For a point p E G let Λf0, M,, ,M r be the integral manifolds of the

distributions Z ( 0 ) , Z ( 1 ) , , Z ( r ) respectively through the point /?. From the

above proposition we get evidently that around the point p the Riemannian

manifold can be considered as the direct product of Riemannian spaces

Λf0, Λf,,... ,MΓ, and this decomposition is unique up to the order. It can also

be seen that Mo is of null curvature, Ml9 M 2, ,MΓ are irreducible, and even

also the infinitesimal and the local holonomy groups act in this space irre-

ducibly (for details see [7, p. 182]). It is also obvious that the action of the

infinitesimal holonomy group is trivial on Z ( 0 ) . Thus the above local decom-

position of a Riemannian space can be considered as a decomposition using

the infinitesimal holonomy group and also as a decomposition using the local

holonomy group.

Definition 1.5. A Riemannian manifold (MM, g) is called a simple leaf if at

any point the F-decomposition of the tangent space is of the form

Tp(M) = vp + V?\

i.e., there is at most a single invariant subspace on which the primitive

holonomy group %p acts irreducibly.

A simple leaf is said to be infinitesimally irreducible if at least at one of its

points the infinitesimal holonomy group acts irreducibly, or equivalently at

least at one of its points the Z-decomposition contains only the space Tp(M)

So we can state

Theorem 1.3 (The local decomposition using the infinitesimal or local holon-

omy group). For any C 0 0 Riemannian space (M", g) there exists an everywhere

dense open subset G such that around every point p G G the space can be

decomposed into a direct product of Riemannian manifolds in the form

M o X M j X ••• X M r ,

where Mo is a zero curvature and furthermore the manifolds Mi9 i > 0, are

infinitesimally irreducible simple leafs.
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2. Basic formulas

Let us examine a C°° Riemannian manifold on the everywhere dense open

subset U on which the F-decomposition of tangent space is of class C°°. The

dimension of the null-spaces Vp

(0) on an arcwise connected component U8 of U

is constant, say v. As the integral manifolds of F ( 0 ) are of zero curvature,

around every point p E Uδ we can choose a system {m1? ra2,
 m,rnv} of C00

pairwise orthogonal unit vector fields which are tangent to F ( 0 ) and further

satisfy

(2.1) V ^ m γ = 0, Kβ,y<v.

In the following the symbols X, Y stand always for C00 vector fields tangent

to F ( 1 ) + F ( 2 ) + + V(r\

For a field m^ let us consider the derived tensor field Vxmβ, which can be

written in the form
r

(2.2) Vxmβ = Bβ(X) + Σ M$(X)my,
γ=i

where Bβ(X) G F ( 1 ) + F ( 2 ) + + F ( r ) .

5^^ is a linear endomorphism in the space F£ ! ) + + Vj;r) which we

extend onto the whole tangent space Tp(M) in such a way that it has the value

zero on the subspaces V^°\ On the other hand M$(X) is a covariant vector in

F ( 1 ) + F ( 2 ) + + F ( r ) , which we also extend similarly onto Tp(M) by

M/(mγ) = 0.

From (1.10) it is obvious that the endomorphisms Ba^ leave the subspaces

Vp

U)J > 0, invariantly, and furthermore the skew-symmetry

(2.3) M£(X) = g(vxma, mβ) = -g(ma, vxmβ) = -Mg(X)

also holds.

Definition. The tensor fields Ba as well as Mf are called second fundamen-

tal forms corresponding to the system {m1,m2, , m j .

Let us define the tensor fields Mα, a— 1,2, ,Ϊ> of type (0,2) by the

following formulas:

M«(X,Y):=-g(Ba(X),Y),
[ ' } Ma(X, mβ) = M"(mβ9 X) = Ma(mβ, mγ) := 0,

where the C00 vector fields X, Y are tangent to F ( 1 ) + + F ( r ) .

With the help of these tensor fields we introduce a covariant derivative

denoted by V. It is defined uniquely by the following formulas:
V

(2.4) VXY:= VXY~ Σ Ma(X,Y)ma,



STRUCTURE THEOREMS ON RIEMANNIAN SPACES 549

(2.5) vxma := 2 Mί(X)mβ = V^mα - Ba(X),
β=\

(2.6) v 2 β J f = v= βJf,

(2.7) V^rnβ = V ^ = 0,

where X and 7 are tangent to F ( 1 ) + + F ( r ) . It is clear that the vector fields

VXY (resp. Vxma) are just the projections of VXY (resp. Vxma) onto

pO) + . . . +F ( r ) (resp. F ( 0 )).

It is also clear that V is metrical, i.e., V satisfies Vg = 0, but it has torsion.

Let us denote its curvature tensor field by R(X, Y)Z. Moreover we introduce

the operation [A", y] defined by

(2.80 [£?]'•= VXY-VYX,

where ^ y ^ ^ ;

Proposition 2.1. The second fundamental forms satisfy the following so-called

first basic formulas:

(2.8) (vxBa)(Y)-{vYBa)(X)

+ 2 {MZ(Y)Bβ(X)-M£(X)Bp(Y))=O,
β=\

(2.9) dΛfζ(X, Y) + 2 M&Y) Λ Mξ(X)
γ=i

+ \ [M'iX, Ba(Y)) - M'(Y, Ba(X))] = 0,

(2.10) {vsBβ)(X) + Bβ o Ba(X) = 0,

(2.11) (v=.M/)( Jf) + Mβy(Ba(X)) = 0,

(2.12) v m β v x y = v^vm<ty + vV m w y - v B ( i W r - 2 M'{x)vmtY,
~ β=\

i.e.,R(ma, X)Y=0,

(2.13)
V

R(X, Y)Z = Λ( Jf, r)Z + 2 M\Y, Z)Bγ(X) - M\X, Z)By(Y)9

w ίΛe exterior derivative, the symbol Λ denotes the skew-product, and

the C 0 0 vector fields X, 7, Z are ίαwge/ί/ to F ( 1 ) + + V(r\



550 Z. I. SZABO

Proof. We get the first two equations from the equation R( X, Y)ma — 0 as

follows. Let us consider

r
V*Vymα = Vχ\Ba(Y) + 2 Ma(γ)™ι

V f

Σ
β=\

}rnβ + 1 Ml
γ = l

Substituting these in the formula

^ ( ^ , y)mα = VxVγma - VγVxma - V[X,Y]ma = 0,

we get (2.8) and (2.9).

Formulas (2.10) and (2.11) follow in a similar manner from the equation

R(ma, X)my = 0, and (2.12) comes from R(ma, X)Y = 0.

Finally we get (2.13) from the formula

, Y)Z = VχVγZ - VγVxZ - V[XjY]Z,

by substituting in it formulas (2.4)-(2.7). The detailed computations are left to

the reader.

Proposition 2.2. The curvature tensor field R satisfies the following so called

second basic formulas:

(2.14) (VnR)(X, Y) = Λ(y, Ba(X)) + R(Ba(Y), X),

(2.15) {vxR)(XJ9Yj)Zj = 0 fori^jandi,j¥=09

σR(Xj, Yj)Ba(Zj) = 0 (cyclicsum),

where X, Y are tangent to F ( 1 ) + + V{r\ Xt is tangent to V(i\ and Xj9 Yj9 Zj

are tangent to Vu\

Proof. These formulas follow from the second Bianchi identity, as it can be

seen from the following:

(V^RXX, Y)V= - (VXR)(Y, mJV- (vγR)(ma, X)V

= R(Y, Ba(X))V+R(Ba(Y), X)V,

(vxR)(Xj, ΎJ)ZJ = - {VXJR)(YJ, Xt)Zj - (VYR)(X,, XJ)ZJ = 0. q.e.d.
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One of the most important consequences of the basic formulas is that the

second fundamental forms and the curvature tensor are analytic fields along

the integral manifolds of the null-space F ( 0 ) .

To prove this statement let us consider a simply connected integral manifold

N of the distribution F ( 0 ) . We consider on N the vector fields w , , - - - , ^

constructed in (2.1). Let (w1, w2,- ,uv) be the coordinate neighborhood

according to mx, m 2 , -,mv so that ma = 3/3wα. Let us denote the origin of

this coordinate neighborhood by 0.

Let us notice that the whole tangent space T(M) can be parallelized over N.

Indeed, since R(ma, mβ) = 0, the differential equations

are completely integrable. So there can be chosen a system (vl9 v2,
m ",£,-„) of

C°° pairwise orthogonal unit vector fields on N, which are tangent to F ( 1 )

-h + F ( r ) and are totally parallel on N, i.e., VmVj — 0. It is obvious that

the system

(2.16) 2i»?2»' "»Si-ir» VlWiVlv

defines an orthonormal basis in the whole tangent space T(M) at every point

of N. With the help of this parallelization we can identify two arbitrary tangent

spaces Tp(M) and Tq(M) (p9qEN) over N.
Let us consider a geodesic φ(s) of N of the form

φ(S) = (uι(s), -;u'(s)) = (sa\.. ,sa'), 2 (a"f = 1,

where a1 E R are constant. φ(s) goes through the origin and is parametrized

by the arc length. Now if we introduce the field L of linear endomorphisms

along <p(s) defined by

(2.18) L= 2 aaBa9

then by the basic formula VmBβ 4- Bβ o Ba = 0 we get

(2.19) VφBβ = 2 JvzBβ = -Bβ 2 aWy = -Bβ ° L,
γ = l γ = l

(2.20) V φ L = 2 a^VφBy = -L2.
γ = l

It can be proved by induction that for the p-th derivative VgBj and V?L we

have

(2.21)
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(2.22) V | L = ( - 1

Now let us consider the analytic field A(s) of endomorphisms along φ(s)

defined by

(2.23) A(s) = 2 (-lYL\osP'

By the parallelization (2.16) the endomorphism A(s) can be considered as an

endomorphism over φ(s) in Γφ(s)(M). From (2.21) it is clear that the analytic

field By(s) along φ(s) defined by

(2.24) By(s):= Byl0oA(s),

By\0 being considered by the parallelization (2.16) over φ(s), satisfies the

differential equation (2.19) and By(0) = 5γ j 0. But the solutions of (2.19) are

uniquely determined by the initial values. Thus By(s) is just the second

fundamental form By at ψ(s).

Let us write (2.24) in a more attractive form. As ua(s) = saa along ψ(s), we

have

A(u\- •-,«') = A(uι(s), ~,u'(s)) = 1 (-1)V( 2 "y

p=0 \γ=lp=0 \γ=l

oo

(2.25) = 2 (-1Γ
p = 0 \γ=l

= 1 Σ (-i) i(« IΓ («'Γ^ I...P.

By definition

(2.26) .̂.,,:=Σ^ ^ V

where the sum contains the part of the form Ba o ... o Ba in which By

occurs exactly pγ-times, and Aε

pr..Pw is considered by (2.16) over the point

parametrized by (u\ M2,- ,M").

It is clear that the tensor field A is an analytic field on N. So by (2.24) we

have

(2.27) By(u\ u\ - ,uv) = By]0 o A(u\- ,κ'),

where 5γι0 is considered with the parallelization (2.16) over the point parame-

trized by (u\ M2, -,u").
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The tensor fields Mg(X) and R(X,Y)Z can be discussed in a similar

manner. From (2.11) it follows that

(2.28) vφM£ = -M*oL9 V$Mf=(-l) p p!Mf ° L<\

so that, similarly as before,

(2.29) M£(U\ ,κ') - M^o o A(u\ , * ' ) .

Finally from (2.14) we get

(2.30) (VΦR)(X, Y) = -R(L(X), Y) - R(X,

and therefore

(2.31) (v|Λ)(Jf, Y) = (-l)V £

ε = 0

Thus /? is of the form

(2.32) R l ( u , t s t . . . ^ X , Y ) Z = R l 0 ( A K u , , l

where Ro is considered over (w1, w2,- , M " ) by (2.16). Hence we have

Proposition 2.3. The second fundamental forms By and Λff and the curvature

tensor R are analytic fields along any integral manifold F ( 0 ) . More precisely they

are respectively of the form (2.27), (2.29) and (2.32), where the analytical

endomorphism field A is defined by (2.25) and (2.26).

3. The construction of simple semi-symmetric leafs

From the definitions it is clear that by the direct product of semi-symmetric

Riemannian spaces we get again semi-symmetric spaces. Furthermore if we

decompose a semi-symmetric space with the method described in Theorem 1.3,

then it is obvious that every single simple leaf of the decomposition is

semi-symmetric. By this reason we examine here simple semi-symmetric leafs;

more precisely we construct several simple semi-symmetric leafs. In the next

section we shall show that all these leafs constructed here will form a complete

list of nonsymmetric simple semi-symmetric leafs. This observation leads us to

state a local structure theorem on semi-symmetric spaces.

A. Elliptical and hyperbolical cones. The definition of elliptical cones is well

known. Let us consider in Rn an (n — l)-dimensional hypersphere, denoted by

Sn~\ and let a be the axis of Sn~ι in R π + 1 with an arbitrary point P E a,

P ί Rn. Then the elliptical cone is inscribed as hypersurface in Rw + 1 by the

half straight lines starting from P and crossing the points of Sn~ι.
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7 2 - 1

For the construction of hyperbolical cone let us consider in Rn a symmetric

nondegenerate inner product (,) with Lorentz signature. On the set of vectors

X for which (X, X) < 0 holds we construct a positive definite Riemannian

metric. For a negative number -a2 the vectors X with (X, X) — -a2 form a

hypersurface which we denote by Hn~x. On the tangent spaces of Hn~λ the

indefinite inner product (,) induces a positive definite inner product which

defines a hyperbolic metric on Hn~ι. Let us consider this positive definite

inner product ( , ) on the tangent spaces of hypersurfaces Hn~ι, and let us

define the positive definite inner product for a vector X pointing from a point

P to the origin O in such way that X is orthogonal to Tp(H"~ι) and its inner

product with itself is the positive number -b2(X, X) for some positive constant

b2. It is clear that (, >^ defines a positive definite Riemannian metric inside of

a cone. We call this metric space a hyperbolic cone.

All these cones are semi-symmetric simple leafs. Indeed, in both cases the

primitive holonomy group %p is isomorphic to SO(n — 1), and leaves the

tangent spaces Tp(Sn~ι) and Tp(H"~λ) invariant. On the other hand the

curvature tensor on these tangent subspaces is of the following form:

R(X, Y)Z = κ(g(X9 Z)Y - g(Y, Z)X),

thus R remains invariant under the action of %p. This property proves the

semi-symmetricity of the cones.

It is obvious that the nullspace F ( 0 ) is 1-dimensional at every point, and is

spanned by the vector pointing to the vertex of the cones. It is also clear that

all these spaces are infinitesimally irreducible. Moreover these spaces are not

complete but are maximal in the following sense.

Definition 3.1. An arcwise connected Riemannian space Mn is said to be

maximal if there does not exist another arcwise connected Riemannian space

M'M such that Mn is isometric to a real subset of MΛ
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B. Kaehlerian cones. We define these spaces in §4. These cones are the

complex analogues of the above real cones.

C. Spaces foliated with (n — 2)-dimensional Euclidean spaces. In the

following let (Λf", g) be a simple leaf with index of nullity v(p) equal to

(n — 2) at every point of the manifold. Then considering the F-decomposition

the tangent space is of the form

T(M) =

where F ( 1 ) is of dimension 2 at every point, and F ( 0 ) is of dimension (n — 2).

As these dimension numbers are constant the distributions F ( 0 ) and F ( 1 ) are of

class C0 0 on the whole manifold Mn.

It is clear that all these spaces are semi-symmetric. Indeed in this case % is

isomorphic to SO(2), and the curvature tensor is of the form

R^X, Y)Z = κ(g[p(X, Z)Y- g]p(Y, Z)X), X,Y,ZE V™

on V£ι\ p e M. Thus %p leaves the curvature tensor invariant at every point,

but this property guarantees the semi-symmetricity of the space. This fact

motivates the following definition, since the (n — 2)-dimensional integral

manifolds of F ( 0 ) are Euclidean subspaces.

Definition 3.2. A space (Mn, g) with v{p) = n — 2, p G Mn, is called a

space foliated with (n — 2)-dimensional Euclidean spaces.

In the following we construct the metric of these spaces.

Let us consider in such a space a local system (ml9 rn2,- 9mn_2) of vector

fields considered in the previous section in the formula (2.1). So these unit

vector fields are pairwise orthogonal. Furthermore they are tangent to F ( 0 ) and

satisfy Vmrny — 0. We consider the unit vector fields vl9v2 constructed in

(2.16) sucE that the vector fields

(3.1) 2i»?2»?!2i»??2» »??Λ-2

are pairwise orthogonal and that VmVj = 0 holds. Then the fields υλ and v2

span just the subspace F ( 1 ) at every point of the manifold. Finally let xl9 x2 be

C 0 0 vector fields such that in the system

( 3 . 2 ) * i>*2>™i>™2> >™*-2

the elements are linearly independent, and for their Lie derivatives

[xl9x2] = [ ϊ i ^ γ ] = 0

holds. It is obvious that such fields xλ and x2 exist. Since [ma, mγ] — 0 holds,

there exists a coordinate neighborhood of the form

(3.3) (JC1,*2,!!2,---,!!"-2)
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in Mn such that

x. = d/dx', ma = d/dua.

In the sequel we write the metrical tensor field of the considered spaces in

these coordinate neighborhoods in a characteristic form.

At first we introduce some important differential equations. The vector

fields υx and v2 can be written in the form

(3.4) a= Sfe+Σfe
r=\ a=\

where det φ : = φ\φ| — ψ\ψ\ ̂  0, and thus also

1 / n~2

(3.5) ί ι = _ _ l ^ 2 l _ φ 2 S 2 + 2

(3-6) ^ ^

Now let us compute the fields [mγ9vi] from the above formulas. So we have

On the other hand

n-2

(3.8) [m γ, a .] = VWγti - vO /wγ = - ^ ( a ) - 2 ^ γ

α ( ^ « ,

so introducing the components

(3.9) By(2i) = Σ B;^, My

a(2i) = Mγ

α,,

and comparing the coefficients in (3.7) and (3.8) we have the differential

equations

(3.10) fu

| £ + Λ γ ί γ ; + ̂  = 0.
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We mention here the basic formulas (2.10) and (2.11), which in this formalism

take the following form:

( 3 π )

We state some further important equations. The vector field [υl9 v2] can be

written as

n-2

(3.12) [ϋ,, V2] = VVV2 - VVV} = -λ,^! + X2V2 + 2 {Ba2 ~ Ba\)™a>

where the functions \x and λ2 are defined by means of the covariant derivative

V by the formulas

(3.13) V^ϋj = λ,^, Vvv2 = λ 2ϋ,, Vvv2 = -λι2l9Vo£ι = -λ2?i

These formulas are satisfied indeed, because V is metrical, i.e., Vg = 0 holds.

Considering the functions λ{ and λ 2 we mention that the basic formula (2.12)

is equivalent to the differential equations

9 λ l n h 2̂Λ
ΰy\A\ + ^γlΛ2»

<3 1 4 ) ax , =

Let us notice that the vector field [ϋ,, v2] can be computed with the help of

formulas (3.4), (3.5) and (3.6). The result is:
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Comparing the coefficients in (3.15) and (3.12) gives

, J 1 r9det

(3 18)

Now let us derive partially the above equation (3.18) with respect to the

variable uy. Then by (3.10) and (3.11) we get

3Mγ«2 ΘMγ«, / i a d e t φ 3,5

(3.19)

Finally substituting (3.16) and (3.17) into (3.14) yields

_ ^ 2 i _ _ L _ r Ύ -r. , | B 11 - 9 det φ 9<?2

(3.20) γ l \ d e t φ ι dxr dxr I γ l \ d e t φ 2 dxr dx

M>2Bp\ = 0,

Ψλ dxr Ψl Zxr
adetφ.M

, / 1 r θ det φ 3<P2 \ Λ 2 / 1 r 3 det φ 3 φ r /

(3.21) γ 2 \ d e t φ 3 x r 3 x r / γ 2 \ d e t φ ] dxr dxr

Y\Bp2 ~ Ϊ2^pi/ "" ByiyΐiBpλ ~ y\Bpi) "*" M^Bpχ — M^xBpl — 0.
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The differential equations (3.10), (3.11), (3.18), (3.19), (3.20), (3.21) play a basic
role in the following considerations.

Without the description of the details of the computations we mention that
deriving (3.18), (3.19), (3.20) and (3.21) corresponding to the variable uε we do
not have new independent equations. More precisely let us denote the left side
of (3.18), (3.19), (3.20), (3.21) by Γβ, 9lt£ <S>\, %]. Then using the formulas
(3.10), (3.11) we have

(3.22) -j^f = - (Trace Bt)%- By'β

(3.23) j£ = -91tε

α - (TraceBc)Ta,

a
Ύ _(3.24) — / =-(Trace 5e)91L«.

The details of the computations are left to the reader.
Now on the 2-dimensional sub-plane defined by

(xιx2):=(xι

9x
2,09 ,0),

let us consider arbitrary C00 functions φj(jc\ x2\ 1 < /; j < 2, such that
d e t φ : = φ\ - ψ\ψ\ Φ 0. Henceforth let us consider (3.18), (3.19), (3.20),
(3.21) on this plane as differential equations containing the unknown functions
γ/*, M^, Bjr Let c2(s) be the maximal integral curve of the vector field
φ\xλ + φ\x2 on the plane through the origin 0. From the Picard-Lindelόff
theorem on differential equations it is clear that for arbitrary C°° functions
γfl*1, x2), M^(x\ x2% Ba\(x\ x2), Ba

2(x\ x2) on (χ\ x2) and for arbitrary
C00 functions γ2

α(^), M%2(s\ Ba\(s\ Baj(s) on c2(.s) there exists a uniquely
determined system (γ^jc1, x2\ M^{x\ x2\ Bi(x\ x2)) of solutions of (3.18),
(3.19), (3.20) and (3.21) on the plane (x\ x2) with the above prescribed initial
conditions.

Let us consider the differential equations (3.10) on an integral manifold N of
F ( 0 ) . In a similar manner as in Proposition 2.3 we get that the solutions of
(3.10) are analytic on Λί and they are of the form



560 Z. I. SZABO

According to these facts we have

Theorem 3.1. In a coordinate neighborhood (3.3), the metrical tensor field of

a space foliated with (n — 2)~dimensional Euclidean spaces is of the form

= *(*., ί2) =

g22 = g(x2, x2) =

(detφ)

2(detφ)

(Ψ\f f - φ\y2

af),
/

(3 25) =

(detφ)

n - 2

if a > 3,

gβ/5 = δa / 3 {Kronecker δ-function) ifa,β>3,

where the functions Bj(, M^, φf, γ " are of the form

(3.26) Bi = Bj£x\ x2)A',(x\ x\ u\ • • ,u"~2),

(3.27) MP = Mi(x\ x2)A°(x\ x\ u\ • ,«- 2),

(3.28) φf = φ*(x\ x2)A't(x\ x2, u\ • • ,u"~2),

(3.29) γ« = Ίf(x\ \ X2, U\ ,

the functions Bi(x\ x2\ M^(x\ x2\ φf(;c\ x2) andy«{x\ x2) are solutions of

(3.18), (3.19), (3.20) and (3.21) on the sub-plane (x\ x2) = (x\ x 2,0, ,0),

and

(3.30)

As,(x\x2,u\' ,un-2) =

e = 0 P l + + P # I _ 2 = e

oo / n-2

Z uBa(x9.
9 = 0 \ a=l

with

(3.3i) k , . . . , . ^ 1 , * 2 ) ! ' - Σ ^.ί ί*1,-
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where the parts in the sum contain the matrix B^ just prtimes9 9etc, the

matrix B(n_2jjust p(n_2)-times.

The form (3.25) of the metric is a characteristic for a space foliated with

(n — 2)-dimensional Euclidean spaces. This means that a space with a metric of

the form (3.25) is always a space foliated with (n — 2)-dimensional Euclidean

spaces.

Let us consider an arbitrary coordinate neighborhood (x1, x 2, u\ ,wM~2).

Then for arbitrary prescribed C 0 0 functions <ή(x\ x2) (det φ φ 0), y"(x\ x 2 ) ,

M*λ(x\ x 2 ) , Ba\(x\ x2) on the plane (x\ x2) = (JC1, x 2 ,0, ,0), and for arbi-

trary C°° functions y2(s), M^2(s)9 Bal(s) on the coordinate line x2(s) through the

origin there exists exactly one space foliated with (n — 2)~dimensional Euclidean

spaces on (x\ x\ u\ - ,un~2) with the prescribed initial conditions. The metric

is defined in such a way that the system ( υ l 5 v2, rnλ9 w2,* *>w/I_2) defined in

(3.4) is orthonormal in the space.

Proof. We need to prove only the characteristic property of the above metric.

Let gf. be a Riemannian metric satisfying (3.25)—(3.31). First we prove that

the functions γ/\ φ/, Λf£ and Bi satisfy the differential equations (3.18)-(3.21)

not only on the sub-plane (x1, JC2) = (x1, xι,0, ,0) but also on the whole

coordinate neighborhood (x\ x\ u\- , M " ~ 2 ) .

In fact, by (3.26) - (3.31) we get (3.10) and (3.11). Thus these functions are

analytic along the integral manifolds N of the distribution V(0). Let us

substitute these functions into the left side of (3.18)—(3.21) which we denote by

It is obvious that all these functions are analytic along the integral manifolds

of F ( 0 ) . As (3.10)-(3.11) hold, we get (3.22), (3.23), (3.24). With the help of

these equations we can prove (by induction) that not only the functions

Γα, 91tf, 9)ι

a but also their derivatives of arbitrary orders (with respect to the

variable (w\ ,wn~2) vanish at (x1, x 2,0, ,0). As these functions are

analytic in the variable (w1, w2,- ,ww~2), Γα = 0, 91t£ = 0, % = 0 hold

everywhere. This proves the first statement and we get that (3.10), (3.11), and

(3.18)—(3.21) are satisfied on the whole coordinate neighborhood.

Now let us introduce the vector fields vx and v2 by the formula (3.4) where

/wf : = d/du*. Then the fields (vl9v29mλ9--,mn_2) form an orthonormal

basis at every point. We define the covariant derivative V by the following

formulas:

n-2

ma— ma-i - 1 " ~ β = 1
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H-2 n-2

a=\ a=\

n-2 2 n-2

Vo «i = -λ 2 2 2 - Σ «̂2™«> V ma = Σ * * ? * + Σ M£jmβ9

a=\ k=l β=\

where the functions λ, and λ 2 are defined by (3.16) and (3.17). It is obvious

that V is metrical, i.e., Vg = 0 holds.1 But by (3.7)-(3.10), (3.12)-(3.17) and

(3.20)-(3.21) we get that the torsion of V vanishes, i.e., V is the Levi-Civita

connection of the space. So we must show that v(ρ) — n — 2 is satisfied for v .

Let us denote the curvature of V by R(X, Y)Z. We must prove that

The first equation is obvious as v m mp — 0, Vw Vj = 0. It can be seen that the

second equation is equivalent to the basic formulas (2.8)—(2.12) in Proposition

2.1. But (3.11), (3.20), (3.21) are equivalent to (2.10), (2.11) and (2.12). Thus we

must prove only (2.8) and (2.9). But these equations can be obtained by

substituting into the Bianchi identity

the previously proved formulas
72-2

[2i> 2i] = V c ϋ 2 - Vυvx = -λ1t)ι + λ2v2 + 2 (K\ - Ba*)ma,
a=\

2 n-1

[&» mΔ = vO/2?« - v m β a - Σ *«fe* + Σ M^-
k=\ β=\

Thus the space is foliated with (n — 2)-dimensional Euclidean space, and the

proof is finished.

4. The main theorems and the local structure theorem

In the sequel we use a theorem of B. Kostant which we describe in the

following. (This result was not published by B. Kostant but can be found in

[18, p. 230].) We mention also the fundamental ideas of holonomy systems

developed by J. Simons [18].

1 This statement can be proved by showing the formula

g(VxZ, Y) = \{X g(Y,Z)-Y g(Z, X) + Z- g(X, Y)

-g(Z,[X,Y]) - g(X,[Z,Y]) - g(Y,[Z, X])}

with the help of (3.7)-(3.21) with respect to the fields c,, v2, m,, -,rnn_v
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Let Vn be an ̂ -dimensional real vector space with a positive definite inner

product ( , ) . A tensor R(X9 Y)Z of type (1.3) over Vn is called a curvature

operator whenever the following hold:

R(X,Y) = -R(X,Y),

R(X9 Y)Z + R(Y, Z)X + R(Z, X)Y= 0,
[ ' } (R(X,Y)Z9V)= -(R(X,Y)V,

• (R(X9 Y)Z, F>= <Λ(Z, V)X9 Y).

Let Λ b e a curvature operator on (Vn

9 (,)), and G some compact group of

orthogonal endomorphisms of Vn with Lie algebra %. G is called a holonomy

group of R if R{ X, Y) G g for all I , 7 G K".

A triple S — [Vn, R, G] consisting of a Euclidean space Vn, a curvature

operator R, and a connected holonomy group G is called a holonomy system.

The holonomy system S is said to be symmetric if g(R) — R for all g £ G,

where the action of g on R is defined by

(g(R))(X,Y) := gRig-'X, g-ιY)g-K

The system S is said to be irreducible iff G acts on Firreducibly.

Let us denote the Lie algebra of all skew-symmetric endomorphisms of V by

&. On & there exists a natural negative definite inner product defined by

(A,B) := TraceAB, A,BG&.

Let § be the Lie algebra of some compact subgroup of orthogonal endomor-

phisms in V, and let K(,) denote the Killing form of §. Since the form is

negative semidefinite, the bilinear form K(,) + ( , ) is negative definite on §.

Thus there is a nonsingular transformation T: § -> § such that

(4.2) K(A,B) + (A,B)=(A,T(B)).

It is clear that T is symmetric, i.e.,

(4.3) (A,T(B))=(B,T(A)).

From (4.2) and (4.3) we get that all the eigenvalues of T are positive real

numbers.

There is a natural identification XΛ Y -» (XΛ Y) of Λ2V with & defined

by

(A,(XΛY))=(A(X)9Y).

Finally let P: & -> § be the projection of & onto § via ( , ) . Then the above

mentioned theorem of B. Kostant is as follows.

Theorem 4.1 (B. Kostant). Let S = [Vn, R, G] be an irreducible symmetric

holonomy system. Then there is a constant γ such that

R(X,Y) = y(T-1 o p)((χ
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A simple consequence of Kostant's theorem is the following, which is also

mentioned in [18, p. 232].

Theorem 4.2. Let S = [Vn, R, G] and S' = [Vn, R\ G] be two symmetric and

irreducible holonomy systems with the same vector space V and holonomy group

G. Then there exist a nonzero real number such that R — cR'.

For a curvature operator R(X, Y)Z with components Rf^ let RtJ := Rfsj

be the Ricci tensor, and 91 : = R^j —-R/ be the Riemannian curvature

scalar. If the system S — [Vn, R,G] is irreducible and symmetric, then the

Ricci tensor is the multiple of the inner product, i.e.,

where gtj denotes the components of ( , ) . Thus we have 91 = ~nκ. Let us

denote the eigenvalues of T by λf, λ^, ,λ* where r is the dimension of §.

Then by Theorem 4.1 we get that for an irreducible symmetric holonomy

system [Vn, R, G] the formula

( dim 3

Σ

holds. Furthermore if we consider the curvature operator R by the

Bianchi identities <Λ(*, Y)Zy V)= -(R(X, Y)V, Z>, (R(X, Y)Z9 V) =
(R(Z9 V)X, Y) as a symmetric linear endomorphism on §, then its nonzero

eigenvalues are λy = ϊ/λ*,y = 1, ,r, i.e., by (4.4) we have

S = 1 l / λ * ) λ * '

As the eigenvalues λ? of T are positive, and γ in Kostant's theorem is

nonzero, we have

Lemma 4.1. The Riemannian curvature scalar 91 of an irreducible symmetric

holonomy system [Vn, R, G], R Φ 0, never vanishes.

In the following considerations we need the following lemma. If B is a linear

endomorphism in a real Euclidean vector space (V, ( , )), then its transposition

Bτis defined by (X, B(Y))= (BT(X% Y).

Lemma 4.2. Let § be an irreducible sub-Lie algebra of the skew-symmetric

linear endomorphisms in an Euclidean real vector space (Vn, ( , ) ) , n > 2.

Furthermore let B be a linear endomorphism in Vn for which

(4.6) u o B = -Bτufor all u<Ξ§.

Then B — 0, or n = 2m and B — bΦ, where b G R, ί 2 = -id, and *$ commutes

with every element of§, and thus ^is skew-symmetric.

Proof. Let us suppose that B Φ0, and let λ Φ 0 be an (in general complex)

eigenvalue of B. If Vc = V + iV denotes the complexification of V, then let us
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extend the endomorphisms B and all u E § to complex linear endomorphisms

of Vc. Let Vλ C Vc be the complete invariant subspace corresponding to

eigenvalue λ, i.e., Vλ contains the vectors X G Vc for which (B — λI)nX — 0,

where / denotes the identity endomorphism. For every « E § and l G K λ w e

get

0 = u(B- λl)nX = (-l)"(Bτ + \I)nu(X)9

Thus u(Vλ) is contained in the complete invariant subspace of Bτ correspond-

ing to its eigenvalue -λ. But it is well known that this subspace is equal to V_ι

of B. Thus it follows that the values -λ, -λ are also eigenvalues of B, and

(4-7) u(Vλ) C V_-λ

for every u E §. Therefore the real and the imaginary parts of the.subspace

Vχ+Vχ+ V_λ + V_ι

are invariant for every u E §. As B is an extension of a real linear endomor-

phism, the above subspace has always nontrivial real and also nontrivial

imaginary parts. Therefore because of the irreducibility

1 ' ;

We examine three cases:

(1) The eigenvalue λ is imaginary, i.e., λ = ci, -λ = -q, where c E R and

c>0.

(2) The eigenvalues λ and -λ are real numbers.

(3) The eigenvalues λ, λ, -λ, -λ are different complex numbers.

First we prove that cases (2) and (3) do not occur. Indeed, in case (3) let us

denote the subspace Vλ + Vχ by Wλ9 and in case (2), Wx denotes the subspace

Vλ. Then by (4.7), u{Wx) C W_x for every w E §. Now if v E 9 is another

element, then

[u,v]Wλ = (uoV-Όo u)Wλ c W_λ,

as § is a Lie algebra. But on the other hand

uvWλ C uW_λ C Wλ, vuWλ C υW_λ C Wλ.

Thus [w, υ]Wλ C P^λ, and so

[u9v]WλQWλnW_λ = 0,

[u9v]w_λcwλnw_λ = o.
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But the real projection of Wλ + W_λ is F; thus [u,υ] = Q, i.e., β is an abelian

Lie algebra. But this is impossible because n > 2 and § is irreducible. This

proves the above statement.

Now let us consider case (1) when λ is imaginary, i.e., when λ = ci. Then let

Vχ be the subspace for which (B — λI)Vχ = 0 holds. As λ is an eigenvalue of

B, Vχ is nontrivial. On the other hand for every element u G § we get

So as in (4.7) the relation

(4.9) u{V>)QV_\=Vl,u{v\)cV\

follows, and thus by the irreducibility of § we get Re Fλ

ι = Re V\ = F.

But on Vχ we have

B(X) = λX,X<Ξ Fλ\

and so by (4.9) for every element u G § we get

Bu(X) = λu(X) = iι(λJf) = uB(X), X G F^,

i.e., B and w commute on Vχ. But Re Fλ

] = V, thus 5M = uB on F, and by (4.6)

B is skew-symmetric. As the skew-symmetric B commutes with the element of

the irreducible skew-symmetric Lie algebra S, by a well-known theorem of

linear algebra [7, p. 278] we get n = 2m, B-b^, i G R , ^2 - -I and

^ β — §?F. This proves the lemma completely, q.e.d.

Now let us consider a simple semi-symmetric leaf (M, g) and the F-decom-

position of its tangent bundle T(M), which we denote by T(M) = F ( 0 ) + F ( 1 ) .

Furthermore let m,, m 2 , ^m,, be the vector fields constructed in §2, and let

Ba9 a — 1, , v be the second fundamental forms.

Lemma 4.3. The coυariant derivative Vm R of the curvature tensor in a simple

semi-symmetric leaf is the multiple of itself\ i.e.,

(4.10) v = Λ = -2μaR

where μais a C0 0 function on the manifold.

Proof. Let c(s) be an integral geodesic of the vector field mα, and let

xλ, x2, - -,xu be linearly independent parallel vector fields along c(s) such that

they span the subspaces V$y Let B^(s) (resp. Rjkl(s)) be the component of

Ba (resp. R) corresponding to the above basis. Let us consider these compo-

nents as functions of the arc length s.

As we have seen in Proposition 2.3, these components are analytic functions

of s and

(4 Π) R'jkl(s) = R'j^AiisMis),
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where

(4-12) Λfts):= S(-1)
k=\

is an analytic function.

Let A(s) be the linear endomorphism in the tangent space V}^ with matrix

Aj(s) in the basis {xx(0), x2(0),' * >*M(0)} Now let τo

s be the parallel displace-

ment along c(s) from c(0) to c(s). Then by (4.11) we get

(4.13) τ?R(τξX, τ°Y)τZZ = RH0)(A{S(X), A]S{Y))Z, X,Y,Z<= VC%.

This means that the parallel moved Riemann curvature tensor τ®R from c(s) to

c(0) along c(s) generates the same Lie algebra as R^o, i.e.,

= {{τ?R)(X,Y)\X,YeTm(M)}.

It is also true that τ®R is invariant under the action of 3Cc(0) (as 3Cc(0) =

τs°%c(s)ToX so the holonomy systems

[TC(0)( M), R\c{0), 5Cc(o)J > [ Γ c ( 0 ) ( M), τ 5 °Λ| C ( s ) , 5C c ( 0)J

are symmetric. By Theorem 4.2 we get that there exists a real number z(s) such

that τs°RHs) = z(s)Rm. Thus

τs Λ\φ) *\cφ) Z(S)—Z(O)

(4.14) = -2μaRιm,

z(s) = -2μβ.

It can be seen that z(s) is of class C00, so that the lemma is proved, q.e.d.

Next we prove that for a simple semi-symmetric leaf with index of non-

nullity greater than 2, all the second fundamental forms Bα are of the form

Ba = XJΪ+ μj, where λα, μa are C0 0 functions.

Lemma 4.4. Let (Mn, g) be a simple semi-symmetric leaf with index of

non-nullity u(p) greater than 2. Then its second fundamental forms Ba are of the

form Ba = μal on F ( 1 ) , or u — 2m, and Ba is of the form Ba — λ α S Γ + μal on

F ( 1 ) with ($2 — -/, where λa and μa are C°° functions. In the last case § is

uniquely determined, and is independent of the choice of the system w,, m 2 , ,mv

and index a. Furthermore ®s is a skew-symmetric endomorphism field which

commutes with the primitive holonomy group %p at every point of the manifold.

Proof. From Lemma 4.3 and equation (2.14) it follows that

-2μaR(X, Y) = R(Ba(Y), X) + R(Y, Ba(X)),
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so that

R((Ba - μJ)X, Y) + R(X,(Ba - μj)Y) = 0.

By the Bianchi identities we get

0 = g(R((Ba - μJ)X, Y)U, V) + g(R(X,(Ba ~ μJ)Y)U, V)

= g(R(U, V)(Ba - μj)X, Y) + g(R(U, V)X, (Ba - μJ)Y),

and therefore

g(R(U, V)(Ba - μj)X, Y) = g(R(U, V)(Ba - μJ)Y, X).

This means that for any vectors U, V the linear endomorphism R(U, V) ° (Ba

— μal) is symmetric. But R(U, V) is skew-symmetric, so

R(U,V) ° (Ba- μj) =[R(U,V) ° (Ba- μJ)]T

= -(Ba-μaI)ΓoR(U,V).

Since the skew-symmetric linear endomorphisms of the form R(U, V) form an

irreducible Lie algebra, from Lemma 4.2 it follows that the linear endomor-

phism Ba — μal is either null, (i.e., Ba — μal on F ( 1 ) ) , or n — 2m and

where <$ is skew-symmetric and commutes with every element of the primitive

holonomy group.

We prove that ίΠs uniquely determined and independent of the index a and

the choice of mλ9m2,—
 m,mv. Indeed, in this case the holonomy system

Sp — [Vp

(l\ R\p,% ]9 p E Λf, is an irreducible symmetric holonomy system.

Furthermore the isometry ^commutes with %p and satisfies ($2 = -/. Thus by

a well-known theorem of the symmetric spaces (see [6, p. 302, Proposition 4.2])

the system Sp is a Hermitian symmetric holonomy system. But for an irredu-

cible Hermitian symmetric system the group %p always contains a nontrivial

1-dimensional center (see [6, p. 310, Theorem 6.1]). Thus there is an element

5"* E % commuting with %p. As ίF* is skew-symmetric and %p is irreducible,

<$*2 = _/ holds [7, p. 278]. Since ξFis skew-symmetric and also tyty* = Φ*^,

we have <3Γ= ±<3Γ*, [7, p. 278], which proves the last statement in the lemma.

Lemma 4.5. Let (Mn

9 g) be an infinitesimally irreducible simple semi-

symmetric leaf with the index of non-nullity u{p) greater then 2. Then its index of

nullity v(p) is 0,1 or 2.

Proof. Let T(M) = F ( 0 ) + F ( 1 ) be the decomposition of the tangent space,

and for the vector fields X, Ypointing in F ( 1 ) let pτo(vxY) be the perpendicu-

lar projection of V^Γinto the subspace F ( 0 ) .

First we prove that at every point p E M the vectors pr^v^A"),

X(p) E Vp

(l\ span at most a 1-dimensional subspace in Vp

(0\ p E M. Indeed,
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let Xx(p) and X2(p) be two orthogonal unit vectors in Vjι\ and let
{Xx(p% X2(p),- - -,Xu(p)} be an orthonormed basis in V£ι\ If the vectors
pτo(VXιX\) and pτo(Vχ2X2)

 w e r e n o t eclual> then let m ^ be such a unit vector
in the plane of vectors pτo(vX]Xχ) and pro(V^-2^2) f°Γ which the value
g(ϋl\\p> ^x^\) *s n o equal to g{mλ\p, Vχ2X2). Such a vector can be chosen as it
can be seen from Fig. 1. Now let us extend m,^ to a suitable vector field mx

described in §2. Then the second fundamental from Bx at p would be not of
the form μl or λ<3Γ+μ/. Indeed its matrix considered in the basis
{Xx(p\ X2(p), - ,Xu(p)} would have two distinct values in its diagonal,
namely, the values g(Bx(Xx% Xx) = -g{VxXx, mλ) and g(Bx(X2\X2) =
~S(^x Xi> ™\) Since ^ is skew-symmetric, the diagonal contains distinct
elements. Thus Bx is not of the form μl or λξF + μl. This contradicts the
previous lemma, so p r o ( v x Xx) = pro(V^ X2) must hold.

Now if the unit vectors Xx(p) and X2(p) are not peφendicular, then let X3

be a unit vector in V^ι\ which is peφendicular to both Xx and X2. Thus
PΓo( V^Ij) = ρro(Vχ3X3) = PΓO(VΛ-2^2)> which proves the above statement.

If all the second fundamental forms Ba are of the form Ba = μal, then it
is obvious that all the vectors pro(v^y), X^, Y^ E P^(1), span at most a 1-
dimensional subspace 9H in V£°\ First we consider this case and prove that
there exists a unit vector field ml9 pointing in 9H such that mx is totally parallel
on the integral manifolds of F ( 0 ). So it can be extended to a suitable
vector-field-systemml9 m2, - -,mk constructed in §2.

Indeed let A be an w(/?)-dimensional submanifold in M such that Tq(A) +
yΦ) — j^M\qEiA. Then A intersects every integral-manifold of F ( 0 ) in a
sufficiently small open subset at most at one point. Let mx(q\ m2(q), -,rnv{q\
q G A, ma(q) E Fj0), be peφendicular C°° unit vector fields on A such that
mx(q) is pointing in (U\Lq if q E: A. Let us extend these vector fields to a
suitable vector-field-system mx,m2,- ,mv onto a neighborhood of A as in §2,
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and let us denote the second fundamental forms by Ba. Then by VmaBy —
-Bγ o Ba we get that Ba = 0 for a > 2, because Ba(q) = 0 (a > 2) at A~and Bα

is uniquely determined by their initial values. Thus the vector field mx points
always in 911, and for X, Y pointing in F ( 1 ) we get

VxY=VxY-μg{X,Y)mι.

Now from (2.8) it follows that μ{Mx

α(Y)X - M\{X)Y) = 0 for α > 2, so that
M* - 0. Hence g(Vxmu mα) = 0, X(p) G V£X). From this we get that the
vector fields

span just the (u(p) + l)-dimensional distribution F ( 1 ) + 9IL. As Mis infinites-
imally irreducible, F ( 0 ) = 911 and μ(p) = 1 in the considered case.

Secondly let us consider the case in which among the second fundamental
forms there exists a field of the form Bα — \βΛ-μαI, where λα φ 0, and
therefore also u(p) = dimΐ^(1) = 2m and <3:2 = -/ hold. Let us choose an
orthgnormal basis of the form {Xλ,Yλ= ^{Xx\ X2, Y2 = ^(Xχ)9"-yXm9Ym

= ^{Xm)} in V£ι\ As we have seen, the vectors pro(v^.^-) and p r o ( v y ^ )
span a one-dimensional subspace in V^°\ p E M. Now we prove th&t
PΓo(V^(^) = pΓo(Vy.X7) = P Γ O ( V ^ ^ ) = pτo(vYYj) = 0 if i Φj, and the
vectors PΓo(V^^), / = l,2, ,m, span a 1-dimensional subspace in
p E M. More precisely

r^ ) - -pro(vy ;Λ).

The statement pr o (v^^) = pΓoίVy^.) = PΓo(V^^) = pro(VYYj) = 0 is
trivial because all the second fundamental forms Bα are of the form Bα — \β
+ μj, and thus, for example, g(VxYp mα) = -giB^X^ YJ) = 0 for / Φj.
Furthermore we prove the above two equations by indirect method. If they do
not hold, one could choose a unit vector m in V^ such that

#( Vjr.1% m) Φ g(vxYj, m) for some i Φj or

# ( V ^ Ϊ , m) Ψ -g{vYXi9 m) for some /.

In both cases the second fundamental form B corresponding to m would be not
of the form λ§+ μl. This is impossible, thus the above equations are satisfied.
So in this case the dimension of the space spanned by the vectors pro(v^^),
X(P\ Y(P) ^ V^\p E M, is at most 2 at every point.

It can be proved in the same way as before that in the case dim G)\ip = 1
(resp. dim911 = 2) one can choose vector fields ml9 m2,- - ,mv suitable for §2
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and m, (resp. mx and m2) pointing in <91L Now we consider the case in which

dim911^ = 1, and Bx = λ 1SΓ+ μxl where λx Φ 0. In this case also Ba = 0 for

a > 2. From (2.8) we get on F ( 1 )

Mx

a(X)Bx{Y)-Mλ

a(Y)Bx{X) = 0 forα>2,

and thus Mλ

a — 0, because Bx is nonsingular/ Because of the irreducibility we

get 9IL = F ( 0 ) , and thus v{p)— 1 in the considered case.

FIG. 2

Finally let us consider the case where dim 911̂  = 2. Then the vectors
p r o ( v x Xi) and pro( v^ Yj) point in distinct directions and span the plane ®flLp.
In this plane let m2^ be the unit vector pointing in the direction of pr o v^^,
and let m ^ be in ^Lp the unit vector which is perpendicular to m2u. Let us
extend these vectors to suitable vector fields ml9 m2 in such a way that they
point everywhere in 9IL. Furthermore let mx, m2, -9mp be the suitable
vector-field-system. Then Ba = 0 for a > 3, and we get

(4.15) Bx[p = μjί/i)/, 2*2||, = λ 2 ( ^ ) ^ + μ2(/^)/,

where μι(p)Φ0andλ2(p)ΦQ.Foτa>39 from (2.8) we have on F ( 1 )

= Ml{Y)Bx{X)

and thus

4P \

As X and ^(X) point in distinct directions and μx(p) Φ 0, λ 2 (/?) =^ 0,

Mα

2 = M\ = 0 for α ^ 3. We get (by the irreduciblity) in the same way as

above that in this case 9H = V(0) and v(p) = 2, which prove the lemma,

q.e.d.
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Lemma 4.6. Ifv(p) = 2 holds in the above lemma, then the fields pro( V^X t)

and^τ^VxYi) span two orthogonal \-dimensionalsubspaces 911 j and9it2 in V°

respectively. The fundamental forms Bu B2 with respect to these directions are of

the form Bλ = μ/, B2 = μ^. The distribution Vλ + 9H2 is involutive, and the

functions K, μ are constant on the integral manifolds of it. In the case v(p) — 1

the fundamental form B is of the form B = μl.

Proof. Let us start the proof with the assumption v(p) — 2 on an open set

M. As we have seen in Lemma 4.5, in this case dim V^0) = 2, p E M, and at

least one of the second fundmental forms is of the form

Let us keep the notation of the previous lemma, and at a fixed point p E M let

us consider the two unit vectors mλ^ and m2\p as in Fig. 2. Then let us extend

these two vectors to suitable fields m,, m2. If mj denotes the components of

raα, then the Ricci tensor of the space is of the form

(4-16) Rj^Agj,- ϊmaJm\,
\ α=l /

where rnaJ' = fna'gjj, because the primitive holonomy group acts on V*,

q e M, irreducibly and leaves the Ricci tensor invariantly. From this we get

V,Λ,, = (V,K) Igji - Σ ϋlaj™

(4.i7) Λ = 1

and so

2 2
(A ΛQ\ „ n i _ _ „ _ ^ ^ **, i r 7 i/ - i/ V *M ^ 7 * * , *
V / Ύ I I τ / 4md (XI OL S Λ^ (XI S (X 7

On the other hand using the second Bianchi identity

vsRflk + v,RJk, + vkRJ« = 0,

and the contraction^ -> / we get

(4.19) -2R\ls + (n

From (4.19) and (4.18) it follows that

2

(4.20) (» - 4)v*κ + 2 2 (nιa

svsκ + κVsma

s)mak = 0.
α = l
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We can see that the covector field vkκ never vanishes. For if Vkκ^ — 0 at

the point/?, then by (4.20) we have \vsm\s\p — K^TraceB{(p) = 0. But from

(4.15) it follows that TraceBx(p) = (n - 2)μ,(/?) ^ 0 so K^ = 0 which is

impossible by Lemma 4.1. Asp is arbitrary, vkκ never vanishes on M.

Let us consider the hypersurface H through /?, on which K has constant

value. If X lies in V(l\ then XιVkκ = 0 by (4.20), which proves that F ( 1 ) is

always tangent to H. Now if X and Y are differentiable vector fields on H,

which lie in F ( 1 ) , then [X, 7] is also tangent to H. But by (4.15) we get at/?

[X, Y]\p = [ χ y ] | , + 2λ 2(/>)g(^(7), X)m2^.

Thus w2 is also tangent to H and m2(κ) — 0 at/?. Thus F 1 + 9H2 is involutive

indeed.

Let c(s) be the integral geodesic of mj through the point/?. We shall show

that along c(s) the vector m2(s) always points into T(H), and thus Vm K = 0

along c(s).

If Ba = λ α ^ + /iβ/, then from v^Ba = -B2

a we get

(V 2 λ β)ff+ λ β ( v 2 ί ) + ( v = β μ β ) / = -2λα /xα^+ (λ2

α - μ2

α)/.

Since ^is skew-symmetric, Vm ^is also so, and by the left side of the above

equation, V ^ i s a multiple of ¥ . Thus V ^ i s a field of the form cφ. But ξf

is of constant norm, and so it is parallel, i.e~

(4.21) V^=0.

Thus

(4.22) V ^ λ α - - 2 λ α μ α , V^μa = λ2

α - μ2

a.

So along c(s)

(4.23) ^ =

Since λ,(0) = 0 at/? by (4.15), by (4.23) we have λx(s) = 0 along φ ) . Thus the

vectors prov^.^ in Fig. 2 are always perpendicular to mι along c(s) and so

V^2κ = 0 along φ ) .

On the other hand by (4.20) we get

Since [m,, m 2 ] = 0, Vm2μj = 0 along φ ) . From V W a ^ = -^β ° Ba it follows

that

(λ tλ2 - μ,μ2)/,
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i.e.,

(4.24) • = " λ χ - " ^
Vm9μi =λ 1λ 2-/x 1/x 2.

Furthermore λx — Vmiμx — 0 and μx Φ 0 along c(>). So by (4.24), μ2 = 0

along φ ) . Thus ^l l^and 9It2 are orthogonal indeed. Let mx and m2 be the

unit vector fields tangent to ̂ JR̂  and 9IL2 respectively. The forms j? l51?2 are of

the form Bx = μl, B2 = λφ. From R(ma, X)mβ = 0, X(p) G ί̂ 1, we get

*•/* = w 2 μ = 0, λ2 = μ2

by a simple computation, which proves the first part of the lemma completely.

Finally let us prove for the case v{p)— 1 that the unique second fundamen-

tal form B is of the form B — μl. Let m be the unit vector field pointing into

F ( 0 ) . Then the Ricci tensor is

and we get, as in (4.20),

(4.25) (n - 3)V//c + 2(msvsκ + KV.m5)^ = 0.

First we prove that V//c Φ 0. Indeed, if B = XΦ + μl, then vsm
s - (n - \)μ.

Let c(s) be an integral geodesic of m. The covector field V//c does not vanish

on an open subset of c(s), because otherwise on an open interval, κVsm
s = 0

which implies that μ = 0 and B = λ^ since K φ 0. In this case λ φ 0 on the

interval, because v(p) = 1, and so on the interval we have

But this is impossible as the left side is a skew-symmetric, and the right is a

symmetric endomorphism. Thus v7κ Φ 0 on an everywhere dense open subset

of c(s) and therefore on an everywhere dense open subset U of M. Let p E U

be such a point, and H the hypersurface through p9 on which /c has constant

value. Then by (4.25) we get that X1 V//c = 0 for every vector X G F ( 1 ) , i.e., the

tangent space of the submanifold is just F ( 1 ) . This means that F ( 1 ) is integra-

ble, and thus B is symmetric. As <$ is skew-symmetric, B must be of the form

B — μl on U. As U is everywhere dense in Af, 5 is of the form B — μl

everywhere which proves the last statement.

Definition 4.1. The infinitesimally irreducible simple semi-symmetric leafs

with u(p) > 2, v{p) — 2 are called Kaehlerian cones.

All these spaces are not complete, since by mx(μ) — -μ2, mλ(κ) = -2/x/c, the

curvature scalar K has infinite value at a finite point of the integral curve c(s)

of mi.
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We construct and describe all these cones in the continuation II of this

paper.

Now we prove the first main theorem:

Theorem 4.3 {First main theorem). Let (Mn, g) be an infinitesimally irre-

ducible simple semi-symmetric leaf with v(p) — 0 and u(p) > 2. Then (Mn, g)

is locally symmetric. If (Mn, g) is maximal and simple connected, then it is

globally symmetric.

Proof. First we prove a lemma proved also by A. Lichnerowicz [13].

Lemma 4.7 {A. Lichnerowicz). For the curvature RJ

ikl of a Riemannian

manifold

(4 26) VV^R^R

+Λ'>*'[4(γ, VfcΛ// - VjV,Rik) - 2gm"(HJnkl;mi + Hnikl;mJ)],

where

Proof. In the following we use the Bianchi-identities:

= i g ^ i v ^ R ^ R ^ 1 + 2vmRijklV
mRiJkι

= 2vmRiJklV
mRiJkl

-2gm"R^'[HJnkhmi + Hnikhm, + VtVmRjnkl + VjVmRnik].

But also we get

-2gm"(viVmRJnkl+ VjVmRnikl)

= 2gm"(viVkRJn!m + V^Rj^, + VjVkRnilm + VjV,Rnimk),

where the last 2 terms is just

4/^*'(v,v t * w - VjV,Rik),

which proves the lemma, q.e.d.

Now let us consider the space considered in the theorem. By the above

lemma we get

(4.27) vmVm(RiJklR
ίJkl) = 2vmRijklV

mRijkl,

as Hnkl.mi — 0, and because of the irreducibility the space is an Einstein space,

i.e.,

(4.28) « v = *fty,

where K — konstant, so that VsRij — 0.
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If we consider the curvature operator R^k as a symmetric linear endomor-

phism of the skew-symmetric linear endomorphisms, and denote its eigen-

values by λ,, λ 2, ,λ r, then the function RijklR
ijkl satisfies

r

RijklR
ijkl = 4 2 λ̂  , r : = dimSK^.

In the following we shall prove that the eigenvalue-functions λ, are constant.

Let us notice that showing this fact will complete our proof because in this case

RijkιR
ijkl = constant and, by (4.27), vmRijklV

mRijkl = 0. Since the metric is

positive definite, we have VmRijkι — 0, i.e., the space is locally symmetric.

Moreover, if the space is maximal and simply connected, then the space is a

complete globally symmetric Riemannian space, which proves the theorem.

Now let us prove that λ/s are constant indeed. The following lemma proves

just this statement in a stronger form.

Lemma 4.8. Let R{X, Y)Z be a continuous curvature operator field on an

arcwise connected Riemannian space (Mn, g), n > 2, such that at every point p

the operator R^(X, Y)Z is irreducible and symmetric {i.e., the holonomy systems

[Tp{M), R^, 3C ], p E M, are irreducible and symmetric), and that the Rieman-

nian curvature scalar (3ί'= Rtj

ιj is constant on Mn. Then the eigenvalue

functions λ, of the curvature operator are constant.

Proof. First let us assume that the curvature operator Rjk has distinct

nonnull eigenvalues at a point p E Mn. As we have seen, the system

[T (M), R^, % ] is an irreducible symmetric holonomy system. It is well

known that the vector space &= Tp{M) + hp with the Lie bracket

BoA, A,B(Ξhp9

AGhp,X(ΞTp(M)

is a semi-simple irreducible orthogonal symmetric Lie algebra [6]. Let G/H be

the symmetric space as homogeneous space corresponding to the Lie algebra

Q. Since R^ is SC^-invariant, H is not simple; in fact, RJ

ik\p has distinct nonnull

eigenvalues, and so the invariant subspaces corresponding to these several

eigenvalues are ad H-invariant in h. Thus the symmetric space G/H is

irreducible Riemannian globally symmetric space of type I or III, [6, p. 308,

Theorems 5.3 and 5.4], because H is simple for the spaces of type II and IV.
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The complete list of the spaces of type I and III can be found also in the

Helgason's book [6, p. 354]. In the table below we collect from this list all the

spaces for which H is nonsimple and thus the curvature operator has distinct

nonnull eigenvalues. We list also these nonnull eigenvalues. We remark that

these eigenvalues can be determined from formulas (4.5) where the eigenvalues

λ* of operator T come from (4.2), and also that as the Lie algebras e6 and eΊ

are simple, their Killing forms Ki are of the form Kt = %•(,). The so defined

constants γ6 and γ 7 occur in the table below.

In the case of the lemma the curvature skalar /c and dim M are constant,

since by the irreducibility and symmetry the Ricci tensor is of the form

Rtj = κgiJ9 and so <3l = ΠK.

M = G/H

SU(p,q)

SO0(p,q)

SO(p)XSO(q)

S0*(2n)

ί/(n)

5/7 ( n, R)

U(n)

Sp(p,q)

Sp(p)XSp(q)

5o(10)+R

^ 2 , + «(2,

— + R

, , 2 4 ) , . + »(2)

A(4)' ^/'(3) + <sw(2)

&2(2)'

5M(2) + 5W(2)

M = G/H

SU(p + q)

s(vP + uq)

SO(p + q)
SO(p)XSO(q)

SO(2n)
U(n)

Sp(n)
U(n)

Sp(p + q)
Sp(p)XSp(q)

^6(-78)'

JO(10) + R

5θ(12) + 5«(2)

e7(-133)'e6" " R

e8(-248)'

eΊ + su(2)

Eigenvalues

^ λ λ

λ λ
2/7 + Γ 2^ + 1

λ,λ
l+2«

λ,λ
l+2«

λ λ
1+4/?' l+4<7

λ λ
13'5

X 2λ.

λ λ

2 5 ' 5

s+.
λ λ

l + γ / 5

λ λ
13' 5

λ λ
5' 5

λ

Λ -2pqκ

-Pqκ

2p + \ 2q + \

λ- -n(n-\)κ

r —( n + 1)ϊiκ

—4pqκ

\ \+4p \+4q )

r -40κ

' ~2(π + l)
-32κ

r _ -64κ

^ -54κ

2(1 + - ^ )

^ -112»c

- 2 8 κ

\ — —oK
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From the table it can be seen that by such restrictions there are only finite

many possible values for the eigenvalue of the curvature operator. But these

eigenvalues are continuous on the arcwise connected manifold, thus they must

be constant on M.

Now if at every point the curvature operator has only equal nonnull

eigenvalues, then this eigenvalue is at a point/? E M of the form

dim Af
λ

From this formula we get evidently that λ is constant on M because the

values dim M and K are constant, and λ^ is continuous.

Now we turn to the proof of the second main theorem.

Theorem 4.4 {The second main theorem). Let (Mn, g) be an infinitesimally

irreducible simple semi-symmetric leaf with u(p)> 2 and v{p)—\ata point

p E M. Then the space is locally isometric to an elliptic or a hyperbolic or a

euclidean cone. If the space is simply connected and maximal, then it is a

maximal elliptic or hyperbolic or euclidean cone.

Proof. By Lemmas 4.6 and 4.8, v — 1 in a whole neighborhood U of/?, and

also B = μ/, μ ¥= 0 on this open set. Later we shall see that v — 1 on the whole

arcwise connected manifold Mw, but at this moment we examine the space

only on U.

Since B is symmetric, F ( 1 ) is integrable distribution and, as we have seen in

the proof of Lemma 4.6, the Ricci curvature RjΊ is of the form

where K is constant on the integral manifolds of F ( 1 ) . But also the function μ is

constant on these integral manifolds of F ( 1 ) . Indeed from (2.8) we get

(VXB)(Y) = (VYB)(X), X,YG F ( 1 ) . Thus for all X,Y E V™

i.e., Vxμ — 0 which proves that μ is constant on the integral manifolds of F ( 1 ) .

Let us consider an integral hypersurface M of F ( 1 ) , and let V be its

Levi-Civita connection. Furthermore let R*(X, Y)Z be the restriction of the

curvature R of (Mn,g) onto M, and let R(X, Y)Z be the Riemannian

curvature of M in the induced metric.

Lemma 4.9. On an integral manifold M of' F ( 1 ) the following equation holds:

(4.29) 4(Λ - \)κ V - 2(/i - 2)μ2R*jklR*ijkl = vsRΪJklX?sR*iJkl.

Proof. From Lemma 4.7 we get

(4.30) v '
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First we compute the last part of the right side. In the computation we use the
formulas

(4.31) VjK = -2κμmy, Vyμ = -μ2rnJ9

which come evidently from (4.25), (2.10) and the fact that μ is constant on the
integral manifolds of F ( l ) . As

we have

and so

(4.32) = WR^kl(gljgik - gkjgil)

= iκμ2R,JJ = -8(Λ - l)κ2μ2.

On the other hand by

( } XrmΎ^ZkV'vrRijkl = -μXΎJZkV!RlJkl, X, Y,V, Z G ?

we get

(4.34) v,RIJklV'RIJk' = VsR*JklV°R*iJkl + Sμ2RJJklR*'Jkl.

Finally let us consider the left side of (4.30). By Lemma 4.8 the function
RijklR

iJkl is constant on M. Thus by (4.31) and (4.33) we have

VsV
s{RiJkIR

iJkI) = (n- l)μVn{RijklR
iJkl) + V ^ f V ^ )

(4.35) = -4(/i - \)μ2R*jklR*iJkl + 20μ2RfjkιR*iJkl.

By formulas (4.30), (4.32), (4.34) and (4.35) we get (4.29). q.e.d.
Let us also compute the left side of (4.29) with the help of the eigenvalues of

the curvature operator. If λ 1,λ 2, ,λr denote the distinct nonnull eigen-
values of the curvature operator Rjk

ι with multiplicity kλ, k2,- ,A:r, then the
following equations hold trivially:

- (n - \)κ = 2(kx\x + k2λ2 + +krλr),

RijklR
ijkl = RiJklR*iJki = 4{kλλ) + +krλ

2

r),



V - 2(« - 2)μ2R*jklR*iJk>
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Thus for the left side of (4.29) we get

+ ••• +kr\rf - (n - 1)(« - 2)(Λ,λi + +KK)]-

On the other hand for the theorem in the brackets we get

k< - (n - 1)(« - 2)*,)X* + 2 Σ k kjλh
' = 1 i,j=\

^Σ{2kf~(n-\)(n-2)ki)λ2

i +
i=\

ι=l

Φ - ( n - \)(n -
i=\

Since 3 ^ is a subgroup of S Ό ( Λ - 1), dim %p < (Λ - 1)0 - 2)/2. So the left

side of (4.29) is always negative except the case where % = SO(n — 1) and

there is only one simple eigenvalue λ of the curvature operator. In this case the

left side of (4.29) vanishes, but the right side is nonnegative, as it is

YsR*jkiVsR*iJkl. Thus (4.29) holds only in the case %p ̂  SO(n - 1), and so

VsR*Jkι = 0, i.e., the tensor field R*Jkl is parallel on M. From %p ^ SO(n — 1)

it follows that the curvature form R is of constant curvature on the (n — 1)-

dimensional subspace ϊ^(1), i.e., it is of the form

R(X, Y)Z = - ^ {g(Y, Z)X - g(X, Z)Y}, X,Y,ZG

From (2.13) we get

R(X, Y)Z = (^Γ2 + f){g(Y, Z)X-g(X, Z)Y}9

and thus also the induced metric on M is of constant curvature.

We prove that a simply connected neighborhood of U is isometric to an

open subset of the hyperbolic or elliptic cone. Let (x2, x3,- -,xr) be a

coordinate neighborhood of M, and 32, 33, ,3Π such vector fields on U such

that [m, 3J = 0 and 3 l/Λj = d/dxι. If X2, X3, -,Xn are such vector fields on

U9 which are parallel on the integral curves of m and satisfy Xt/M = 3/3x/,
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then it follows evidently from [m, 3 ] = 0 that

where μ 0 is the constant value of μ on M, and xι the signed distance of the

point from M along the integral curves of m. Thus the metrical tensor field g/y

of the space in the coordinate system is

where gaβ(x2,- *,*") is the metrical tensor field of a Riemannian space of

constant curvature. It can be seen obviously that the space is locally isometric

to the elliptic or hyperbolic cone or to the euclidean cone (defined by gaβ = 8aβ

in the above formulas).

Finally we prove that μ never vanishes on M. Indeed, μ is constant on the

integral manifold of F ( 1 ) , and furthermore it is of the form \/{s + l / μ 0 ) on

an integral geodesic c(s) of the vector field m, where μ0 — μ(c(0)), as it

satisfies dμ/ds — -μ2. Thus μ does not vanish at a point which is at finite

distance from U. This proves the statement. We get also obviously that a

simply connected and maximal space corresponding to the theorem is globally

isometric to an elliptic or a hyperbolic cone, q.e.d.

Considering the main theorems and Theorem 1.3 we have the following local

structure theorem for semi-symmetric spaces.

Theorem 4.5 (The local structure theorem). For every semi-symmetric

Riemannian space there exists an everywhere dense open subset U such that

around every point of U the space is locally isometric to a space which is the direct

product of symmetric spaces, two-dimensional Riemannian spaces, spaces foliated

with (n — 2)-dimensional Euclidean spaces, elliptic cones, hyperbolic cones,

eucliden cones, Kaehlerian cones.
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