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CURVATURE OF AN oo-DIMENSIONAL
MANIFOLD RELATED TO HILL'S EQUATION

H. P. McKEAN

1. Introduction

Let C+ be the space of positive infinitely differentiable functions e0 of
period 1 with /J el — 1, and let M be the class of real infinitely differentiable
functions q of period 1 such that the corresponding Hill's operator Q = -D2 +
q has ground state λ 0 = 0, where D signifies differentiation with regard to
0 < x < 1. The map C+-+M defined by eό'Λo = a i s 1 : 1 a n d o n t o > t h e

ground state of ζ) being necessarily simple; in particular, M comes in one
simply-connected piece. The purpose of this note is to study the curvature of
M considered as immersed in the space Cf of all real infinitely differentiable
functions of period 1 evidently, it is a surface of codimension 1 defined by the
single relation λ0 = 0̂  and since the gradient of the latter is v λ 0 = e\ Φ 0, M
sits smoothly in C™.

The curvatures of 2-dimensional slices of M are found to be positive, the
principal curvatures being proportional to the reciprocals of the excited
periodic eigenvalues 0 < λy (j = 1,2,3, ) of the so-called allied operator Q.
The latter is the Hill's operator with ground state proportional to e\/2 relative
to the scale dx — (/Jeo)~ιeodx. The maximal curvature of a 2-dimensional
slice is

m —

while the total curvature is
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The latter may be expressed directly in terms of the ground state e0:

in which xf, JCJ, x* are the points xl9 x2, x3 arranged in their natural order
around the circle. For example, at the place q — 0, m — jπ~4 and k = 1/90.
The quantities m and k may be as large or as small as one pleases; for e0

approximating x" 1 / 4 (0 < x < 1), k is small, while for el approximating a
saw-tooth function of period 1/3, m is large: in the first case, the potential
approximates (5/20)x~2, while in the second it has 6 poles of alternating
signature.

A manifold M of different character is obtained by fixing the first excited
eigenvalue of Q at λx = 0, say. M comprises the functions q of class C™
expressible as e"/ex, the function ex having just 2 simple roots per period. This
is a more complicated manifold exhibiting some negative curvature; in fact, the
second fundamental form has just one negative eigenvalue. The computations
are similar and readily extended to the higher eigenvalues λ2, λ3, etc.

2. The second fundamental form

Let en{n > 0) be the full set of periodic eigenfunctions of Q corresponding

to the eigenvalues λ o < λ 1 < λ 2 < λ 3 < λ 4 < etc. The unit normal to M at q is
n — (/o eo)~1/2^o» a n c * with the aid of the inverse operator

mapping the annihilator of e0 into itself, it is a simple matter to compute

and, finally, the second fundamental form:

1a(x)e0(x)Q-χle0(y)b(y)dxdy
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for directions a and b tangent to M at q, /</ ae\ — /</ be\ — 0. This makes the
second portion of dn/dq drop out. Now let a and b form a unit perpendicular
frame: /J α2 = /J ft2 = 1, /J ab = 0. They define a 2-dimensional slice of M
with curvature

This number is necessarily positive, / being strictly negative on the tangent

space:

O n

o

3. The allied operator

The form / is closely connected to the so-called allied operator Q. Introduce

the new scale

=(/'<»)~Ά
and view

,-1/2/ , \ 1/2

as a function of 0 < x < 1, noticing that fo(eo)
2 dx — 1. Q is now defined to

be the HilΓs operator with ground state e0 relative to the scale x, and with the
notation (the discrepancy between this notation and e0 will not prove trouble-
some):

direct computation provides the identity

in which the necessary condition of perpendicularity [j^el f dx — 0] for the
existence of Q~x eof is satisfied if and only if j^e^fάx also vanishes. Then
β~7exists, and the upshot is that e\/2Q~λeQf = Q~ιf. This permits a simplified
expression of the second fundamental form:
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Notice

fabdx= {feλ2fabeAfeXeϋdx[ff

so that ab -> db maintains peφendicularity. The point of all this computation
is

Corollary 1. The principal curvatures of M at q, i.e., the eigenvalues of the
second fundamental form /, are simply

~2(feή [foe°) (loe°) XtheeiSenΌalues°fQ~λ

= -21 I e£ I I I e0 I X the reciprocals of the excited eigenvalues of Q.

The latter are written 0 < λλ < λ2 < λ3 < λ4 < etc.
Corollary 2. The maximal curvature of a 2-dimensional slice of M at q is

Corollary 3. The total curvature of M at q is

The rest of the paper is devoted to the investigation of these numbers.
Proof of Corollary 2. The curvature of the general slice may be expressed as

the product of 4( /J eo)
Λ( /0

! e%)~ι and

ι y \ ι / !</ λ / λ y

with Σ α? = Σ^,2 = 1 and Σ 0,^ = 0. The final sum is over-estimated by the
product of (λ 1λ 2)" 1 and l^afy — ajb^2 = 1.

Amplification 1. Let e be an excited eigenfunction of Q with eigenvalue λ.
Then e = (JQ eΰ2)eι

0

/2e satisfies (/0

! e^f-e^Qe^e — λe and vice versa. Now Q
can be expressed as — e^DelDe^1, so λ is an eigenvalue of -( /J e^)1e'^De\De'^
which is similar to -(/ 0

! eQ)2e^DelD and so also to -(/J eo)
2(/o

1 e^y2e^D2,
in which the differentiation is now with regard to the new scale ( /J e^ γx\ξ e^2.
This remark will be helpful in §5.

Amplification 2. Q can be any Hill's operator with λ0 = 0.
Proof. Let Q be the general Hill's operator relative to the fixed scale 3c, and

eQ its ground state; it is required to prove that Q is allied to some Q. Define
eo/2(χ) — aέo(x) with a new scale x specified by dx = be^dx = c(eo)~3/2dx9
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the constants a, b, c being chosen to make x = 1 at the end and /J e%dx = 1.
This can be done:

c = ^\ 1 = Cel dx = a*'*b ί\eo)
3/2 dx.

Then Q is allied to the Hill's operator Q with ground state e0 relative to the

scale x\ indeed, e0 = (/J ^o)~1/2(/o eo)l/2eo/2> a s ^ should be, in view of

1 = ί\e0)
2 dx=-\- Γe% dx, b = bfdx = Ce0 dx.

This fact will be helpful in §4.

4. Maximal Curvature

The purpose of this section is to prove that the maximal curvature m can be
made as large as you please; in the next section, it is shown that the total
curvature can be made as small as you please, so anything can happen.

Proof, m can be expressed as the reciprocal of (/O

1(^O)"2/3 dx~Ϋ X λ ^ in
the notation of §3, and as Q can be any Hill's operator at all, so it is required
to prove that ( /Q1 e^2/3 dx)3λιλ2 can be made small by choice of Q. Now

can be expressed as the minimum of the ratio of /o(/')2^o t o ίo f2el f°Γ/ °f
class C™ with /J fel — 0; moreover, λλ —\2'ύq is of period 1/3, Borg [1], so
it suffices to make

V3/2

1 =

small for even e0 of period 1/3 and odd /. Choose e0 to approximate the
saw-tooth function of Fig. 1 and let the odd function / b e ±eξ. Then / is
closely approximated by a fixed multiple of

/o '/yx 2 ' - 2 * 2 dx = 22p + 3
P

/o'/Ά2 dx P 2p+l

and is small for p = 0 + .
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5. Total curvature

The total curvature k can be expressed in the following compact form:

k =

mentioned in §1.
Proof. The author owes the idea of this proof to a remark of G. Segal. The

periodic spectrum of Q may be described [2] as the roots of Δ(λ) = -1-2, Δ
being the discriminant of Q. Δ is now expressed with the aid of the similar
operator of Amplification 1 of §3:

-DbDa, da

The formula is

The prime signifies differentiation with respect to a,

yx{x, λ) = 1 + λ Γda Γdb + λ2 Cda Γdb Γ'da Γ'db + etc.,
Jo Jo JQ JO JQ JQ

y2(x, λ) = a(x) + λ Γda Γa db
Jo Jo

-hλ2 da dbf da adb + etc.,
Jo Jo Jo Jo
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and from the product cλΠ£=i(l - λ / λ j for Δ(λ) - 2 is obtained

This expression is inserted into

and the result is reduced to the stated form by exchange of integrals.
The formula is applied to confirm that k can be made as small as one

pleases: it suffices to let e0 approximate xp with 1/2 >p > -1/4 and to
estimate

k ^ 24(1 + 4/00 - 2p)~52ι-2p asp I - 1/4.
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