CURVATURE OF AN ∞-DIMENSIONAL MANIFOLD RELATED TO HILL'S EQUATION

H. P. MCKEAN

1. Introduction

Let C_{+}^{∞} be the space of positive infinitely differentiable functions e_{0} of period 1 with $\int_{0}^{1} e_{0}^{2}=1$, and let M be the class of real infinitely differentiable functions q of period 1 such that the corresponding Hill's operator $Q=-D^{2}+$ q has ground state $\lambda_{0}=0$, where D signifies differentiation with regard to $0 \leqslant x<1$. The map $C_{+}^{\infty} \rightarrow M$ defined by $e_{0}^{\prime \prime} / e_{0}=q$ is $1: 1$ and onto, the ground state of Q being necessarily simple; in particular, M comes in one simply-connected piece. The purpose of this note is to study the curvature of M considered as immersed in the space C_{1}^{∞} of all real infinitely differentiable functions of period 1 ; evidently, it is a surface of codimension 1 defined by the single relation $\lambda_{0}=0$, and since the gradient of the latter is $\nabla \lambda_{0}=e_{0}^{2} \neq 0, M$ sits smoothly in C_{1}^{∞}.

The curvatures of 2-dimensional slices of M are found to be positive, the principal curvatures being proportional to the reciprocals of the excited periodic eigenvalues $0<\bar{\lambda}_{j}(j=1,2,3, \cdots)$ of the so-called allied operator \bar{Q}. The latter is the Hill's operator with ground state proportional to $e_{0}^{3 / 2}$ relative to the scale $d \bar{x}=\left(\int_{0}^{1} e_{0}\right)^{-1} e_{0} d x$. The maximal curvature of a 2 -dimensional slice is

$$
m=4\left(\int_{0}^{1} e_{0}\right)^{4}\left(\int_{0}^{1} e_{0}^{4}\right)^{-1} \times\left(\lambda_{1}^{-} \lambda_{2}^{-}\right)^{-1}
$$

while the total curvature is

$$
k=4\left(\int_{0}^{1} e_{0}\right)^{4}\left(\int_{0}^{1} e_{0}^{4}\right)^{-1} \times \sum_{1 \leqslant i<j}\left(\lambda_{i}^{-} \lambda_{j}^{-}\right)^{-1} .
$$

[^0]The latter may be expressed directly in terms of the ground state e_{0} :

$$
\begin{gathered}
k=4\left(\int_{0}^{1} e_{0}^{-2}\right)^{2}\left(\int_{0}^{1} e_{0}^{4}\right)^{-2} \iiint e_{0}^{4}\left(x_{1}\right) e_{0}^{4}\left(x_{2}\right) e_{0}^{4}\left(x_{3}\right) \\
\times \int_{x_{1}^{*}}^{x_{2}^{*}} e_{0}^{-2} \int_{x_{2}^{*}}^{x_{3}^{*}} e_{0}^{-2} \int_{x_{3}^{*}}^{x_{1}^{*}} e_{0}^{-2} d^{3} x
\end{gathered}
$$

in which $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}$ are the points x_{1}, x_{2}, x_{3} arranged in their natural order around the circle. For example, at the place $q=0, m=\frac{1}{4} \pi^{-4}$ and $k=1 / 90$. The quantities m and k may be as large or as small as one pleases; for e_{0} approximating $x^{-1 / 4}(0 \leqslant x<1), k$ is small, while for e_{0}^{2} approximating a saw-tooth function of period $1 / 3, m$ is large: in the first case, the potential approximates $(5 / 20) x^{-2}$, while in the second it has 6 poles of alternating signature.
A manifold M of different character is obtained by fixing the first excited eigenvalue of Q at $\lambda_{1}=0$, say. M comprises the functions q of class C_{1}^{∞} expressible as e_{1}^{n} / e_{1}, the function e_{1} having just 2 simple roots per period. This is a more complicated manifold exhibiting some negative curvature; in fact, the second fundamental form has just one negative eigenvalue. The computations are similar and readily extended to the higher eigenvalues λ_{2}, λ_{3}, etc.

2. The second fundamental form

Let $e_{n}(n \geqslant 0)$ be the full set of periodic eigenfunctions of Q corresponding to the eigenvalues $\lambda_{0}<\lambda_{1} \leqslant \lambda_{2}<\lambda_{3} \leqslant \lambda_{4}<e t c$. The unit normal to M at q is $n=\left(\int_{0}^{1} e_{0}^{4}\right)^{-1 / 2} e_{0}^{2}$, and with the aid of the inverse operator

$$
Q^{-1}: f \rightarrow \sum_{n=1}^{\infty} \lambda_{n}^{-1} e_{n}\left(f, e_{n}\right)=\int_{0}^{1} Q_{x y}^{-1} f(y) d y
$$

mapping the annihilator of e_{0} into itself, it is a simple matter to compute

$$
\begin{aligned}
& \frac{\partial e_{0}(x)}{\partial q(y)}=-Q_{x y}^{-1} e_{0}(y) \\
& \frac{\partial n(x)}{\partial q(y)}=-2\left(\int_{0}^{1} e_{0}^{4}\right)^{-1 / 2} e_{0}(x) Q_{x y}^{-1} e_{0}(y)+2\left(\int e_{0}^{4}\right)^{-3 / 2} e_{0}^{2} \otimes e_{0} Q^{-1} e_{0}^{3}
\end{aligned}
$$

and, finally, the second fundamental form:

$$
\begin{aligned}
J_{a b} & =\int_{0}^{1} \int_{0}^{1} a(x) \frac{\partial n(x)}{\partial q(y)} b(y) d x d y \\
& =-2\left(\int_{0}^{1} e_{0}^{4}\right)^{-1 / 2} \int_{0}^{1} \int_{0}^{1} a(x) e_{0}(x) Q_{x y}^{-1} e_{0}(y) b(y) d x d y
\end{aligned}
$$

for directions a and b tangent to M at $q, \int_{0}^{1} a e_{0}^{2}=\int_{0}^{1} b e_{0}^{2}=0$. This makes the second portion of $\partial n / \partial q$ drop out. Now let a and b form a unit perpendicular frame: $\int_{0}^{1} a^{2}=\int_{0}^{1} b^{2}=1, \int_{0}^{1} a b=0$. They define a 2-dimensional slice of M with curvature

$$
K_{a b}=J_{a a} J_{b b}-J_{a b}^{2}
$$

This number is necessarily positive, J being strictly negative on the tangent space:

$$
J_{c c}=-2\left(\int_{0}^{1} e_{0}^{4}\right)^{-1 / 2} \sum_{n=1}^{\infty} \lambda_{n}^{-1}\left(e_{n}, e_{0} c\right)^{2}<0 \quad \text { if } c \neq 0
$$

3. The allied operator

The form J is closely connected to the so-called allied operator \bar{Q}. Introduce the new scale

$$
\bar{x}=\left(\int_{0}^{1} e_{0}\right)^{-1} \int_{0}^{x} e_{0}
$$

and view

$$
\bar{e}_{0}=\left(\int_{0}^{1} e_{0}^{4} d x\right)^{-1 / 2}\left(\int_{0}^{1} e_{0} d x\right)^{1 / 2} e_{0}^{3 / 2}
$$

as a function of $0 \leqslant \bar{x}<1$, noticing that $\int_{0}^{1}\left(\bar{e}_{0}\right)^{2} d \bar{x}=1 . \bar{Q}$ is now defined to be the Hill's operator with ground state \bar{e}_{0} relative to the scale \bar{x}, and with the notation (the discrepancy between this notation and \bar{e}_{0} will not prove troublesome):

$$
\bar{f}(\bar{x})=\left(\int_{0}^{1} e_{0} d x\right)^{2} e_{0}^{-1 / 2}(x) f(x)
$$

direct computation provides the identity

$$
\bar{Q} e_{0}^{1 / 2} Q^{-1} e_{0} f=\bar{f}
$$

in which the necessary condition of perpendicularity [$\int_{0}^{1} e_{0}^{2} f d x=0$] for the existence of $Q^{-1} e_{0} f$ is satisfied if and only if $\int_{0}^{1} \bar{e}_{0} \bar{f} d \bar{x}$ also vanishes. Then $\bar{Q}^{-1} \bar{f}$ exists, and the upshot is that $e_{0}^{1 / 2} Q^{-1} e_{0} f=\bar{Q}^{-1} \bar{f}$. This permits a simplified expression of the second fundamental form:

$$
J_{a b}=-2\left(\int_{0}^{1} e_{0}^{4}\right)^{-1 / 2}\left(\int_{0}^{1} e_{0}\right)^{-1} \int \bar{a} \bar{Q}^{-1} \bar{b} d \bar{x}
$$

Notice

$$
\int_{0}^{1} \bar{a} \bar{b} d \bar{x}=\left(\int_{0}^{1} e_{0}\right)^{2} \int_{0}^{1} a b e_{0}^{-1}\left(\int_{0}^{1} e_{0}\right)^{-1} e_{0} d x=\left(\int_{0}^{1} e_{0}\right)^{3} \int_{0}^{1} a b d x
$$

so that $a b \rightarrow \bar{a} \bar{b}$ maintains perpendicularity. The point of all this computation is

Corollary 1. The principal curvatures of M at q, i.e., the eigenvalues of the second fundamental form J, are simply

$$
\begin{aligned}
& -2\left(\int_{0}^{1} e_{0}^{4}\right)^{-1 / 2}\left(\int_{0}^{1} e_{0}\right)^{-1}\left(\int_{0}^{1} e_{0}\right)^{3} \times \text { the eigenvalues of } \bar{Q}^{-1} \\
& =-2\left(\int_{0}^{1} e_{0}^{4}\right)^{-1 / 2}\left(\int_{0}^{1} e_{0}\right)^{2} \times \text { the reciprocals of the excited eigenvalues of } \bar{Q}
\end{aligned}
$$

The latter are written $0<\bar{\lambda}_{1} \leqslant \bar{\lambda}_{2} \leqslant \bar{\lambda}_{3} \leqslant \bar{\lambda}_{4}<$ etc.
Corollary 2. The maximal curvature of a 2-dimensional slice of M at q is

$$
m=4\left(\int_{0}^{1} e_{0}\right)^{4}\left(\int_{0}^{1} e_{0}^{4}\right)^{-1} \times\left(\bar{\lambda}_{1} \bar{\lambda}_{2}\right)^{-1}
$$

Corollary 3. The total curvature of M at q is

$$
k=4\left(\int_{0}^{1} e_{0}\right)^{4}\left(\int_{0}^{1} e_{0}^{4}\right)^{-1} \times \sum_{1 \leqslant i<j}\left(\bar{\lambda}_{i} \bar{\lambda}_{j}\right)^{-1}
$$

The rest of the paper is devoted to the investigation of these numbers.
Proof of Corollary 2. The curvature of the general slice may be expressed as the product of $4\left(\int_{0}^{1} e_{0}\right)^{4}\left(\int_{0}^{1} e_{0}^{4}\right)^{-1}$ and

$$
\sum \frac{a_{i}^{2}}{\bar{\lambda}_{i}} \sum \frac{b_{j}^{2}}{\bar{\lambda}_{j}}=\left(\sum \frac{a_{i} b_{i}}{\bar{\lambda}_{i}}\right)^{2}=\sum_{i<j} \frac{\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}}{\bar{\lambda}_{i} \bar{\lambda}_{j}}
$$

with $\sum a_{i}^{2}=\sum b_{j}^{2}=1$ and $\sum a_{i} b_{i}=0$. The final sum is over-estimated by the product of $\left(\bar{\lambda}_{1} \bar{\lambda}_{2}\right)^{-1}$ and $\Sigma_{i<j}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}=1$.

Amplification 1. Let \bar{e} be an excited eigenfunction of \bar{Q} with eigenvalue $\bar{\lambda}$. Then $e=\left(\int_{0}^{1} e_{0}^{-2}\right) e_{0}^{1 / 2} \bar{e}$ satisfies $\left(\int_{0}^{1} e_{0}\right)^{2} e_{0}^{-1} Q e_{0}^{-1} e=\bar{\lambda} e$ and vice versa. Now Q can be expressed as $-e_{0}^{-1} D e_{0}^{2} D e_{0}^{-1}$, so $\bar{\lambda}$ is an eigenvalue of $-\left(\int_{0}^{1} e_{0}\right)^{2} e_{0}^{-2} D e_{0}^{2} D e_{0}^{-2}$ which is similar to $-\left(\int_{0}^{1} e_{0}\right)^{2} e_{0}^{-4} D e_{0}^{2} D$ and so also to $-\left(\int_{0}^{1} e_{0}\right)^{2}\left(\int_{0}^{1} e_{0}^{-2}\right)^{-2} e_{0}^{-6} D^{2}$, in which the differentiation is now with regard to the new scale $\left(\int_{0}^{1} e_{0}^{-2}\right)^{-1} \int_{0}^{x} e_{0}^{-2}$. This remark will be helpful in §5.

Amplification 2. \bar{Q} can be any Hill's operator with $\bar{\lambda}_{0}=0$.
Proof. Let \bar{Q} be the general Hill's operator relative to the fixed scale \bar{x}, and \bar{e}_{0} its ground state; it is required to prove that \bar{Q} is allied to some Q. Define $e_{0}^{3 / 2}(x)=a \bar{e}_{0}(\bar{x})$ with a new scale x specified by $d x=b e_{0}^{-1} d \bar{x}=c\left(\bar{e}_{0}\right)^{-3 / 2} d \bar{x}$,
the constants a, b, c being chosen to make $x=1$ at the end and $\int_{0}^{1} e_{0}^{2} d x=1$. This can be done:

$$
\begin{aligned}
& 1=x(1)=b \int_{0}^{1} e_{0}^{-1} d x=b a^{-2 / 3} \int_{0}^{1}\left(\bar{e}_{0}\right)^{-3 / 2} d \bar{x} \\
& c=b a^{-2 / 3}, \quad 1=\int_{0}^{1} e_{0}^{2} d x=a^{2 / 3} b \int_{0}^{1}\left(\bar{e}_{0}\right)^{3 / 2} d \bar{x}
\end{aligned}
$$

Then \bar{Q} is allied to the Hill's operator Q with ground state e_{0} relative to the scale x; indeed, $\bar{e}_{0}=\left(\int_{0}^{1} e_{0}^{4}\right)^{-1 / 2}\left(\int_{0}^{1} e_{0}\right)^{1 / 2} e_{0}^{3 / 2}$, as it should be, in view of

$$
1=\int_{0}^{1}\left(\bar{e}_{0}\right)^{2} d \bar{x}=\frac{1}{a^{2} b} \int_{0}^{1} e_{0}^{4} d x, \quad b=b \int_{0}^{1} d \bar{x}=\int_{0}^{1} e_{0} d x .
$$

This fact will be helpful in $\S 4$.

4. Maximal Curvature

The purpose of this section is to prove that the maximal curvature m can be made as large as you please; in the next section, it is shown that the total curvature can be made as small as you please, so anything can happen.

Proof. m can be expressed as the reciprocal of $\left(\int_{0}^{1}\left(\bar{e}_{0}\right)^{-2 / 3} d \bar{x}\right)^{3} \times \bar{\lambda}_{1} \bar{\lambda}_{2}$ in the notation of $\S 3$, and as \bar{Q} can be any Hill's operator at all, so it is required to prove that $\left(\int_{0}^{1} e_{0}^{-2 / 3} d x\right)^{3} \lambda_{1} \lambda_{2}$ can be made small by choice of Q. Now

$$
\lambda_{1}=\int_{0}^{1} e_{1} Q e_{1}=\int_{0}^{1}\left|\left(\frac{e_{1}}{e_{0}}\right)^{\prime}\right|^{2} e_{0}^{2}
$$

can be expressed as the minimum of the ratio of $\int_{0}^{1}\left(f^{\prime}\right)^{2} e_{0}^{2}$ to $\int_{0}^{1} f^{2} e_{0}^{2}$ for f of class C_{1}^{∞} with $\int_{0}^{1} f e_{0}^{2}=0$; moreover, $\lambda_{1}=\lambda_{2}$ if q is of period $1 / 3$, Borg [1], so it suffices to make

$$
I=\left(\int_{0}^{1} e_{0}^{-2 / 3}\right)^{3 / 2} \int_{0}^{1}\left(f^{\prime}\right)^{2} e_{0}^{2}\left(\int_{0}^{1} f^{2} e_{0}^{2}\right)^{-1}
$$

small for even e_{0} of period $1 / 3$ and odd f. Choose e_{0} to approximate the saw-tooth function of Fig. 1 and let the odd function f be $\pm e_{0}^{p}$. Then I is closely approximated by a fixed multiple of

$$
\frac{\int_{0}^{1 / 6} p^{2} x^{2 p-2} x^{2} d x}{\int_{0}^{1 / 6} x^{2 p} x^{2} d x}=36 p^{2} \frac{2 p+3}{2 p+1}
$$

and is small for $p=0+$.

5. Total curvature

The total curvature k can be expressed in the following compact form:

$$
\begin{gathered}
k=4\left(\int_{0}^{1} e_{0}^{-2}\right)^{2}\left(\int_{0}^{1} e_{0}^{4}\right)^{-2} \iiint e_{0}^{4}\left(x_{1}\right) e_{0}^{4}\left(x_{2}\right) e_{0}^{4}\left(x_{3}\right) \\
\times \int_{x_{1}^{*}}^{x_{2}^{*}} e_{0}^{-2} \int_{x_{2}^{*}}^{x_{3}^{*}} e_{0}^{-2} \int_{x_{3}^{*}}^{x_{1}^{*}} e_{0}^{-2} d^{3} x
\end{gathered}
$$

mentioned in §1.
Proof. The author owes the idea of this proof to a remark of G. Segal. The periodic spectrum of \bar{Q} may be described [2] as the roots of $\bar{\Delta}(\lambda)=+2, \bar{\Delta}$ being the discriminant of $\bar{Q} \cdot \bar{\Delta}$ is now expressed with the aid of the similar operator of Amplification 1 of $\S 3$:

$$
-D_{b} D_{a}, \quad d a=\left(\int_{0}^{1} e_{0}^{-2}\right)^{-1} e_{0}^{-2} d x, \quad d b=\left(\int_{0}^{1} e_{0}\right)^{-2}\left(\int_{0}^{1} e_{0}^{-2}\right) e_{0}^{4} d x
$$

The formula is

$$
\bar{\Delta}(\lambda)=\left[y_{1}(1, \lambda)+y_{2}^{\prime}(1, \lambda)\right]
$$

The prime signifies differentiation with respect to a,

$$
\begin{gathered}
y_{1}(x, \lambda)=1+\lambda \int_{0}^{x} d a \int_{0}^{x_{1}} d b+\lambda^{2} \int_{0}^{x} d a \int_{0}^{x_{1}} d b \int_{0}^{x_{2}} d a \int_{0}^{x_{3}} d b+\text { etc., } \\
\qquad \begin{aligned}
y_{2}(x, \lambda)= & a(x)+\lambda \int_{0}^{x} d a \int_{0}^{x_{1}} a d b \\
& +\lambda^{2} \int_{0}^{x} d a \int_{0}^{x_{1}} d b \int_{0}^{x_{2}} d a \int_{0}^{x_{3}} a d b+\text { etc. }
\end{aligned}
\end{gathered}
$$

and from the product $c \lambda \prod_{n=1}^{\infty}\left(1-\lambda / \bar{\lambda}_{n}\right)$ for $\bar{\Delta}(\lambda)-2$ is obtained

$$
\begin{aligned}
6 \sum_{i<j}\left(\bar{\lambda}_{i} \bar{\lambda}_{j}\right)^{-1}= & \left(\frac{d \bar{\Delta}}{d \lambda}\right)^{-1} \frac{d^{3} \bar{\Delta}}{d \lambda^{3}} \quad \text { evaluated at } \lambda=0 \\
= & 2\left(\int_{0}^{1} e_{0}\right)^{2}\left(\int_{0}^{1} e_{0}^{-2}\right)^{-1}\left(\int e_{0}^{4}\right)^{-1} \times 3\left(\int_{0}^{1} e_{0}\right)^{-6} \\
& \times\left[\int_{0}^{1} e_{0}^{-2} \int_{0}^{x_{1}} e_{0}^{4} \int_{0}^{x_{2}} e_{0}^{-2} \int_{0}^{x_{3}} e_{0}^{4} \int_{0}^{x_{4}} e_{0}^{-2} \int_{0}^{x_{5}} e_{0}^{4} d^{6} x\right. \\
& \left.+\int_{0}^{1} e_{0}^{4} \int_{0}^{x_{1}} e_{0}^{-2} \int_{0}^{x_{2}} e_{0}^{4} \int_{0}^{x_{3}} e_{0}^{-2} \int_{0}^{x_{4}} e_{0}^{4} \int_{0}^{x_{5}} e_{0}^{-2} d^{6} x\right]
\end{aligned}
$$

This expression is inserted into

$$
k=4\left(\int_{0}^{1} e_{0}\right)^{4}\left(\int_{0}^{1} e_{0}^{4}\right)^{-1} \times \sum_{i<j}\left(\bar{\lambda}_{i} \bar{\lambda}_{j}\right)^{-1}
$$

and the result is reduced to the stated form by exchange of integrals.
The formula is applied to confirm that k can be made as small as one pleases: it suffices to let e_{0} approximate x^{p} with $1 / 2>p>-1 / 4$ and to estimate

$$
k \leqslant 24(1+4 p)(1-2 p)^{-5} 2^{1-2 p} \quad \text { as } p \downarrow-1 / 4
$$

References

[1] G. Borg, Eine Umkehrung der Sturm-Liouvillieschen Eigenwertaufgabe, Acta Math. 78 (1945) 1-96.
[2] W. Magnus \& W. Winkler, Hill's equation, Wiley-Interscience, New York, 1966.
New York University

[^0]: Received June 23, 1981. The support of the National Science Foundation under Grant NSF-MCS-76-0739 is gratefully acknowledged. Reproduction in whole or in part is permitted for any purpose of the U.S. Govt.

