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1. Introduction

The inverse spectral problem for planar regions was clearly formulated by

M. Kac [9]. In this paper, a summary of which appears in [10], we discuss an

approach to this problem, and some limited results, for strictly convex planar

domains. The objective of inverse spectral theory is the extraction from the

spectrum, say of the Dirichlet problem:

(l IΛ Δw = λ2w inΩ CR 2 ,

of some geometric information about the domain Ω itself. The technique

discussed by Kac relies on the fact that the trace of the associated heat

equation

(1.2) τ(t) = tr(&φ(-tΔD))9 ί > 0 ,

where ΔD is an unbounded self-adjoint operator on L2(Ω), is determined by

the spectrum (always with multiplicity):

(1.3) τ(ί) = 2 exp(-λ2θ
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As t J,0, τ(t) has an asymptotic expansion (see McKean & Singer [11]),

(1.4) rίO-Σ^-1

where the first few coefficients are known:

(1.5) d0 = (4ir)~!Area(Ω), dλ = i(4τr)~1/2Length(3Ω), d2 = 1/6,

These quantities are examples of spectral invariants. As a simple application
(in Kac [9]) the standard isoperimetric inequality (see Osserman [13])

(1.6) Area(Ω) < Length(3Ω)2/4π,

in which there is equality only for the discs, shows that from the spectrum
alone it can be determined whether or not the region is a disc.

Now the invariants (1.5) are difficult to determine. We therefore introduce
another set of invariants of the problem. These are limited to strictly convex
regions and are only shown here to be invariant generically, that is, for an open
dense set of regions in a suitable Ck topology on the boundary. This set does
however contain an open neighborhood of the discs. The new invariants arise
in a somewhat subtler way than those in (1.5), and are extracted from

(1.7) σD(t) = trcos(Δ^2r) = ± 2 exp(ίλί),

where the sum is over all λ with λ2 in the spectrum characterized by (1.1). Thus
σD is the trace of the solution operator to the wave equation associated to Δ^.
For some ε(Ω) > 0, όD(t) is C00 in 0 < t < ε but is singular at t = 0, having an
asymptotic expansion there:

(1.8) όD(t) ~ Σ dp-2*.

The coefficients of this expansion are combinations of the coefficients in (1.4),
so give no new information.

As shown in [1], generalizing earlier work of Colin de Verdiere, Chazarain [3]
and Duistermaat & Guillemin [5], σD(t) is well-defined as a (tempered)
distribution on R and is C°° away from the length spectrum £(Ω) of Ω. That is,
away from the set of lengths of closed reflected geodesies of Ω (including
multiples of the length of the boundary). This result was further refined in [6]
where the behaviour of the singularity of σD near the length of a nondegenerate
geodesic (or clean family of geodesies) was analysed. As an application, a
simple inverse spectral problem for the ellipse was solved in [7]. Such an
assumption of nondegeneracy on the geodesies, whilst generic for convex
regions, is very limiting since it precludes even arbitrary small perturbations of
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discs. One of the key results of this paper (Theorem 6.4) shows that for
domains satisfying a much weaker noncoincidence condition, σD is always
singular at a certain subset of £(Ω), which we proceed to make precise.

Any closed geodesic on a strictly convex planar region (excluding for the
moment the boundary itself from consideration as a geodesic) has associated to
it two positive integers, the number n of reflection points and the rotation
number m normalized to have m<jn. If T(m, n) denotes the set of such
closed geodesies, this set never being empty with these constraints on m, n (see
Birkhoff [2]), then

(1.9) e(0)= \jL{T{m9n))ΌNL^
m,n

where L^ is the length of the boundary, and L(g) for Q E Γ(m, n) is the
length with multiplicity of the closed geodesic. £(Q) is closed and always has
mL^, for each m > 1, as a limit point from below of UnL(T(m, «)). Set

Tmn = supL(Γ(m, n)), tm,n = inf L(Γ(m, n))9

then as n -> oo with m fixed (see Theorem 5.15)

(1-10) n"{Tmtn-tmtn)-*0 Vk,

and moreover there are constants ckm = ck m(Ω) such that

(1.11) ΓM > J I~mL β 0+ Σck,mn~2k ( a s n - o o ) .
k=\

Here c{ m < 0 always, and these constants or more precisely the ck x constitute
the new collection of invariants mentioned above.

It is shown below, using in the process a simple lemma on degenerate
oscillatory integrals due to Soga [14], that the ckx are determined by the
spectrum (1.1) for any region which has the property (noncoincidence) that L^
is not a limit point from below of Um,> 1L(Γ(w', «'))• The more technical
component of this proof is the microlocal analysis of the hyperbolic boundary
problem:

(Z),2 - Δ)ι/(ί, x) = 0 inR, X Ω,

(1.12) u = 0 onRXθΩ,

) = Ki onΩ,

carried out in [6]; this is used freely.
The constants ck^(Ω) are further reinterpreted in a very useful geometric

form. The technical basis for this is the result in symplectic geometry [12] and
some remarks in [8]. Thus the behaviour of the geodesies in Ω is summarized in
the billiard ball map, or in the closely related boundary map associated to Ω.
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The latter is a homeomorphism

(1.13) δ + :

of the coball bundle to 3Ω, the subset of Γ*3Ω consisting of covectors of length

at most one in the induced Riemannian structure on 3Ω. The map δ + is

defined (§2) so that if /> E 7^ΩΩ are the successive points of a closed geodesic

on Ω, then i*(pJ+ι) = δ + i*(pj)9 where /*: ΓΘ*ΩΩ -> Γ*3Ω is the projection dual

to the inclusion of 3Ω in Ω. The map δ+ is C°° in the interior of i?*3Ω and

symplectic there, i.e., preserves the area 2-form. The results of [12] apply to

8+ , the proof is outlined below in this special case as Theorem 3.2, to show

that there is always a C 0 0 function ξ G C°°( JΪ*3Ω) such that

(1.14) K

where Hξ is the Hamilton vector field of ξ9 and equality in (1.14) is modulo a

C°° symplectic map which preserves S+ 3Ω, the counterclockwise component

of the boundary of B*dΩ, to all orders.

The Taylor series of ζ at S% 3Ω is uniquely determined by the requirement

(1.14). If dz is the 1-form on the circle ξ — t (small) normalized by dz(Hξ) — 1,

then

is a C00 function of / near 0, with Taylor series at t = 0 independent of the

choice of ξ satisfying (1.14), i.e.,

The family of invariants (1.15) is algebraically equivalent to the set of

constants ckx. Explicit formulas (4.6) are obtained for the first two, Il9 / 2, and

these are used to find a two parameter family of strictly convex regions which

are spectrally determined amongst all regions satisfying the noncoincidence

condition. Other spectrally rigid regions can be obtained by considering

variational problems involving the area of Ω in addition to Il912 and L^.

In outline this paper proceeds as follows. In the second section formulas for

the domain and associated billiard ball map in terms of the curvature function

are given. The third section treats the symplectic normal form theorem for the

boundary map, which is used in section four to derive formulas for the first

two integral invariants, and in section five to relate these invariants to the

asymptotic distribution of the lengths of closed geodesies. Section six contains

a partial converse to the Poisson relation for convex regions, and this is used in
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section seven to show that the integral invariants are generic spectral in-
variants. The last two sections, eight and nine, examine the extrema of the first
two integral invariants.

The authors wish to thank Victor Guillemin for helpful conversations.

2. Billiard ball map

Let Ω C R2 be a smoothly bounded strictly convex region. Thus the boundary
9Ω of Ω is a strictly convex curve, in particular a Jordan curve. We shall give
9Ω the counterclockwise orientation. The arc length measure

|<fc|eC°°(9Ω, IΛ1!), \ds\¥Ό,

which is fixed in any nonstationary parametrization of 3Ω

[0T]3t»(x(t)9 y(t)) GdQ

by I ds I = ((x(0)2 + (jKO)2) ι/21 * I » c a n t h e n b e extended to a unique 1-form
ds G C°°(3Ω, Λ1) with ds > 0 the given orientation. If p G 9Ω is a given point,
Ω can be normalized by a rigid motion so that

(2.1) p = (0,0), and the positive tangent to Ω at p is (1,0).

The curve 9Ω, and hence the region Ω, is determined up to a rigid motion by
the curvature function. Thus, for p E 9Ω given, let s = sp be the arclength
measured from p in the counterclockwise direction. Then 3Ω normalized by
(2.1) is the curve:

(2.2) c: [0,L]Bs»(x(s)9 y(s)),

where

(2.3) * (*)= Γcos(0(/))Λ, y(s)= ίSsin(θ(t))dt
Jo Jo

with θ(s) the angle between tangent and x-axis. The curvature function

(2.4) φ ) = j^θ(s)

is invariantly defined as a function on 9Ω. Since 9Ω is strictly convex, K > 0.

For later purposes it is convenient to introduce angular or curvature coordi-

nates, fixed by the base point p,

(2.5) r = rp = 0(s)

and then to define

(2.6) χ(r) = 1/φ).
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(2.7) Proposition. The relationships (2.2)-(2.6) give a 1-1 correspondence

between pointed C00 strictly convex bounded regions normalized by (2.1) and all

positive functions x E C°°(R/27rZ) such that

(2.8) infχ>0,

(2.9) / χ(r)cosrdr = ί χ(r)sin rdr = 0.

Proof. If a positive function K G C°°(R/LR) is the curvature function in

arclength coordinates of a strictly convex curve of length L, then (2.3), (2.5)

show that

(2.10) fLθ(t) dt = 2ττ, ίLcos(θ(t)) dt = (Lsin(θ(t)) dt = 0.
Jo Jo Jo

Under the change of variable to r in (2.5) the last two of those conditions

reduce to (2.9). The first condition shows that χ is periodic of period 2m.

Conversely, condition (2.10) shows that (2.3)-(2.6) construct from χ G

C°°(R/27rZ) a closed strictly convex curve as in (2.1), proving the proposition.

Note that the length of the curve is

(2-11) 2

The billiard ball map of the region Ω describes the relationship of points on

the boundary 3Ω lying on the same straight line. Let G be the circle bundle

over 9Ω with fibres the circles of unit tangent vectors to R2 at each point of 3Ω.

Then

G - 9 Ω X S 1 , Sι = (R/2irZ).

The billiard ball map can be viewed as an involution β: G -> G, defined by

β(x,θ) = (x',θ'),

if 0' = τ0, using the translation of tangent vectors in R2, and x, x' lie on the

straight line with direction θ:

(2.12) χ-χ' = DΘ, DGR.

The circle bundle G projects orthogonally, along the normal bundle to 9Ω,

onto B*dQ C Γ*3Ω, the unit coball bundle to 3Ω. In fact this projection has

two continuous inverses

(2.13) μ± : B*dΩ -> G, ir μ± = Id,

where m is the projection and μ± have respectively the inward and outward

pointing halves of G as ranges. The composite maps
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are symplectomorphisms called the boundary maps—specifically the inward
and outward boundary maps—they are inverses of each other.

Next we proceed to compute a formula for 8 ± in terms of the curvature. If
the straight line (2.12) passes through c(s) = (x(s), y(s)) and makes an angle
φ, measured inward from the forward tangent at c(s), then (s, φ) give global
coordinates in G, and in terms of the canonical coordinates (s, σ) in Γ*3Ω dual
to the arclength,

(2.14) π(x, <p) = (s, σ) «=» σ = cos φ.

Moreover,

where r, r' are the values of the curvature variable at x — c(s), xr — c(s') on
the line with angle φ at c(s). If β(x, φ) = (x\ φ'), then the equality in (2.15)
fixes r' in terms of (s, φ), and clearly

φ + r - φ ' + r\

To reduce this to a formula for δ + notice that one should take φ G [0, π]. In
particular, if r is the curvature coordinate normalized at/?, then

* + (0,σ) = (r',σ'),

if

(2 16) 0-σ 2 ) 1 / 2

 = ffχ(t)smtdt

because of (2.14).

3. Interpolating Hamiltonian

As noted above (see for example [6]) the boundary maps δ ± are symplectic
with respect to the standard symplectic (area) form on Γ*8Ω, that is, 8±

preserve the 2-form

(3.1) sin(φ)ίfe Λ d<p — do Λ ds.

Note that δ ± are not C°° up to the boundary 5*3Ω of B*dΩ but are continuous
and fix 5*3Ω pointwise. The singularity of δ ± at S'*9Ω is of square-root type as
is clear from (2.16), which shows that r' = R\r,(\ - σ)1/2), with R' a C00

function, R'(r,0) = 0, dR'(r, t)/dt > 0 at t = 0. The precise form of this
singularity is described in the theorem below. This is essentially a corollary of
the main result of [12], and holds for convex regions in any dimension. For
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completeness a proof is given here for the special case of planar domains. For
ξ G C°°(Γ*3Ω) we denote by Hζ the Hamilton vector field of ζ on Γ*3Ω.

(3.2) Theorem. If 8± are the boundary maps of a strictly convex C0 0 planar
domain, there exists a C°° function ξ E C°°(Γ*3Ω) which is a defining function
for the positive halfS\ 3Ω of the cosphere bundle such that ζ >0 in i?*3Ω and

(3.3) δ±

are C°° maps near S% 3Ω C B*dΩ fixing S$ 3Ω to infinite order. The Taylor
series at S* 3Ω ofξ is determined by the requirement (3.3).

As shown in [12], locally near any point of S\ 3Ω, ζ can be chosen so that
(3.3) holds with ρ± = Id near the point. That is, the boundary maps 8± (and
hence the billiard ball map β) are always locally completely integrable. In
general it is not possible to choose ξ so that (3.3) holds in a neighborhood of
S*_ βΩwithp^ = Id.

Proof of Theorem (3.2). Note that m in (2.14) is an isomorphism onto 5*3Ω,
we denote its domain ττ"1(5*3Ω) by S*3Ω C G. Again from (2.14) it is clear
that if/ G C°°(G\ then/ = ττ*g, near S% 3Ω with g G C°°(Γ*3Ω) if and only if
/is locally invariant under the involution

a: G -* G, ot(x,φ) = (x,-φ).

From (3.3) it would follow that the Taylor series of ξ at 5*3Ω was invariant
under δ ± . Thus we look first for a Taylor series even under α,

(3-4) gj
j

such that β*g is also even. If β*(φ) = ψ\ β*(s) = s\ then

(3.5) β g=2φ')(9')2J= Σpk(s)<Pk.
j k = 2

From (2.5) it follows that

(3.6) φ' = -h(s)ψ + k{s)ψ2 + θ(φ3), sf = s + w(s)φ + θ(ψ2)

with Λ(0) > 0, w(0) > 0. Consider the term/?3 in (3.5):

(3.7) p3(s) = w{s)dgλ/ds + 2k(s)gι.

Thus (3.7) shows that the equation p3(s) — 0 has a unique local solution gx(s)
with g,(0) = 1. Similarly, adding the terms gy to g changes the coefficient p2j+ λ

inβ*gby
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and leaves the coefficients p2r, r <j, unchanged. Thus, fory > 1, gj is uniquely
fixed by requiring that gj(0) = 0 and that β*g have no term φ2J+ι. By
induction we can therefore choose g in (3.4) with gλ Φ 0 and β*g even in <p.
Then

(3.8) t=±(g + β*g)

is a Taylor series at S% 3Ω even under both β and α, since these are both
involutions. Choosing / G C°°(Γ*3Ω) consistent with this Taylor series then
satisfies

(3.9) β f - / E C°°(£*3Ω) near S*+ 3Ω

vanishes to all orders at SUJ. 3Ω.

Next solve the equation

H,τ=\, τ U = 0

clearly possible locally since Ht is tangent to S\ 3Ω and nonzero. This gives

local coordinates (T, t) in which the symplectic 2-form ω on Γ*3Ω is again

ω = dt Λ dr. From (3.9), Ht(Sχ T) = 1 4- e, e G C00 vanishing to all orders at

S*+ 3Ω. Thus, for some g' G C°°(R),

modulo a C00 function vanishing to all orders at S\ 3Ω. From (3.6), g'(0) Φ 0,

so new symplectic coordinates

ξ = Λ(ί), z = T / Λ ^ O

can be introduced satisfying R(t)dR/dt = -g'(ί)ί, i.e.,

(3.10) Λ ( 0

Thus we have

(3.11) δ t z Ξ z - f 1 / 2 , δ J f Ξ f , ω = dξΛdz

in the sense of Taylor series at ξ = 0, i.e., £!$_ 3Ω. Since /ίr = 32, this leads to

(3.3) at least locally near a given point of 5*3Ω.

The uniqueness of the Taylor series at S% 3Ω follows directly, using the fact

that (3.11) must hold in the new coordinates z', f' Always in the sense of

Taylor series at ξ = 0 it follows from δ* ?' = Γ that Γ Ξ κ<f )• Since # Γ z ' = 1,

i/^z' = w'(ζ)9 so z' = w'(ξ)z. Thus δ* z' Ξ z' - w\ζ)f1/2, i.e., Γ = ?. Having

constructed ξ everywhere locally at S% 3Ω, this local uniqueness shows that the

Taylor series of ξ satisfying (3.3) exists and is unique around £"$_ 3Ω, complet-

ing the proof of the theorem.
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4. Integral invariants

In this section we examine some properties of the integral invariants (1.15),

for a given strictly convex region Ω C R2, and compute explicit formulas (4.8)

for the first two of them.

(4.1) Lemma. // £ G C°°(£*3Ω) is an interpolating Hamiltonian at S* 3Ω

for the boundary map of a strictly convex planar region, then for some ε > 0 the

circlesA(t) = {ξ = t},0 < t < ε, carry C°° l-formsdz, dz(Hξ) = 1, and

(4.2) /(/)= f <feeC°°([θ,ε)).

Proof. Since ξ is a defining function for S% 3Ω, the A(t) clearly are circles

depending smoothly on t for t G [ 0, ε), ε small. Again, Hs is tangent to each

A(t), and Hξ φ 0, so dz is a C°° 1-form depending smoothly on t. Thus (4.2)

holds, proving the lemma.

Changing from ξ to another interpolating Hamiltonian ξ', ξ' — ξ always

vanishes to all orders at S% 3Ω, so the new 1-form dz' differs by dz' — dz, from

the old, and this vanishes to all orders at S+ 3Ω, as a 1-form on i?*3Ω. Thus

the new function Γ(t) is such that Γ{t) — I(t) vanishes to all orders at t — 0.

In consequence the coefficients in the Taylor series

Ik+x=dkW/ώk

are independent of the choice of ξ.

If we take

£ = (1 - σ)ζι(s) + (1 - σfζ2(s) + 0(1 - σ)3,

then in terms of the variable s on A(t), with σ = σ(^), ξ(s, σ(s)) = t,

(4.2)

A C 0 0 function of (s9 σ), such as ξ, must be C 0 0 and even in φ across φ = 0,

σ = cos(φ), i.e.,

Therefore ξ, = 2aλ> ζ2

 = \a\ + 4α 2 We proceed to compute aλ9 a2.

Let δ + (5, σ) = (5 r, σ'). Since (3.3) holds, the Taylor series of s' at ξ = 0 is

given by

(4.3)
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Now

2
3φ s 351 φ /\sm(φ) 3φ / !

sin(φ)

H*s = = -S(axάx + aλά\) + 6>(<p2),

where άj and άx are respectively the first and second derivatives of ax with
respect to s. Also

Inserting these expansions into (4.3) gives

s' = 2α?/2φ + 2α?ό,φ2

(4.4) + {W/2

Next we compute the same thing geometrically and equate the coefficients of
φJ\ 1 <y < 3. This gives av a2 in terms of K and its derivatives. With
θ(s) = f$κ(t)dt, set

0(s)=sθx-

Thus

x(s) = [Scos(θ(t))dt = s-
Jo

y(s) = fsm(θ(t)) dt = \s2θ

Then according to (2.15) we have

tan(φ) = \s'βλ + l(s')2β2 + i*(s'γ(θ3 + Θ3

X) + O(s')\

and substituting for s' from (4.4) and expanding tan(φ) give, after the
identification θx — κ,θ2 — κ9 θ3 = /c,

ax — K , a2 — jζK 1 3 5 Λ /c

Therefore

Hence after integration by parts we have

4̂.0J ij Z I K US, 12 — io8O I V^^ ' o κ κ ) u *
0 0
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For the purposes of §§8 and 9 it is convenient to rewrite these formulas in
terms of the angular coordinate r:

(2'κ-V*dr, /2 = ̂  f 2 > K ' / 3 + 8κ-V3(κf)

where κf = dκ/dr.
Next we consider the general form of the higher invariants Ik. First observe

that the space ?Γc C°°(R/27rZ) of all functions χ, satisfying (2.8), (2.9) and
therefore corresponding to convex regions, has a natural homotheity. Thus the
transformation
(4.8) MR:χ(r)»Rχ(r)

corresponds to the usual radial expansion on R2.
(4.9) Proposition. Under the transformation (4.8), the Ik are homogeneous,

(4.10) /*(Λχ) = Λ I-" / 3/ J t(χ).

Each Ik is the integral of a polynomial in the derivatives ofχ up to order k — 1,
with coefficients constant multiples of powers (in general negative) ofχ1/3.

Proof. We need to analyse the behaviour of /(/), and to do this of ζ under
the transformation (4.8). The basic observation is that the underlying homothe-
ity

which corresponds to (4.8) is linear. If ( c, σ) E Z?*3Ω, then (Rx, σ) E B*dίlR

and

if δ+ (JC, σ) = (y, r'). That is, the two boundary maps are intertwined by the
conformal symplectic transformation, given in terms of the normalization (2.1)
and corresponding arclength by

If £ E C°°(£*3Ω) and f = T*ξ'9 Γ E C°°(£*3ΩΛ), then the two Hamilton
vector fields are related by

The formula 8+ - exp(-ζι/2Hξ) transforms to 8+ R = exp(-R(ζ')ι/2Hr\ so

In the transformed region therefore, T£dzR = Rι/3dz,

Thus Ik+ι(ΏR) = Rl/3~2k/3Ik+l(Q), which is just (4.11). The remainder of the
proposition is easily established by a formal power series computation.
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5. Length spectrum

Reflected geodesies in the manifold with boundary Ω consist of (continuous)
curves in Ω which are the unions of straight line segments [x, x']9 x, x' E 3Ω
with consecutive segments satisfying the usual form of Snell's law:

(5.1) x ' - x = DΘ9 \θ\= 1, J C " - J C ' = Z>'0', | 0 ' | = 1,

(5.2) θ-θ' = cn(x')9 c>0,

where n(x') is the inward normal to 9Ω at x'. Directly from this definition, the
end points of the line segments of such geodesies form a sequence with

(5.3) (x,θ),(x',θ') = β(x,θ),- .

Indeed this sequence determines the geodesic as a curve parametrized by
arclength, up to a translation. Since the sequence (5.3) consists of outward
pointing elements it is fixed by its projection into 2?*9Ω, where it is of the form

(5.4) P,S+P,*lp, ~.

Thus a maximally extended geodesic of Ω is determined uniquely by an orbit
of S+ in £*9Ω. The closed geodesies, corresponding to finite 8+ -orbits, are of
particular interest. Associated with each closed geodesic g, is an integer
n =-π(g) given by the number of reflections. If g is not a simple closed
geodesic then n = kn9 where k is the multiplicity, and n is the number of
reflections along the simple geodesic. There is a second integer determined by
g, its rotation number. Consistently choosing either the positive (counterclock-
wise) or negative orientation of 9Ω, two points /?, p' E 3Ω determine intervals
[p9 p']± in 9Ω with ΘΩ = [/?, />']+ U[/>, />']_. In this way, g determines two
curves parametrized by arclength:

and similarly for c_. If m± is the number of times c± covers 9Ω, then
m+ +m_= n. The rotation number m of g is then
(5.6) m — min(m+ , m_) < n/2.

(5.7) Proposition (Poincarέ). Let Ω C R2 be a strictly convex compact C°°
region. For each pair of positive integers n, m E N with 2 m < n, the set Γ(m, n)
of closed geodesies making n reflections and with rotation number m is nonempty.

Proof. (Outline only, see Birkhoff [2]). The definition of m extends di-
rectly to any ordered subset of cardinality n:
(5.8) * = 0 > i , Λ . Λ . } C θ a .

Defining the length by

i - l
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wherep n + x = pλ, one can follow Poincare in showing that amongst all ί) with m

and n fixed the supremum of L(£)) is attained, and this maximum occurs at a

closed geodesic.

The convexity of Ω immediately shows that if g G T(m, n), then

(5.9) L(Q)<mL00=L00^

where L^ is the length of the boundary. More significantly, if Qm n E Γ(m, «)

with m fixed, then

(5.10) Ii

In fact the curves g w M approach the gliding geodesies consisting of m circuits

of 9Ω, provided only that the initial points of the curves are constrained to

converge.

Now the length spectrum of Ω consists of the closure

£(Ω) = cl{L G i ? + ; L = L ( g ) , g a closed geodesic).

From (5.10) and Proposition 5.7, the mL^ are contained in this closure. It

follows readily that if the gliding geodesies are included, then the set (L(g)} is

itself closed.

(5.11) Proposition [8]. 7/2?*3Ω is considered as an abstract manifold, with 8+

and the symplectic structure given, then £ ( δ + ) can be recovered, i.e., £(Ω) =

&(δ+)is a symplectic invariant.

Proof. (Outline only, see [8]). Choose a C°° 1-form a on B*dΩ such that

(5.12) da — ω, δ^α is continuous, / a—\ a-

Such a form exists since a — σds, defined in the canonical coordinates (s, σ)

dual to arclength, has these properties. For a — ods, it follows by direct

computation that if q is a periodic orbit of 8+ , then

(5.13) 8*+a-a = dfa, L( β ) =

In fact (5.13) is valid for any C°° 1-form a' satisfying (5.12), since α' - a is

exact, a' — a = dg, and then

(5.14) δ*α' - «' = dfa,, fa.=fa + δtg-g.

The sum in (5.13) is therefore independent of the choice of a, proving the

Proposition.

That £(Ω) is a symplectic invariant of δ+ leads one to expect a connection

with the invariants Ik discussed in §4 above. Not only does £(Ω) determine the

/^s, but it suffices to know the asymptotic behaviour as n -> oo of a sequence
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L(Qm n) to be able to find the Ik. If Ω is a strictly convex planar region set

( 5 1 4 ) tm%n = inf{L(β); 0 G Γ(m, n)}9 Tmrι = sup{L(g); g G Γ(m, «)},

and more particularly, tn = /,„, Γrt = TXn.

(5.15) Theorem. For each fixed m G N αtt<i α// A:,

(5-16) l i m « f c ( Γ m ( n - ί m j n ) - 0 .

Γλere are constants ck such that if$λ Π G Γ(l, n), then

(5.17) L ( g l n ) ~ LM + f c,«-2fc as n - oo,
A : = l

α«*/ /or αw^ /? = 1,2, ίΛe ck for k<p determine algebraically the Ik for
k^p, and conversely.

Proof. Notice that (5.16) implies that the coefficients ck in (5.17) are
independent of the choice of sequence Qλn. It is clear that as n -» oo the
reflected geodesies approach 9Ω uniformly. From (3.13) it follows that ξ =
O(n~2) on Qϊn and that ξ is constant on the orbit QX n up to order n~k for any
k. More particularly, if dz is the dual 1-form to the inteφolating Hamiltonian
?, then

a = ξdz + ds

satisfies (5.13), provided ξ is extended to B*dQ to have dξ φ 0 and f = 2 on
S* 3Q. In view of (3.3)

δ* α - a = d(-ξ3/2 + Λ + δ* 5 - s),

where /ι vanishes to infinite order at SX ΘΩ. Thus

(5.18) L(aUm) = Σ ( " ? 3 / 2 + A + ^ ~ ') = ^oo ~ nV'\

mod π"^ for any A:. Computing /(f) from (4.1) for a value of ξ taken on Q1 J Π

gives

= Σ / ^ = «?1 / 2 ( m o d «"

This shows that ζ = ζ(Q\tn) has an asymptotic expansion as n -» oo, de-
termined by and determining the JΓΛ. Substituting this into (5.18) demonstrates
both (5.16) and (5.17), completing the proof of the theorem.

Not only are the lengths of the geodesies Q, n asymptotically well-behaved,
but as n -* oo, the distribution of points in g1 „ is well-behaved asymptotically
with respect to any one point. We shall not use such a result below, so simply
state without proof.
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(5.19) Theorem. Suppose g, „ e Γ(l, n). Then there are functions

gk(κ, • ,κ(2*>) such that / / β , π = {/>„• ,pn) then

Pj k=\

uniformly as n -> oo.

6. Poisson relation

The Poisson relation for a compact Riemannian manifold with geodesically

convex boundary, such as a strictly convex region in Euclidean space, was

derived in [1]. Thus, if σD(λ) is the spectral enumerating measure

(6.1) oD(λ) = Σδ(λ-λ),

summed over those λ for which λ2 is an eigenvalue of (1.1), with multiplicity,

then the Fourier transform satisfies

(6.2) sing supp (aD) C - 6 ( 0 ) U {0} U £(Ω),

where £(Ω) is the length spectrum, described above in §5. Furthermore, as a

consequence of the formula [6, (1.3)], if there is precisely one closed geodesic

(up to parameter translation) of length L, and this is differentially isolated,

then

(6.3) L G sing supp (σD).

It is the purpose of this section to show that, even without such an

assumption of nondegneracy on the closed geodesies, such a converse, (6.3) to

(6.1), holds for a large class of convex planar regions subject to a noncoinci-

dence condition.

(6.4) Theorem. // Ω C R2 is C 0 0, bounded and strictly convex, tn and Tn are

defined by (5.16) with m—\, and there exists N = N(Ω) such that ifn>N

(6.5) L(a^)Φtm(reφ.Tn)9 V 9 m > , G Γ(m', n')9 m'Φ\9

then tn G sing supp (σD) (resp. Tn G sing supp(σD)). The same is true for

Neumann or Robin boundary conditions.

As a first step in the proof of this theorem we recall briefly from [6] the

proof of (6.2), (6.3) and specialize to two dimensions. The basic identity

underlying (6.2) is

(6-6) σD = π^E,
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where E is the fundamental kernel of the Dirichlet problem for the wave
equation

(Z>,2 - Δx)E(t, x, y) = 0, ( U j ) E R X S l X Ω,

(6.7) E(t,x9y) = 09 JCE3Ω,

Δ: R X Ω ̂  R X Ω X Ω is the lift of the embedding of Ω as the diagonal in
Ω X Ω, and π: R X Ω -> R is projection onto the first factor. On a manifold
without boundary, (6.6), for the corresponding fundamental kernel, is sanc-
tioned by wavefront set considerations [5], For a boundary problem such as
considered here, a more elaborate treatment is needed (see [1]) to deal with the
gliding rays. We do not need to reexamine such arguments since the desired
results are related to the geometry and analysis of hyperbolic boundary points.
We can summarize this as follows.

Suppose ε > 0 is given. Then there is a distribution

£;(/, x, y) E Ψ(R X R2 X R2),

which has the following property. If φ is a defining function for 3Ω, φ > 0 in
Ω, then provided p E CC°°(Ω) is equal to one on a sufficiently large compact
subset of Ω,

(6.8) σD - ττ,Δ*(p£;) - jΠ(,rφ),Δ ((l - p)2?β')«/φ E C"((δ, L^ - ε)),

for δ < L w fixed. Here ττφ: Ω -> R is the fibration near 3Ω given by φ, i.e., with
fibres on which φ is constant. Again in (6.8) the term 77-s|cΔ*(p£c

/) is sanctioned
by wavefront set considerations, as is the term (πφ)^Δ*((l — p)£ε'), and this
depends smoothly on φ, as a distribution on (δ, L — ε), where δ = δ(Ω) > 0.

The distribution E[ can be taken to be Lagrangian, and represents up to a
C°° error term the part of the fundamental kernel of the Dirichlet problem
away from the gliding rays, not only the part away from the boundary. We
recall from [6] the geometry associated to, and some of the symbolic properties
of, Ef

B. The wavefront set of E'ε is contained in the union

(6.9) A = U Λ,,
j

where Λy E Γ*(R X R2 X R2)\0 is the relation defined by >fold reflection.

Thus

if the geodesic through (j>, η) meets 3Ω transversally and after>fold reflection
from the inside of 9Ω (and finally possible extension beyond 9Ω) passes
through (x, ξ) E Γ*R \ 0 with the total length /, T = ± \ ξ \ .
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The construction in [6], following that of Chazarain in [3], shows that one

can take

E: = Σ Ej, Ej G / - V 4 ( R x R2 x R2. Λ y ) ,

finite

where for each ε only finitely many terms need to be taken, and the Ej can be

chosen independent of ε. The lower limit 8 < L^ in (6.8) is just to ensure that

Aj satisfies a suitable transversality condition with respect to the πφ. In fact,

the Ej can be taken to satisfy the wave equation in a neighborhood of 3Ω:

(6.10)

and to be fixed by suitable boundary conditions on 3Ω. Again from [6] we note

that the densities dt, dx, dy on R and Ω and a suitable parametrization of Λy

near 3Ω can be used to trivialize the symbol (Maslov-Keller) bundle on Λy so

that the symbol of Ej is ( - 1 ) ^ , aj > 0, with aj > 0 in a conic neighborhood of

points of Aj contributing to the singularities of σD within the interval (δ, L).

The main extension of [6] we use here is the following result which shows

that <7y, the contribution of Ej to σD, is an oscillatory integral associated to the

yth iterate of the boundary map.

(6.11) Proposition. // Ω is a C°° bounded and strictly convex planar region,

there exists N = N(ίl) such that ifj > N, then the contribution σy of Ej to όD is of

the form

(6.12) ±fJI

where in terms of an arclength coordinate s ondΩ,

(6.13) μj(s)=tj(s,s')\s=

with ψy.(j, s') = L(Q), with Q a j-fold reflected geodesic from s to s\ and aj is

periodic in s, classical and elliptic of order zero, with principal part of the form

e""j'4aj(s), ctj(s) > 0.

Proof. We remark first that foτj large and (s, s') a point near the diagonal

in 3Ω X 3Ω, there is a unique j~fold reflected geodesic making approximately

one circuit of 3Ω starting at s and finishing at s'. Thus ψj in the statement
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above is well-defined for large j 9 \s — s'\<ε(j) and is a C00 function.

Moreover, it is clear from the results of [8] that ψy is the generating function of

they'th iterate δJ+ of the boundary map of 9Ω. Thus (6.12) can be restated as

(6.14) σ, = ( O

where K} e ^'(R X 9Ω X 3Ω) is a Lagrangian distribution associated to the
homogeneous lift of the boundary map:

(6.15) Kj e 7°(R X 3Ω X 3Ω; Λ;),

Λ;. - {((, j ' , T, o', i", o") 6 Γ(R X 38 X 3δ) \0; ί = ψ/i', j"),
(6.16)

δi(s",o"/τ) = (s',σ'/r),\s'-s"\<ε(j),τ*0}.

The statements in the proposition about the symbol aj then follow from

suitable statements about the symbols of the K} in (6.15).

Now (6.14) is a consequence of (6.8) with the additional use of (6.10). To

exploit (6.10) first use the translation invariance in t of the problem to note

that

Ej(t,x,t'9 y) = Ej(t - t',x, y)

satisfies

(6.17) (Z),2 - Δx)Ej = (l>,2 - Δy)Ej = 0 near Ω.

For large y, the bicharacteristics making up Aj are uniformly nearly, but never

quite, tangent to 9Ω. Microlocally near any such curve β here is a coordinate r

defined near π(β) ER2 such that

(6.18) r = 0, r = 1 on the two components of 9Ω near π{β),

and such that (Z),2 — Δ x ) is noncharacteristic with respect to r. Then (6.17) can

be microlocally f actorized to

(6.19) (D, - A(r))Ej = (D, - A(r'))Ej = 0,

where A(r) E ψ1(R/ X R) is, microlocally near β, an elliptic pseudodifferential

operator in the surface r — constant, which is /-translation invariant. If we

write G(r, r') for the solution operator to the microlocal Cauchy problem for

(6.19) (see for example [ 15])

(6.20) (D r - A(r))u = 0, u \r=r> = u0^ u(r) = G(r9 r')uθ9

then in terms of the coordinates r and arclength on 9Ω,

(6.21) Ej(t9 r, s; t\ τ\ s') = G(r,0)G*(r',0)E*9
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where Ef £ <ΐ>'(R X 3Ω X R X 3Ω). Indeed, as is clear from the definition of

(6.22) Ef ε /• (R X 3Ω X ΘΩ; Ay),

where Λy is obtained from Λ^ in (6.16) by translation

A'j={(t,s,τ,δ,t',s',r',σ');
(6 23^

Decomposing Ej into suitable microlocal pieces and carrying out the restric-

tion to r = r' in (6.8) and integration over s — s' give

(6.24) JEj(u r, s; t'9 r, s) ds = j(G(r90)G*(r90)E*)(t9 s, t\ s)ds

since G*(r, 0) = G(0, r) = G~\r, 0). Then we get (6.14) by taking

(6.25) Kj = E*(t9s909s')

giving (6.15) as well. This proves the representation (6.12) since, as remarked

above, (t — ψy(^, s'))τ is a nondegenerate phase function parametrizing Λy.

The operators G(r,0) all have positive, classical symbols, and since Kj is

obtained by restriction from Ef the positivity results as stated for the symbol

aj follow directly.

(6.26) Proposition. Any distribution of the form (6.12) with ύj elliptic, classi-

cal and with positive principal symbol has

(6.27) {inf(φy ), sup(φy)} C sing supp (σy ) C [inf(φy ), sup(φy ) ] ,

providedj > N(ίl).

Proof. The fact that sing supp (σy ) C [inf(φy ), sup(φy)] is of course stan-

dard, since the singular support of such an oscillatory integral is always

contained in the set of singular values of the phase. The converse is an

application (in the rather simple 1-dimensional case) of results of Soga [14] on

singularities of degenerate oscillatory integrals. First if all the points at which

sup(φy ) is attained are nondegenerate maxima, then sup(φy ) E sing supp (σy)

follows from the lemma of stationary phase. Thus we can suppose that sup(φy )

is attained at, at least one, degenerate maximum. Then Theorem 1 in Soga [14]

shows that σy is still singular at sup(φy ). A similar argument applies to the

infimum of φy, completing the proof of the proposition.

Proof of Theorem (6.4). The hypothesis (6.5) is that tn is not the length of

any closed geodesic with rotation number greater than one. If n is large
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enough, it follows from (5.17) and cx < 0 that

and therefore that the only singular contribution to σD near tn comes from σn.
Applying Proposition (6.26) we deduce that /„ G s i n g s u p p ^ ) . The same
argument applies to show that Tn G sing supp ίσ^) for large n under the
hypothesis (6.5) for Tn, completing the proof of the theorem.

7. Spectral invariants

Let 9" C C°°(R/27rZ) be the set of all curvature functions χ satisfying (2.8),
(2.9). Let 61 C ?Γ be the subset of curvature functions corresponding to regions
with the following property:

(7.1) L^ is not a limit point, from below, of L(Γ(m, n)) (m > 1).

(7.2) Proposition. 61 is dense in 9" in the C°° topology, and contains a C1

neighborhood of the constants.
Proof. Notice that on any sequence of closed geodesies qm n with m -» oo,

L(g m n )-> oo, so that near any fixed element of 9\ L^ < L(Qmn)ifm> M(χ).
Thus if <&! C 5" is fixed by the condition that

(7.3) L ^ L U ^ J for any m,

then (3ίx C
 <Sί. Moreover, the complement of &, characterized by the existence

of a closed geodesic Qm n with L(gw n) = L^ is clearly closed in the C1

topology. Certainly the circles satisfy (7.3), so 61,, and hence 61, contains a C1

neighborhood of the constants.
To prove the first part of the proposition it is sufficient to note that the set

612 C !Γ of curvature functions corresponding to domains for which all the
Γ(w, n) are finite and consist of only nondegenerate geodesies is itself open
and dense in the C°° topology, in ?Γ. Thus 61D 612 is dense. Of course, 612

does not contain an open neighborhood of the circles.
(7.4) Theorem. For any convex region Ω, with χGtflthe integral invariants

/^(Ω), are all uniquely determined by the spectrum of the Dirichlet problem. The
same is true for Neumann or Robin boundary conditions.

Proof. The condition (7.1) defining 61 requires that for some 8 > 0,

(L-a,z.)nβ(β)c U

The combination of (6.2) and Theorem (6.4) shows that

U {tn,Tn} Csing supp ( σ Z ) ) n ( L - δ , L ) c ( J
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Moreover, from (5.16) the lengths of these intervals are rapidly decreasing as
n -* oo, whereas from (5.17) the distance between successive intervals is

f2 + O(n~4)sisn -> oo, c > 0 .

Thus the values of the Tn for n > N(Ω) can be determined from
s i n g s u p p - ^ ) .

Of course this only determines the Tn from an unknown initial point
onwards, i.e., gives a sequence

(7.5) Dk = Tk+p, k>k.

However, it follows from (5.17) that Dk has an asymptotic expansion as
k -* oo,

(7.6) Dk ~ L + 2 cr(k + p)~2r ~ L + cλk'2 - 2pcλk~3 + θ(k~Λ).
r=\

Since c, < 0 always, from (4.8), the value of/?, and hence the values of all the
invariants ck, can be recovered from (7.6). The last part of Theorem (5.15)
confirms that knowledge of the ck is equivalent to that of the Ik.

8. Maximising/,

Up to a constant the first integral invariant is

(8-1) h = -U V

In view of Theorem (7.4), this is a spectral invariant of regions in <3l. Here we
remark that amongst all strictly convex regions of fixed boundary length
L = L^, Ix attains its maximum value only for the circles. Hence once more
but in a different way one sees that the circular domains are spectrally
determined (at least amongst the regions corresponding to $1).

Indeed, by Holder's inequality,

with equality only for the constants, so the maxima is attained only for χ = L,
i.e., for the circle of circumference L.
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9. Minimizing I2

The second invariant is

V i = 1080/2 = (L(9(c4/3 + 8 K - 8 / 3 * 2 ) ds
( 9 i) J°

where χ' = dχ/dr. For fixed L > 0 and 0 < ε < (2π)ι/3Lι/6, set

(9.2) ^ ( X G ίΓ; f \ dr = L, /{'(x) - (2τr)2/3iy3 - ε2} .

(9.3) Proposition. For each L > 0 and ε as above, the infimum of Γ{{χ) over
Sε, T{, is attained. Moreover, for each L > 0 there exists ε0 > 0 such that for
0 < ε<εothe minimum ofΓ{ in Sε satisfies

(9.4) 9(2τr)4/3L"1/3 < f{ < 9(2ττ)4/3L-1/3 + γε2 + Cε4,

γ =

Proof. Certainly Sε Φ 0 for 0 < ε < (2ττ)1/3L1/6, although So = {X = £ } .
^Γ(x) being positive is bounded from below on Sε. Let χM, « = 1, , be a
minimizing sequence. We shall show the existence of 8 > 0 such that if

/i* then

(9.5) κne[κGSε;κ(r)>δ,r£^]ι n»0.

This suffices to prove the existence of the minimum of Γ{ on 5ε, since the set in
(9.5) is weakly closed in i^dfz)* o n which Γ{ is an elliptic integrand.

Setting ψ(r) = (κ(r))1/6, note that

Thus if ψn = (κ π ) 1 / 6 is the minimizing sequence for Γ2, {ψn} is bounded in the
Sobolev space H\^i). Thus Γ2(ψn) < C2, set an = infr ψΛ(r), attained at /•„.
Then

Thus

v-6
L= [2\6dr>w( sup

which shows that \/an is bounded, proving (9.5). Hence the infimum is

attained.
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To prove the bound (9.4) note that for small ε,

(9.6) ψ = ^ ; + δcos(2r)

is in Sε for a choice of the constant 8 of the form

(9.7) δ = 3/2L5/6(2ττ)-4/3ε + 0(ε 2 ) .

Then direct computation shows that

Γ{{κ) ^ 9(2ττ)4/3L-1/3 + γε2 + 6>(ε4),

with γ as stated in the proposition. This gives the upper bound in (9.4). The
lower bound follows from Holder's inequality. This completes the proof of the
proposition.

Our goal is to show that any minimizer is a π-periodic function, rather than
just a 27r-periodic function. We start with

(9.8) Lemma, //ψ E Sε is a minimizer for J2, 0 < ε < ε0, then

where ψ = (κ)ι/6.
Proof. The inequality

shows that, using the definition of Sε,

> (2W)7 / 6L-'/6 - I(2πy/2L-V2ε2 + O(ε3),

as claimed.
(9.9) Corollary. Ifχ is a minimizer for I2 in Sε, and ε < ε0, ψ = (χ)" 1 / 6 ,

Proof.

Jί(ψ - (2π/Lγ/6) = /ί(ψ ) + 9(2W)4/3L-'/

-lS(2π/L)ι/6[2'jdr
•Ό
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This estimate shows that for any minimizer, χ = 1/ic,

(9.10) χ = -γ + v,

where

(9.11) WvW^^Cz.

Thus

since

Γ
and similarly

Therefore

Now suppose the minimizer is given by (9.10), then it follows that

Take a trigonometric expansion for v, normalized by translation to have no
term sin(2r),

(9.12) v = δcos(2r) + 2 (^cos(λr) + s^sin(kr)),

which shows in particular that

(9.13) Σ „' \ 2 _L 7^2/o//\2 ,
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(9.14) Lemma. For a minimizer of Γ{ on Sε, put in the form (9.10), with
v = δcos(2r) + ve + v0, where ve and v0 are respectively the sums in (9.12) over
k > 4 even and k > 3 odd,

(9.15) \\ve\\H>, \\vo\\

Proof. Suppose χt is a curve in Sε with χ 0 = χ, the minimizer, and tangent
vector μ at t = 0. Then

(9.16) 0 = | / ί ( X / ) ί = 0 = "

Since χ" 4 / 3 = ( ^ ) 4 / 3 + f ( ^ ) 1 / 3 ^ + O(ε2), it follows from this that if
even

(9.17) μ= Σ (s'kcos(kr) + s^sin(kr)) + τcos(2r),

then δτ = - Σ ( 4 ) 2 + (4') 2 + #(ε3)> since | δ | > cε, c > 0; this gives an admis-
sible tangent vector.

Now, we also have

from which it follows that Σk^4feven(k2 - 4)((^)2 H- (4') 2) = O(ε3).That is,
IIve\\Hι < Cε3 / 2. The odd part of the remainder can be handled similarly,
proving the lemma.

Treating the error terms in such a computation a little more carefully we
now proceed to

(9.18) Proposition. For ε small, any minimizer ofl2 in Sε is π-periodic.
Proof. With the minimizer written in the form of Lemma (9.14), the

objective is to show that v0 = 0. Consider a variation of the type

Xt = ̂  + (« + τί)cos(2r) + ve + (1 - t)v0.

The necessary condition ftlι(χt) = 0 at f = 0 becomes AT + B — 0, where

A = I ^ + δcos(2r) + ve + *>0) ,

B=-\Cv°("t+δcos(2r)

Expanding in Taylor series and using the orthogonality of even and odd
functions shows that
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Hence it is possible to obtain an admissible variation in Sε by taking

Computing directly, using the fact that Qm \ v'Q | 2 d r > 9/0

2iΓ | v0 \2 dr, one finds

that with this variation,

which is only possible if v0 = 0, proving the proposition.

(9.19) Proposition. For ε > 0 small, the minimizer ofI2 in Sε is unique.

Proof. The arguments above apply to any minimizer. In particular, always

for ε < ε0 small enough, it follows from Lemma (9.14) that any minimizer can

be normalized by translation to be of the form (9.10) with (9.15) valid. Then

any two minimizers can be connected by a curve in Sε of the form (9.10) with

uniform estimates (9.15). From the ellipticity of I2 in Sε and the mountain pass

lemma J 2 should then have another stationary point of the form (9.10), (9.15)

and this cannot be a proper minimum. Computing the second variation of I2,

in directions transverse to the translation along the minimizer one easily

obtains a contradiction since this partial Hessian is positive definite for small ε.

(9.20) Theorem. There exists ε0 > 0 such that for each 0 < ε < ε0, the

infimum of I2 on Sε defined by (9.2) is attained at a function χ E <3l, given by an

elliptic integral, which corresponds to a convex region determined amongst regions

with curvature in <3l by its Dirichlet (or Neumann or Robin) spectrum.

Proof. Being π-periodic, the minimizer satisfies the Euler-Lagrange equa-

tion derived from the Lagrangian I2 without the second two constraints in

(2.10). That is,

(9.21) 32/c2 = κ2 + aκ~2 + bκ~6 4- c,

for some constants a, b, c. Any solution of this is given by an elliptic integral.

Since L, Iλ and I2 are determined by the spectrum for regions in the noncoinci-

dence set 91 this completes the proof of the theorem.
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