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1. Introduction
Our goal in this paper is to prove the following result.
1.1 Main Theorem. Let X be a compact 3-manifold which admits a Rieman-

nian metric with strictly positive Ricci curvature. Then X also admits a metric of
constant positive curvature.

All manifolds of constant curvature have been completely classified by Wolf
[6]. For positive curvature in dimension three there is a pleasant variety of
examples, of which the best known are the lens spaces Lp q. Wolf gives five
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different types. By our theorem, these are the only compact three-manifolds
which can carry metrics of strictly positive Ricci curvature. This answers
affirmatively a conjecture in Bourguignon [1].

It is known by a theorem of Myers (see Cheeger and Ebin [2]) that a
compact manifold of strictly positive Ricci curvature has finite fundamental
group, so its universal cover is also compact and simply connected. The
Poincare conjecture would imply that the universal cover is the sphere. Then
one version of the Smith conjecture would imply that the group of covering
transformations is conjugate to a group of isometries in the standard metric,
and the original space would admit a metric of constant positive curvature.
Thus if both these famous conjectures were known to be true, our result would
follow immediately. On the other hand if either of them fails, then there will be
a compact three-manifold with finite fundamental group which does not admit
a metric of strictly positive Ricci curvature.

The product manifold S2 X Sι has a metric of nonnegative Ricci curvature,
with two eigenvalues +1 and the third 0. It does not admit any metric of
constant curvature, and hence represents an obstruction to improving the
result.

Our method of proof is inspired by the ideas of Eells and Sampson [3]. We
start with any metric gu of strictly positive Ricci curvature R(j and try to
improve it by means of a heat equation. It would be natural to try to minimize
an energy functional. Unfortunately we cannot form any geometrically
meaningful quadratic expression in the first derivatives of the giJ9 since they
always vanish in normal coordinates. It has been suggested to use the integral
/ Rdμ of the scalar curvature as an energy. This leads to the evolution
equation (with n = dim X)

γtSij = -Rg,j - 2RU,

which unfortunately will not have solutions even for a short time, since it
implies a backward heat equation in R. To eliminate this problem, we solve
instead the evolution equation

where r is the average of the scalar curvature R,

r=JRdμ/fdμ.

This equation always has a solution at least for a short time on any compact
manifold of any dimension for any initial value of the metric at t = 0. This
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involves some work, for the equation is not strictly parabolic, as its lineariza-
tion involves some zero eigenvalues in the symbol. (But at least they are not
negative, as is the case for the first equation.) We prove this result using the
Nash-Moser inverse function theorem.

It is worth noting that the degeneracies are there because the equation is
invariant under the full diffeomorphism group of X. This has the interesting
consequence that any isometries which exist in the metric to begin with are
preserved as the metric evolves. Hence if the initial metric is homogeneous or
symmetric then it remains so. For such spaces the evolution may be described
by the change in a finite number of parameters. For example, on the product
space S2 X Sι the factor S2 shrinks and the factor Sι expands. Our normaliza-
tion r is chosen so that the volume is always preserved. We also note that if X
has a fixed complex structure and if the initial metric is Kahler, then it will
remain so.

The rest of our results are peculiar to three dimensions. The essential
simplification here is that the full Riemannian curvature tensor RiJkl can be
recovered from the Ricci tensor Rij9 which is much smaller and easier to
analyze. However, we have not used the Sobolev inequality in a delicate way,
so there is hope that the method may also yield some results in higher
dimensions.

For a compact three-manifold, we prove that if the initial metric has strictly
positive Ricci curvature, then it continues so for all time, and converges as
t -> oo to a metric of constant positive curvature. The proof of this result
requires three a priori estimates peculiar to this problem. The first shows the
Ricci curvature remains positive, the second, shows the eigenvalues of the Ricci
tensor at each point approach each other, and the third shows the gradient of
the scalar curvature R goes to zero, so that we can compare the curvature at
distant points. All three of these estimates are consequences of the maximum
principle for parabolic equations. Once these estimates are established, we can
control all the higher derivatives by some straightforward interpolation in-
equalities.

We would like to express our gratitude to the Harwood Foundation for a
generous grant for the research in this paper, and to Professor O'Donnell for
many inspirational remarks.

2. Notations and conventions

We will use the old-fashioned index notation for tensors, since it is well-
adapted to the intense computations we must perform. We denote vectors as
υ\ covectors as vj9 and mixed tensors as Tk

iJ

lm etc. The summation convention
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will always hold. The Riemannian metric is giJ9 its inverse is glJ\ and the

induced measure is dμ = μ(x)dx where μ(x) = ^detg". The Levi-Civita con-

nection is given by the Christόffel symbols

ij~2g \dxigjk dx^gik dxkgiJ

and the Riemannian curvature tensor is

κijk ~ ~^ιJk ί Λ ' * j k j p

We lower the index to the middle position, so that

Then Rijkl is anti-symmetric in the pairs /, j and k, I and symmetric in their
interchange, and satisfies a Bianchi identity on the cyclic permutation of any
three. For the sphere we have

R(u, υ9 u, υ) = Rijklu
iυJukvi > 0,

which is the opposite of the usual convention, but more symmetric. The Ricci
curvature is the contraction

and on the sphere we have

R(u,u) = RiJu
iuJ>09

which agrees with the usual convention. The scalar curvature R — gιjRij. We
denote the covariant derivative of a vector vJ by

dx1 ιk

and this definition extends uniquely to tensors so as to preserve the product
rule and contractions. For the interchange of two covariant derivatives we have

and similar formulas for more complicated tensors. To see how to convert from
the old coordinate notation to the new coordinate-free notation the reader
should consider the formulas

for a vector υ\ v — dd/dx*,
for a covector L: L — Ltdx\
for a pairing: L(v) = Ltv\
for a tensor: T(d/dxJ\ d/dxk) = Tββx\
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for a covariant derivative:

For any tensor T such as 7̂ 4 we define its length | T}k | by

and we define its Laplacian ΔΓ by

the trace of the second iterated covariant derivative. We hope these remarks
will aid the reader in following the paper.

3. The evolution equation

We consider the evolution equation on Xn

o 9

(**) a7&y = n^u ~ 2Ru>

where r = / R dμ/fdμ is the average scalar curvature. The factor r serves to
normalize the equation so that the volume is constant. To see this we observe
that if dμ = μ(x)dx is the measure then μ = ^det g/y and

k " R

±fdμ=f(r-R)dμ = O.

Now it is awkward to have the normalizing factor present until we really
need it. Therefore we will deal first with the unnormalized evolution equation

which is easier to handle. The two equations differ only by a change of scale in
space and a change of parametrization in time. To see this we let /, g/y, RiJ9 R,
r denote the variables for the unnormalized equation (*) and f, giJ9 RiJ9 R9 f the
corresponding variables for the normalized equation. To make the conversion
from (*) to (**), we first choose the normalization factor ψ = ψ(ί) so that if
gij — Ψgij ώen jdμ — 1, so that the new manifold has measure 1. Then we
choose a new time scale t = j\p(t) dt. It is easy to see that
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and fdβ — 1 so Jdμ = ψ"w / 2 . Arguing as before we have (d/dt)logμ = -R

and so

jtlog fdμ=-r, |

Then it follows that

3 - 3 , / d. A 2..
"'

It is worth noting that for a sphere S" the normalized equation is constant,
while the unnormalized equation shrinks to a point in a finite time.

4. Solution for a short time

Consider the evolution equation dg^/dt — E(gtJ) where E is the second
order nonlinear partial differential operator E{gtj) — -2Rtj. The linearization
of this equatioin is dg^/dt = Z>£(g/y.)gf.y where DE is the derivative of E and
gij is the variation in gιy. We must compute DE, but all we need is its symbol.
This is obtained by taking the highest order derivatives and replacing d/dx* by
the Fourier transform variable £.

The variation gtj in the metric produces a variation Γh

k in the connection,
and this produces a variation Rh

ijk in the curvature. Working in normal
coordinates where Γ^ = 0 at a point and using the formulas in §2, we see that

Now an interchange of two covariant derivatives produces a lower order term.
Also the Ricci curvature is given by RJk = R\jk. Then it is easy to compute

where the dots denote lower order terms. The symbol of the linear differential
operator DE(gJk) in the direction ζi is

oDE(gjk)(^)gjk = g^ξ^gj, - MkghJ - ζhζjgik + ζjζkgM).

To see what the symbol does, we can always choose coordinates at a point so
that gjk = 8Jk = (lifj = k,0 otherwise), and without loss of generality since
the function is homogeneous we may assume ζi has length 1, and rotate so
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?, = 1 and ?, = 0 for / Φ 1. Then the effect of σDE on a tensor TJk is

[aDE(g)(ξ)T]Jk = TJk ifj Φ\,kΦ\,

[aDE(g)(ξ)T]lk = 0 iίk¥Ί,

[aDE(g)(ξ)T]u = T22 + Γ33 + +Tnn.

The presence of the zero eigenvalues shows that the equation is not strictly
parabolic. There is actually a good reason for the presence of these zero
eigenvalues. The first way to see it is to consider the steady state equation
Rjj — 0. If the evolution equation were parabolic, the steady state equation
would be elliptic, and its solution space would be finite dimensional. But the
solutions of R^ — 0 (when they exist) are invariant under the full diffeomor-
phism group, which is infinite dimensional.

The second way is to recall the second contracted Bianchi identity, which
tells us

For any tensor Tjlc we define the linear operator L{ghi\ depending on the
metric ghi and its connection, by

Note that L has degree 1 in ghi and degree 1 in TJk. If E(gjk) = -2Rjk then

Taking first variations, we see that

L(gJk)DE(gjk)gJk + DL(gjk){E(gjk), gjk] = 0.

Now the operator in gjk given by DL is only of degree 1, so its symbol of
degree 3 is zero, and 3 is the degree of the other term L o DE, because L has
degree 1 and DE has degree 2. Therefore

and the image of σDE(gjk) must lie in the null space of oL{gjk). This symbol

is

Normalizing gjk and f, as before we have

[oL(g)(ξ)T]k=Tlk iίkΦί,

=l(Tu - T22-T33 Tnn).
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The null space of σL(g)(ξ) consists of all those symmetric tensors Tjk with
T\\ = ^22 + Γ33 + * * * + Tnn a n d T\2 = TΏ = ' ' ' = T\n = ° l t i s c l e a Γ t h a t

σDE(g)(ξ) lies in this space. We can also see the following result.
4.1 Lemma. The symbol σDE(g)(ξ) acts as multiplication by \ξ\2 on the null

space of the symbol σL(g)(ξ).
This shows that there are no degeneracies other than those implied by the

second contracted Bianchi identity. The following theorem is then an im-
mediate consequence of the general result in the next section.

4.2 Theorem. The evolution equation dg^/dt = -2 RtJ has a solution for a
short time on any compact Riemannian manifold with any initial metric at t — 0.

5. Evolution equations with an integrability condition

We shall consider evolution equations

where E(f) is a nonlinear differential operator of degree 2 in/. We suppose/
belongs to an open set U in a vector bundle F over a compact manifold X, and
E{ f) takes its values in F also. Then E is a smooth map

E: e°°( x, u) c e°°( x, F) -> e°°(χ, ,F)
of an open set in a Frechet space to itself. In studying the evolution equation it
is important to consider its linearization. Letting / denote a variation in /, we
get

If =**(/)/.
where the derivative DE(f)f is a linear differential operator in/of degree 2.
We say E is parabolic if its linearization is parabolic around any/. This can be
expressed in terms of the symbol σDE(f)(ξ), which is obtained by replacing
each derivative d/dxJ by ξj in the highest order terms. (For simplicity we omit
the factor i = ^ T . ) If in local coordinates

then the symbol of DE(f) is

The symbol is an automorphism of the vector bundle F to itself. Then DE(f)
is parabolic if all the eigenvalues of σDE(f)(ξ) have strictly positive real parts
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when ξ φ 0. In this case it is well known that the evolution equation df/dt —
E(f) has a unique smooth solution for the initial value problem/ = /0 at t — 0
for at least a short time interval 0 < t < ε (where ε may depend on/0).

We shall consider problems where some of the eigenvalues of σDE(f)(ξ) are
zero. This happens when E(f) satisfies an integrability condition. Let g =
L(f)h be a differential operator of degree 1 on sections/ G ί / C F and h E F
with values g in another vector bundle G over X, such that the operator
Q(f) = L(f)E(f) only has degree at most 1 in/. We call L(f) the integra-
bility condition for E(f). Taking a variation/in/we see that

L(f)DE(f)f+ DL(f){E(f)9 f) = DQ(f)f.

Now the operators DL(f){E(f)9 /} and DQ(f)f only have degree 1 in/, and
hence the operator L(f)DE(f)f also has degree 1 only. Therefore taking the
symbols, σL(/)(£) σDE(f)(ξ) = 0. From this we see that

lmσDE(f)(ξ) CNullσL(/)(£).

If L is not trivial then σDE(f)(ξ) must have a null eigenspace. The most we
can hope is that the restriction of σDE(f)(ζ) to Null σL(/)(£) is positive. We
shall prove the following result.

5.1 Theorem. Let df/dt = E(f) be an evolution equation with integrability
condition L(f). Suppose that

(A) L(f)E(f) = Q(f) has degree \9

(B) all the eigenvalues of the eigenspaces ofoDE(f){ξ) in Null σL(/)(£) have
strictly positive real parts.

Then the initial value problem f = foatt = O has a unique smooth solution for
a short time 0 < t ^ ε where ε may depend on f0.

Proof. We shall use the Nash-Moser inverse function theorem (see [5] for a
complete exposition by the author). We shall show that if df/dt — E(f) = his
a solution of the evolution equation on 0 < t ^ 1, with/ = /0 at t = 0, then for
any /0 near /0 and h near h there exists a unique solution of the equation
df/dt - E(f) = h over the interval 0 < t < 1 with/ = /0 at / = 0. To see that
this implies the theorem, choose / to be any function whose formal Taylor
series at t = 0 is what it must be to solve df/dt = E(f) with / = /0 at t = 0,
and let h = df/dt — £ ( / ) . Then the formal Taylor series of h at t - 0 is
identically zero. By translating ha. little, we can find h arbitrarily close to /Γand
vanishing for a short time 0 < / < ε. Then the solution of df/dt — E{f) — h
with/ = /0 at / = 0 solves the equation up to time ε.

We can apply the Nash-Moser inverse function theorem to the operator

&:e°°{xχ [0,1], F) ^e°°{χχ [0,1],F) xe°°(x9F)9

&(f ) = (df/dt-
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Its derivative is the operator

DS(f)f= (df/dt - DE(f)f9 f\ {t = 0}).

We must show that the linearized equation df/dt — DE(f)f= h has a unique
solution for the initial value problem f = f0 at t — 0, and verify that the
solution/is a smooth tame function of h and/).

We make the substitution g = L(f)f. Then g will satisfy the evolution
equation

dί KJ ' dt

However df/dt = DE(f)f+ h. Moreover differentiating the integrability con-
dition Uf)E(f) = Q(f) we get

L(f)DE(f)f+ DL(f){E(f), /} = DQ(f)f.

Then we get the equation

where ίc = L(f)h and

M(f)f= DL{f)[f, U} - DL(f){E(f), /} + DQUYf

is a linear differential operator in / of degree 1 whose coefficients depend
smoothly on / and its derivatives (possibly of degree 3 in space, or 1 in space
and 1 in time).

If we choose a measure on X and inner products on the vector bundles F
and G, we can form a differential operator L*(f)g = h, of degree 1 in/and g,
which is the adjoint of L(f). Let us write

P(f) = DE(f) + L*(f)L(f).

We claim that the equation df/dt = P(f)f is parabolic. To see this, we must
examine the symbol

σP(f)(ξ) - σDE(f)(ζ) + cL*(f)(ξ) • σL(f)(ξ).

Suppose v is an eigenvector in F with eigenvalue λ. Then σP(f)(ξ)v = λv. But

σL(f)(ξ) • σL*(f)(ξ) • oL(f)(ξ)v = λoL(f)(ξ)υ.

It follows that

I σL (/)($) σL(f)(ξ)υ \2 = λ\ oL(f)(ξ)v \\
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Now if σL*(/)(£) σL(f)(ξ)v = 0 then σL(f)(ξ)v = 0, and otherwise λ is
real and strictly positive. When σL(f)(ξ)v = 0 then σDE(f)(ξ)v = λt>, and λ
has strictly positive real part by our hypothesis (B). Thus P(f) is parabolic.

We proceed to solve the system of equations

for the unknown functions / and g for given h and k and given /, with initial
data/ = /o and g = g0 = L(/o)/o at* = 0.

It follows from the theorem in the next section that the solution (/, g) exists
and is unique, and is a smooth tame function of (/, A, £, f0, g0). Then putting
ϊ—g — L(/)/we see that /satisfies the evolution equation

and / = 0 at / = 0. But then the obvious integral inequality

proves that / = 0. Then it follows that df/dt - DE(f)f= A. This completes
the proof of the theorem, except for the result of the following section.

6. Weakly parabolic linear systems

Let X be a compact manifold and let F and G be vector bundles over X. We
consider a system of linear evolution equations on 0 < / < T for sections/of F
and g of G

where P, L, M and N are linear differential operators involving only space
derivatives whose coefficients are smooth functions of both space and time. We
assume P has degree 2, L and M have degree 1, and N has degree 0.

6. Theorem. Suppose the equation df/dt = Pf is parabolic. Then for any
given (/0, g0, A, k) there exists a unique smooth solution (/, g) of the system
withf = f0 andg = goatt = O.

Proof. We can use the equation to solve formally for the Taylor series of /
and g at t — 0. Choose functions / and g with the given Taylor series, and
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subtract them off from/and g. This reduces us to the case where/, g, h,k are
all known to vanish for t < 0. We can then use the following regularization
device.

We introduce a time lag δ > 0 into the second equation, so that

^-) =(Mf+Ng + h)t.
ot I t+δ

The resulting system clearly has a unique smooth solution on 0 < t < T, for we
can alternatively use the first and second equations separately to advance the
solution on intervals of length δ > 0. In the sequel we shall derive a priori
estimates for the solutions / and g of the evolutionary system. These estimates
also clearly hold for the delayed system and are independent of δ -> 0. We
leave the necessary modification to the reader. Then by passing to a convergent
subsequence we get a solution for δ = 0.

We turn to the a priori estimates. We introduce the following norms. For a
section of F (or G) over X we let \f\n measure the L2 norm of / and its
derivatives up to degree n. For a time-dependent section /over X X [0, Γ] with
/ = {/,: 0 < t < T} we put

so that \f\n measures space derivatives of degree < n only. Then we put

12= Σ 11(3/307 II n-27 .

which is a weighted norm counting one time derivative equal to two space
derivatives. (We caution the reader that this weighted grading is not tamely
equivalent to the usual one.) The differential operators P, L, M, TV are all
sections of some appropriate bundles over X, which could be interpreted in
terms of jet bundles. We measure P, L, M, N in terms of norms | [L] \n where
[L]n measures the supremum of L and its space derivatives up to degree n, and
I [ ] \n is the corresponding norm counting one time derivative equal to two
space derivatives as before. (Note that the gradings || || n and | [ ] \n are tamely
equivalent. Also from a point of view of tamely equivalent gradings it does not
really matter that for odd n our grading \\ \\n has missed \ of a time derivative,
compared to the usual one for parabolic equations. This allows us to avoid the
nuisance of discussing fractional derivatives.)

6.2 Theorem. Let the solution (f,g)of the system of evolution equations be
written as a function

(f9g) = S(P9L9M9N9h9k9f0,g0)
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of the coefficients P, L, ΛΓ, N, the data Λ, k and the initial values /0, g 0. In the
open set where P is parabolic the solution S is a smooth tame map in the gradings
II || n onf, g, Λ, k and | |π onf0 andg0 and\[] \n on P, L, Λf, N.

We shall prove these theorems by a sequence of lemmas.

6.3 Lemma. Ifdf/dt - Pf= honO^t^ Tandf= 0 at t = 0 then we can
find a constant C independent ofθ such that for 0 < θ < T

f\ft\\dt^cf\h,\ldt.
Jo Jo

Proof. When θ — T this is a standard result for parabolic equations (see
[4]). To see that C is independent of θ for 0 < θ < T we use the following
device. We extend P to be parabolic on the interval -T < t < T. Note that we
may assume all the derivatives of / vanish at / = 0 also, for the set of such
functions is dense in those with/0 = 0 in the norm 11 || 2. Then we may extend/
smoothly to be zero for -T < t < 0. Now we consider translations by T — θ of
the original equation. ThenP and / o n -T + θ < t < θ correspond to their
translates on 0 < t < T. Since the estimate above is coercive for P, it follows
by the usual argument that the same constant C works for all operators in a
neighborhood of P. Hence we can make one constant C work for any compact
set of parabolic operators P. But the set of translates is compact, so the lemma
follows.

6.4 Corollary. // df/dt - Pf= h on 0 < t < T and / = f0 at t = 0 then we
can find a constant C independent ofθ such that for 0 < θ < T

f \ f t \ 2 f \ t \ l
Jo Jo

Proof. The norm \fQ\x is equivalent to the quotient norm inf{|| /1 | 2: / = fQ

at t = 0}. It suffices to check this in local coordinates, where we can use the
Fourier transform. Given fo(x) on t = 0, we define the extension f(x, t) by
letting

where ψ(τ) is a smooth function of compact support with / ψ(τ) dτ = 1. Then

/ extends/0 and if θ = τ/(l + | ξ | 2)
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Conversely given on t> 0 with / = /0 at / = 0, we can first extend / to / < 0
without increasing | | / | | 2 by more than a factor. Then using the Fourier
transform, since

we have

2,», - ' 1 / 2

= sup

\τ\)2\f(t,τ)\2dξd

-dζdr

Now the first integral is bounded by 11/II2, and the second is bounded by a
constant, since

( | | | ) +|9|)2

Thus |/o | i^CΊI/ | l2, proving our assertion.
We can combine the extension operators in local coordinates to produce a

linear extension operator e°°(JΓ, F) -> e°°(X X [0, Γ], F) such that if/* is the
extension of /0 then /* = ^ at / = 0 and ll/*ll2 ^ ^|/oli Now given /
satisfying df/dt — Pf= h and / = /0 at / = 0, let /* be the extension of /0

constructed above and let df*/dt - Pf* = h*. If / = / * + / and A = h* + A
then Θ//3/ - Pf - A, and / = 0 at / = 0. We can then estimate / using the
previous lemma, so
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Combining these estimates the result follows.
6.5Lemma. //3g/3/ = k, thenforO<Θ

Proof. Since

gθ = go + ί ktdt
Jo

and every norm is convex, we have

But we also have

Therefore the above estimate holds with a constant C independent of θ for
0 < θ ̂  Γ.

Note that if there is a delay 8 in time, so that (3g/3O*+δ ~ /̂» a n d if g and
A: vanish for t < 0, then g also vanishes for / < δ, and we have a better estimate

f \t\xJt=0

for 0 ̂  θ ̂  T - δ.
Now we assume / and g are solutions of the system of evolution equations

df/dt = P/+ Lg + A and 3g/3ί = M/+ iVg + Λ with / = /0 and g = g0 at
/ = 0. To simplify the following formulas we let

£=iΛ|o + ι n + ι/oii + ι«oii-
6.6 Lemma. We have estimates for 0 < θ < T

Proof. We apply our two previous estimates, replacing h by Lg Λ- h and k
by Mf+Ng + k. Then

and the result follows directly.
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6.7 Corollary. A solution of the system of evolution equations satisfies the a
priori estimate

Proof. By the above estimates we have

Then for any λ > 0 we have

λΓ e-χθ\gθ\
2

xdθ^cΓ [Γ \e^-
JΘ=O Jt=o\Je=t

+ cf Γ λe-λθdθ)E\

and since the bracketed integrals are < 1, we have

(λ-C)Γ e-λ<\gί\
2

xdt<CE2

Jt=o

with a constant C independent of λ. When λ > C we get | g \2 < CE2. Then
| / | H C ^ 2 a l s o .

Note that if there is a time delay δ, so that

then we get a better estimate

and since

the same argument yields the same estimate with a constant independent of δ
as δ -> 0.

Next we show the same low-norm a priori estimate holds uniformly in a
neighborhood of a given system. Fix operators P, L, M, N and consider all
operators P, L, M, TV in a neighborhood

[P - P ]0 + [L - L]o +[M- M]x + [N- N]x < 8.

If P is parabolic, and δ > 0 is small enough, then so is P.
6.8 Lemma. If δ > 0 is small enough then for all systems P, L, M, N in the

given neighborhood the a priori estimate

l/l2 + U I . < c ( l * l o + |fc|o + l/ol1 + Uol.)
holds with a fixed constant C.
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Proof. If / and g solve the system of evolution equations for P, L, M, N,
then

U - Pf+ Lg + (P - P )/ + (L - L)g + A,

= jJ7y + jv g + ( M M ) / + (iV - AT)g + k.

Applying the estimate for the fixed system P, L, M, iV we get

I/I2 + I *li < C(\ (P - P)f+ (L - L)g + h | 0

I / I 2 + | g | i < C « ( | / | 2 + \ g \ x ) + C ( | A | o + \ k \ λ + I / o h +

When δ > 0 is sufficiently small, the estimate follows.
We can now estimate higher space derivatives in the usual way by differ-

entiating through the equation. Choose connections in the vector bundles F
and G and let dvf denote the covariant derivative of the section / in the
direction of a vector field υ. There is then a natural way to define the covariant
derivative of the linear differential operators so that (for example)

Note that dvL will be a differential operator of the same degree as L, formed
by allowing the derivatives to fall on the coefficients. We will let Σv denote the
sum over a finite number of vector fields which span the tangent space at each
point of X.

6.9 Lemma. For all solutions of all systems in the ̂ -neighborhood given before
we have a priori estimates for all n> 0 of the form

I/U2 + I S U < C(\h\n + \k\n+ι + 1/oU, + | g o U , )

+ C([P]n + [L]n + [M]n+X + [N]n+X) X ( | A | 0 + | * | , + | / o | , + l ί o l i ) -

Proof. This holds for n = 0. We proceed by induction. Suppose the esti-

mate above holds up to some n. Differentiating through the equation, we have

ytdvg = MdJ+ Ndvg + (doM)f + (9oN)g + dυk.

For simplicity we write

An=\f\n+2+\g\n+\>
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in terms of which the induction hypothesis is An < C(En + BnE0), and Bo< 8

^ C. Applying the induction hypothesis to the derived equation, we have

NowΛl0 < CE0 and 4̂Π < C(isπ + BnE0). Moreover by interpolation we have

and hence

4,-H = |/ | B + 3 + I g U + 2 < Σ I \f\n + 2 + I 9Kg U .

which completes the induction.

Finally we can estimate time derivatives also simply by using the equations.

We get the following result for the weighted gradings 11 \\n and | [ ] \n defined

earlier, in which one time derivative counts for two space derivatives.

6.10 Lemma. For all solutions of all systems in the δ-neighborhood given

before we have a priori estimates for alln>0 of the form

+ u\\n+ι + |/0 |π + 1 + | g o | π + I )

Proof. We must estimate the terms

for 2j ^ n. We can do this forj — 0 as before. We proceed by induction ony.

Suppose we have estimates up to some value of j . Then for they' + 1 terms we

have

I (9/9Oy+1/U-2y -I (9/9')V/+ Lg + h) \H_2J,

I ( 3 / 3 ί ) y + I ί I--27-1 = | ( a / 3 ί ) y ( M / + Ng + k) \H_2J_U

and by interpolation we need only consider the extreme cases where all the

derivatives in both space and time fall entirely on P, L, Λf, N or entirely on

/, g, A, k.
For the first terms we get

I (d/dt)Jf\n_2j+2 + I [P] | J / | 2 + I ( 3 / 3 ί ) ; g | n - 2 , + 1 + I [L] U g | , + HAIL
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and for the second terms we get

n-2j-\

which is even better than we need. The above can be bounded by terms

+ (I [P] I + \[L]\n+\ [M] \n+ι + I [N] U X I / I 2 + | g | i )

We apply the induction hypothesis to the first part and our previous estimate
to | / | 2 + I g |i This proves the lemma.

If the second equation contains a delay 8 in time, we can still differentiate
through the equation with respect to space or time, and the derived equation
has the same form with the same delay. Hence the estimates in Lemmas 6.9
and 6.10 still hold with a constant C independent of δ as 8 -» 0. To prove
existence for a single equation we do not have to keep track of how the
constant depends on the coefficients P, L, M, N.

Now the last lemma clearly is a tame estimate on the solution map

in the weighted gradings. It follows that S is continuous, since the spaces
β°°(X, F) and the others are all Montel spaces. Then it also follows that all the
derivatives of S are tame also, by the formula for the derivative of an inverse.

7. Evolution of the curvature

The evolution equation 9go/3ί = -IR^ for the metric implies a heat
equation for the Riemannian curvature Rijkl which we now derive. This
equation will be the basis for all our a priori estimates on the evolution of the
curvature. Recall we define

Various second order derivatives of the curvature tensor are likely to differ by

terms quadratic in the curvature tensor. To this end we introduce the tensors

BiJkl = g"g«RpiqJRrkgl.

Note we have the obvious symmetries

Bijki — Bjiik ~ BkHj

but the other symmetries of the curvature tensor RiJkι may fail to hold for
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7.1 Theorem. The curvature tensor satisfies the evolution equation

~faRUki = ΔRijkl + 2(BiJkl - Bijlk - Biljk + Bikjl)

~8Pq{RpjklRqi + RipklRqj + RijplRqk + RijkpRql)'

Proof. Letting a prime denote differentiation with respect to time t, we see

by considering the formulas for Tjk and RiJkl in normal coordinates that for

any evolution of a metric gzy we have

R'ijki ~ ShkRΊji + ShkRhiji

Combining these results and the identity

¥,g*/ - *Mu = spq{Rijkpg'q, + R,jipg'qk),

we get the identity

which holds for any evolution of a metric. In our case g'tj = -2RiJ9 and

substituting this gives

Then Theorem 7.1 is an immediate consequence of the following identity,

which is independent of any evolution equation.

7.2 Lemma. For any metric g/y the curvature tensor Rijk\ satisfies the identity

ΔRijki + 2\Bijkι — Bijlk — Biljk + Bikjl)

Proof. This formula is obtained from the second Bianchi identity

*iRjklm + *jRkilm + hRiβm = 0

by differentiating, exchanging derivatives, permuting indices and contracting.

To begin we have
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by differentiating the second Bianchi identity and contracting. We examine the
first term, since the second is symmetric in i and j . Interchanging the order of
derivatives we have

— gPqgmn{RpiqmRnjkl + RpijmRqnkι + B

pikmRqjnl + RpilmRqjkn)'

The first of these terms contracts to gpqRpjklRqi. On the second term we can
use the first Bianchi identity to write it in terms of the tensor Bijkl\ thus

gP^nRpijmRqnkl = -Bijkl + BiJlk9

and the last two terms are -BikjΊ + Biljk. Moreover we have the contracted
second Bianchi identity

to which we apply the derivative 9,. Then

~~ {Bijkl ~~ Bijlk ~ Biljk + Bikjl)

+g"RpJkiRqi.

Replacing this in our formula for ΔRijΊcl and doing the same for the term with /
and j interchanged yields the formula in the lemma.

7.3 Corollary. The Ricci curvature satisfies the evolution equation

jtRik = ΔRik + 2g"g«RpiqkRn - 2gpmpiRqk.

Proof. Recall ΔRik = gpqdpdqRik. We use the relation Rik - gjlRijkl to
contract the previous equation. Now

(gjιγ = -gjpg'%q

by the usual formula for the derivative of the inverse of a matrix, and therefore

Substituting for R'iJkl and making the obvious contractions yields

R'lk = ΔRίk + 2gJ'(BIJkl-2BIJIk)

+ 2g"g<"RplqkRr,-2gP<RplRqk.

Then the corollary follows from the following lemma.
7.4 Lemma. For any metric gtj the tensor Bijkl satisfies the identity

gii(Bijkl-2BiJlk) = 0.
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Proof. Using the Bianchi identity

= gJ'gprg"RP9,jRnk,

= gJ'g^g"S(RpiqJ ~ RpJqi)(Rrksl - Rr,sk)

= 2gJ'(BIJkl-BIJIk)

and the result follows.

7.5 Corollary. The scalar curvature R satisfies the evolution equation

γtR = ΔR + 2gijgk%kRβ.

Proof. Again we contract the previous equation. Since R = gikRik we have

Λ' = g X + 2gVVy/.
where the second term comes from (gik)'. Then the equation for R'ik im-
mediately gives gikRr

ik = ΔΛ.
7.6 Corollary. If the scalar curvature R > 0 at t = 0, then it remains so.
Proof. The term gιjgkιRikRjl is just the norm squared of the Ricci curva-

ture, and hence is always positive. The result now follows from the maximum
principle for the heat equation. This simple example is a model for our
subsequent a priori estimates. It also shows why the evolution equation
"prefers" positive curvature.

8. Curvature in dimension three

The Weyl conformal curvature tensor is defined as

= Rijki ~

1

This tensor is known to depend only on the conformal structure, so that if
8ij — Ψfty then Wijkl — ̂ Wijkl. In dimension n > 4 the conformal curvature
tensor vanishes if and only if the metric gf . is conformally flat. In dimension
n — 3 this fails; instead there is a condition on the first derivative of the
curvature, and the conformal curvature tensor always vanishes.

To see that Wijkl = 0 in dimension three, observe first that it has all the

symmetries of the Riemannian curvature tensor RiJkl, so that

Wijki — -Wjikl = -WijΊk = Wjilk — Wkiij9
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and in addition all its traces vanish, so

Thus
W A- W A- W — Π
" l l l l ^ ^ 1 2 1 2 ̂  " 1 3 1 3 ~~ U >

and so

w — w — w — w — w
"1212 "1313 ~~ ̂ 2323 "2121 "l212>

which implies Wλ2χ2 ~ 0. Moreover
^1213 + ^2223 + ^3233 = 0,

and so Wλlu = 0 also. Hence in general any term Wijkl — 0 unless i, j9 k and /
are all distinct. In dimension 3 there are only 3 possible choices for the indices,
and the tensor must vanish identically.

This is just one special case of a general theory about tensors as representa-
tions of the orthogonal group O(n). Any tensor decomposes as a sum of
irreducible tensors, each of which is trace-free and has the maximum possible
symmetry. Tensors with sufficiently exotic symmetries will always vanish in
sufficiently low dimensions. In any case, we have the following result, which is
well known.

8.1 Theorem. In dimension three we have

Rijkl = gikRjl ~ 8ilRjk ~ gjkRil + gjlRik ~ 2R(gikgjl - gilgjk)'

This result implies that we can recover the full Riemannian curvature tensor
Rijki J u s t fr°m the Ricci curvature Rij9 which is much easier to handle. For
example, we can always diagonalize Rtj at a point, so that

λ
0
0

0
μ
0

0
0
V

where λ, μ, v are the eigenvalues. Then the only nonzero components of Rijkl

are those of the form

and those derived from it by permutation. Thus the condition for positive
sectional curvature in three dimensions is that each eigenvalue of the Ricci
tensor is smaller than the sum of the other two.

8.2 Corollary. In dimension three a metric has positive sectional curvature if
and only ifRtj < 2RSij- This shows that the condition of positive Ricci curvature
is much weaker than that of positive sectional curvature.

As a consequence of the formula for RiJkl the evolution equation for the
Ricci curvature Λ/y. takes a particularly simple form in dimension three. To
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simplify the formulas we introduce the following notation. We let

Tin = R)H = RijgJ
kRklg""Rmn,

and we let S and T be the traces

S = g%, T=g'"Tin.

Then in terms of the previous diagonalization

Ru = . S,j =

v2l

R = λ + μ + v, S = λ2 + μ2 + v2, T = λ3 + μ3 + v\

We also introduce the tensor

whose entry in the top corner is

2λ2 - μ2 - v2 - λμ - λv + 2μv9

and whose other entries may be obtained by permuting the eigenvalues. This

tensor may seem somewhat bizarre, but is characterized by the following

property.

8.3 Theorem. The tensor Q.j vanishes identically on any three dimensional

symmetric Riemannian manifold. Any symmetric tensor Ttj which is quadratic in

the Ricci curvature and has this property must be a scalar multiple of Qtj.

Proof. The Ricci curvature on a three dimensional symmetric space either

(a) has all its eigenvalues equal, as for S3, or else (b) has two equal eigenvalues

and the third is zero, as for S2 X Sι. In either case it is easy to check that

Qij — 0. Conversely any tensor of the given type which is quadratic in the

Ricci tensor must be a linear combination of SiJ9 SgiJ9 RRjj, and Λ2g/y . Then

considering the cases (a) and (b) gives enough conditions to show the tensor is

a multiple of Qijm

8.4 Theorem. In dimension three the Ricci tensor satisfies the evolution

equation

Proof. This follows directly from substituting the formula in Theorem 8.1

for the Riemannian curvature into the formula in Corollary 7.3 for the
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evolution of the Ricci curvature. The reader can check for himself that

g P r g * * R p i q k R r s = $ R R l k - 2 S i k + ( S - ± R 2 ) g i k 9

and since gpqRpiRqk = Sik the result holds.

9. Preserving positive Ricci curvature

We shall use the following result, which generalizes the maximum principle

to tensors. We say that a symmetric tensor Mtj > 0 if M^v'v 1 > 0 for all

vectors ιA As usual, AM/y = gpqdpdqMiJ. We let uk be a vector field and we let

gij9 Mtj and Ntj be symmetric tensors on a compact manifold X which may all

depend on time t.

We assume that NtJ = p(MiJ9 gtj) is a polynomial in Mtj formed by contract-

ing products of Mtj with itself using the metric. We require that this poly-

nomial satisfy the condition that whenever vι is a null-eigenvector of Mij9 so

that MfjV' = 0 for all j 9 then we have NtjV
lvj > 0. We prove the following

result.

9.1 T h e o r e m . Suppose that onO<t<T

where NtJ = p(Mij9 g ι y) satisfies the null-eigenvector condition above. If MtJ > 0

at t — 0, then it remains so on 0 < t < T.

Proof. We will show Mtj > 0 o n 0 < / < δ where δ > 0 is small compared

to a constant C depending only on max | Mi} \ . Then repeated application of

this result will cover the entire interval in a finite number of steps. To this end,

we let

MtJ = MtJ + ε(δ + t)glJ,

and we claim MtJ > 0 on 0 < t < δ for every ε > 0. Then letting ε -> 0 will

finish the proof.

If not, there will be a first time θ with 0 < θ < δ where M^ acquires a null

eigenvector v' of unit length at some point x E I . If NtJ = p(MiJ9 g/y), then by

our null-eigenvector condition iV^υV > 0 at (x, θ). Moreover

where the constant C depends only on max(| Mtj \ +1 Mtj |) since /? is a

polynomial. If we keep ε, δ ^ 1, then max | Mtj | depends only on max | Mtj \ .

Therefore

where C depends only on max | M/y | and not on ε or δ.
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We can extend v' to a vector field in a neighborhood of x with djV1 = 0 at x,

with t/ independent of t. Let

f=MijV
iΌJ.

Then/> 0 on 0 < t < θ and aU of X, so df/dt < 0 and dkf= 0 and Δ/> 0 at
(x, 0), where/ = 0. But

W + ε,

and at (JC, θ) where djV* = 0 and Af)y ϋ' = 0,

From the evolution equation

which shows that NiJυfvJ < — ε. Combining this with the previous estimate, we
have ε < Cδε. This gives a contradiction when Cδ < 1.

We will assume now that the evolution equation has a solution on the
interval 0 ^ t < T.

9.2 Corollary. IfRtj >Oatt = O then Rtj >QonO<t<T.
Proof. We apply Theorem 9.1 with uk = 0, Mtj - Ri} and NtJ = -Qu.

When Mtj has a null eigenvalue λ = 0 the corresponding eigenvalue of NtJ is
(μ - vf ^ 0.

To get more precise control on R^ we need the following computation.
9.3 Lemma. IfRΦO, then

. Since 8Λl7/a/ = ΔΛl7 - β l 7 and dR/dt = AR + 2S, we have

tJ \

R )

3 / RtJ \ _ RJARjj - QtJ) - RU(AR + 25)

dt \ )

On the other hand

(Ru\ RΔRn- RUΔR 2 I Ra\
Δ — - = —epqd Rd —^

The lemma follows.
9.4 Theorem. // R > 0 W Λl7 ^ eΛgl7 /or some constant ε > 0 at t = 0,

λ fortΛ conditions continue to hold on 0 < t < T.
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Proof. We saw that R > 0 continues to hold in Corollary 7.6. We apply
Theorem 9.1 with

2SRn
lJ

R 2

It is an immediate consequence of Lemma 9.3 that the equation in Theorem 9.1
is satisfied. Let us consider what happens to NtJ when Mtj acquires a null
eigenvector. The analysis is easy since when Rtj is diagonal so are Mtj and Ntj.
Suppose the null eigenvalue of Mtj occurs in the top position, corresponding to
the eigenvalue λ of RiJm Then λ = ε(λ + μ 4- v). The corresponding entry in
Λ2Λ; 7 is

2ελ(λ + μ + vf - (λ + μ + v)(lλ2 - μ2 - μ2 - λμ - λv + 2μv)

Using the previous identity to eliminate ε, and multiplying out and gathering
terms, this entry becomes

(λ + μ + *)[λ(μ + v) + (μ- vf\ - 2λ(λ2 + μ2 + v2),

which further simplifies to

λ2(μ + v - 2λ) + (μ + v)(μ - vf.

Now if Ru > εRgij then R > 3εR, and if R > 0 then ε < j . But then μ + v -
(1/ε - l)λ ̂  2λ, so μ H- v - 2λ ̂  0. Therefore at any null eigenvector of Mi}

the matrix Ntj is positive. The theorem follows.
It is easy to obtain a bound above on Rijm

9.5 Lemma. IfR^ > 0 then Rtj < Rgir

Proof. Since λ, μ, v > 0 we have λ < λ + μ + v.
The consequence of these estimates is that when RέJ > 0 at t — 0 we have a

uniform bound λ/μ < C on the ratio of any two eigenvalues of Rtj holding as
long as the solution exists. This allows us to control all the curvature R^Just in
terms of the scalar curvature R. The following estimate is also interesting.

9.6 Theorem. // ε#g/y < Λ^ < βR8ij for s o m e constants ε and β with
0<ε<^<β<\att = 0, then both conditions continue to hold onO<t<T.

Proof. Note that if ε = y or β = % then the manifold has constant curva-
ture and the result is trivial, while β = 1 always holds. We apply Theorem 9.1
with

k k %
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It follows immediately from Lemma 9.3 that the equation in Theorem 9.1 is
satisfied. Again we consider what happens to NtJ when Mtj acquires a null
eigenvector in the top position where Rtj has eigenvalue λ. In this case
χ = β(\ + μ + ,,). The top entry in R2NU is

(λ + μ + v)(2λ2 - μ2 - v2 - λμ - λv + 2μv)

+ 2λ(λ2 + μ2 + v2) - 2βλ(λ + μ + vf.

Eliminating β with the above identity and gathering terms, this reduces to

λ2(2λ - μ - v) - (μ + v)(μ - vf

which we can rearrange as

which is clearly positive if λ > μ > v ^ 0. To handle the possibility that λ is
not the largest eigenvalue we use a continuity argument. Let θ be the largest
time on which RiJ*^(β + 8)RgiJ, where δ will be chosen small compared to β
and ε. If we can show RtJ < βRgij up to time 0, then we must have θ = T.
Now since λ = β(λ + μ + v) and β > j we see λ cannot be the smallest
eigenvalue. Assume μ > λ > v. Up to time θ we have μ ^ (β + δ)(λ + μ + v\
and by Theorem 9.4 we have v > ε(λ + μ + *>). Since μ>λ = β(λ + μ + v)
and *> < i(λ + μ + *>) we have μ-v>(β- ^)(λ + μ + ?). If 0 = -j the
manifold has constant curvature, and this case is easy to handle. Assume /? > j .
The entry of NtJ in question by algebraic rearrangement becomes

v2(μ -v)-(μ- λ)[2λ2 + (λ + μ)(μ - „)],

which is at least

times (λ + μ H- Ϊ')2. This expression will be positive if δ is small enough
compared to /? and ε. This completes the proof.

9.7 Corollary. // the sectional curvature is positive at t = 0, then it remains
soonO<t<T.

Proof. We say in Corollary 8.2 that the sectional curvature was positive if
and only if RtJ < iRgij- The same result holds for weakly positive sectional
curvature, taking β — \.
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10. Pinching the eigenvalues

The next estimate shows, after a fashion, that the eigenvalues of the Ricci
tensor approach each other, at least at those points where the scalar curvature
becomes large (for the unnormalized equation). Consider the expression
S — ^R2 quadratic in the eigenvalues

S - jΛ2 = i[(λ - μ)2 + (λ - vf + (μ - v)2}.

Clearly S — ^R2 ^ 0, and vanishes only when λ = μ — v. Thus it measures
how far the eigenvalues diverge from each other. If indeed the manifold is
becoming spherical, we expect S — \R2 to become small, at least compared to
R2 for the unnormalized equation. That is the content of our result. We assume
as usual that our manifold is three dimensional, the initial metric has strictly
positive Ricci curvature, and the (unnormalized) evolution equation has a
solution on 0 < t < T.

10.1 Theorem. We can find a 8 > 0 and a constant C < oo depending only
on the initial metric such that onO < / < Twe have

CR2~δ.

Proof. We take γ = 2 — S with 1 < γ < 2. The following equations follow
from the equations for the evolution of the Ricci curvature and the scalar
curvature.

l R u = *Rυ ~ QΦ lR = AR + 2S

Recall that

S =\R,j p = gikgi%jRkl = λ2 + μ2 + v\

T=gi"gJkg""RiJRklRmn = λ3 + μ3 + Λ

and let

C = {gtkgJ'Q,jRu = i ( * 3 - 5RS + 6Γ)

= (λ3 + μ3 + v3) - (λ2μ + λμ2 + \2v + λv2 + μ2v + μv2) + 3λμt>

as the reader may compute. Note that C is a cubic expression in the eigen-
values which vanishes for any symmetric metric; one can show that this
condition characterizes C up to a multiple.

10.2 Lemma. The expression S satisfies the evolution equation
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Proof. From the evolution equations for g/y and Rtj we have

while we also have

103 Lemma. IfR>0 then for any γ

r. We have

_ 9/ 9/_ Λ I_S_\ — J

S \ _ RΔS - ySΔR _ 2γ ;

Introducing the obvious inner product of two tensors

IT 77 \— QilσJmσknT TJ
\Iijk>Uijk/ 6 6 6 Iijkulmn^

we have

(dιR,dlS)=2(dιRJk,d,R RJk),

and we also have

S\dtR\2=\d,R RJk\
2.

Thus the terms in the evolution equation for S/RΎ which are quadratic in the

first derivatives of the curvature are equal to l/RΎ+2 times

-2R21 d,RJk | 2 + 2yR(diR,diS)- γ ( γ + 1)51 d,R \2

= -21 R9,RJk - d,R • RJk | 2 + 2(γ -

+ ( γ - 2 ) ( γ - l ) S | 9 , J R | 2 ,

and now the result follows directly.
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10.4 Lemma. IfR>0, then for any γ

Proof. We have

= (2 - y)R{-KR + (2 -

) dq(R2-y) = 2(2 - γ)(γ -

γtR
2~y = (2 - γ ) ^ - γ ( Δ Λ + 25),

and the result follows.
10.5 Lemma. /// = S/Ry - $R2~y, then

w/iere P = S2 + i^(C - Γ).
iVoo/. This follows directly from Lemmas 10.3 and 10.4.
Now we must analyze the polynomial P9 which is clearly a symmetric

polynomial of degree 4 in λ, μ, v.
10.6 Lemma.

P = λ2(λ - μ)(λ - ^) + μ2(μ - λ)(μ - v) + *>2(*> - λ)(^ - μ).
Proof. Using our formulas for R, S,T, and C (given just before Lemma

10.2) we can multiply out to get

P = (λ4 + μ4 + v4) - (λ3μ + λμ3 + λ3? + λ*>3 + μ3*> + μ^3)

And if we multiply out the polynomial above we get the same thing. Note that
the polynomial P vanishes for any symmetric metric, since it vanishes when
λ = μ = v ox when λ = μ and v — 0.

10.7 Lemma. IfR > 0 andRtJ > εRgij then P > ε2S(S - \R2).
Proof. Since both sides are homogeneous of degree 4 in λ, μ, v9 it suffices

to check the result on 5 = λ2 + μ2 + v2 = 1. Assume λ > μ > v > 0. Since
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(λ + μ + v)2 ̂  λ2 4- μ2 + v2 = 1, we have v > ε(λ + μ + v)> εby the bound

jRzy >
 ε ^ / 7 Now we can rewrite P as

P = (λ - μ)2[λ2 + (λ + μ)(μ - „)] + ̂ 2(λ - ,)(μ - v),

which makes it clear that

P>λ2(λ-μ)2 + r2(μ-v)\

and since λ ^ ^ ε w e have

On the other hand, since

we see that

and this proves the lemma.

10.8 Lemma. // 8 > 0 is chosen so small that δ < 2ε2, then with γ = 2 - δ
andf = S/Ry - ^R2~y we have

where uk = (2(γ -
Proof. This follows from Lemma 10.5 and our estimate on P.
Now we can finish the proof of Theorem 10.1. Let 8 > 0 be as above and

choose C so that

Ry 3« - ~

at / = 0. Then/ < C at / = 0, and by the maximum principle we have/ < C on
0 < t < T for the same C. Thus we have S - iR2 < CΛ2"δ as desired.

11. The gradient of the scalar curvature

Again we assume our manifold is compact and three dimensional, the initial
metric has strictly positive Ricci curvature, and the unnormalized evolution
equation has a solution on 0 < / < T.
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11.1 Theorem. For every η > 0 we can find a constant C(η) depending only

on η and the initial value of the metric, such that onO < / < Twe have

Proof. We start with the evolution equation for | θ jR | 2 = g^R^R.

11.2 Lemma. The gradient squared of the scalar curvature satisfies the

evolution equation

1 I 3,Λ | 2 = ΔI 3,Λ | 2 - 2 I 3,3,11 | 2 + 4g%RdjS.

|2 =

Proof. We compute

I

ΔI θ,/? | 2 = igVtίΆfl • djR + 21 3,3,1112,

Δ9,/? = 3,ΔΛ + gJkR,jdkR,

and the result follows easily by combining terms.

11.3 Lemma. We have the evolution equation

Proof. We compute

2

dt\ R I R2 R3

while

| 2 \ J?Δ 1 3,lt | 2 - 1 d,R |2Δ/?

|Λ3,3,ll I

Δ μ^ R1

A

£ 3 W ' ' "/•"/ " R3

and the result follows.
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11.4 Lemma. We have evolution equations

where Q = T - $RS - C.
Proof. The first follows from dR/dt = ΔΛ + 25, the second is Lemma

10.2, and the third follows by subtraction.
11.5 Lemma. Q < R(S - ^R2).
Proof. Recall that the polynomial P = S2 + R(C — T)>0 from Lemma

10.5. Then since S < R2 we have

QR < P + QR = S(S ~ iR2) < R2(S - \R2),

and the result follows by dividing by R.
Now since dtR = gJkdjRjk, it is trivial to see that

|8,Λ | 2 <3|a,Λ, Λ | 2 ,

since (a + b + c)2 < 3(a2 + b2 + c2). It is a little surprising that a slightly
better estimate holds.

11.6 Lemma. | dtR |2 < f | d^ |2.
Proof. This is a consequence of the contracted second Bianchi identity,

which says,

It is always a good idea to try writing a tensor as a sum of irreducible
components. Write

where

Then it is easy to compute

On the other hand, we can check that the tensor Fijk = ΰiRjk ~ Eijk is
trace-free, so that
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Indeed that was how we figured out what Eijk should be. It follows that
(Eijk9 Fijk) = 0 and the tensors Eijk and Fijk are perpendicular. Then

and this proves the lemma.
11.7 Lemma. We have the estimate

Proof. This follows from Lemmas 11.4, 11.5, and 11.6.
Now we return to the equation for | djR \2/R in Lemma 11.3. The problem

with this equation is the term g'idjRdjS, which we estimate as follows.
11.8 Lemma. We have

g%RdjS<4R\diRJk\
2.

Proof. We use the Cauchy-Schwartz inequality

g%RdjS = 2<3, tf RJk9 3/ΛyΛ>< 21 3,Λ 11 RJk \ \ d,RJk | ,

and I Rjk |
2 = S < R2 and | fyϋ | 2 < 3 | 3,/^ |2. We take i/T < 2 to avoid a

square root.
11.9 Lemma. We have the estimate for η < j

Proof. We use the equation in Lemma 11.3 and the first equation in
Lemma 11.4, multiplied by η. Since S>\R2 the term 2(S/R2) \ 3Z Λ |2

dominates 2η \ dtR \2 for η < j . W e bound the term g^RdjS by Lemma 11.8.
Now we want to combine Lemmas 11.7 and 11.9. The idea is to add enough

of S - ^R2 to I dtR \2/R to cancel off the term | 3,Rjk |2, and then use Theorem
10.1 to make R(S - | R 2 ) small compared to R3. Note 168 & = 16.

11.10 Lemma. Let F = \ 3zfl \
2/R - ηR2 + 168(5 - ^R2). Then for any η

with 0 < η < y we can find a constant C(η) depending only on η and the initial
value of the metric at t — 0 such that

Proof. Using Lemmas 11.7 and 11.9, the terms which are left are

6Ί2R{S - \R2) -
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Now by Theorem 10.1 we can find a constant C and some δ > 0 depending
only on the initial value of the metric, such that S - ^R2 < CR2~δ. Then with
a constant C(η) depending only on C, δ, and η we have

CR3~δ - lηR3 < C(η)

and the result follows.
It remains only to find a bound on Γ, the time for which the solution exists.

Since S > ^R2 we have

which forces the minimum value of the scalar curvature R to go to infinity in a
finite time.

11.11 Lemma. IfR > pat t — Ofor some constant p > 0 then T ^ 3/(2p).
Proof. The solution of the ordinary differential equation

dt = Ί>f2 w i t h / = P a t ' =

is given by

J 3 - 2pί'

Taking/as a function onXX t constant in I w e have

and the maximum principle implies Λ - / > 0 o n 0 < / < Γ . Since/-» oo as
t -> 3/p, we must have Γ < 3/p.

Now the equation dF/dt < ΔF + C(η) implies max /J < max Fo + C(η)/.
Then our bound on T shows that F < C(η) for some (possibly larger) constant
C(η) depending only on η > 0 and the initial value of the metric (which
determines Fo). This gives

F = I ̂ Λ | 2 / ^ - yR2 + 168(S - ii^2) < C(η),

and of course

ηR3 + C(η)R < 2ηR3

for some constant C(η). Since η > 0 is arbitrary, this proves the result.
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12. Interpolation inequalities for tensors

Let T— {Tj...k} denote a tensor covariant in any number of indices. We

adopt the extended summation convention that if a pair of indices is repeated

on the bottom, we should sum over that index in an orthonormal basis with

respect to the metric g/y. We let dT — {3,7}...jj be the covariant derivative

with respect to the Levi-Civita connection Tβ associated to giJ9 and we let

d2T= tdβiTj...k be the second (iterated) covariant derivative. We also let

dμ — μ(x)dx be the volume form associated to the metric. The tensor T = Tjm. .k

has length | T | given by

and I dT\ and \d2T\ are defined analogously. We prove the following interpo-

lation inequality by integration by parts.

12.1 Theorem. Let X be a compact Riemannian manifold of dimension m and

let T = Tj...kbe any tensor on X. Suppose

— h - = — with r > 1.
p q r

Then

Proof. For simplicity we take T — {Tj}9 since the more general case in-

volves nothing extra but is more cumbersome to write. Integrating by parts

f\ dT\2rdμ = fdiTJ 3,7} (3,7) dkT,y

- 2 ( r - l)f(TjdflkTl9 3,-7} - dkTt)\ dT\2r-*dμ.

Now

and therefore

j \ <)T\2rdμ < (2r - 2 + m)f\ T\ \ Θ2T| | 37*|2*~2 dμ.
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We can estimate the last integral using Holder's inequality with

p q r

and we get

j\π\2rdμ

1-1/r

and hence

12.2 Corollary. Ifp > 1 we have

( ,
\f\dT\2'dμ

/. Take q = oo in the previous argument.
Next we need a result on convexity, which is geometrically obvious.
12.3 Lemma. Let f(k) be a real valued function of the integer k for

then

Proof. If we replace /( k) by

the same hypothesis holds. Thus we may assume /(0) = 0 and f(n) = 0. Let
g(k) = 7 W ~ f(k — I) for Kk<n. Then our hypothesis states that g(k) <
g(A: + 1). Choose the integer m so that

For any A:

Σ *(/) = - Σ
ι = l
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When k ̂  m the first representation is negative, and when k > m the second
is. This proves /(/:)< 0 for 0 < k < n9 which is the desired conclusion for

12.4 Corollary. ///(k) satisfies

then

f(k) < (1 - t)/(0) + */(„) + C*(n - k).

Proof. Apply the previous result to g(k) = f(k) + Ck2.
12.5 Corollary. ///(k ) satisfies

f{k)^Cf{k-\)x/2f{k+\)λ/\

then

Proof. Apply the previous result to g(k) =
We let 3 T = {3ίp Θ̂ TJ .. .k) be the «th iterated covariant derivative of the

tensor T.
12.6 Corollary. // T is any tensor and if 1 < i < « — 1 /λe« wiYA α constant

C = C(n, m) depending only on n and m = dim X and independent of the metric
gf or the connection Tfi we have the estimate

f\diT\2n'idμ<Cmax\T\2<n/i-ι'>f\dnT\2dμ.

Proof. Applying the previous estimate to the tensor 3 / - 1 Γ when
2 < iK n - 1 with

2n 2n n Λ

P = TTΪ> « = 7 ^ T ' r = 7 > 1 '

we get

(i+\)/2n( . _ _ _ )d-Ό/2n

where C = 2Λ// — 2 + W depends only on m and n. Or when / = 1 we have
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with C = In - 2 + m. Let

= max|7Ί, /(/)

Then we have

f(i) < Cf(i + lγ/2f(i -

from the previous estimates. Therefore

with a constant C depending only on m. This proves the theorem, since

( r 1 i/2n

χ , , '/'[/|θ"7frfμ}
12.7 Corollary. // T is any tensor then with a constant C = C(n,m) depend-

ing only on n and m = dim X and independent of the metric gtJ and the
connection Tjj we have the estimate for 0 < i < n

\-i/n

Proof. If we apply Theorem 12.1 to the tensor di ιT with p — q — 2 and
r — 1 we get

and the result now follows from Corollary 12.5.

13. Higher derivatives of the curvature

If A and B are two tensors we write A * B for any linear combination of
tensors formed by contraction on Aim. jBk.. .7 using the gik. To avoid confusion
between the Riemannian, Ricci and scalar curvatures we let

*>»={Rijki} andΛc={Λ i y } .

As before dnTis the nth iterated covariant derivative of a tensor T.
We want to derive the evolution equation for the nth covariant derivative

d"Rm of the Riemannian curvature. To that end the following lemma is useful.
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13.1 Lemma. If A and B are tensors satisfying the evolution equation

then the covariant derivative dA satisfies an equation of the form

τ-dA = ΔdA+ Rm*dA+A* dRm + dB.
όt

(In dimension 3 we may substitute Re.)

Proof. The covariant derivative 3 involves the Christόffel symbols Γ^, and

their time derivative is

which may be expressed in terms of dRc since g[j = -2Rtj. Then

όt όt

Now by interchanging derivatives

dΔA = Δ&4 + dRm * A + Rm*dA,

and this completes the proof.

13.2 Theorem. The nth covariant derivative d"Rm of the Riemannian curva-

ture satisfies an evolution equation of the form

γtd
nRm = Δd"Rm

i+j=n

Proof. If n — 0 we know this is true by Theorem 7.1, which gives the

explicit form of the quadratic term. We proceed by induction on n, using the

previous lemma. This gives

^dRm = Δdn+ιRm + Rm * dn+ιRm + d"Rm * dιRm
όt

and the result follows by the distributive rule for 9.

13.3 Corollary. For any n we have an evolution equation
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Proof. This follows from the previous theorem. We have

γt I d"Rm |2 = 2(dnRm9 ^ 3 π Λ m ) + Rm* d"Rm * d"Rm9

where the extra terms come from the variation of the gιj defining the norm | |2.

The usual computation gives

Δ I d"Rm | 2 = 2(dnRm, Δd"Rm)+ 2 \ dn+ιRm | 2,

and the result follows.
13.4 Theorem. We have the estimate

4~ ί I d"Rm I2 dμ + 2 f\ dn+ιRm I2 dμ < Cmax \Rm\f\ d"Rm I2 dμ
atJx Jx x Jx

with a constant C independent of the metric, depending only on the number n of
derivatives and the dimension m of X.

Proof. Since /Δ/rfμ = 0 for any function/, if we integrate the equation in
the previous corollary over I w e only need to estimate the terms

f I VRm 11 djRm 11 d"Rm \ dμJx
Γ r λi/2n{ /• Λj/2n{ r λ 1 / 2

< \ j I θ ^ m | 2 w / / φ ^ \ j \ dJRm\2n/Jdμ[ \ j \ d"Rm\2dμ[

with i +j = «. By our interpolation result of Corollary 12.6 we have

Γ /• Ί i / 2 n ί /• Ί i / 2 n

\ j I θ^m |2"/' JμV < Cmax | Rm \ι~i/n \ j \ d"Rm \2 dμ\ ,

and doing the same for j the theorem follows. Recall the constant in Corollary
12.6 depends only on n and m.

14. Long time existence

Let X be a compact manifold of any dimension and let us be given any
initial metric at t — 0.

14.1 Theorem. The evolution equation

Ttg>J = ~2R'J

has a unique solution on a maximal time interval 0 ^ ί < Γ < o o . / / Γ < o o then

maxjr|Λ j7*/H oo as t-> T.
Proof. Since we already know short time existence and uniqueness by the

Nash-Moser inverse function theorem, we can take the maximum time interval
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0 ^ t < T on which the solution exists. We will show that if T < oo and

1 ̂ ijki\^ C as ί -> Γ, then the metric gtj converges as t -» T to a limit metric

(which is strictly positive-definite), and all the derivatives converge also,

showing the limit metric is smooth. We could then use the short time existence

result to continue the solution past T, showing T is not maximal.

14.2 Lemma. Let gtj be a time-dependent metric on X for 0 < t < T < oo.

Suppose

ί max|g;y | dt< C< oo.

Then the metrics gjj(t)for all different times are equivalent, and they converge as

t -> T uniformly to a positive-definite metric tensor g / y(Γ) which is continuous

and also equivalent.

Proof. Notice the argument is slightly subtle, since we measure the size of

glj with respect to g/y which is changing;

Fix a tangent vector t GΓXata point x E X and let

Then we take

and it follows by Cauchy-Schwartz that

d

Then for 0 < T < θ < T we have

I ft/1

If the improper integral is finite, we see that all the metrics are equivalent.

Moreover | vt | 2 converges uniformly to a continuous function | v |^ as / -* T

and I v \T Φ 0 if v Φ 0. Since the parallelogram law

continues to hold in the limit, the limiting norm comes from an inner product

gij(T)9 using the rule

g(v,w) = \{\v + w\2- \ v - w \ 2 ) .

This completes the proof.
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14.3 Lemma. //1 Rm |< C on 0 < t < T and T < oo, then for any n we can

find a constant Cn with

ί \dnRm\2dμ^Cn.Jx

Proof. This follows directly from Theorem 13.4 and the observation that if
df/dt < Cf on a finite time interval then we can bound / in terms of its initial
data. (Hint: let f=e~Cίf.)

We wish next to derive supremum norm estimates on d"Rm. Since they are
tensors, we use the following trick. First note that from the interpolation
inequality in Corollary 12.6 we immediately get estimates

for all n and p < oo. Now let En = | d"Rm |2. Then for all p < oo we have
estimates

since En and dEn can be expressed in terms of Rm and its covariant derivatives.
But En is just a function, and by Sobolev's inequality if p > n

Of course the constant Ct depends on the metric g / y(0 and hence on time t.
But it does not depend on the derivatives of the giJ9 since it enters the
expression on the right only through | df\2 = gl73,-/3y/ and the measure
dμ — μ(x)dx with μ(x) — ̂ detgtj. The derivative 3f / = df/dx1 is independent
of the connection Γ^. Thus for functions the constant Ct is uniformly bounded
as / -* Γ, since the metrics are all equivalent by Lemma 14.2. Applying this
estimate to En we get the following result.

14.4 Lemma. If\ Rm |< Co on 0 ^ t < TandT< oo then \ d"Rm \< Cnfor
all n. The constant Cn depends only on the initial value of the metric and the
constant Co.

Of course the estimates on Rm — {RiJkl} imply ones on Re = {Λ/7}. Since
dgij/dt = -2RiJ9 it is easy to see that the g ί 7(0 have all their derivatives
bounded, and converge to the limit metric g l7(Γ) in the C00 topology as t -> T.
This completes the proof of Theorem 14.1.
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15. Controlling R^/R^

We return to the case where X is a compact three-manifold and the initial

metric has strictly positive Ricci curvature. The unnormalized evolution equa-

tion dgjj/dt = -2Rij will have a solution on a maximal time interval 0 < t < T.

We know from Lemma 11.11 that T< oo, and then from Theorem 14.1 that

max I Rij | -> oo as / -> T. Since | Rtj \2 = S < R2, we have Rmax -* oo as ί -> Γ,

where Λ m a x is the maximum value of iϊ and Λ ^ will be its minimum value.

We want to estimate R ^ R ^ .

15.1 Theorem. We have R^/R^ -»\ast-*T.
Proof. By Theorem 11.1 we know that for every η > 0 we can find a

constant C(η) with

on 0 ̂  t < T. Since Rmax -> oo as t -> Γ, we can find β with C(η) ^ ί

forθ <t<T. Then | 8fΛ | < T ? 2 ^ 3 ^ for ί ^ θ.

Fix a point x G Z where R assumes its maximum. Then on any geodesic out

of x of length at most s = \/ηRλ^ we have R > (1 — η)Rmax. We claim that

when η > 0 is small enough then this includes all of X. For Rij ^ ε # g 0 for

some ε > 0. It follows that every geodesic from c of length s has a conjugate

point when η is small by the following well-known theorem of Myers, which

the reader will find in Cheeger and Ebin [2, Theorem 1.26(1)].

15.2 Theorem (Myers). If RtJ> (m — l)//g/7 along a geodesic of length at

least πH~1/2 on a manifold of dimension m then the geodesic has conjugate

points.

Thus we can reach every point of X by a geodesic of length at most s, and

hence R^ > (I - η)Rmax. It follows that R^/R^ -> 1 as t -> T.

15.3 Theorem. We have

I Rmaxdt = oo.

Proof. Choose a function f(t) equal to Rmax at / = 0 and solving the

ordinary differential equation

It = 2 Λ ™ « ^

which is possible since Rmax is a continuous function of t. Since S < R2, we

have
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and hence R<f on 0 < t < T by the maximum principle. Since Rmax -> oo as

/ -> Γ, we have/ -> oo also. But

/ m a x )
'o

and hence the integral diverges as / -» Γ.

15.4 Corollary, //> w ίΛe average scalar curvature, then

ί rdt= oo.

Proof. We have tf^ < r < tfmax and Rm3X/R^n - 1 as ί - Γ.

15.5 Theorem. S/R 2 - £ -> 0 αy / -> Γ.

Proof. By Theorem 10.1 we have

and Rmin ~* °° ( s ί n c e Rmax ~~* °° a n ^ Rmax/Rnύn ""*!)•

16. Estimating the normalized equation

Next we consider how to convert our estimates for the unnormalized

equation

—

into estimates on the normalized equation

— " =λr~ -2R

Let (*) have a solution on a maximal interval 0 < t < T and let (**) have a

corresponding solution on (X t < f related by the transformation equations

given in §3.

16.1 Lemma. Rmax/Rmin -* 1 as ί-+ Γ.

Proof. Since we are dilating by a constant, the ratio is unchanged.

16.2 Lemma. RtJ > εRg^for some ε > 0.

Proof. Again both sides stretch equally under dilations.

16.3 Lemma. Rmax < C < oo on 0 < t < f.

Proof. Let the metric gtj have volume V and diameter d. Then V< Cd3,

and since RtJ > εRgjj we have J < CR~^ζ2 by Myer's Theorem 15.2. Thus

F Ϊ 3 ^ < C. But for the normalized equation the volume V — 1. Thus Rnήn < C.

Then Rmax < C also from Lemma 16.1.
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16.4 Lemma, f — oo.
Proof. Since dt/dt = ψ and ψf = r we have

Λ~ = f rdt = oo

by Corollary 15.4. But r < Λmax < C, so we must have f — oo.
16.5 Lemma. S/R2 - j -> 0 as f-» oo.
/V00/. Again this follows from Theorem 15.5 since the expression is

invariant under dilation.
Since we have the relation

S - \R2 = \[{% -μf + (λ-vf+(β-P)2],

it follows that the ratio λ/β of any two eigenvalues of R^ converges to 1 as
t -» oo. Since Rm^/R^n -> 1 as ί -> oo also, it must eventually happen that the
sectional curvature is \ pinched, or indeed as pinched as we like. At this point
it follows from the Sphere Theorem (see Cheeger and Ebin [2, Theorem 6.1])
that the universal cover of X is a sphere. However, we shall only borrow a
lemma.

16.6 Lemma. (Klingenberg). Let X be a simply connected manifold of
dimension 3 or more whose sectional curvature is pinched between K and \K.
Then the injectiυity radius ofXis at least π/ JK.

Proof. See Cheeger and Ebin [2, Theorem 5.10].
We apply this result to the universal cover Y of X. The constant K will be

proportional to R^n- The volume is at least some multiple of the injectivity
radius. Thus we get an estimate R^2 < C Vol(7). But Xhas volume one for
the normalized equation, and then the volume of its universal cover Y is just
the number of elements in the fundamental group of X (which is finite by
Myer's theorem). This gives a proof of the following.

16.7 Lemma. We can find ε > 0 such that Rπήn> ε on 0 < t < oo.

17. Exponential convergence

We start with a principle for converting from the unnormalized to the
normalized evolution equation. Let P and Q be two expressions formed from
the metric and curvature tensors, and let P and Q be the corresponding
expressions for the normalized equation. Since they differ by dilations, they
differ by a power of ψ. We say P has degree n if P = ψ"P. Thus gtj has degree
1, Rtj has degree 0, R has degree - 1 , and S has degree -2.
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17.1 Lemma. Suppose P satisfies

for the unnormalized equation, and P has degree n. Then Q has degree n — 1,

and for the normalized equation

^z = ΔP + Q + \nfP.
dt *

Proof. We see Q has degree n — 1 since dt/dt = ψ and Δ = ψΔ. Then

But from §3 we know dlogψ/dt = | r , so dlog ψ/dt — \f. This prove the

lemma.

Now from §16 we know that the normalized equation (**) has a solution on

0 < t < oo with

0 < ε ^ R^ < Λ m a x < C,

^max/^min-1 and S/Λ2 - i -> 0 as /-^ oo.

We want to show the convergence is exponential.

17.2 Lemma. We can find constants C < oo and δ > 0 such that

Proof. We let / = S/R2 - ^. Note / has degree 0. Then by Lemma 10.5

with γ = 2 we have

-„ -BΛdJ-4P/R3,
θί R" " qJ /

and by Lemma 10.7 we have

P>ε2S(S-

This makes

ut
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with ύq = 2gpqdpR/R and δ = 4ε2/3C since
p

3 > 4ε2Sf/R3 > 4ε2f4P/R3 > 4ε2Sf/R3 > 4ε2f/3R > δf

with S > ^R2 and R < C. But then

Uef)
Ot

and by the maximum principle eδtf< C. Thus f< Ce~δt. Since R is bounded
above and below, this is equivalent to the theorem.

17.3 Corollary. | Rij - ^RgtJ \^ Ce~8'.

Proof. The eigenvalues of the matrix are of the form

while

S - ^R2 = i[(λ - μf + (λ - vf +(μ - vf}.

The estimate follows.
17.4 Lemma. We can find constants C < oo and δ > 0

Proof. This time we let

F = \diR\2/R+ 168(5- ^Λ2).

Then F has degree -2, and from Lemmas 11.7 and 11.9 (with η = 0) we get

—.J < ΔF + 6Ί2R(S - $R2)- \fF,
dt *

since Lemma 17.1 also works for inequalities. Using our estimate from Lemma

17.2

— . F < Δ F + C e - δ Γ - δ F

for some C < oo, δ > 0 and ε > 0, since R < C and r > Rmin > ε > 0. But this

makes

4 ( e > C θ (

and by the maximum principle we have eδ*F - Ct < C. Then F < C(l 4- f)e"δ/,

and since δ > 0 is arbitrary this proves the theorem (by taking a slightly

smaller δ).
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17.5 Corollary. | RtJ - \rgu | < Ce~dΐ.
Proof. This follows from the last two lemmas since

\RU - tttjWRtj ~ ιMj\ +\R-

Using Lemma 14.2, we get the following result.
17.6 Theorem. The metrics gtj{t) are all equivalent, and converge as t -* oo

uniformly to a continuous positive-definite metric g/y(oo).
To estimate higher derivatives we return to Theorem 13.4. Notice that all

three terms have the same degree of homogeneity, and hence the same result
holds for the normalized evolution equation. Since in three dimensions the
Riemannian curvature Rm is entirely determined by the Ricci curvature Re, we
have the estimate

— A I d"Rc|2dβ + 2 ί I dn+ιRc|2dβ < C m a x \Rc\f\ d"Rc\2dβ
at x x xx

and max x | Re \ < C. We introduce the tensor E = {E^} defined by

and observe that d"Rc = d"E for n > 0, since f is constant. Then interpolating
by Corollary 12.7

j \ \ β f

Now for any ε > 0 and all x, y > 0 we have

\dn+xRc\2dβ[ If \E\2dβ\

and applying this above gives

f I d"Rc |2 dβ< Cε ί | dn+ιRc \2 dβ + Cεn f \E\2 dβ.
Jx Jx Jx

Then we get the following result.
17.7 Lemma. For every n we have

ί \d"Rc\2dβ<C
Jx

with a constant depending on n.
Proof. If we choose ε > 0 so small that Cε < 2 we can substitute this in the

previous equation and get

\E\L dμ.
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But we know | E | < Ce~8t for some δ > 0 by Corollary 17.5, and the lemma
follows.

Next we use the interpolation estimate of Corollary 12.6, which immediately

gives the following result.

17.8 Lemma. For every n > 0 and every p < oo we have

f \dn

for some constants C < oo and δ > 0 depending on n and p.

Proof. This follows immediately from Corollary 12.6 since for 1

n- 1

f
J Y

d"Rc\2dβ9
x

and the maximum norm of E decreases exponentially while the L2 norm of

dnRc is bounded.

17.9 Theorem. For every n> Owe have

max \dnRc\<Ce-δ?

x

for some constants C < oo and δ > 0 depending on n.

Proof. We repeat the argument of Lemma 14.4. The function En — \ d"Rc | 2

is exponentially decreasing in Lp norm for all p < oo as are its first derivatives.

Since the metrics g / 7 (0 are all equivalent as t -» oo, we can apply the Sobolev

estimate with a uniform constant to show the supremum norm of En is also

exponentially decreasing.

17.10 Corollary. As t -> oo the metrics g / 7 (0 converge to the limit metric

gij(oo) in the C 0 0 topology. Hence gzy(oo) is smooth, and the curvatures R^t)

converge to the curvature R^ioo).

Proof. This follows directly from the previous result since

17.11 Corollary. The limit metric g/y(oo) has constant positive curvature.

Proof. By Corollary 17.5 the tensor R(J — \fgtj converges uniformly to

zero. This proves Main Theorem 1.1.
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