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ON THE CUSPIDAL SPECTRUM FOR
FINITE VOLUME SYMMETRIC SPACES

HAROLD DONNELLY

1. Introduction

Let K\G/T be a noncompact locally symmetric space of finite volume.
Here G is a semisimple Lie group and Γ is an arithmetic subgroup. Moreover,
K is a maximal compact subgroup.

If Δ is the Laplacian on K\G/T, we consider Δ acting on the cuspidal
functions Llusp(K\ G/T) in the sense of Langlands [14]. Our main result is the
following:

Theorem 1.1. Let N(λ) be the number of linearly independent cuspidal
eigenfunctions with eigenvalue less than λ. Then N(λ) is finite for each fixed
λ > 0 .

Moreover, one has the asymptotic upper bound:

Here d is the dimension ofK\G/T and vol denotes the volume. Also, T(d/2 + 1)
is the ordinary Gamma function.

The fact that N(λ) is finite for fixed λ > 0 was announced by Borel and
Garland [2], [10].

If G — SL(2, R), then Theorem 1.1 has apparently been well known for
some time. It certainly follows from the scattering theory of [15], although the
explicit estimate is not stated there. Several authors [21] have given more
detailed information for particular discrete subgroups Γ of SL(2, R). In the
case Γ = SL(2, Z), equality holds in (1.2) and the limit on the left-hand side
exists [15], [20].

When G is a real rank one, Gangolli and Warner [9] obtained the estimate
N(λ) < Cλn, for some C and n. However, their method did not give a good
estimate of n.
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Theorem 1.1 was proved for real rank one in the author's earlier paper [6].
The arguments given below are a natural development of the approach
initiated in this earlier work. Note that for the present paper, K \ G/T may
have arbitrary rank.

The author thanks the Australian National University for hospitality during
the preparation of this manuscript.

2. Basic facts concerning arithmetic groups

This section summarizes some standard facts concerning semisimple Lie
groups G and arithmetic subgroups Γ. For more details the reader is referred to
[2] and [14].

Let P = MAN be a parabolic subgroup of G. The parabolic subgroups Pθ

belonging to P are in one-one correspondence with subsets θ of the simple
roots Ψ of α, the Lie algebra of A. We may write Pθ = MΘAΘNΘ where Nθ C N,
Aθ C A, and Mθ D M. The Lie algebra of Nθ consists of those positive roots
containing at least one simple root not belonging to θ. We denote Sθ = MΘNΘ

and S = MN.
We denote the simple roots of α by α,, α2, ,<xk. Set Ac = exp{t> E α |

ai(v)> c, for all /}. Here c is a real number and exp: α -> A is the diffeomor-
phism induced by the exponential map.

Suppose that P is a percuspidal parabolic in the sense of Langlands [14]. In
particular, Γ Π P C S and S/T Π S is compact. Moreover, for any parabolic
Pθ belonging to P one has Γ Π Pθ C Sθ, Nθ/T Π Nθ is compact, and Sθ/T Π Sθ

has finite volume. All percuspidal parabolics are conjugate in G.
If P = MAN is any percuspidal parabolic, then set SC(P) = K\MACN/T Π

P, for any real number c. One may choose a finite set Ω of percuspidal
subgroups P so that K\G/T is covered by U p ^ S ^ P ) , for some real
number c,

3. The metric on the cusp

Let P — MAN be a percuspidal parabolic. The manifold with boundary
SC(P) will be referred to as the cusp.

By proper choice of base point, we may assume that K Π P = K Π M, as is
done in [4, p. 246]. We denote K\PC = K\MACN = ZACN, where Z = K\M.
Then K\PC is contained in K \ G and the Killing form of G induces a right
invariant metric onK\ Pc.



FINITE VOLUME SYMMETRIC SPACES 241

For each (z, a) G ZAC, the metric of K\PC restricts to a metric on N. It is
well known [4, p. 246] that this metric has uniformly bounded dependence on
z, so the metric will be denoted by ga. The crucial point is to understand the
dependence of ga upon a. One obtains a flat metric ga, on the Lie algebra n of
N, by identifying n with the tangent space of N at the identity. Since N is a
simply connected nilpotent Lie group, the exponential map exp: n -> N is a
diffeomorphism. Here we mean the group exponential map of N, which does
not depend upon a choice of metric. Pulling back the metric ga by (exp)"1 one
may define a metric haonN.

It will be useful to employ a comparison of the metric ga and ha.
Lemma 3.1. For ε sufficiently small, one has, in a ga ball of radius e about the

identity element, ga> Cλha. Here Cλ is independent of a.
Proof. For a fixed value a0 of a one has, for some ε > 0, ga > Cλha , since

exp is a diffeomorphism with differential the identity map. However, for any a,
zan — zao(b'ιnb)b~\ where b = a~ιa0 G A. Since the Killing metric of K\PC

= ZACN is right invariant, ga = Adbgao and gao = AdbgaQ. Notice that A
normalizes N. The lemma now follows from the commutative diagram:

. exp

n >N

A d , i

n • TV

The metric (dω)2 on K\PC is described very explicitly in [4, p. 247]. In fact,
one may write:

(3.2) (dωf = dz2 + dr2 + 2 e'2β^(dωp(z))2.
β(ΞΦ

Here r = (rx, r2, ,rΛ) are coordinates on ^4C, obtained from the exponential
map of A, exp: a -+ A. In fact, η(x) — at(x), for Λ: G α, where at are the
simple positive roots. Note that exp: α -> ̂ 4 is a diffeomoφhism, which allows
us to identify α with A. We may assume that ̂ 4C is parameterized by η > c, for
all 1 < / < k. The β belong to the set of positive roots Φ of α.

As given by (3.2), ga is the right invariant metric on N which satisfies
ga = 2 e~2β(r\dωβ(z))2 Sit the identity. It is difficult to obtain estimates on ga

directly since the distributions defined by the root spaces, i.e. the dωβ(z) are
not integrable. Thus ga is not a product metric.

However, the metric ha is a product metric, along the root spaces in n, which
agrees with ga at the identity. Of course, ha is not right invariant with respect
to N. Nevertheless, it is easier to estimate geometric quantities in ha. This
explains the utility of Lemma 3.1.
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A key technical lemma is:
Lemma 3.3. Let p(x, y) denote the geodesic distance in the metric (dω)2.

Then one has, for ε sufficiently small, and any x, y9 points in a fundamental
domain for Γ Π N:

where nβ is the dimension of the root space corresponding to β. Here a runs over
all simple positive roots of multiplicity one. The product in β runs over all positive
roots. Moreover, r = r(x), or if desired r — r(y).

Proof. By Lemma 3.1 and formula (3.2), it suffices to obtain the analogous
estimate for the Euclidean product metric ha.

However, if p is the geodesic distance in ha, one has

(3 4 ) Σ ^ Γ

where β are the positive roots of α in n and pβ is a fixed Euclidean metric on
the root space corresponding to β. Thus pβ is independent of r.

A result of Moore [17, p. 155], states that the preimage of Γ Π N under exp:
π -* N is commensurable to a Euclidean lattice in the Lie algebra n. Using this
fact, one obtains Lemma 3.3 after replacing the right sum in (3.4) by an
integral:

< q 2 (*«<-> p*V-* dt)

Φ-a !
x

β<=Φ-a

4. Neumann bracketing

Let φ e L2(A^\G/Γ) be a square integrable function. Suppose that P is a
percuspidal parabolic and Pθ = MeAθNθ is any associated parabolic.

We may define

(4.1) T(P,θ)φ(x)= ί φ(xn)dn
JNΘ/TΠNΘ

ίor x E K\G. Here one has identified φ with a Γ invariant function on K\G.
Notice that the integral in (4.1) is well defined since Nθ/T Π Nθ is compact. If
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T(P,θ)φ = 0 for all (P, 0), then φ is said to be cuspidal. If in addition
Δφ = juφ, for some μ > 0, then φ is a cuspidal eigenfunction and μ belongs to
the cuspidal spectrum.

Choose a finite set P,, P2, — 9Pr of percuspidal parabolics so that the
collection SC(P,), 1 ̂  i < r, covers K\ G/T. A function ψ on Sc(i^ ) is said to
be cuspidal if ^ P , , 0)ψ = 0, for the fixed parabolic Pi and all θ. Denote

Now select a sequence of smooth compact manifolds with boundary Bk C
K\G/T with Bk C ̂ + 1 and UBk = K\G/T. For each i and A:, let Λ^ C
SC(P/) be a smooth manifold with boundary which contains Sc(Pf ) — *π~xBk.
Suppose that A^iV = A^, to guarantee that the cuspidal condition still makes
sense in L2(Xik). Eventually, we will wish to choose Xik so that the volume of
Xik is sufficiently close to the volume of SC(P/) — ^ϊxBk.

Let Δ,-̂  be the Laplacian Δ acting on the cuspidal functions in L2{Xik)
which satisfy Neumann boundary conditions. Denote Nik{\) to be the number
of cuspidal eigenfunctions in L2{Xik) with eigenvalue less than λ. Similarly,
we define Λ^(λ) to be the number of eigenvalues less than λ for the usual
Neumann problem of the compact manifold with boundary Bk. It is not
necessary to impose any cuspidal side condition in Bk.

The principle of modified Neumann bracketing developed in [6] and [15]
now gives:

Proposition 4.2. Let k be a fixed integer and suppose that Δitk has pure point
spectrum for all 1 <i<r.IfN(λ) is the number of linearly independent cuspidal
eigenfunctions on K\G/T with eigenvalue less than λ, then, for any value ofλ:

N(λ)<Nk(λ)+
i=\

A priori, Δ, k might have nonempty essential spectrum so that Proposition
4.1 would not apply. However, we will show presently that Δ, ̂  does indeed
have pure point spectrum for all i and k.

5. Interior parametrix

Let P be a fixed percuspidal parabolic. If Pθ = MΘAΘNΘ is a cuspidal

parabolic associated to P, then denote Tθ = Γ(P, 0), where Γ(P, θ) is the

cuspidal projection given by (4.1). We will normalize Haar measure on Nθ so

that fNβ/rnNθdnθ — 1. Recall that θ is a subset of the positive roots Φ. It is

convenient to set tθ = Tψ_θ.
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The following algebraic lemma is well known [11, p. 12]:
Lemma 5.1. (i) For any ί C Ψ , one has tθ = ΐlaeθ ta. Here the product runs

over simple positive roots contained in the subset θ.
(ϋ) For anyθ C Ψ one has t] = fcθ.
(ϋi) For any two subsets θl9θ2CΨ, the associate projections commute, tθ tθ

Now let X D SC(P) — ir B be a smooth manifold with boundary as chosen
in §4. Recall that X depend upon integer parameters i, k. However, in the next
two sections, both P and B are fixed so we will suppress the dependence upon i
and k. Our eventual goal is to construct the fundamental solution of the heat
equation problem with cuspidal interior conditions and Neumann boundary
conditions on X. In this section, a parametrix satisfying the interior cuspidal
conditions will be obtained. Lemma 5.1 is vital for this purpose.

Suppose E(t9 x, y) is the fundamental solution for the heat equation on the
simply connected space K\G. Then E is smooth on (0, oo) X K\ G X K\ G
and satisfies the estimates [5]:

(5.2)

uniformly for 0 < / < T, any r > 0. Here p(x, y) is the geodesic distance from
x to y in K \ G and d is the dimension of K \ G.

Let P — MAN. Then G = KMAN, and by proper choice of base point one
has K\G = (K Π M\M)AN = ZAΉ. Set Ύ = K\G/T ΠP = ZAN/T Π P.
Then 7 is a complete Riemannian manifold. Moreover, Y contains SCP =
ZACN/T Π P, and therefore Y also contains the manifold with boundary X. In
fact, X is an open set in Y.

Consider the infinite sum:

(5.3) F(t9x,y)= Σ E(t9x,yy).
γGΓΠP

By the results of [5], this sum converges uniformly on compact sets in
(0, oo) X K\ G X K\ G. Moreover, F(t9 x, y) represents the fundamental solu-
tion of the heat equation problem on Y.
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Of course, F(t9 x9 y) must be modified by projection onto the cuspidal
conditions (4.1). Set

F(t,x,y)= Π (l-Uy))F(t,x,y)
(5.4) «e*

= Σ (-ϊftθ(y)F(t,x,y).
ΘCΨ

Here the product runs over all simple roots and the sum runs over subsets θ of
the simple roots. The projectors tθ(y) act on the third argument y of
F(t9 x9 y). It is immediate, from Lemma 5.1, that for all subsets ψ c t , one
has txp(y)F(t9 x9 y) = 0. Thus F satisfies the cuspidal condition (4.1) and is
suitable for an interior parametrix. By symmetry and isometry invariance of
the heat kernel, one also has &^(x)F(t9 x9 y) — 0, for all ψ C Ψ .

It is crucial to estimate the parametrix F(t9 x9 y) as a function of x and >> for
small 0 < t < T, any fixed r. For this purpose, we identify x9 y E Y with points
x, y in the universal cover K\G9 which realize the geodesic distance from x to
y in 7.

Our basic technical estimate is:
Lemma 5.5. For any fixed simple root α, let Fa(t9 x9 y) =

(1 — ta(y))F(t9 x9 y). Suppose that 0 < t ^ T, where τ is fixed. One has the
inequality:

\Fa(t,x,

Xmaxl

X max

uniformly for x, y E SC(P), β«^ gwe/i c. /ίere r tfre /Λe coordinates given by (3.2)
βjzd one W56.S the notation of Lemma 3.3.

/. Let ψ = Ψ — a be the complement of α in Ψ. Then by definition:

>y)= Σ ^ ( ^ »̂ >Ύ) " ί ^ ( ^ xn> y y ) d n -
γGΓΠP JN^/NψnT

Using (5.2), we estimate the term coming from the identity element γ = 1 :

E(t9x,yy)-[ E(t9xn9yy)
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The mean value theorem combined with (5.2) yields

2 Σ
γGΓΠP

Xmin(diam(jc),diam(^)) + θ(rd/2Qxp(-p2(x, y)/4t)).

Here diam(x) is the diameter of N^/N^ Π Γ at x. By formula (3.2), one has
diam(x) = O(e"α ( r )), where r = r(x) are the coordinates on Ac used in (3.2).

It is an elementary lemma that we~w is uniformly bounded for real w>0.
Consequently,

I Fa(t, x, y) |< B3mi

x

For any fixed ε > 0, we employ the estimate of [5, p. 491] to obtain:

I Fa(t, x, y) |< B4r
d

x Σ
γGΓΠP

1

Here Vol"1^) = 1/VO1(JC), and Vol(x) is the volume of N/T Π N at x.
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By formula (3.2), one has VoΓ'ί*) = O(Π^e φ e"/^**))). Here Φ is the
collection of positive roots of α in n. Thus

I Fa(t, x9 y) \<B5Γ
d

-exp
PKX> yyί

_p(χ,yy)<ε

+ max(

If ε is sufficiently small, then referring to (3.2) we see that for γ G Γ Π P
and p(x, yy) < ε, one must have γ 6 Γ Π iV. Therefore Lemma 3.3 applies to
yield:

Xmaxί Π 9
' βeΦ

X max max(σ(r(x)), /)

" 0 = 1

Here σ runs over the simple roots of multiplicity one.
Using Lemma 5.5, it is easy to deduce:
Proposition 5.6. IfF(t, x, y) is the cuspidalparametrix defined by (5.4), then

one has the estimate'.

I F(t9 x, y) \<B7Γ
d/2min min(*"«<**»/V

α e Ψ x,y

Xmaxί Π en>κ™\ Π e^^A - exp(-P

2(*, y)/32t)
' j 8 G Φ )8GΦ /

uniformly for x, y E SC(P), 0 < t < T, /or <z«y g/ϋβn c α«ί/ T > 0.
/. For any simple root α, we have

Moreover, the projections £β(y), defined by (4.1), are L°°-bounded.
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Using the definition (4.1) and Lemma 5.5, one obtains immediately:

I F(t, x, y) | < B6r
d

( Π e"^x», Π e»>Xmax

X max max(σ(r(x)), σ(r(y))) exp(-p2(*,
G Ψ x,y

Here a is arbitrary.
Proposition 5.6 now follows by taking a minimum over a.
The same method gives estimates for the higher order derivatives of

F(t, x, y):
Proposition 5.7. IfF(t, x, y) is the cuspidalparametrix defined by (5.4), then

one has the estimate:

D. min(<r«<' <*»/2, e-«
x,y

Xmaxί Π en*β«*\ Π e"ββ^Aexp(-p2(x, y)/32t).

Proof. First observe that the averaging process (4.1) commutes with co-
variant differentiation, since N acts isometrically. One then follows routinely
through the proof of Proposition 5.6 and Lemma 5.5 by using the higher order
estimates of [5]

6. Boundary corrections

Let Wx be a complete Riemannian manifold without boundary containing a
submanifold W2 with boundary dW2. We assume that Wx and W2 have the
same dimension, i.e. the interior of Wλ is an open set in W2. If Wλ and W2 are
compact, then given a fundamental solution F of the heat equation on Wλ9 the
method of single layer potentials [19, pp. 175-194] allows one to modify F to
obtain a fundamental solution of the heat equation on W2 with Neumann
boundary conditions. If the universal cover of Wλ has bounded geometry, i.e.
the curvature is absolutely bounded and the injectivity radius is bounded
below, and if dW2 is compact, one can employ [5] to generalize the single layer
potential construction given in [19]. However, when dW2 is noncompact,
further hypotheses are required.
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We will use the single layer potential construction to modify F(t, x9 y),

given by (5.4), yielding a fundamental solution to the heat equation problem

with Neumann boundary conditions on dX and cuspidal conditions on the

interior of X. Here X is defined as in §5. Even though dX may be noncompact,

its topology and geometry are precisely known outside a compact set. Thus, no

serious difficulty arises when applying the methods of [19].

The basic estimates are the following:

Proposition 6.1. Let F(t, x9 y) be given by (5.4). Then set

, *, y) = Γds f F(x, u9 s)^Q^\u, y9t-s) du.
Jo Jdx όv

Here, the unit normal derivative d/dv is applied to the argument u of β ( m

One has the estimates, for m > 1:

Xexp(-C2(σ2(x) + σ2(j))//)exp(-C3p
2(x, y)/t)

X min
x,y

Xmaxί

The notation is that of Proposition 5.7. Moreover, σ(x) is the distance from x to

dX.

Proof. The argument proceeds by induction starting from Proposition 5.7.

One uses the method of [19] combined with the precise description of the

metric on X given in (3.2). Since dX is given outside a compact set by ri — c,

for some /, in the coordinates of §3, the details are quite straightforward.

The fundamental solution is obtained as in [19].

Theorem 6.2. Let E(t, x, y) = l™=0(-2)mQ(m)(t, x, y), where Q(m) are

given by Proposition 6.1. Then E is the fundamental solution of the heat equation

with Neumann boundary conditions and cuspidal interior conditions on X.

One has the estimate:

\E(t,x,y)\<C4r'-
x,y

Xmaxί TT ^"ίΛK*)) TT enββ(.ιiy))\eχn|
 CiP (*» -V) \

βεΦ βeΦ
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Here C3 and C4 depend only upon Y = K\G/T Π P. However, C2 and C5 are

dependent upon the submanifold X.

Proof. From §5 and Proposition 6.1, it is clear that E(t, x, y) satisfies the

heat equation and cuspidal interior conditions on X.

To show that E(t, x, y) satisfies Neumann boundary conditions one estab-

lishes the jump relations [19, p. 187] for the Q(m). This is primarily a local

computation, which is undisturbed by the noncompactness of X _

The upper bound for E follows by writing E= Qφ) + (E - Q(0)) and

quoting the estimates of Propositions 5.6 and 6.1.

7. Spectral function on the cusp

In this section we give an asymptotic upper bound for Nx(λ). Here Nx(λ)

denotes the number of eigenvalues less than λ for the Laplacian with cuspidal

interior conditions and Neumann boundary conditions on X, defined as in §6.

We begin with the following elementary lemma [7]:

Lemma 7.1. Let B denote a nonnegative self adjoint operator acting on a

Hilbert space. Suppose that the associated heat operator &xp(-tB) is trace class,

for all t > 0. Then B has pure point spectrum, so we may define NB(λ) as the

number of eigenvalues of B less than λ. //, for some positive integer d,

then

Consider the Laplacian Δ^ acting on L2X with Neumann boundary condi-

tions and cuspidal interior conditions. The associated heat kernel E(t, x, y) for

exp(-ίΔ r) is estimated in Theorem 6.2. One may deduce:

Theorem 7.2. The heat kernel E(t, x, y) defines a trace class operator

exp(-tΔx). Moreover, one has the estimate:

2 dr+ O{

The constant D2 depends only upon Y = K\ G/T Π P. Here r(X) is the set of r

coordinates, as in (3.2), for points in X.

Proof. By the spectral theory of self adjoint operators, E(t, x, y) satisfies

the semigroup property:

(7.3) E(t, x, y) = [E(t, x, z)E(t, z, y) dz

and symmetry E(t, x, y) = E(t, y, x).
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Setting x — y, and integrating we find that

(7.4) / I E(t, χ9 y) \2dxdy = f E(t, x, x) dx.

The key estimate of Theorem 6.2 now gives, for small t > 0:

(7.5) fE(t, x, x) dx ^ D3Γ
d/2 f min (e~a^/2) dr + O(rd'2+λ'2).

JX ^r(X)ot^Ψ

The integral on the right-hand side of (7.5) converges, so E is Hilbert-Schmidt
by (7.4). However, the semigroup property (7.3) now shows that E is trace
class. Then (7.5) gives the required upper bound for Tr(e~'Δ*).

It is convenient to denote 911 (X) = fr(X)minα(Ξψ (e-<*χ))/Z) dr.
From Lemma 7.1 and Theorem 7.2, one has immediately:
Corollary 7.6. Let X be as in the first paragraph of this section. Then

ϊϊm λ-d/2Nx(λ) ^ Z)49IL( Jf).
λ^oo

The constant D4 depends only upon Y — K\ G/T Π P. Otherwise, D4 is indepen-
dent of the particular choice of submanifold X.

8. Proof of the main theorem

It is now a straightforward matter to complete the proof of Theorem 1.1 of
the introduction. Let Bk denote an exhaustion of K \ G/T as in §4. Suppose
Xik are smooth manifolds in Ŝ -P,-) as chosen there.

One has the asymptotic estimate of Minakshisundaram-Pleijel [1]:
Proposition 8.1. Let Wbe a compact Riemannian manifold with boundary. If

Nw{\) denotes the number of eigenvalues less than λfor the Neumann problem
on W, then

Here d is the dimension of W and Vol( W) is the volume of W.
If N(λ) is the number of cuspidal eigenvalues on K\G/T which are less

than λ, then by Proposition 4.2, for any k:

l i m -TJ7T * l i m

λ-^oo

Here Nk(λ) is the number of eigenvalues less than λ for the Neumann problem
on the compact Riemannian manifold Bk.
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Using Proposition 8.1 one obtains

Applying Corollary 7.6, one may deduce:

However, l i m ^ ^ Vol(^) = Vol(K\ G/T). Moreover, with a sensible choice
of Xik, lim^o, 91t,-( A),*) = 0, for all i.

Theorem 1.1 of the introduction follows by letting k -> oo in (8.2).

9. Coefficients in a bundle

The results derived above may be extended in a routine way to suitable
differential operators acting on sections of equivariant vector bundles. In fact,
the constructions of [5] are valid for any second order operator, which is
G-invariant, and has leading symbol given by the metric tensor. Consequently,
one may follow the previous sections of the present paper line by line to
obtain:

Theorem 9.1. Let p be any irreducible unitary representation of K, acting on

a finite dimensional space of dimension dim(p). Suppose that N(λ) is the number

of cuspidal eigenfunctions less than λ for the Casimir operator acting on sections

of the associated vector bundle Vp -> G/K. Then one has the asymptotic upper

bound:

iA χ-d/2Yo\(K
( 4 , ) / ^

By the argument of Matsushima-Murakami [16, p. 385], we may identify the
Hodge Laplacian on /?-forms with the Casimir operator on the bundle associ-
ated to the p\h exterior power of the isotropy representation of K. Thus, a
special case of Theorem 9.1 is:

Corollary 9.2. Let N(λ) be the number of cuspidal eigenfunctions with

eigenvalue less than λ for the Hodge Laplacian acting on differential p-forms.

Then one has the asymptotic upper bound:
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