ON THE CUSPIDAL SPECTRUM FOR FINITE VOLUME SYMMETRIC SPACES

HAROLD DONNELLY

1. Introduction

Let $K \backslash G / \Gamma$ be a noncompact locally symmetric space of finite volume. Here G is a semisimple Lie group and Γ is an arithmetic subgroup. Moreover, K is a maximal compact subgroup.
If Δ is the Laplacian on $K \backslash G / \Gamma$, we consider Δ acting on the cuspidal functions $L_{\text {cusp }}^{2}(K \backslash G / \Gamma)$ in the sense of Langlands [14]. Our main result is the following:

Theorem 1.1. Let $N(\lambda)$ be the number of linearly independent cuspidal eigenfunctions with eigenvalue less than λ. Then $N(\lambda)$ is finite for each fixed $\lambda>0$.

Moreover, one has the asymptotic upper bound:

$$
\begin{equation*}
\varlimsup_{\lambda \rightarrow \infty} \frac{N(\lambda)}{\lambda^{d / 2}} \leqslant(4 \pi)^{-d / 2} \frac{\operatorname{vol}(K \backslash G / \Gamma)}{\Gamma(d / 2+1)} \tag{1.2}
\end{equation*}
$$

Here dis the dimension of $K \backslash G / \Gamma$ and vol denotes the volume. Also, $\Gamma(d / 2+1)$ is the ordinary Gamma function.

The fact that $N(\lambda)$ is finite for fixed $\lambda>0$ was announced by Borel and Garland [2], [10].
If $G=\operatorname{SL}(2, R)$, then Theorem 1.1 has apparently been well known for some time. It certainly follows from the scattering theory of [15], although the explicit estimate is not stated there. Several authors [21] have given more detailed information for particular discrete subgroups Γ of $\operatorname{SL}(2, R)$. In the case $\Gamma=\operatorname{SL}(2, Z)$, equality holds in (1.2) and the limit on the left-hand side exists [15], [20].
When G is a real rank one, Gangolli and Warner [9] obtained the estimate $N(\lambda) \leqslant C \lambda^{n}$, for some C and n. However, their method did not give a good estimate of n.

[^0]Theorem 1.1 was proved for real rank one in the author's earlier paper [6]. The arguments given below are a natural development of the approach initiated in this earlier work. Note that for the present paper, $K \backslash G / \Gamma$ may have arbitrary rank.

The author thanks the Australian National University for hospitality during the preparation of this manuscript.

2. Basic facts concerning arithmetic groups

This section summarizes some standard facts concerning semisimple Lie groups G and arithmetic subgroups Γ. For more details the reader is referred to [2] and [14].

Let $P=M A N$ be a parabolic subgroup of G. The parabolic subgroups P_{θ} belonging to P are in one-one correspondence with subsets θ of the simple roots Ψ of \mathfrak{a}, the Lie algebra of A. We may write $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}$ where $N_{\theta} \subset N$, $A_{\theta} \subset A$, and $M_{\theta} \supset M$. The Lie algebra of N_{θ} consists of those positive roots containing at least one simple root not belonging to θ. We denote $S_{\theta}=M_{\theta} N_{\theta}$ and $S=M N$.

We denote the simple roots of \mathfrak{a} by $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$. Set $A_{c}=\exp \{v \in \mathfrak{a} \mid$ $\alpha_{i}(v) \geqslant c$, for all $\left.i\right\}$. Here c is a real number and exp: $\mathfrak{a} \rightarrow A$ is the diffeomorphism induced by the exponential map.

Suppose that P is a percuspidal parabolic in the sense of Langlands [14]. In particular, $\Gamma \cap P \subseteq S$ and $S / \Gamma \cap S$ is compact. Moreover, for any parabolic P_{θ} belonging to P one has $\Gamma \cap P_{\theta} \subseteq S_{\theta}, N_{\theta} / \Gamma \cap N_{\theta}$ is compact, and $S_{\theta} / \Gamma \cap S_{\theta}$ has finite volume. All percuspidal parabolics are conjugate in G.

If $P=M A N$ is any percuspidal parabolic, then set $\delta_{c}(P)=K \backslash M A_{c} N / \Gamma \cap$ P, for any real number c. One may choose a finite set Ω of percuspidal subgroups P so that $K \backslash G / \Gamma$ is covered by $\cup_{P \in \Omega} \delta_{c}(P)$, for some real number c,

3. The metric on the cusp

Let $P=M A N$ be a percuspidal parabolic. The manifold with boundary $\delta_{c}(P)$ will be referred to as the cusp.

By proper choice of base point, we may assume that $K \cap P=K \cap M$, as is done in [4, p. 246]. We denote $K \backslash P_{c}=K \backslash M A_{c} N=Z A_{c} N$, where $Z=K \backslash M$. Then $K \backslash P_{c}$ is contained in $K \backslash G$ and the Killing form of G induces a right invariant metric on $K \backslash P_{c}$.

For each $(z, a) \in Z A_{c}$, the metric of $K \backslash P_{c}$ restricts to a metric on N. It is well known [4, p. 246] that this metric has uniformly bounded dependence on z, so the metric will be denoted by g_{a}. The crucial point is to understand the dependence of g_{a} upon a. One obtains a flat metric \hat{g}_{a}, on the Lie algebra \mathfrak{n} of N, by identifying \mathfrak{n} with the tangent space of N at the identity. Since N is a simply connected nilpotent Lie group, the exponential map exp: $\mathfrak{n} \rightarrow N$ is a diffeomorphism. Here we mean the group exponential map of N, which does not depend upon a choice of metric. Pulling back the metric \hat{g}_{a} by (exp) ${ }^{-1}$ one may define a metric h_{a} on N.

It will be useful to employ a comparison of the metric g_{a} and h_{a}.
Lemma 3.1. For ε sufficiently small, one has, in $a g_{a}$ ball of radius ε about the identity element, $g_{a} \geqslant C_{1} h_{a}$. Here C_{1} is independent of a.

Proof. For a fixed value a_{0} of a one has, for some $\varepsilon>0, g_{a_{0}} \geqslant C_{1} h_{a_{0}}$, since \exp is a diffeomorphism with differential the identity map. However, for any a, $z a n=z a_{0}\left(b^{-1} n b\right) b^{-1}$, where $b=a^{-1} a_{0} \in A$. Since the Killing metric of $K \backslash P_{c}$ $=Z A_{c} N$ is right invariant, $g_{a}=\operatorname{Ad}_{b} g_{a_{0}}$ and $\hat{g}_{a_{0}}=\operatorname{Ad}_{b} \hat{g}_{a_{0}}$. Notice that A normalizes N. The lemma now follows from the commutative diagram:

The metric $(d \omega)^{2}$ on $K \backslash P_{c}$ is described very explicitly in [4, p. 247]. In fact, one may write:

$$
\begin{equation*}
(d \omega)^{2}=d z^{2}+d r^{2}+\sum_{\beta \in \Phi} e^{-2 \beta(r)}\left(d \omega_{\beta}(z)\right)^{2} \tag{3.2}
\end{equation*}
$$

Here $r=\left(r_{1}, r_{2}, \cdots, r_{k}\right)$ are coordinates on A_{c}, obtained from the exponential map of A, exp: $\mathfrak{a} \rightarrow A$. In fact, $r_{i}(x)=\alpha_{i}(x)$, for $x \in \mathfrak{a}$, where α_{i} are the simple positive roots. Note that exp: $\mathfrak{a} \rightarrow A$ is a diffeomorphism, which allows us to identify a with A. We may assume that A_{c} is parameterized by $r_{i} \geqslant c$, for all $1 \leqslant i \leqslant k$. The β belong to the set of positive roots Φ of a.

As given by (3.2), g_{a} is the right invariant metric on N which satisfies $g_{a}=\sum e^{-2 \beta(r)}\left(d \omega_{\beta}(z)\right)^{2}$ at the identity. It is difficult to obtain estimates on g_{a} directly since the distributions defined by the root spaces, i.e. the $d \omega_{\beta}(z)$ are not integrable. Thus g_{a} is not a product metric.

However, the metric h_{a} is a product metric, along the root spaces in \mathfrak{n}, which agrees with g_{a} at the identity. Of course, h_{a} is not right invariant with respect to N. Nevertheless, it is easier to estimate geometric quantities in h_{a}. This explains the utility of Lemma 3.1.

A key technical lemma is:
Lemma 3.3. Let $\rho(x, y)$ denote the geodesic distance in the metric $(d \omega)^{2}$. Then one has, for ε sufficiently small, and any x, y, points in a fundamental domain for $\Gamma \cap N$:

$$
\sum_{\substack{\rho(x, y \gamma)<\varepsilon \\ 1 \neq \gamma \in \Gamma \cap N}} \frac{1}{\rho(x, y \gamma)} \leqslant C_{2}\left(\max _{\substack{\alpha \in \Psi \\ n_{\alpha}=1}} \alpha(r)\right) \prod_{\beta \in \Phi} e^{n_{\beta} \beta(r)},
$$

where n_{β} is the dimension of the root space corresponding to β. Here α runs over all simple positive roots of multiplicity one. The product in β runs over all positive roots. Moreover, $r=r(x)$, or if desired $r=r(y)$.

Proof. By Lemma 3.1 and formula (3.2), it suffices to obtain the analogous estimate for the Euclidean product metric h_{a}.

However, if ρ is the geodesic distance in h_{a}, one has

$$
\begin{equation*}
\sum_{\substack{\rho(x, y \gamma)<\varepsilon \\ 1 \neq \gamma \in \Gamma \cap N}} \frac{1}{\rho(x, y \gamma)} \leqslant C_{3} \sum_{\substack{\rho_{\beta}(x, y \gamma) \leqslant C_{4} e^{\beta(r)} \\ \beta \in \Phi}}\left(\sum_{\beta} e^{-\beta(r)} \rho_{\beta}(x, y \gamma)\right)^{-1} \tag{3.4}
\end{equation*}
$$

where β are the positive roots of \mathfrak{a} in \mathfrak{n} and ρ_{β} is a fixed Euclidean metric on the root space corresponding to β. Thus ρ_{β} is independent of r.

A result of Moore [17, p. 155], states that the preimage of $\Gamma \cap N$ under exp: $\mathfrak{n} \rightarrow N$ is commensurable to a Euclidean lattice in the Lie algebra \mathfrak{n}. Using this fact, one obtains Lemma 3.3 after replacing the right sum in (3.4) by an integral:

$$
\begin{aligned}
\sum_{\substack{\rho(x, y \gamma)<\varepsilon \\
1 \neq \gamma \in \Gamma \cap N}} \frac{1}{\rho(x, y \gamma)} \leqslant & C_{5} \sum_{\alpha \in \Psi}\left(e^{\alpha(r)} \int_{1}^{C_{4} e^{\alpha(r)}} t^{n_{\alpha}-2} d t\right) \\
& \times \prod_{\beta \in \Phi-\alpha} \int_{1}^{C_{4} e^{\beta(r)}} t^{n_{\beta}-1} d t
\end{aligned}
$$

4. Neumann bracketing

Let $\phi \in L^{2}(K \backslash G / \Gamma)$ be a square integrable function. Suppose that P is a percuspidal parabolic and $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}$ is any associated parabolic.

We may define

$$
\begin{equation*}
T(P, \theta) \phi(x)=\int_{N_{\theta} / \Gamma \cap N_{\theta}} \phi(x n) d n \tag{4.1}
\end{equation*}
$$

for $x \in K \backslash G$. Here one has identified ϕ with a Γ invariant function on $K \backslash G$. Notice that the integral in (4.1) is well defined since $N_{\theta} / \Gamma \cap N_{\theta}$ is compact. If
$T(P, \theta) \phi=0$ for all (P, θ), then ϕ is said to be cuspidal. If in addition $\Delta \phi=\mu \phi$, for some $\mu \geqslant 0$, then ϕ is a cuspidal eigenfunction and μ belongs to the cuspidal spectrum.

Choose a finite set $P_{1}, P_{2}, \cdots, P_{r}$ of percuspidal parabolics so that the collection $\delta_{c}\left(P_{i}\right), 1 \leqslant i \leqslant r$, covers $K \backslash G / \Gamma$. A function ψ on $\delta_{c}\left(P_{i}\right)$ is said to be cuspidal if $T\left(P_{i}, \theta\right) \psi=0$, for the fixed parabolic P_{i} and all θ. Denote $\pi_{i}: \delta_{c}\left(P_{i}\right) \rightarrow K \backslash G / \Gamma$.

Now select a sequence of smooth compact manifolds with boundary $B_{k} \subset$ $K \backslash G / \Gamma$ with $B_{k} \subset B_{k+1}$ and $U B_{k}=K \backslash G / \Gamma$. For each i and k, let $X_{i, k} \subset$ $\delta_{c}\left(P_{i}\right)$ be a smooth manifold with boundary which contains $\delta_{c}\left(P_{i}\right)-\pi_{i}^{-1} B_{k}$. Suppose that $X_{i, k} N=X_{i, k}$, to guarantee that the cuspidal condition still makes sense in $L^{2}\left(X_{i, k}\right)$. Eventually, we will wish to choose $X_{i, k}$ so that the volume of $X_{i, k}$ is sufficiently close to the volume of $\delta_{c}\left(P_{i}\right)-\pi_{i}^{-1} B_{k}$.

Let $\Delta_{i, k}$ be the Laplacian Δ acting on the cuspidal functions in $L^{2}\left(X_{i, k}\right)$ which satisfy Neumann boundary conditions. Denote $N_{i, k}(\lambda)$ to be the number of cuspidal eigenfunctions in $L^{2}\left(X_{i, k}\right)$ with eigenvalue less than λ. Similarly, we define $N_{k}(\lambda)$ to be the number of eigenvalues less than λ for the usual Neumann problem of the compact manifold with boundary B_{k}. It is not necessary to impose any cuspidal side condition in B_{k}.

The principle of modified Neumann bracketing developed in [6] and [15] now gives:

Proposition 4.2. Let k be a fixed integer and suppose that $\Delta_{i, k}$ has pure point spectrum for all $1 \leqslant i \leqslant r$. If $N(\lambda)$ is the number of linearly independent cuspidal eigenfunctions on $K \backslash G / \Gamma$ with eigenvalue less than λ, then, for any value of λ :

$$
N(\lambda) \leqslant N_{k}(\lambda)+\sum_{i=1}^{r} N_{i, k}(\lambda)
$$

A priori, $\Delta_{i, k}$ might have nonempty essential spectrum so that Proposition 4.1 would not apply. However, we will show presently that $\Delta_{i, k}$ does indeed have pure point spectrum for all i and k.

5. Interior parametrix

Let P be a fixed percuspidal parabolic. If $P_{\theta}=M_{\theta} A_{\theta} N_{\theta}$ is a cuspidal parabolic associated to P, then denote $T_{\theta}=T(P, \theta)$, where $T(P, \theta)$ is the cuspidal projection given by (4.1). We will normalize Haar measure on N_{θ} so that $\int_{N_{\theta} / \Gamma \cap N_{\theta}} d n_{\theta}=1$. Recall that θ is a subset of the positive roots Ψ. It is convenient to set $\stackrel{L}{\theta}=T_{\Psi-\theta}$.

The following algebraic lemma is well known [11, p. 12]:
Lemma 5.1. (i) For any $\theta \subset \Psi$, one has $\mathfrak{L}_{\theta}=\Pi_{\alpha \in \theta} \mathfrak{L}_{\alpha}$. Here the product runs over simple positive roots contained in the subset θ.
(ii) For any $\theta \subset \Psi$ one has $\mathcal{L}_{\theta}^{2}=\mathcal{L}_{\theta}$.
(iii) For any two subsets $\theta_{1}, \theta_{2} \subset \Psi$, the associate projections commute, $\mathcal{L}_{\theta_{1}} \mathcal{L}_{\theta_{2}}$ $=\mathcal{L}_{\theta_{2}} \mathfrak{L}_{\theta_{1}}$.
Now let $X \supset \delta_{c}(P)-\pi^{-1} B$ be a smooth manifold with boundary as chosen in $\S 4$. Recall that X depend upon integer parameters i, k. However, in the next two sections, both P and B are fixed so we will suppress the dependence upon i and k. Our eventual goal is to construct the fundamental solution of the heat equation problem with cuspidal interior conditions and Neumann boundary conditions on X. In this section, a parametrix satisfying the interior cuspidal conditions will be obtained. Lemma 5.1 is vital for this purpose.

Suppose $E(t, x, y)$ is the fundamental solution for the heat equation on the simply connected space $K \backslash G$. Then E is smooth on $(0, \infty) \times K \backslash G \times K \backslash G$ and satisfies the estimates [5]:

$$
\begin{align*}
|E(t, x, y)| \leqslant & C_{1} t^{-d / 2} \exp \left(\frac{-\rho^{2}(x, y)}{4 t}\right) \\
\left|\frac{\partial E}{\partial \rho}(t, x, y)\right| \leqslant & C_{2} t^{-d / 2}(\rho / t) \exp \left(\frac{-\rho^{2}(x, y)}{4 t}\right) \tag{5.2}\\
& +C_{3} t^{-d / 2} \exp \left(\frac{-\rho^{2}(x, y)}{4 t}\right)
\end{align*}
$$

uniformly for $0<t \leqslant \tau$, any $\tau>0$. Here $\rho(x, y)$ is the geodesic distance from x to y in $K \backslash G$ and d is the dimension of $K \backslash G$.

Let $P=M A N$. Then $G=K M A N$, and by proper choice of base point one has $K \backslash G=(K \cap M \backslash M) A N=Z A N$. Set $Y=K \backslash G / \Gamma \cap P=Z A N / \Gamma \cap P$. Then Y is a complete Riemannian manifold. Moreover, Y contains $\delta_{c} P=$ $Z A_{c} N / \Gamma \cap P$, and therefore Y also contains the manifold with boundary X. In fact, X is an open set in Y.

Consider the infinite sum:

$$
\begin{equation*}
F(t, x, y)=\sum_{\gamma \in \Gamma \cap P} E(t, x, y \gamma) \tag{5.3}
\end{equation*}
$$

By the results of [5], this sum converges uniformly on compact sets in $(0, \infty) \times K \backslash G \times K \backslash G$. Moreover, $F(t, x, y)$ represents the fundamental solution of the heat equation problem on Y.

Of course, $F(t, x, y)$ must be modified by projection onto the cuspidal conditions (4.1). Set

$$
\begin{align*}
\bar{F}(t, x, y) & =\prod_{\alpha \in \Psi}\left(1-\mathcal{L}_{\alpha}(y)\right) F(t, x, y) \tag{5.4}\\
& =\sum_{\theta \subset \Psi}(-1)^{|\theta|} \varrho_{\theta}(y) F(t, x, y)
\end{align*}
$$

Here the product runs over all simple roots and the sum runs over subsets θ of the simple roots. The projectors $\mathfrak{L}_{\theta}(y)$ act on the third argument y of $F(t, x, y)$. It is immediate, from Lemma 5.1, that for all subsets $\psi \subset \Psi$, one has $\mathscr{E}_{\psi}(y) \bar{F}(t, x, y)=0$. Thus F satisfies the cuspidal condition (4.1) and is suitable for an interior parametrix. By symmetry and isometry invariance of the heat kernel, one also has $\mathcal{L}_{\psi}(x) \bar{F}(t, x, y)=0$, for all $\psi \subset \Psi$.

It is crucial to estimate the parametrix $\bar{F}(t, x, y)$ as a function of x and y for small $0<t \leqslant \tau$, any fixed τ. For this purpose, we identify $x, y \in Y$ with points x, y in the universal cover $K \backslash G$, which realize the geodesic distance from x to y in Y.

Our basic technical estimate is:
Lemma 5.5. For any fixed simple root α, let $F_{\alpha}(t, x, y)=$ $\left(1-\mathcal{e}_{\alpha}(y)\right) F(t, x, y)$. Suppose that $0<t \leqslant \tau$, where τ is fixed. One has the inequality:

$$
\begin{aligned}
& \left|F_{\alpha}(t, x, y)\right| \leqslant B_{1} t^{-d / 2} \min \left(e^{-\alpha r(x)}, e^{-\alpha r(y)}\right) \\
& \quad \times \max ^{\left(\prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))}, \prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(y))}\right)} \\
& \quad \times \max _{\substack{\sigma \in \Psi \\
n_{\sigma}=1}} \max _{x, y}(\sigma(r(x)), \sigma(r(y))) \exp \left(-\rho^{2}(x, y) / 32 t\right)
\end{aligned}
$$

uniformly for $x, y \in \delta_{c}(P)$, any given c. Here r are the coordinates given by (3.2) and one uses the notation of Lemma 3.3.

Proof. Let $\psi=\Psi-\alpha$ be the complement of α in Ψ. Then by definition:

$$
F_{\alpha}(t, x, y)=\sum_{\gamma \in \Gamma \cap P} E(t, x, y \gamma)-\int_{N_{\psi} / N_{\psi} \cap \Gamma} E(t, x n, y \gamma) d n .
$$

Using (5.2), we estimate the term coming from the identity element $\gamma=1$:

$$
\begin{aligned}
F_{\alpha}(t, x, y)= & \sum_{\substack{\gamma \in \Gamma \cap P \\
\gamma \neq 1}} E(t, x, y \gamma)-\int_{N_{\psi} / N_{\psi} \cap \Gamma} E(t, x n, y \gamma) \\
& +O\left(t^{-d / 2} \exp \left(-\rho^{2}(x, y) / 4 t\right)\right)
\end{aligned}
$$

The mean value theorem combined with (5.2) yields

$$
\begin{array}{r}
\left|F_{\alpha}(t, x, y)\right| \leqslant B_{2} t^{-d / 2} \sum_{\substack{\gamma \in \Gamma \cap P \\
\gamma \neq 1}}\left[\frac{\rho(x, y \gamma)}{t} \exp \left(\frac{-\rho^{2}(x, y \gamma)}{8 t}\right)\right. \\
\left.+\exp \left(\frac{-\rho^{2}(x, y \gamma)}{8 t}\right)\right] \\
\times \min (\operatorname{diam}(x), \operatorname{diam}(y))+O\left(t^{-d / 2} \exp \left(-\rho^{2}(x, y) / 4 t\right)\right)
\end{array}
$$

Here $\operatorname{diam}(x)$ is the diameter of $N_{\psi} / N_{\psi} \cap \Gamma$ at x. By formula (3.2), one has $\operatorname{diam}(x)=O\left(e^{-\alpha(r)}\right)$, where $r=r(x)$ are the coordinates on A_{c} used in (3.2).
It is an elementary lemma that $w e^{-w}$ is uniformly bounded for real $w \geqslant 0$. Consequently,

$$
\begin{aligned}
\left|F_{\alpha}(t, x, y)\right| \leqslant & B_{3} \min \left(e^{-\alpha(r(x))}, e^{-\alpha(r(y))}\right) t^{-d / 2} \\
& \times \sum_{\substack{\gamma \in \Gamma \cap P \\
\gamma \neq 1}}\left[\frac{1}{\rho(x, y \gamma)} \exp \left(\frac{-\rho^{2}(x, y \gamma)}{16 t}\right)+\exp \left(\frac{-\rho^{2}(x, y \gamma)}{8 t}\right)\right] \\
& +O\left(t^{-d / 2} \exp \left(-\rho^{2}(x, y) / 4 t\right)\right) .
\end{aligned}
$$

For any fixed $\varepsilon>0$, we employ the estimate of [5, p. 491] to obtain:

$$
\begin{aligned}
\left|F_{\alpha}(t, x, y)\right| \leqslant & B_{4} t^{-d / 2} \min \left(e^{-\alpha(r(x))}, e^{-\alpha(r(y))}\right) \\
& \times\left[\sum_{\substack{\gamma \in \Gamma \cap P \\
\gamma \neq 1 \\
\rho(x, y \gamma)<\varepsilon}} \frac{1}{\rho(x, y \gamma)} \exp \left(\frac{-\rho^{2}(x, y \gamma)}{16 t}\right)\right. \\
& \left.\quad+\max \left(\mathrm{Vol}^{-1}(x), \operatorname{Vol}^{-1}(y)\right) \exp \left(\frac{-\rho^{2}(x, y)}{32 t}\right)\right] \\
& +O\left(t^{-d / 2} \exp \left(-\rho^{2}(x, y) / 4 t\right)\right)
\end{aligned}
$$

Here $\operatorname{Vol}^{-1}(x)=1 / \operatorname{Vol}(x)$, and $\operatorname{Vol}(x)$ is the volume of $N / \Gamma \cap N$ at x.

By formula (3.2), one has $\operatorname{Vol}^{-1}(x)=O\left(\Pi_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))}\right)$. Here Φ is the collection of positive roots of \mathfrak{a} in \mathfrak{n}. Thus

$$
\begin{aligned}
\left|F_{\alpha}(t, x, y)\right| \leqslant & B_{5} t^{-d / 2} \min \left(e^{-\alpha(r(x))}, e^{-\alpha(r(y))}\right) \\
& \times\left[\sum_{\substack{\gamma \in \Gamma \cap P \\
\gamma \neq 1 \\
\rho(x, y \gamma)<\varepsilon}} \frac{1}{\rho(x, y \gamma)} \exp \left(\frac{-\rho^{2}(x, y \gamma)}{16 t}\right)\right. \\
& \left.+\max \left(\prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))}, \prod_{\beta \in \Phi} e^{\left.n_{\beta} \beta(r(y))\right)}\right) \exp \left(\frac{-\rho^{2}(x, y)}{32 t}\right)\right] .
\end{aligned}
$$

If ε is sufficiently small, then referring to (3.2) we see that for $\gamma \in \Gamma \cap P$ and $\rho(x, y \gamma)<\varepsilon$, one must have $\gamma \in \Gamma \cap N$. Therefore Lemma 3.3 applies to yield:

$$
\begin{aligned}
\left|F_{\alpha}(t, x, y)\right| \leqslant & B_{1} t^{-d / 2} \min \left(e^{-\alpha(r(x))}, e^{-\alpha(r(y))}\right) \\
& \times \max \left(\prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))}, \prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(y))}\right) \\
& \times \max _{\substack{\sigma \in \Psi \\
n_{0}=1}} \max _{x, y}(\sigma(r(x)), \sigma(r(y))) \exp \left(-\rho^{2}(x, y) / 32 t\right) .
\end{aligned}
$$

Here σ runs over the simple roots of multiplicity one.
Using Lemma 5.5, it is easy to deduce:
Proposition 5.6. If $\bar{F}(t, x, y)$ is the cuspidal parametrix defined by (5.4), then one has the estimate:

$$
\begin{aligned}
& |\bar{F}(t, x, y)| \leqslant B_{7} t^{-d / 2} \min _{\alpha \in \Psi} \min _{x, y}\left(e^{-\alpha(r(x)) / 2}, e^{-\alpha(r(y)) / 2}\right), \\
& \\
& \quad \times \max \left(\prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))}, \prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(y))}\right) \cdot \exp \left(-\rho^{2}(x, y) / 32 t\right)
\end{aligned}
$$

uniformly for $x, y \in \delta_{c}(P), 0<t \leqslant \tau$, for any given c and $\tau>0$.
Proof. For any simple root α, we have

$$
\bar{F}(t, x, y)=\prod_{\substack{\beta \in \Psi \\ \beta \neq \alpha}}\left(1-\bigodot_{\beta}(y)\right) F_{\alpha}(t, x, y)
$$

Moreover, the projections $\mathfrak{L}_{\beta}(y)$, defined by (4.1), are L^{∞}-bounded.

Using the definition (4.1) and Lemma 5.5, one obtains immediately:

$$
\begin{aligned}
|\bar{F}(t, x, y)| \leqslant & B_{6} t^{-d / 2} \min \left(e^{-\alpha(r(x))}, e^{-\alpha(r(y))}\right) \\
& \times \max \left(\prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))}, \prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(y))}\right) \\
& \times \max _{\substack{\sigma \in \Psi \\
n_{\sigma}=1}} \max _{x, y}(\sigma(r(x)), \sigma(r(y))) \exp \left(-\rho^{2}(x, y) / 32 t\right)
\end{aligned}
$$

Here α is arbitrary.
Proposition 5.6 now follows by taking a minimum over α.
The same method gives estimates for the higher order derivatives of $F(t, x, y)$:

Proposition 5.7. If $\bar{F}(t, x, y)$ is the cuspidal parametrix defined by (5.4), then one has the estimate:

$$
\begin{aligned}
\left\lvert\,\left(\frac{\partial}{\partial t}\right)^{i} \nabla_{x}^{j} \nabla_{y}^{k}\right. & \bar{F}(t, x, y) \mid \\
\leqslant & B_{8} t^{-d / 2-i-j-k} \min _{\alpha \in \Psi} \min _{x, y}\left(e^{-\alpha(r(x)) / 2}, e^{-\alpha(r(y)) / 2}\right) \\
& \times \max \left(\prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))}, \prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(y))}\right) \exp \left(-\rho^{2}(x, y) / 32 t\right)
\end{aligned}
$$

Proof. First observe that the averaging process (4.1) commutes with covariant differentiation, since N acts isometrically. One then follows routinely through the proof of Proposition 5.6 and Lemma 5.5 by using the higher order estimates of [5]

6. Boundary corrections

Let W_{1} be a complete Riemannian manifold without boundary containing a submanifold W_{2} with boundary ∂W_{2}. We assume that W_{1} and W_{2} have the same dimension, i.e. the interior of W_{1} is an open set in W_{2}. If W_{1} and W_{2} are compact, then given a fundamental solution F of the heat equation on W_{1}, the method of single layer potentials [19, pp. 175-194] allows one to modify F to obtain a fundamental solution of the heat equation on W_{2} with Neumann boundary conditions. If the universal cover of W_{1} has bounded geometry, i.e. the curvature is absolutely bounded and the injectivity radius is bounded below, and if ∂W_{2} is compact, one can employ [5] to generalize the single layer potential construction given in [19]. However, when ∂W_{2} is noncompact, further hypotheses are required.

We will use the single layer potential construction to modify $\bar{F}(t, x, y)$, given by (5.4), yielding a fundamental solution to the heat equation problem with Neumann boundary conditions on ∂X and cuspidal conditions on the interior of X. Here X is defined as in $\S 5$. Even though ∂X may be noncompact, its topology and geometry are precisely known outside a compact set. Thus, no serious difficulty arises when applying the methods of [19].

The basic estimates are the following:
Proposition 6.1. Let $\bar{F}(t, x, y)$ be given by (5.4). Then set

$$
\begin{gathered}
Q^{(0)}(t, x, y)=\bar{F}(t, x, y) \\
Q^{(m+1)}(t, x, y)=\int_{0}^{t} d s \int_{\partial X} \bar{F}(x, u, s) \frac{\partial}{\partial \nu} Q^{(m)}(u, y, t-s) d u
\end{gathered}
$$

Here, the unit normal derivative $\partial / \partial \nu$ is applied to the argument u of $Q^{(m)}$.
One has the estimates, for $m \geqslant 1$:

$$
\begin{aligned}
\left\lvert\,\left(\frac{\partial}{\partial t}\right)^{i} \nabla_{x}^{j} \nabla_{y}^{k} Q^{(m)}(t,\right. & x, y) \mid \leqslant C_{1}^{m}(\Gamma(m / 2))^{-1} t^{-d / 2-i-j-k} \\
& \times \exp \left(-C_{2}\left(\sigma^{2}(x)+\sigma^{2}(y)\right) / t\right) \exp \left(-C_{3} \rho^{2}(x, y) / t\right) \\
& \times \min _{\alpha \in \Psi} \min _{x, y}\left(e^{-\alpha(r(x))) / 2}, e^{-\alpha(r(y)) / 2}\right) \\
& \times \max \left(\prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))} \prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(y))}\right)
\end{aligned}
$$

The notation is that of Proposition 5.7. Moreover, $\sigma(x)$ is the distance from x to ∂X.

Proof. The argument proceeds by induction starting from Proposition 5.7. One uses the method of [19] combined with the precise description of the metric on X given in (3.2). Since ∂X is given outside a compact set by $r_{i}=c$, for some i, in the coordinates of $\S 3$, the details are quite straightforward.

The fundamental solution is obtained as in [19].
Theorem 6.2. Let $\bar{E}(t, x, y)=\sum_{m=0}^{\infty}(-2)^{m} Q^{(m)}(t, x, y)$, where $Q^{(m)}$ are given by Proposition 6.1. Then E is the fundamental solution of the heat equation with Neumann boundary conditions and cuspidal interior conditions on X.

One has the estimate:

$$
\begin{aligned}
|\bar{E}(t, x, y)| \leqslant & C_{4} t^{-d / 2} \min _{\alpha \in \Psi} \min _{x, y}\left(e^{-\alpha(r(x))) / 2}, e^{-\alpha(r(y))) / 2}\right) \\
& \times \max \left(\prod_{\beta \in \Phi} e^{n_{\beta} \beta(r(x))}, \prod_{\beta \in \Phi} e^{\left.n_{\beta} \beta(r(y))\right)}\right) \exp \left(\frac{-C_{3} \rho^{2}(x, y)}{t}\right) \\
& \times\left(1+C_{5} \exp \left(-C_{2}\left(\sigma^{2}(x)+\sigma^{2}(y)\right) / t\right)\right)
\end{aligned}
$$

Here C_{3} and C_{4} depend only upon $Y=K \backslash G / \Gamma \cap P$. However, C_{2} and C_{5} are dependent upon the submanifold X.

Proof. From $\S 5$ and Proposition 6.1, it is clear that $\bar{E}(t, x, y)$ satisfies the heat equation and cuspidal interior conditions on X.

To show that $\bar{E}(t, x, y)$ satisfies Neumann boundary conditions one establishes the jump relations [19, p. 187] for the $Q^{(m)}$. This is primarily a local computation, which is undisturbed by the noncompactness of X.

The upper bound for \bar{E} follows by writing $\bar{E}=Q^{(0)}+\left(\bar{E}-Q^{(0)}\right)$ and quoting the estimates of Propositions 5.6 and 6.1.

7. Spectral function on the cusp

In this section we give an asymptotic upper bound for $N_{X}(\lambda)$. Here $N_{X}(\lambda)$ denotes the number of eigenvalues less than λ for the Laplacian with cuspidal interior conditions and Neumann boundary conditions on X, defined as in $\S 6$.

We begin with the following elementary lemma [7]:
Lemma 7.1. Let B denote a nonnegative self adjoint operator acting on a Hilbert space. Suppose that the associated heat operator $\exp (-t B)$ is trace class, for all $t>0$. Then B has pure point spectrum, so we may define $N_{B}(\lambda)$ as the number of eigenvalues of B less than λ. If, for some positive integer d,

$$
\varlimsup_{t \rightarrow 0} t^{d / 2} \operatorname{Tr}\left(e^{-t B}\right) \leqslant D_{1}
$$

then

$$
\varlimsup_{\lambda \rightarrow \infty} \lambda^{-d / 2} N_{B}(\lambda) \leqslant D_{1} e
$$

Consider the Laplacian Δ_{X} acting on $L^{2} X$ with Neumann boundary conditions and cuspidal interior conditions. The associated heat kernel $\bar{E}(t, x, y)$ for $\exp \left(-t \Delta_{X}\right)$ is estimated in Theorem 6.2. One may deduce:
Theorem 7.2. The heat kernel $\bar{E}(t, x, y)$ defines a trace class operator $\exp \left(-t \Delta_{X}\right)$. Moreover, one has the estimate:

$$
\operatorname{Tr}\left(e^{-t \Delta_{x}}\right) \leqslant D_{2} t^{-d / 2} \int_{r(X)} \min _{\alpha \in \Psi}\left(e^{-\alpha(r) / 2}\right) d r+O\left(t^{-d / 2+1 / 2}\right)
$$

The constant D_{2} depends only upon $Y=K \backslash G / \Gamma \cap P$. Here $r(X)$ is the set of r coordinates, as in (3.2), for points in X.
Proof. By the spectral theory of self adjoint operators, $\bar{E}(t, x, y)$ satisfies the semigroup property:

$$
\begin{equation*}
\bar{E}(t, x, y)=\int_{X} \bar{E}(t, x, z) \bar{E}(t, z, y) d z \tag{7.3}
\end{equation*}
$$

and symmetry $\bar{E}(t, x, y)=\bar{E}(t, y, x)$.

Setting $x=y$, and integrating we find that

$$
\begin{equation*}
\int_{X}|\bar{E}(t, x, y)|^{2} d x d y=\int_{X} \bar{E}(t, x, x) d x \tag{7.4}
\end{equation*}
$$

The key estimate of Theorem 6.2 now gives, for small $t>0$:

$$
\begin{equation*}
\int_{X} \bar{E}(t, x, x) d x \leqslant D_{3} t^{-d / 2} \int_{r(X)} \min _{\alpha \in \Psi}\left(e^{-\alpha(r) / 2}\right) d r+O\left(t^{-d / 2+1 / 2}\right) \tag{7.5}
\end{equation*}
$$

The integral on the right-hand side of (7.5) converges, so \bar{E} is Hilbert-Schmidt by (7.4). However, the semigroup property (7.3) now shows that \bar{E} is trace class. Then (7.5) gives the required upper bound for $\operatorname{Tr}\left(e^{-t \Delta_{x}}\right)$.

It is convenient to denote $\mathfrak{N}(X)=\int_{r(X)} \min _{\alpha \in \Psi}\left(e^{-\alpha(r(x)) / 2}\right) d r$.
From Lemma 7.1 and Theorem 7.2, one has immediately:
Corollary 7.6. Let X be as in the first paragraph of this section. Then

$$
\varlimsup_{\lambda \rightarrow \infty} \lambda^{-d / 2} N_{X}(\lambda) \leqslant D_{4} \mathfrak{N}(X)
$$

The constant D_{4} depends only upon $Y=K \backslash G / \Gamma \cap P$. Otherwise, D_{4} is independent of the particular choice of submanifold X.

8. Proof of the main theorem

It is now a straightforward matter to complete the proof of Theorem 1.1 of the introduction. Let B_{k} denote an exhaustion of $K \backslash G / \Gamma$ as in $\S 4$. Suppose $X_{i, k}$ are smooth manifolds in $\delta_{c}\left(P_{i}\right)$ as chosen there.

One has the asymptotic estimate of Minakshisundaram-Pleijel [1]:
Proposition 8.1. Let W be a compact Riemannian manifold with boundary. If $N_{W}(\lambda)$ denotes the number of eigenvalues less than λ for the Neumann problem on W, then

$$
\lim _{\lambda \rightarrow \infty} \frac{N_{W}(\lambda)}{\lambda^{d / 2}}=(4 \pi)^{-d / 2} \frac{\operatorname{Vol}(W)}{\Gamma(d / 2+1)}
$$

Here d is the dimension of W and $\operatorname{Vol}(W)$ is the volume of W.
If $N(\lambda)$ is the number of cuspidal eigenvalues on $K \backslash G / \Gamma$ which are less than λ, then by Proposition 4.2, for any k :

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{N(\lambda)}{\lambda^{d / 2}} \leqslant \varlimsup_{\lambda \rightarrow \infty} \frac{N_{k}(\lambda)}{\lambda^{d / 2}}+\sum_{i=1}^{r} \varlimsup_{\lambda \rightarrow \infty} \frac{N_{i, k}(\lambda)}{\lambda^{d / 2}}
$$

Here $N_{k}(\lambda)$ is the number of eigenvalues less than λ for the Neumann problem on the compact Riemannian manifold B_{k}.

Using Proposition 8.1 one obtains

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{N(\lambda)}{\lambda^{d / 2}} \leqslant(4 \pi)^{-d / 2} \frac{\operatorname{Vol}\left(B_{k}\right)}{\Gamma(d / 2+1)}+\sum_{i=1}^{r} \varlimsup_{\lambda \rightarrow \infty} \frac{N_{i, k}(\lambda)}{\lambda^{d / 2}} .
$$

Applying Corollary 7.6, one may deduce:

$$
\begin{equation*}
\varlimsup_{\lambda \rightarrow \infty} \frac{N(\lambda)}{\lambda^{d / 2}} \leqslant(4 \pi)^{-d / 2} \frac{\operatorname{Vol}\left(B_{k}\right)}{\Gamma(d / 2+1)}+\sum_{i=1}^{r} C_{i} \mathscr{T}_{i}\left(X_{i, k}\right) \tag{8.2}
\end{equation*}
$$

However, $\lim _{k \rightarrow \infty} \operatorname{Vol}\left(B_{k}\right)=\operatorname{Vol}(K \backslash G / \Gamma)$. Moreover, with a sensible choice of $X_{i, k}, \lim _{k \rightarrow \infty} \mathscr{T}_{i}\left(X_{i, k}\right)=0$, for all i.

Theorem 1.1 of the introduction follows by letting $k \rightarrow \infty$ in (8.2).

9. Coefficients in a bundle

The results derived above may be extended in a routine way to suitable differential operators acting on sections of equivariant vector bundles. In fact, the constructions of [5] are valid for any second order operator, which is G-invariant, and has leading symbol given by the metric tensor. Consequently, one may follow the previous sections of the present paper line by line to obtain:

Theorem 9.1. Let ρ be any irreducible unitary representation of K, acting on a finite dimensional space of dimension $\operatorname{dim}(\rho)$. Suppose that $N(\lambda)$ is the number of cuspidal eigenfunctions less than λ for the Casimir operator acting on sections of the associated vector bundle $V_{\rho} \rightarrow G / K$. Then one has the asymptotic upper bound:

$$
\varlimsup_{\lambda \rightarrow \infty} \frac{N(\lambda)}{\lambda^{d / 2}} \leqslant(4 \pi)^{-d / 2} \frac{\operatorname{Vol}(K \backslash G / \Gamma)}{\Gamma(d / 2+1)} \operatorname{dim}(\rho)
$$

By the argument of Matsushima-Murakami [16, p. 385], we may identify the Hodge Laplacian on p-forms with the Casimir operator on the bundle associated to the p th exterior power of the isotropy representation of K. Thus, a special case of Theorem 9.1 is:

Corollary 9.2. Let $N(\lambda)$ be the number of cuspidal eigenfunctions with eigenvalue less than λ for the Hodge Laplacian acting on differential p-forms. Then one has the asymptotic upper bound:

$$
\overline{\lim } \frac{N(\lambda)}{\lambda^{d / 2}} \leqslant(4 \pi)^{-d / 2} \frac{\operatorname{Vol}(K \backslash G / \Gamma)}{\Gamma(d / 2+1)}\binom{d}{p}
$$

References

[1] M. Berger, P. Gauduchon \& E. Mazet, Le spectre d'une varieté Riemannienne, Lecture Notes in Math., Vol. 194, Springer, Berlin, Heidelberg and New York, 1971.
[2] A. Borel, Cohomology of arithmetic groups, Proc. Internat. Congr. Math., Vancouver, 1974, Vol. 1, pp. 435-442.
[3] ___, Introduction aux groupes arithmetiques, Hermann, Paris, 1969.
[4] _ Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974) 235-272.
[5] H. Donnelly, Asymptotic expansions for the compact quotients of properly discontinuous group actions, Illinois J. Math. 23 (1979) 485-496.
[6] __ On the point spectrum for finite volume symmetric spaces of negative curvature, Comm. Partial Differential Equation 6 (1981) 963-992.
[7] H. Donnelly \& P. Li, Lower bounds for the eigenvalues of Riemannian manifolds, Michigan Math. J., to appear.
[8] H. Donnelly, On the essential spectrum of a complete Riemannian manifold, Topology 20 (1981) 1-14.
[9] R. Gangolli \& F. Warner, Zeta functions of Selberg's type for some noncompact quotients of symmetric spaces of rank one, Nagoya Math. J. 78 (1980) 1-44.
[10] H. Garland, The spectrum of noncompact G / Γ and the cohomology of arithmetic groups, Bull. Amer. Math. Soc. 75 (1969) 807-811.
[11] Harish-Chandra, Automorphic forms on semisimple lie groups, Lecture Notes in Math., Vol. 62, Springer, Berlin, Heidelberg and New York, 1968.
[12] T. Kubota, Elementary theory of Eisenstein series, Wiley, New York, 1973.
[13] S. Lang, $\mathrm{SL}_{2}(R)$, Addison-Wesley, Reading, MA, 1975.
[14] R. P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Math., Vol. 544, Springer, Berlin, Heidelberg and New York, 1976.
[15] P. Lax \& R. Phillips, Scattering theory for automorphic functions, Ann. of Math. Studies, No. 87, Princeton Univ. Press, Princeton, NJ, 1976.
[16] Y. Matsushima \& S. Murakami, On vector valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. (2) 78 (1973) 365-416.
[17] C. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent Lie groups, Ann. of Math. 82 (1965) 146-82.
[18] W. Müller, Spectral theory of non-compact Riemannian manifolds with cusps and a related trace formula, preprint.
[19] D. B. Ray \& I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145-210.
[20] S. Tanaka, Selberg's trace formula and spectrum, Osaka J. Math. 3 (1966) 205-216.
[21] A. B. Venkov, The spectral theory of automorphic functions, the Selberg zeta function, and some problems of analytic number theory and mathematical physics, Russian Math. Surveys 34 (1979) 79-153.

[^0]: Received November 13, 1981.

