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0. Introduction

Geometries associated to the exceptional groups and "exceptional" represen-
tations of classical groups often display interesting features closely related to
(but distinctly different from) the more familiar features of the classical
groups. This paper centers on the geometries in E 7 and E8 whose groups of
symmetries are G2 C 50(7) and Spin(7) C SO(S). Both of these groups are
related to the octonians (sometimes called Cayley numbers) and may be
defined in terms of octonionic multiplication. In particular, G2, the compact
exceptional group of (real) dimension 14, is the subgroup of algebra automor-
phisms of O (the octonians) and Spin(7) C SΌ(8) may be defined as the
subgroup of GLR(O) generated by right multiplication by unit octonians which
are purely imaginary.

The geometry of the algebra O is closely related to the complex numbers. In
§1, we develop some of the properties of O that we need for later sections.
(Our presentation is essentially borrowed from Appendix A of [12], but any
mistakes are, of course, due to the author.) A particularly interesting property
is described as follows: If we let I m O c O be the hyperplane (through 0)
orthogonal to 1 E O, and we let S6 C Im O be the space of unit vectors, then
right multiplication by u E S6 induces a linear transformation Ru: O -> O
which is orthogonal and satisfies (Ru)

2 = -I. Thus, associated to each u E S6

is a complex structure on O (induced by / = Ru) which is compatible with the
natural inner product on O. We denote by OM the Hermitian vector space
whose underlying real vector space (with inner product) is O and whose
complex structure is given by Ru.

Classically, this observation was used to define an almost complex structure
on S6 as follows: If u E S6, then Ru preserves the 2-plane spanned by 1 and u
and therefore preserves its orthogonal 6-plane, which may be identified with
TUS6 C l m O after translation to the origin. Thus Ru induces a complex
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structure on TUS6 for each u G S6. This almost complex structure is not
integrable (even locally) to a complex structure (see below). In [Ca], Calabi
noticed that for any oriented M6 C ImO, RN(x) induces a complex structure
on TXM

6 (where N(x) is the oriented unit normal). Thus every oriented
M 6 C l m O inherits an almost complex structure. Moreover, M6 inherits a
metric from Im O, so we actually have a ί/(3)-structure on M6. (Calabi calls
these structures "almost Hermitian." He also proves that such M 6 possess a
canonical S'ί/(3)-substructure but we will not need this.) Calabi shows that the
second fundamental form II of M decomposes with respect to the {/^-struc-
ture into a piece II1'1 of type (1,1) and a piece II0 '2 of type (0,2). He then shows
that the almost complex structure of M is integrable if and only if II1'1 = 0 and
that the canonical 2-form of the ί/(3)-structure, say Ω, is closed if and only if
II 0 ' 2 = 0 and t ^ I I 1 1 = 0. From this it follows that the ί/(3)-structure on M 6 is
Kahler if and only if II = 0, so that Mβ is a hyperplane (or a union of pieces of
hyperplanes). Calabi then constructs nontrivial examples of M6 C ImO for
which the almost complex structure is integrable. His examples are of the form
5 X R4 C Im O, where S C R3 is a minimal surface, R3 C Im O is an associa-
tive 3-plane, and R4 = (R3)±. Calabi leaves open the problem of determining
whether or not there are nontrivial M 6 C ImO for which the canonical 2-form
is closed.

In [10], Gray generalized Calabi's construction somewhat by considering
hypersurfaces in NΊ where TXN

Ί has a vector cross product modeled on
I m O - R7. In the case iV = ImO, Gray observes that the canonical 2-form Ω
on M6 C Im O is always co-closed, i.e., δΩ = 0 (or equivalently dti1 — 0).

In the present paper, after some preliminary work establishing the structure
equations of Sρin(7) C 5Ό(8), we study oriented manifolds M6 C O. As is
pointed out in [12], every oriented 6-plane in O =* R8 is a complex three-plane
in OM for a unique u E S6. Thus, every oriented six-manifold in O inherits a
natural ί/(3)-structure generalizing the case where M6 C Im O. In this case, we
decompose the second fundamental form II of M into three pieces and prove
the analogues of Calabi's theorems concerning when the ί/(3)-structure is
complex integrable and when dΏ, = 0. In particular, we show that the induced
ί/(3)-structure on M6 C O is Kahler if and only if M6 is a complex hyper-
surface in Ou for some fixed u G S6. We then go further in the study of those
M6 C O for which the £/(3)-structure is complex integrable but which are not
Kahler. We show that such M6 are foliated by 4-planes in O in a unique way.
We refer to this foliation as the asymptotic ruling of M6. Using the moving
frame, we prove that if the asymptotic ruling is parallel then M6 is the product
of a fixed 4-ρlane in O with a minimal surface in the orthogonal 4-plane. In
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particular, we show that Calabi's examples are exactly the M6 with parallel
asymptotic ruling which lie in the hyperplane I m O c O . We then use Cartan's
theory of differential systems in involution to show that the analytic non-Kahler
but complex M6 C O "depend" on 12 analytic functions of 1 (real) variable.
(For a more precise statement, see §3).

We observe, as did Gray, that the canonical 2-form on Mβ C O is always
co-closed. Finally, we show that any M6 C O for which the canonical 2-form Ω
is closed is necessarily Kahler (and therefore must be a complex hypersurface
in OM for some fixed u G S6). In particular, such M 6 C l m O must be
hyperplanes. This recovers a result of Gray (see [10]).

In the final section of the paper, we study the "complex curves" in S6, i.e.,
those maps φ: M2 -> S6 where M2 is a Riemann surface and dφ is complex
linear with respect to the almost complex structure on S6 induced by the
inclusion Sβ C Im O. This study is motivated by the fact that the cone on such
a complex curve gives a 3-fold in ImO which is associative in the sense of [12].
Such cones are absolutely mass minimizing and their singular structure reflects
the singular structure of general associative varieties in R7 C Im O. We first
prove that the almost complex structure on S6 determines the metric structure
of S6 so that any invariant of the local almost complex structure is also a
metric invariant (for a more precise statement, see Proposition 4.1 and its
proof). (This is the compact-form analogue of Cartan's characterization of the
split form of G2 as the pseudo-group of a certain differential system on a five
manifold.) This justifies our use of the metric structure on S6 to study the
almost complex structure of S6.

Since the generalized Cauchy-Riemann equations for local mappings of
Riemann surfaces into an almost complex manifold form a determined elliptic
system (which is first order, quasi-linear) we expect the local theory of complex
curves in S6 to be analogous to the local theory of complex curves in C3. (In
the analytic category, this is certainly the case.) Along these lines, we develop a
Frenet formalism for complex cuves in S6 analogous to that developed for
complex curves in CP3. We define the first, second and the third fundamental
forms of φ: M2 -> S6 as holomorphic sections of line bundles over M2. In
particular, the third fundamental form III, analogous to the torsion of a space
curve, plays a crucial role. The assumption that III Φ 0 places severe restric-
tions on the divisors of the three fundamental forms (see [11] for terminology
concerning Riemann surfaces). We are able to prove, for example, that if
M2 = P ι , then III ^ 0 is impossible. It seems likely that for fixed genus g, the
space of complex curves φ: M2 -> S6 (where M2 has genus g) with III ^ 0 is
finite dimensional, but we have not proven this.
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Turning to those curves with III = 0, we show that these curves are the
integrals of a holomorphic differential system on the complex 5-quadric. We
then use a normal form (due to Cartan in [6]) for this holomorphic system to
construct generically 1-1 complex curves φ: M2 -* S 6 with III = 0 for any
Riemann surface M2 so that the ramification divisor of φ has arbitrarily large
degree. The author would like to express his gratitude to Phillip Griffiths for
explaining the technical aspects of line bundles over M2 used in this construc-
tion (see the proof of Theorem 4.10). This shows, in a sense, that the compact
curves of torsion zero (III = 0) are "more general" than those with torsion
nonzero. This should be contrasted with the situation in CP3, for example.

Throughout this paper, we assume that the reader is familiar with the theory
of moving frames. For notation concerning almost complex and complex
manifolds, the reader should consult [8] or [15]. We make one extension of
their terminology: If M is almost comlex and π: B -> M is bundle over M, we
speak of a form on B as being of type (/?, q) if it is locally a linear combination
(with coefficients in C°°(B)) of pullbacks under π* of forms of type (/?, q) on
M. This will cause no problem except in the case that B is also almost complex
and 77̂  is not complex linear. In this case, we are careful to distinguish the two
so that no confusion can arise (hopefully). For notions concerning Riemann
surfaces, we have used [11] as the basic reference.

Finally, the author would like to acknowledge (gratefully) conversations and
inspiration from Eugenio Calabi, Phillip Griffiths, and Reese Harvey.

1. The octonians and Spin(7)

In this section, we give a brief description of the octonian algebra O and
derive a few of its properties. We then go on to define the group Spin(7) C
S0(8) by octonian multiplication and to derive its Lie algebra and structure
equations in a form suitable for our differential geometric investigations in the
following sections. For more details on O and Spin(7), the reader is encour-
aged to consult Appendix A in [12] and the classical references listed in its
bibliography.

An inner product algebra over R is a vector space A over R which possesses
a nondegenerate inner product {, >: A X A -* R and a multiplication A X A ->
A with unit 1 G A so that for all x j E A

(l.i)

For convenience's sake we will identify R with the 1-dimensional subalgebra of
A generated by 1 G A. By (1.1), we have (1,1>= (1,1)2. If (1,1)= o, then
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(x, x ) = 0 for all x E A, contradicting the nondegeneracy assumption. Hence
(1,1)= 1. We define the orthogonal compliment of 1 to be ImA C A. It is a
proper subspace and we have A = R θ Im A. Give x E A, we define x E A,

0 Ί\ - _ *)/-. 1 \ _ „

We denote (x, 1) by Rex and (x - Rex) by Im x. Clearly x E ImA if and
only if x = -x or x = Im x or Re x = 0.

If we polarize (1.1) in the x-variable, we get the identity

If we expand (x(l + w), y(l + w)) in two ways and compare terms, we
find

(xw,y)=(x,y(2(w,l)-w))

or

(1.4) (xw,y)= (x9yw)

for all x, y, w E A. In the same way, we get

(1.40 (wx, y) = (x,wy).

Using (1.4) and (1.40 repeatedly, we get

(w, yx) = (yw9 x> = (y, xw) = (xy, vv>

= (w(xy), \)= (w, (xy) )

for all x, y,w E A. It follows that

(1.5) (χy) = yx-

From (1.5), we conclude that xx is real for all x EL A. but then (x, x) =
(xx, 1)= xx.

(1.6) x x = ( x , x ) = x x .

Polarizing (1.6) we get

(1.7) (x, y)= i(χy + yχ)

We also compute

((xw)w, y)= (xw, yw)= (x, y)(w9w)= (x(w,w), y)

so

(1.8) (xw)w = x(ww) (=x(w,w)).

by subtracting 2(xw)(w, 1) from both sides of (1.8), we get

(1.9) (xw)w = xw2
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in spite of the fact that we have not assumed that A is associative. In a similar

manner, we get

(1.8') w(wx) = (ww)x,

(1.9') w(wx) - w2x.

By polarizing (1.8) and (1.8'), we get the identities

(1.10) (xu)v + (xv)ΰ = 2x(u, v),

(1.11) u(ϋx) + v(ΰx) = 2x(u, v).

In particular, if (M, V)= 0, then (xu)ϋ = -(xv)ΰ and u(ϋx) = -υ(ΰx). We

may use these facts to prove the following lemma (see [12]).

Lemma 1.1. / / B c A is an inner product subalgebra and u E A is orthogonal

to B, then Bw _L B α«d B θ Bw is a subalgebra of A which satisfies

(1.12) (a + bu)(c + rfw) = (αc - (u, u)db) + (Jα + bc)u.

This lemma allows us to start with B = R and "build up" to A by

successively adding on orthogonal subspaces. Using this technique, one can

show that if we assume that (, > is positive definite, then there are only four

inner product algebras over R, namely R, C, H (the quaternions) and O (the

octonians).

Explicitly, we may regard O as the vector space H θ H. If we write 1 for

(1,0) E O and ε for (0,1) E O, the above lemma shows that the multiplication

in O must be given by

(1.13) {a + bε), (c + dε) = (ac - db) + (da + bc)ε

where the inner product satisfies

(1.4) ((a + bε), (a + bε))= aa + bb

whenever a, b,c,d E H.

We let S6 = {u G I m O | <w, u)= 1}. The elements of S6 are called the

imaginary units of O. For any u E S6, we have u = -M, SO M2 = -uΰ — -

(w, ύ) — - 1 . We may use u to define a map Ju: O -» O given by

(1.15) Ju(x)=xu.

The identity (1.9) shows that J?(x) — (xu)u = xu2 = -x9 so Ju defines a

complex structure on O. We write OM to denote O endowed with the complex

structure Ju. If u ¥= v9 then clearly JU¥=JV, so we actually have a six-sphere of

distinct complex structures on O. However, because S 6 is connected, we see

that the orientation of O induced by the natural orientation of OM as a complex

vector space does not depend on u. We refer to this orientation as the natural

orientation of O.



SPECIAL STRUCTURES ON THE OCTONIANS 1 9 1

Using (1.3), we see that if u E S, then

(Ju(χ)> Ju(y))= (χu> yu)= (*> y)(u, «>= (χ> y)

so Ju is an isometry for each u E 5. Moreover, it follows that OM is endowed

with a natural Hermitian structure with respect to the inner product ( , ) . We

denote the group of complex linear transformations of OM by GL(OU) and the

special unitary transformations of OM with its Hermitian metric by SU(OU).

We let Spin(7) C SO(&) denote the subgroup generated by the set {Ju | u E

S 6 } C S0(8). It is known (see [12]) that Spin(7) is a connected, simply

connected, compact Lie group of real dimension 21. Its center is {±/ 8 } — Z/2

and Spin(7)/{±/8} is isomorphic to 5Ό(7), a simple group. We want to make

explicit the structure equations of Spin(7) as a subgroup of SO(&) in such a

way that its relationship with the complex structures Ju is made clear.

Let u E S6 be an imaginary unit which is orthogonal to ε E O. For each

λ E R, (cosλε + sinλw) is an imaginary unit. Hence Jε ° J(COS\e+sm\u) —

-cos XI•+ sin λ Jε o Ju is an element of Spin(7). We easily compute that Jε © Ju

+ Ju o Jε = 0 by using (1.10). Thus (Jε o Juf = Jε o Ju o J£ o Ju = -j? o j * =

-I. It follows that

(1.16) exp(λ/ ε o/J = c o s λ / + s i n λ / ε ° / M .

Thus, if spin(7) C so(%) is the Lie algebra of Spin(7), we see that Jε o Ju E

spin(7) for all u E S6 with (u, ε)= 0. Since spin(7) is a vector space, we see

that L C spin(7) where

(1.17) L = {/ ε°/jM;ElmO,<ε,H>>=0}.

Note that dimR L = 6.

To go further, we will choose a basis and exhibit L as a vector space of

matrices. In order to do this, let j and k be orthogonal imaginary units

in H.1 We define the jtandard basis of C ® R O, (N9E,N,E) =

(N, El9 E29 E3, N, El9 £ 2 , E3) as follows: We set N = i ( l ~ *'«)> ̂  = Kl + « )

and

(1.18) E2 = kN, E2

E3 = (kj)N9 E3

(Note that conjugation in C ® R O occurs only in the C-factor.) By using the

formulae in (1.13) and some elementary calculation, we see that if we set

1 In all that follows, we never use i to denote a quaternion or an octonian. For us, / G C and

CJH.
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w = 2Re(aιEx + a2E2 + a3E3) where at E C and Re: C ® R O -» O is the real

projection, then wElmO,(ε,w)=0 and

JcoJw{N,Eλ,E2,E3)

(1.19) 0

-ia1

-ia2

\ -ia3

iax

0

-ia
; - 2

ia2

ia3

0

ia3

-ia2

,1

ia1

-ia1 0

To simplify matters, if a = (a1) is any column vector of height 3 (with complex

entries), we define [a] to be the 3 X 3 skew symmetric matrix

(1.20)
0

-a
,2

0
-a

a1

a" -a1 0

Note that [a] is the matrix of the linear transformation from C3 to C3

determined by cross product with a E C3. We will eventually need the follow-
ing identities for α, b E C3 and A E M3 X 3(C).

[Aa] = (tr A)[a] -Ά[a] - [a]A,

[a][b] = Va -'a

(1.21)

(/3 is the 3 X 3 identity matrix).
We may now rewrite (1.19) in the more compact form

(1.19-)

where w — 2Re(aE) (row by column multiplication is understood). It follows
that, expressed in the full basis (N, E9 N, E) we have

(1.19")

0 0 0 -ila
0 0 ia [-ia]

0 i'fl 0 0
-ίfl [ia] 0 0

Thus, imbedding End(O) •=* M8 X 8(C), the space of 8 X 8 complex matrices, via
the standard basis, we get

(1.22) L= \

0 0 0 -'a
0 0 a [a]

0 -<a 0 0
\a [a] 0 0 /
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An easy computation, using (1.21), then shows

κ = θ |

193

(1.23)
' J κ/|andκEM 4 x 4 (C)

Since L C spin(7), [L, L] C spin(7), and L Π [L, L] = 0; and since

dimR L = 6,

(1.24) dim R [L,L] = 15,

dimRspin(7) = 21,

we conclude that

(1.25) sρin(7) = LΘ[L,L].

Finally, note that [L, L] = su(Oε), the Lie algebra of SΊ7(Oe). If we note that

(1.26) g/(Oβ) Π spin(7) = su(Oε)

and that Spin(7) is connected, we deduce that

(1.27) GL(Oε) Π Spin(7) = SU(Oε).

We record our main result so far:

Proposition 1.1. Extend the elements of Spin(7) C End(O) complex linearly

so that Spin(7) C End(C ® R O). // we use the standard basis (N, E, N9 Έ) of

C Θ R O to represent End c (C ® R O) as the 8 X 8 complex valued matrices, then

0 -<a\ α,ί>EM 3 x l (C),

a [a]

0 -'a -ic -*b

\a [a] b d

spin(7) =

ic -b

b d

d+'d = 09

tτέ/4- ic = 0.

As we will see below, Spin(7) actually satisfies GL(OU) Π Spin(7) = SU(OU)

for all u G S6.

For x j 6 θ , we define xX yby the formula

x X y is called the cross product of x and y. Clearly x X y E Im O. We have

the useful identities

(1.29) (x9 y)=0=*xXy=yx = -xy,

(1.30) EiXN = NXEi = 0.

For each u E S 6, we let ru: ImO -> ImO be defined by ru(x) = ΰ(xu) —

(ϋx)u (this last association formula follows easily from (1.8) and (1.8')). Using

the Moufang identities (see Appendix B of [12]), one can verify that there
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exists a homomorphism χ: Spin(7) -* SO(Ί) C GL R (ImO) which satisfies

χ(Ju) — ru (existence is the only doubtful point; uniqueness is clear). Further-

more, we have the following equivariance: For g E Spin(7) and x, y 6Ξ O

(1-31) g(χ)xg(y) = x(g)(χxy)

A basis (n,f,n,f) of C ® R O is said to be admissible if there exists

g G Sρin(7) c M 8 X 8 (C) so that

(1.32) (n9f9n9f) = (N9E9N9E)g.

The space of admissible bases forms a manifold diffeomorphic to Spin(7). In

fact, we may use (1.32) as a definition of the quantities Λ, /., etc. as C ® R O -

valued functions on Spin(7). Using (1.30) and (1.31), we have the following

formulae for any admissible frame:

(1.33) fXή=nXf=0.

Now, differentiating (1.32), we get

d(n9f9n9f) = (N9E9N9E)dg

= (n,f9n9f)φ9

where <t> = g~ιdg is the canonical spin(7)-valued left-invariant 1-form on

Spin(7). Consulting Proposition 1.1, we get

Proposition 1.2 (The First Structure Equations). There exist left-invariant

\-forms on Spin(7): p with values in R; θ, ί) with values in M3 X 1(C); and K with

values in 3 X 3 skew-Hermitian matrices satisfying

(1.34) tr K + ip = 0,

(1.35) d{n,f,n,f) = (n,f,n,f)

ip _'{, 0 ~'θ

ί) K θ [θ]

0 -'θ -ip - ' ί )

θ \θ] h ic

where φ satisfies

(1.36)

= (n,f,n,f)φ,

= -φ Aφ.

Remark. Note that in terms of R-valued 1-forms K has 9 components which

are independent and whose linear combinations include p; ί) has 6 compo-

nents; and θ has 6 components making a total of 21 independent 1-forms (as
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expected). Moreover, in working with the structure equations (1.36) the follow-
ing bracket identities will be extremely useful. If a and β are 1-forms with
values in Λf3x ^C) and γ is a 1-form with values in M3 X 3(C), we have

(1.36a) [a] Λ β = [β] Λ a,

(1.36b) [γ Λ a] = (tr γ) Λ [a] -'y Λ [a] + [a] Λ γ,

(1.36c) [a] Λ[β] ='β Λ al3 - β Λ'α.

For our work in later sections, we will need the identities

(1.36d) 'aΛ[a]Λ<χ = -6a1 Λ a2 A a3,

(1.36e) [Ma] Λ a = ±(trM -*M)[a] Λ α,

where M is an 3 X 3 matrix of 0-forms. From these last two follows the useful

identity

(1.36f) 'α Λ [Ma] Λ a = -2trMa1 Λ a2 Λ α3.

To complete this section, we develop the moving frame equations for O with

its standard Sρin(7)-structure. We let f = O X Spin(7) and let JC: 3F-* O

denote projection onto the first factor. All functions and forms on Spin(7) will

be regarded as functions and forms on ξF via pullback by projection on the

second factor. For our purposes, it will be more useful to think of <$ as the

space of pairs (>>;(/i, / ,«,/) ) consisting of a base point j / G O and an

admissible basis (n, / , « , / ) at that point. Since we have essentially identified

Spin(7) with the space of admissible bases, this should cause no problem.

We let (N*, E*, N*, E4) denote the dual basis of (N, E, N, Έ) in (C ̂ )RO)*.

Thus we have the identity

(1.37) NN*(y) 4- EE*(y) + NN*(y) + EE*(y) = y

for all >> E O (note that E* is a column of 1-forms of height 3). It follows that

(1.38)

If we set

(1.39)

= (N9E,N,E)

x*(N*)

x*(E*)

x*(N*)

\ x*(E*) j

V

CO
p

i v

= g

X

X

X

\x

*(N*

*(E*

*(N*

*(E*

)

)

)

)
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we get

Proposition 1.3 (The Second Structure Equations).

(1.40) dx = (n9f,ήj) = (*,/, «,/)Ψ,

(1.41) dψ = -φΛψ.

The geometric interpretation of these equations is the standard one in the

theory of moving frames (see [3]). We will make extensive use of these

equations to study submanifolds in O.

2. Spin(7) geometry in O and Im O

In this section, we investigate some of the special properties of O with its

Spin(7)-structure. We begin with the geometry of the oriented 2-planes in O.

Let G(2,0) denote the Grassmannian of oriented 2-planes in O. It is known

that G(2,0) is a manifold of dimension 12 (over the reals) and is connected

and simply connected (see [14]). Spin(7) acts on O and therefore has a natural

induced action on G(2,0). We may even define a map ξ: Sρin(7) -» G(2,0) as

follows:

First, we imbed G(2,0) -> Λ2

RO via the Plϋcker imbedding: If β E G(2,0)

is an oriented 2-plane and JC, y E β form an oriented orthonormal pair, then

we identify β with x Λ y E Λ2

RO. Second, if g E Spin(7) is given, we let

(n, f, n, f) = (N, E9 N, E)g be the associated admissible basis. Because g E

5Ό(8), n — \(a — ib) where (a, b) E O X O is an orthonormal pair. We then

define

(2.1) ξ(g) = aΛb = -2in A n.

Proposition 2.1. The mapping ξ: Spin(7) -> G(2,0) is surjective and makes

Spin(7) into a principal right U(3)-bundle over G(2,0). Thus

Spin(7)/£/(3)-G(2,O).

Proof. We compute the differential of ξ as

(2.2) dξ = -2/(/£) +fθ)Λn-2inΛ (fθ + / ξ ) .

It follows that ξ has rank 12 at every g E Spin(7). Because Sρin(7) and G(2,0)

are compact and dimRG(2,O) = 12 surjectivity follows. For g, h E Spin(7),

we obviously have the formula

(2-3) ξ(gh) =
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where A2h: Λ2

RO -* Λ2

RO is the second exterior power of h: O -> O. It follows

that the fibers of ξ are the left cosets in Sρin(7) of the stabilizer of any

β E G(2, O), say H C Spin(7). The homotopy sequence of the fibration H ->

Sρin(7) -> G(2,0) plus the fact that G(2,0) and Spin(7) are connected and

simply connected shows that H is connected and its Lie algebra is defined by

the equations θ = ί) = 0 (by (2.2)). This implies that H = ί/(3) by inspection,

q.e.d.

It is well known (see [7]) that the Grassmannian of oriented 2-planes in any

Euclidean vector space has a natural complex structure. For our purposes, it is

more convenient to take the conjugate complex structure to the one used by

Chern. (By our conventions, the Gauss map of an oriented minimal surface in

E" is holomorphic.) We describe the complex structure on G(2,0) by saying

that a complex valued 1-form α on G(2,0) is of type (1,0) if and only if £*(α)

is a linear combination of the forms (ί)1, f)2, ί)3, 01, θ2, θ3}. Examination of the

structure equations

rfϊ) - -ή Λ ip - K A £) - [θ ] Λ flf,
( l . J o ) _ _ _

^ = _ ί Λ / p - [ ί ] Λ t | - κ Λ ί

shows that this is a well-defined concept and that the almost complex structure

defined above is actually integrable.

A special feature of O is the cross product (1.28). Because the cross product

is alternating (x X y = -y X x) it follows that it induces a well-defined map

Λ 2O -> Im O. If x9 y E O form an orthonormal pair, (1.29) implies that

(xXy,~xXy)= (yx, yx)= (y9y)(x9x)= 1

so x X y E: S6. Moreover the identities

follow from (1.29) when x and y are orthonormal, showing that the 2-plane

a = x Ay is a complex line in OyXx. Thus, we have a map γ: G(2,0) -> *S6

defined by

(2.5) y(aAb) = bXa = -aXb

when a, b E O are orthonormal. This map has the property that, for a E

G(2,0), γ(α) is the unique imaginary unit so that a is a complex line in O γ ( α ) .

In particular, γ is surjectiυe and y~\u) is canonically identified with CPM

3, the

projectivization of OM — C 4 .

We have the formula

(2.6)
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where (n, /, n, / ) = (N, E, N, E)g. Using (2.4) we get the identity

(2.7) n(2in X n) = in.

Proposition 2.2. For any admissible basis (n, f, n, / ) , (n, fx, f2, f3) is a

unitary basis2 of02inX-. The mapping γ ° £: Spin(7) -> S6 is surjectiυe and gives

Spin(7) the structure of a principal right SU(4)-bundle over S6. In fact (γ © ξ)~ι( u)

corresponds to the space of special unitary bases of Ou with its canonical

Hermitian structure.

Proof. If we differentiate (2.7) and compare coefficients of θ, we get, using

(1.33) that

(2.8) f(2in X ϊ ) = if.

It follows from (2.7) and (2.8) that n9 fl9 f29 and/ 3 are (1,0) vectors in C ® R O M

where u — 2inXn. Since Spin(7) C 5Ό(8) and since N, Eλ, E2, E3 are orthog-

onal and Hermitian orthogonal, it follows that n, fl9 /2, /3 must also form a

unitary basis of OM. The surjectivity of γ © ξ is clear since each map separately

is known to be suijective. Computing the differential of γ ° £, we get

(2.9) d(y o ξ) = 2i(dn Xn + nXdn) = 2i((n Xf)θ + (/X n)θ ),

where we have used (1.35) and (1.33). It follows that the fibers of γ o ξ are

(unions of) the leaves of the foliation determined by the real and imaginary

components of 0, and are therefore codimension 6. In fact, the remaining Lie

algebra when we set θ = 0 is clearly su(4) C spin(7), so the leaves are the left

cosets of SU(4) in Spin(7). Again, because Spin(7) and Sβ are connected and

simply connected, it follows that the fibers of γ © ξ must be connected. We

conclude that

(2.10) Spin(7)/Sί/(4) =* S6.

The equivariance of γ © ξ is easily seen to be

(2.11) r "€(«*) = x(*)(τ "€(*))•
The above remarks all combine to show that if g G (γ © ξy\u)9n then

(w, /, w, / ) = (N9 E, N9 E)g is a special unitary basis of OM. q.e.d.

These remarks have an interesting consequence for G(6,O), the Grassman-

nian of oriented 6-ρlanes in O. Using the metric and the natural orientation of

O, we may associate to each oriented six-plane ξ G G(6,0) its oriented

orthogonal 2-plane ξ± E G(2,0). Since ξ± is a complex line in Oy^±^ and

2 Recall that if Vm is a real vector space with inner product and orthogonal complex structure /,
then Λ1 0(K) = {υ e C ® R V\Jυ = iv], and a unitary basis of V is really a complex basis
{*?,,• ,em) of AU0(V) which satisfies (e, , *,•>= ^δ/y.
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because Ju is orthogonal for all u E S6, it follows that ξ is a complex

three-plane in Oγ(ξ±y We refer to the complex structure induced on ξ in this

way as the canonical complex structure of ξ. Since ξ also inherits a metric from

O, we see that ξ has a natural Hermitian structure. Referring to the structure

equations (1.35) we see that if (n, /, ή, f) and (n'9 /', «', /') are two admissi-

ble bases with -2in Λ n = -2in' Λ nf — ζ-1 E G(2,0), then there exists a

unitary matrix A which is 3 X 3 so that

(2.12) n' = (detΛ)Λ, f'=fA.

It follows that we have a canonical identification

(2.13) f ^ Λ 3

c Γ ,

a fact we will use later.

We will also have occasion to study the geometry of Im O under a slightly

smaller group than Spin(7). We get G2 C Spin(7) be the subgroup which

leaves 1 E O fixed. Thus G2 is a compact subgroup of Spin(7). If we define

p: Spin(7) -> SΊ C O by setting p(g) — n + n where («, /, «, / ) =

(N, E, N, E)g, then clearly / ^ ( l ) = G2. Computing the differential of p, we

get

(2.14) dp = i(n - n)p +/(ί) + θ) + / ( | + ff ).

It follows thaip has rank 7 and gives Spin(7) the structure of a G2-bundle over

SΊ. The connectedness and simple-connectedness of Spin(7) and S 7 shows that

G2 must be connected and that the Lie algebra of G2 is obtained from that of

Spin(7) by setting p = ί) + θ = 0.

For g £ G2, we say an admissible basis of C ® R O , (« ,/ ,« ,/) =

(N9 E, N, E)g is G2-admissible. Since n -f n = 1 for such bases, we remove

this information and set u = i(n — ή). We then have the following proposition

whose proof is an easy computation and is omitted.

Proposition 2.3 (The Structure Equations of G2). The map u: G2 -> S6

makes G2 into a principal right SU(3)-bundle over S6. In fact, we have the

structure equations

(2.15) du=f(-2iθ)+f(2iθ),

(2.16) df=u(-H'θ)+fκ+f[θ],

(2.17) dθ = -κΛθ+ [θ ]AΘ,

(2.18) dK = -K Λ K + 30 Λ ' 0 -*θ Λ ΛΓ3.

It follows that S6 possesses a unique nonintegrable almost complex structure so

that a complex-valued l-form a E Ωc(S 6) is of type (1,0) if and only ifu*(a) is a

linear combination of{θλ, θ2, θ3}.
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Remark. The existence of an almost complex structure on S6 will also

follow from the next section.

Finally, we will need to study the structure of the Grassmannian of oriented

2-planes in Im O, G(2, Im O). We define the map η:G2-» G(2, Im O) by

(2.19) η(<?) = -2i/1Λ/1.

One easily verifies that η gives G2 the structure of a principal right t/(2)-bun-

dle over G(2, ImO). Since τj(g) is a complex line in O 2 / n X^, and since

n + h~ = 1, we easily compute that 2in X n — i(n — n) = u so η(g) is a

complex line in Ott. The structure equations (2.15) and (2.16) then show that

η(g) is a complex line in TUS6 with the canonical almost complex structure of

Proposition 2.3. It follows that there exists a unique map η: G(2,ImO) -> S6

satisfying u — π o η. Unfortunately, π^ is not complex linear on the tangent

spaces, so it is not a map of almost complex manifolds. The following

proposition displays the structure of this map vis a vis the almost complex

structures of G(2, Im O) and S6. It will be used extensively in §4.

Proposition 2.4. The natural complex structure on G(2,0) is described as

follows: If a is a compact \-form on G(2, ImO), then it is of type (1,0) if and only

ifη*(a) is a linear combination of {κ\, κ\, θι, θ2, θ3}. Moreover, the holomorphic

tangent bundle of G(2, Im O) has a natural G2-invariant splitting into complex

subbundles Lo, L+ , L_, where Lo = ker7r#, L+ is the space of vectors on which

π^ is complex linear, and L_ is the space of vectors on which π^ is complex

anti-linear. If we get £ 0 Θ t+ θ £ _ = S21'°(G(2,ImO)) be the splitting dual to

Lo θ L + ΘL_= Γ1'°G(2, ImO) then we have the characterizations

(2.20) e o= {aGίlι

c\r(a)=0mod{κlκ3

x)},

(2.21) e + = {α E Ω^ I η*(a) = 0 mod(tf2, θ3)},

(2.22) £_= {a G Ω^ | η*(a) = 0 mod θ1},

where we have written Ωι

cfor Ωj:(G(2,ImO)). Finally, the natural map CPTS6

-> G(2,ImO) (which arises by simply regarding a complex line λ C TUS6 as an

oriented 2-plane in ImO) is a diffeomorphism and we have a commutative

diagram

CPTS6^G(2,lmO)

x/
where β is the base point projection.

Proof. These are all elementary calculations using the structure equations

and will be left to the reader.
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3. Oriented 6-manifolds in O

Let M 6 be an abstract oriented 6-manifold with a smooth differentiate

structure. Let X: M6 -» O be a smooth immersion of M 6 into O. We say that

an admissible frame (y; n, /, n, / ) G ̂ is adapted at/? G M if X(p) = y and if

(/i, /2, /3) is a (1,0) basis of Λ^T^M6) with its induced orientation from M6

and complex structure induced from right multiplication by 2 in X n. We let

^X(M) denote the space of pairs (p,(y; n, /, n, /)), p G M 6, (>>; n, /, π, / )

G f where (>>; Λ, /, «, / ) is adapted at p. We call ^ ( M ) ί/ie adapted frame

bundle of the immersion X: M6 -» O. We have a commutative diagram:

P

M —>O

We see that p: ^X{M) -> M is a right l/(3)-bundle over M which may be

regarded as a subbundle of the GL(6, R) bundle of the tangential frames of M.

We simply refer to this G-structure as the ί/(3)-structure on M induced by the

immersion X: M -> O. The reader should be aware that other authors have

called such structures "almost hermitian".

The forms on <% pullback under X* to give forms on ̂ X(M) which we

continue to denote by the same letters. The following basic theorem follows

immediately from the theory of moving frames and the structure equations of

O (see §1, (1.35), (1.36), (1.40), (1.41)).

Theorem 3.1. Let X: M6 -^ O be an oriented immersion and letp: %X(M) -»

M be the adapted frame bundle. Then M inherits a U{2>)-structure where ^X(M)

is the bundle of unitary frames and whose features are described as follows:

(ϋ) A form a G 9}C{M) is of type (1,0) // and only if p*(a) = 0

modίω 1 , ω 2 , <o3).

(iii) A canonical 2-form, Ω, of type (1,1) is associated to the U(3ystructure and

is characterized by the condition p*(Ω) = (i/2)'ω Λ ω.

(iv) The metric g on M induced by Xfrom O satisfiesp*(g) ='ω ° ω.

(v) The structure equations hold:

(3.1) dx=fω+fi,

(3.2) dn. = nip+fί)+fθ9

(3.3) df= -n'ϊ) +fκ- n'θ+f[θ]9

(and the equations gotten from these by conjugation).
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We omit the proof.
Of course, a ί/(3)-structure has many invariants and those ί/(3)-structures

which satisfy extra conditions are of particular interest. Among these, the most
important for us will be the following: A £/(3)-structure on M will be said to be

(i) complex if the underlying almost complex structure is integrable to a
complex structure (by the Newlander-Nirenberg theorem, this is equivalent to
the condition da = Omod Qιfi(M) for all a E Qιfi(M); see [7]);

(ii) symplectic if the canonical two-form Ω is closed;
(iii) co-symplectic if Ω is co-closed, i.e., δΩ = 0 (this is equivalent to either of

the conditions </Ω2 = 0 or d * Ω = 0);
(iv) Kάhler if it is both complex and symplectic;
(v) co-Kάhler if it is both complex and co-symplectic.

Note that symplectic implies co-symplectic, but not conversely (see below).
Complex £/(3)-structures are often called "Hermitian".3

Our analysis of t/(3)-structures induced by oriented immersions X: M6 -> O
begins with the second fundamental form. If we differentiate the equation
v — 0 on (SX(M\ the structure equations (1.41) give

(3.4) Ί Λω+'0Λω = O.

Applying Cartan 's Lemma, we conclude that there exist 3 X 3 matrices of
functions, A , B, C on (§X(M) (with complex values) satisfying

(3.5) A=Ά, C='C,

(5) = (5 I)(S)
Using these formulae, we easily compute the second fundamental form of

X: M6 -̂  O as an Euclidean immersion as

(3.7) II = -2Re{( ' | o ω +'« o «)π}.

Classically, one views II as a linear map II: S2(TM) -» NM where TM is the
tangent bundle of the immersion X Using the almost complex structure on M
and the orientation of the 2-plane bundle NXM9 we have canonical splittings

C <8>R S2{TM) = S£°(M) Θ S£ι(M) Θ S<P(M),

C ΘR NM = Nι'°M θ N0ΛM9

where the bundles on the right are complex vector bundles over M. For
example, Slfq(M) for q E M is spanned by products of the form eι o e2 where

3 The reader should be aware that other terminology has been used for these concepts. Compare
[13], [2] and [10].
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ex and e2 are (1,0) vectors in TCqM. If we extend II complex linearly to a map

C Θ R S2(TM) ->C<S>R NM, and split it into components via the above split-

tings, we see that II has three independent pieces, the rest being determined by

symmetry and reality of II. These components are I I 2 ' 0 : S 2 0 (M) -> (Λf) ->

Nι-°M given on ^

(3.7a)

II1 '1: Sfeι(M) -> NlfiM given by

(3.7b) II 1 ' 1 = ( - ' ω o 'Bω - ' ω o Bω)n,

and II 0 ' 2 : S£2(M) -* Nι>°M given by

(3.7c)

From this, one easily computes the trace of II with respect to the first

fundamental form I = 'ω ° ω as

(3.8) H = ^tΓjII = - j ( t r B n + tn Bn).

H is often called the mean curvature vector of the immersion X. The above

discussion gives us a geometric interpretation of the components of II with

respect to the ί/(3)-structure. We will now relate these components to the

special conditions discussed above for ί/(3)-structures.

Theorem 3.2. Let X: M6 -> O be an immersion of the oriented manifold M6.

The induced U(3)-structure is complex if and only if B — 0.

Proof. By Theorem 3.1 and the Newlander-Nirenberg theorem, it suffices

to show that the condition B — 0 is equivalent to the condition dω1 = 0

modtω1, ω2, ω3} for i = 1,2,3 (note that these are equations on ^X{M)).

We compute by (1.41) and (3.6) that

dω = -K A ω — [θ ] A ω

= - [θ ] A ω modlω 1, ω2, ω3}

= -['Bω] A ω modfω1, ω2, ω3}.

If B = 0, then we obviously have dω = 0 modίω1, ω2, ω3} so one direction is

done. Conversely, if dω = 0, then we must have ['Bω] A ω — 0. If we set

'Bω — β — (β') where the βι are 1-forms, this equation becomes the equations

βi A ωJ = βJ A ωι

for all /, j . Since ω1 Λ ω2 A ω3 φ 0, this easily implies /?' = 0 and hence

B = 0.
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Theorem 3.3. Let X: M6 -^ O be an immersion of an oriented manifold M6.

The induced U(?>)-structure is symplectic if and only ifC — 0 and tr B — 0.

Proof. Since p: WX(M) -» M is a submersion, we have dQ = 0 if and only

if φ * Ω = 0. We compute using (1.41) and (3.6)

dp*Q = (//2)('</ω Λ ω -'ω Λ </ω)

= (i/2)(-ΐ5 Λ f ί j Λ ω + ^ Λ [0] Λ ω)

= ( i / 2 ) ( ' w Λ [ % ] Λ ω - S Λ p ί ω ] Λ ω)

+ (i/2)('ω Λ[Cω] Λ ω - ^ [ C ω ] Λ ω)

= -Im((tr5)ω1 Λ ω2 A ω3)

-f (ί/2)('ω Λ[Cω] Λ ω - Ώ Λ[Cω] Λ ω).

Separating the forms out by type we see that dti = 0 if and only if tr 5 = 0

flwd 'ω Λ [Cω]ω = 0 (by (1.36a)) which clearly implies C = 0 since the ω1' and

the ωι are independent.

Theorem 3.4. Let X: M6 -^ O be an immersion of an oriented manifold M6.

The induced U(3)-structure is always co-symplectic.

Proof. Using the formula for JΩ developed in the last proof, we compute

dQ2 = -I'ίo Λ ω Λ f ω Λ [Cω] Λ ω - ΐ Λ [Cω] Λ «) .

Separating the equation by type we see that dQ,2 = 0 if and only if

'ωΛωΛ (^[Cω] Λ ω) = 0

or

'ωΛωΛ ('ω[ω]Cω) = 0

which is equivalent to

ω1 Λ ω2 Λ ω3 Λ ('ω Λ Cω) = 0.

Since C is symmetric, we have 'ω Λ Cω = 0. Hence dΩ2 = 0 is an identity. By
our previous remarks, we see that this is equivalent to the co-symplectic
condition.

Theorem 3.5. Let X: M6 -^ O be an immersion of a connected oriented

manifold M6. The induced U(3)-structure is Kάhlerian if and only if X(Mβ) is a

complex hypersurface in Oufor some fixed u E S6.

Proof. By Theorems 3.3 and 3.2 we see that M 6 is Kahler if and only if

B = C = 0. By (3.6) we see that this is equivalent to θ = 0 on ΦX(M). For any

(q,(y; n, /, «, / ) ) G ΦX(M), we know that X^(TqM) is complex with respect

to the complex structure Ju where u — 2in X n, by Proposition 2.2. Equation

2.9 then shows that u = 2in X n is locally constant on Φx(λf) since θ = 0.
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Because M is connected, <SX(M) is connected as well. Thus u — 2in X n is a

constant so that XJ<TqM) is a complex 3-plane in Ou for all q e ΛΓ. Thus

X(M) C OM is a complex manifold.

Corollary 3.6. // AΊ M 6 -> O is an oriented, connected immersion so that the

image X(M) lies in a hyperplane and the induced U(3)-structure is Kahler, then

X(M) lies in a 6-plane.

Proof. Since X(M) C Ou is a complex hypersurface and since any 7-plane

in OM contains a unique C 3, it follows that X(M) C C3 C Ou.

Historical Remarks. Theorems 3.2 and 3.3 as well as Corollary 3.6 were

derived by Calabi under the assumption that X(M) C ImO. Also, compare

Fukami and Ishihara [9]. Theorems 3.2, 3.3 and 3.4 as well as Corollary 3.6

were derived by Gray in [10], though his terminology is much different. Gray

also proves that if M 6 C l m O and dίl = 0, then M6 is flat (compare Theorem

3.13 below, which implies Gray's result). In addition, Gray considers other

combinations of conditions on the A, B, and C. We will not discuss these.

Further Remarks. The above theorems are not complete in the sense that

we do not yet know that there exist any immersions X: M6 -> O whose induced

£/(3)-structure is complex but not Kahler or which is symplectic but not

Kahler. In [2], Calabi shows how to construct immersions X: M6 - ^ I m O

which are complex (but not Kahler) starting with an arbitrary minimal surface

S C R3 C I m O (where R 3 C l m O is an associative 3-plane) and letting M6 =

S X (R 3 )^ with Jίfjust the natural inclusion X: S X (R3) C ImO. Since minimal

surfaces in R3 depend on 2 arbitrary functions of 1 variable (in Cartan's sense,

see [4]), this gives a class of complex (but not Kahler) immersions depending

on 2 arbitrary functions of 1 variable.

Since the complex and symplectic conditions represent overdetermined sys-

tems of partial differential equations for the immersing function X: Mβ -* O,

and moreover, since these equations arise naturally in the moving frame

context, we will apply the theory of differential systems to these existence

problems. We start with a proposition about complex immersions.

Proposition 3.7. Let X: M6 -^ O be an immersion of an oriented manifold

into O. // the induced U(3)-structure is complex, then the rank of C is at most 1.

Moreover, if U C M is the open set where C φ 0 and U Φ 0 then there exist

functions a, c on ΦX(U) with values in M 1 X 3 (C) which are well defined up to sign

and which satisfy

(3.9) C^cc,

(3.10) A =±('a c+tc a).

(Note that the right hand sides are 3 X 3 symmetric complex matrices so this

makes sense.)
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Remark. A point q G M where C = 0 will be called a Kahler-umbilic (or
A -̂umbilic). Thus, Theorem 3.5 says that if V C M is an open subset of a
complex X.M^O consisting only of ^Γ-umbilics, then X(V) is actually
Kahler and a complex hypersurface in OM for some u.

Proof. Suppose X: M6 -> O is complex. Then by Theorem 3.2, we have
B = 0, so

(3.11) 5 = Λ ω , θ = Cω.

Differentiating the first equation and using (1.36) we get

(3.12) dA A ω + Λ Λ </ω = rfξ = - [0] Λ θ + ξ Λ /p - ic Λ ξ.

In (3.12), the only term of type (0,2) is [θ] A θ. Since the forms {ω1', ω' | i =
1,2,3} are independent, we get

(3.13) [ ί ] Λ ί = 0.

This is equivalent to the equations θi Λ ΘJr = 0 for all /, j . Thus the θi are all
multiplies of a single form. Since θ = Cω and the ω1 are independent, it follows
that C has rank 1 or 0. Since C ='C, it follows that there exists a Aflx3(C)-val-
ued function c on (SX(M) uniquely defined up to sign satisfying C ='cc.

The case C = 0 is covered by Theorem 3.5, so let us assume that C ^ 0 and
restrict attention to the open subset where C Φ 0, say U C M. By passing to a
double cover of ¥X(U), we may choose c smoothly (see the remark at the end
of the proof). Differentiating the second equation of (3.11) we get

(3.14) < / C Λ ω + Cdω = dθ = -θ A ip - [θ]A^-κAΘ.

In (3.14), the only term of type (0,2) is [θ] A ί). Thus

(3.15) [θ] A ί) = [θ ] A I = [Cω] Λ Aω = 0.

Elementary linear algebra using (1.21) then establishes the result that there
exists a unique a on $X(U) with values in Λflx3(C) satisfying (3.10). q.e.d.

Remarks. For application to Theorems 3.8-3.12, let us carry these calcula-
tions a little further. If we substitute C =*cc and A = j('ac +'ca) into (3.12)
and (3.14) respectively, we may collect and cancel terms to rearrange these
equations in the forms

(3.14') 'σΛcω+'c(σΛ<o) = 0,

(3.12') V Λ cω +ιc(τ A ω) +'σ Λ aω +'ao A ω = 0,

where we have set

(3.16) σ = <fc-c(ιc +

(3.17) τ = da-a(κ- (3//2)p) -
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Applying linear algebra and Cartan's lemma, we conclude from (3.12') and

(3.14') that there exist M 1 X 3(C) valued functions r, s on ΦX(U) (uniquely

defined) so that

(3.18) a =

(3.19) T = tω('cr + \'rc +'as + jsa).

The presence of the \ factor in (3.16) and (3.17) shows that c and a change sign

if they are transported around a generator of πx(U(3)) — Z in the fibers of

p: ΦX(U) -> U. Thus c and a represent "spinor" quantities (rather than tensor

quantities) on M. Equations (3.16-3.19) may then be regarded as expressing

the fact that s is the covariant derivative of c and r is the covariant derivative

of a. This explains why we must double cover ΦX(U) in order to get c and a

well-defined.

Using this last proposition, we see that for a complex immersion X: M6 -> O

which is free of Kahler-umbilics, the formulas (3.7) simplify to

II2'° = - ( α ω ) o ( C ω K

(3.20a, b,c) II1'1 = 0,

Π°'2 = - ( c ω ) o (cω)n.

With this in mind, we define the asymptotic subbundle of the immersion

X: M6 -> O by

(3.21) &(M)= {υ(ΞTM\cω(v) = 0}

and the bi-asymptotic subbundle by

(3.22) <$>(M) = ( t )G TM\cω(V) = aω(v) = 0}.

Note that because I I 2 0 and II0'2 are well defined on M, &(M) and ®(M) are

well defined. ®(Af) need not have constant rank since aω A cω can vanish

along a sub variety (or be identically zero, for that matter). However, %(M)

has constant rank on a dense open set in M. Note also that &(M) C TM is a

complex subbundle of complex rank 2, while %(M) Q &(M) may have either

complex rank 1 or 2.

Theorem 3.8. &{M) is an integrable holomorphic subbundle of TM. The

image of each leaf of the associated holomorphic foliation under the immersion

X: M6 -> O is (an open subset of)a real 4-plane in O. On the open set where

%(M) has constant rank, it, too, is an integrable holomorphic subbundle of TM.

If r k $ ( M ) = 1, then the leaves of the associated holomorphic foliation map

under X to 2-planes is O.
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Proof. Let f ^ M ) C &X(M) be the subbundle defined by the condition

that {/2, f3) gives a (1,0) basis of XJ((l(M)), i.e.,/2 and/3 span the asymptotic

subspaces in X{M). <5$XM) is clearly a 1/(1) X 1/(2) bundle over M. We

restrict all of our forms on ΦX(M) to φ£\M). By definition, cω Λ ω1 — 0 so

c — (c l50,0) for some complex valued function q on ^^(Λf), q T^ 0, and

cω = qω1. If we write ^ = ( j l 9 J2»
 S3% the equations (3.16) and (3.14) combine

to give

(3.23) (έfc,,0,0) = cx(κ\ + ip + ^ω 1 + ^ ω , /c2 + ^ω 1 , κ3 + j 3 ω ! ) .

In particular, we get

(3.23') κι

2 = -s2ω\ κ\ = -s3ω
ι.

Also, (3.11) reads

(3.24) θx=c2

xω
ι, Θ2 = P = O.

Using (1.41) and (3.23) we compute

(3.25) d(cxω
x) = (\p - \sω) Λ c,ωι.

It follows that Cjco1 = ceo is well defined on M up to a complex multiple of

modulus 1 and that its annihilator &(M) is a holomorphic integrable subbun-

dle of ΓM. Of course, the leaves are characterized by the condition ω1 = 0.

If we regard G(4,0) as imbedded in Λ4

RO by the Plϋcker imbedding, then

the function -4/i Λ n Λfλ Λfx: ^\M) -> G(4,O) C Λ4

RO assigns to each

adapted frame the 4-plane which is orthogonal to X^(&q(M)) where q G M is

the base of the frame. We may compute the differential of this function as

</(-4wΛ Λ Λ / ; Λ / J ) = -4(f2d2cxω
ι +/ 3ά 3c 1ω 1) Λ i Λ / , Λ ^

-4« Λ (f2a2cxω
ι + f3a3cxω

x) Λfχ Λfχ

( 3 * 2 6 ) -4n Λ n A ( / ^ ^ + f3s3ω
ι) A fχ

-4nAHAfχA( f2s2ω
ι + f3s3ω

ι).

It follows that on an integral of ω1 = 0, d(-4n A n Afx Afχ) — 0 so that the

normal 4-plane field to the image of each leaf of ω1 = 0 is constant. It follows

that the image of each leaf under X is (an open subset of) a 4-ρlane in O.

We now turn to ®(M) C &(M). If aω A cω = 0, then ®(M) = &(M) so

there is nothing to prove. Hence we assume aω A cω ^ 0 and restrict to the

open set where aω A cω ψ 0. We define f^2 )(M) c ^ 1 } ( M ) to be the sub-

bundle defined by the extra condition that/3 gives a (1,0) basis of XJβ>{M)).

<5£\M) is a ί/(l) X ί/(l) X t/(l)-bundle over M. We restrict all of our forms

to 9^2)(M). By definition, the span of {cω, aω} is the same as the span of

{ω1, ω2}. Thus, there exist complex functions al9 a2 on f^2 )(M) with a2 φ 0
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satisfying a = (al9 a2,0). Examining (3.17) and (3.19), we get the analogue of
(3.23')

(3.27) *l = -S3<*2-(cιr3/a2)ωι.

Also, using (3.16-3.19), we compute that

(3.28) dcω = d aω = 0 mod{cω, aω} — (cυ1, ω2}.

Thus the bundle % is holomorphic and integrable. The map (-2//3Λ/3):
^ 2 ) (M)-+G(2,O) assigns to each element of ^2)(M) the two-plane
XJβbq(M)) where ^ G M i s the base of the frame. Its differential is

d(-2if3 Λ/3) = 2/(/Λco1 + f2(s3ω
2 + (cxr3/a2)ω1)) Λ/3

(3.29) + 2//3 Λ (fχs3ω
ι + f2(s3ω

2 + {cxf3)/a2)ω2)

-2/(/ 2c 1ω 1)Λ/ 3-2/(/ 2c 1ω 1)Λ/ 3 .

It follows that along the leaves of ω1 = ω2 = 0, the tangent plane of the image
in O is parallel, hence the image is (an open subset of) a 2-plane in O.

Remarks. In view of this result, we will refer to the holomorphic foliation
associated to &(M) as the asymptotic ruling of M. We say that X: M6 -> O is
asymptotically degenerate if$(Af) = ($(M) and we say that the immersion is
asymptotically parallel if the ruling is parallel in O, i.e., the images of the leaves
form a parallel family of 4-planes in O. Calabi's examples are asymptotically
parallel, so this family cannot be empty. Referring to (3.26), we see that

(i) X: M6 -> O is asymptotically degenerate if and only if aω Λ cω = 0,
(ϋ) X: M6 -* O is asymptotically parallel if and only if aω Λ cω — sω Λ cω

= 0.
The notion of bi-asymptotic ruling for complex, non-Kahler, asymptotically

nondegenerate immersions is clear. For such an immersion, the bi-asymptotic
ruling cannot be absolutely parallel because of the presence of the terms
involving cλω

x in (3.29). More directly, this is not possible because if each of
the planes X^(TqM) contained a common complex line then they would all be
complex with respect to a fixed Ju (i.e., the one which makes the common
2-plane complex) so the immersion would have to be Kahler. The correct
notion of bi-asymptotically parallel is that the lines in each asymptotic leaf are
parallel. By (3.29), we have

(ϋi) X: M6 -> O is bi-asymptotically parallel if and only if aω Λ cω φ 0 and
sω Λ aω Λ cω — 0.

We want to introduce one more special class of complex, non X-umbilic
immersions X: M6 -> O.
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For any oriented immersion X: M6 -» O, we define a map ξx: M6 -» G(2,0)

where we take the oriented normal:

(3.30) ^

We have

Proposition 3.9. The map ί x: Mβ -> G(2,0) is anti-holomorphic with respect

to the natural complex structure on G(2,0) and the almost complex structure on

M6 if and only if the immersion is Kάhler. It is holomorphic if and only if

A = B = 0. In particular, any such immersion where X(M) is not a 6-plane is

complex, asymptotically degenerate, and non-K-umbilic.

Proof. By (2.2) and the discussion following, the forms (ί)1, θj) generate

the pullbacks of the (1,0) forms on G(2,O) under the canonical map 5'->

G(2,O) which sends (y, n, f, n, f) to the oriented 2-plane spanned by n. It

follows from (3.30) that ξx is anti-holomorphic if and only if ϊj = θ = 0

modfω1, ω2, ω3} holds on (ΰx{M). But this is clearly equivalent to B = C = 0

in (3.6), and by Theorems 3.2 and 3.3 this is equivalent to Kahler.

To continue, ξx is holomorphic if and only if ί) = θ = 0 mod{ωι, ω2, ω3},

which is equivalent to A — B — 0. q.e.d.

Thus, our last special class of complex immersions is given by

(iv) X: M6 -> O has holomorphic normal Gauss map if and only if aω = 0

(and the immersion is complex).

We now proceed to investigate the existence and "generality" of these

various types of complex immersions in the analytic category. For this, we will

use the theory of exterior differential systems and the Cartan-Kahler Theorem.

For more details on the methods used, the reader should consult [1].

Theorem 3.10. Let a: R -> O be an analytic immersion and let β: R -» G(2,0)

be an analytic immersion satisfying the two conditions

(i) a'(t) is orthogonal to β(t)for all t G R.

(ϋ) y o β Jl -* S6 is an immersion.

Then there exists a unique connected analytic immersion X: M6 -> O which is

complex, so that α(R) C X(M6), and so that β(t) is orthogonal to X(M6) at

a(t) G X(M6).

Remarks. From now until Theorem 3Λ2,we assume all data are analytic and

do not mention this point again.

If X: M6 -> O is a non-Kahler, complex immersion, we may select ά: R -> M6

to be an immersion transverse to the asymptotic ruling, s e t α ^ X o ά i R ^ O

and let /?(*):R-> G(2,O) be given by β(t) = nS(t)M. The fact that a is

transverse to the asymptotic ruling implies that γ <> β = (2I/I X n) o ̂ 8 is an

immersion so the hypotheses are fulfilled. According to Theorem 3.10, the pair

(a, β) determine X(M6) completely. Intuitively, a single generic curve in
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X(M6) together with the knowledge of its normal along the curve completely
determines X(M6), or at least, the connected component which contains the
curve.

We may use this theorem to determine the "generality" of the complex,
non-Kahler immersions X: M6 -> O. Fix a three-plane, R3 C O (since Spin
acts transitively on G(3,0), it does not matter which one). The unparametrized
curves in R3 "depend on 2 functions of 1-variable." Choosing a 2-plane field
along such a curve which is normal to the curve along the curve requires 10
functions of 1-variable since dimG(2,7) = 10. The genericity assumption (ϋ) in
Theorem 3.10 only removes a small set of such choices. Thus, we can specify
the essential (α, β) information using 12 functions of 1-variable. This gives a
class of complex, non-Kahler submanifolds in O depending on 12 functions of
1-variable. One might expect, naively, that the "generic" complex, non-Kahler
submanifold intersects R3 in a curve (by transversality). Thus, one might guess
that the complex, non-Kahler submanifolds of O depend on 12 functions of
1-variable. We will show that this is the case in the proof below.

This is in contrast to the case of complex, Kάhler submanifolds of O. By
Theorem 3.5, these are (up to constants) the same as complex hypersurfaces in
C4. Locally, these depend on 1 holomorphic function of 3 complex variables
(or equivalently, 2 real functions of 3 real variables). This is one of those cases
where the "degenerate" solutions of a system of PDE form a larger class than
the "generic" solutions.

Proof of Theorem 3.10. Let Ξ = ^X M1X3(C) X (M1 X 3(C) - {(0)}) and
let a: Ξ -> M1X3(C) and c: Ξ -» M1X3(C) — {(0)} be the projections onto the
second and third factors respectively.

We let / be the Pfaffian system on Ξ generated by the forms v, v, the
components of θ —'ccω and θ —'ccω, and the components of ί) — \(?ac +'cα)ω
and ί) — \(?ac + 'αΓ)ω. Since / is invariant under conjugation, it may be
regarded as the complexification of a real Pfaffian system of rank 2 + 6 + 6 =
14.

Any complex, non-Kahler immersion X: M6 -> O gives rise, by Proposition
3.7, to an immersion of §^(Aί), the spin double cover of ^X(M) into Ξ, say
X: &X(M) -» Ξ which is an integral of / and on which, the fifteen components
of X*(ω) and X*(κ) are independent.

Conversely, from the theory of moving frames, we see that any integral
Y: N15 -> Ξ of / on which 7*(ω) and Y*(κ) have fifteen independent compo-
nents may be regarded as the restriction of some X: &X(M) -̂  Ξ to an open
subset of &X(M) for some complex, non-Kahler immersion X: M6 -> O for
some M.
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We first prove that / is involutive. We easily compute

(3.31a) dv = dv = 0 mod/,

(3.31b) diθ-'ccω) = - ' σ Λ c ω - ' c ( σ Λ ω ) mod/,

(3.31b) rf(0-'ccω) = - ' σ Λ c ω - ' c ( σ Λ ω ) mod/,

(3.31c) rf(ί)- H'αc+'αOω)

= ~i( 'τ Λ cω + *cτ Λ ω + 'σ Λ aω +*aσ Λ ω) mod /,

(3.31c) d(ί>- {('ac + 'ca)ω)

= -H'T Λ ^ω + ^ τ Λ ^ + '<* Λ ^ + '̂ <> Λ <*0
where σ and T are the forms defined by (3.16) and (3.17) (now, of course, we
regard a and c as independent functions on Ξ).

If we now let v E Txξ be any tangent vector which annihilates / and which
satisfies cω(v) Φ 0, we see from (3.31) that the reduced characters of Cartan,
5/, satisfy

(3.32) *ί = 12, s'a = 0 f o r α > l .

On the other hand, the formulae for the integral elements at a point χ E Ξ are
given by (3.18) and (3.19). Thus the integral elements depend on 12 parameters
at a point (six each from r and s). Cartan's test is satisfied and the system is
involutive.

It follows from the Cartan-Kahler Theorem that any integral curve of / on
which cω Φ0 has a unique extension to a 15 dimensional integral on which ω
and K have 15 independent components. (Note that ω — 0 defines the Cauchy
characteristics of the integral.) Moreover, the 15 dimensional integrals on
which ω and K are independent depend on s[ — 12 functions of 1-variable.

To prove Theorem 3.10, let α: R -* O and β: R -> G(2,0) be given. Select a
framing ά: R -» ^so that

ά(t) = (a(t);n(t),f(t),n(t)J(t)),

where -2m Λ n = /?. Then we have

ά*(v) = ά*(v) = 0,

since a\t) ± β(ί). Moreover, there clearly exist c, a: R -> M1X3(C) so that

α*(5-i('*e+'<»)«) =0,

and we may use these to define a map ά: R -» Ξ which is an integral of /. By
(2.9), the hypothesis (ii) in the theorem guarantees that ά*(cω) φ 0. By the
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above discussion there is a unique extension to a 15 dimensional integral. Two

different choices of framing for a differ by a Cauchy characteristic motion so

they rise to the same 15 dimensional integral.

Theorem 3.11. The class of asymptotically degenerate, non-Kahler, complex

six-manifolds in O depends on 8 functions of one variable. The subclass of those

with holomorphic normal Gauss map depends on 6 functions of \-υariable.

Proof. Let Ξ = f X C X (M 1 X 3(C) - {(0)}) and let λ: Ξ -> C and c: Ξ ->

(Mιx3(C) — {(0)}) be the projections on the second and third factors respec-

tively.

Let / be the system on Ξ generated by {v, v, θ —'ccω, θ —'ccω, ί\ — λθ,

ί) — λθ}. I is clearly the complexification of a real Pfaffian system of rank 14.

If M 6 C O is an asymptotically degenerate, non-Kahler complex submanifold,

then Proposition 3.7 and the remarks following Theorem 3.8 show that there is

a canonical imbedding of &X(M6) (where X: M6 ~> O is inclusion) into Ξ as

an integral of / satisfying the independence condition that ω and K restrict to

¥X(M) so that their fifteen components remain independent. Conversely any

integral of / satisfying the independence condition is (an open subset of) some

ΦX(M) for some asymptotically degenerate, non-Kahler complex submanifold

O. We now study /. Elementary calculation then shows that we have the

following structure equations and their conjugates.

(3.32a) dv = 0,

(3.32b) d(θ-'ccω) = - ( ' σ Λ cω +'cσ Λ «,) mod/,

(3.32c) d(ϊj - λθ ) = - (dλ + 2/pλ)'ccω,

where σ is defined by (3.16). Again, if we select a vector v G TXΞ which

annihilates / and on which cω(t>) Φ 0, the integral element that it spans has

Cartan character s\ — 8. Since 14 + 8 = 22 is the dimension of the Cartan

system of / we see that s'a — 0 for a > 1. Now the formula for the integral

elements at a point is given by (3.18) and

(3.33) dλ + 2ipλ = μ(cω)9

where μ E C is arbitrary (as is s E M1 X 3(C)). Thus the integral elements at a

point depend on s[ = 8 parameters so Cartan's test is satisfied. It follows that

the system is involutive and that the general 15 dimensional integral satisfying

the independence condition depends on 8 functions of 1-variable.

The second part of the theorem follows immediately by restricting I and the

structure equations to {λ Ξ 0} C Ξ. This system is now clearly involutive with

s[ = 6. Proposition 3.9 then shows that these integrals project to O to be

complex, non-Kahler six-manifolds M6 CO with holomorphic normal Gauss

map. Thus they depend on 6 functions of 1-variable.
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Remarks. It is not difficult to show that the information to be specified in
terms of a curve a: R -> O and a normal plane field β: R -» G(2,0) in order
that the associated complex, non-Kahler M6 C O be asymptotically degenerate
or have holomorphic normal Gauss map is much the same as in Theorem 3.11.
However, in order to have asymptotic degeneracy, β must satisfy a system of 4
(ordinary) differential equations and in order to have holomorphic normal
Gauss map, β must satisfy 2 more (ordinary) differential equations. These
differential equations are Spin(7) invariant of course and may be interpreted as
stating that β is an integral of certain differential systems on G(2,0) or on a
first prolongation space of G(2,0).

The Monge characteristics of the Pfaffian systems in Theorems 3.10 and 3.11
project to be the asymptotic rulings of admissible integrals and therefore
depend only on constants. By using the integration techniques which Cartan
developed in [5] for systems of this kind, we see that an essential use of the
Cartan-Kahler Theorem only occurs in the extension of the one dimensional
integral to a two dimensional integral. The remaining extensions along the
asymptotic rulings and the frame directions can be done by ordinary differen-
tial equations alone. Thus the essential partial differential equations required is
a system of nonlinear elliptic partial differential equations for functions of two
variables whose principal symbol is the same as the symbol of the Cauchy-
Riemann equations for a complex curve in C6, C4, and C3. This leads us to
suspect that there may be a method of generating the solutions of these
equations starting with the given data as respectively 6, 4, or 3 holomorphic
functions of 1-variable. This would be analogy with the Weierstrass formulas
for minimal surfaces in R3 in terms of one holomorphic function of one-
variable. We do not yet know whether such formulas exist for the above
problems.

Two problems remain along these lines. One is the problem of determining
the generality of the bi-asymptotically parallel complex, non-Kahler six-mani-
folds in O. We leave this as (a rather involved) exercise for the interested
reader. The other problem is to determine the generality of the asymptotically
parallel, complex, non-Kahler six-manifolds in O. While we could set up the
relevant differential system and show that these depend on 4 functions of
1-variable, a more direct approach is possible. In fact, we can describe these
completely.

First, we describe a special feature of the Spin(7) geometry of O. We already
know that Spin(7) acts transitively on G(2,0) and it is not difficult to verify
that Spin(7) acts transitively on G(3,O). However, Spin(7) does not act
transitively on G(4,O). In fact, the orbit structure is quite interesting. One
particular orbit has been studied extensively by Harvey-Lawson [12]. We may
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describe it as follows: We define a map η: Spin(7) -» G(4,0) by

(3.34) v(G) = -4f2Af2Af3Af3.

This map has the equivariance η(gh) = A4h(η(g)) and, computing the dif-

ferential of η, using (1.36), we see that η has rank 12. The image τj(Spin(7)) is a

compact 12-manifold in G(4,0). Harvey and Lawson show that the 4-planes in

τj(Spin(7)) are characterized by the condition that each of these 4-planes is a

complex 2-plane with respect to the complex structure on O induced by any of

its sub 2-planes. The negative of τj(Spin(7)), gotten by reversing the orientation

on the planes in η(Spin(7)) is another 12 dimensional orbit. Harvey and

Lawson show that G(4,0) - (τj(Spin(7))} U {-η(Spin(7))} is foliated smoothly

by 15 dimensional orbits of Spin(7). -η(Spin(7)) is the manifold of Cay ley

4-planes in O in Harvey and Lawson's terminology. In view of this, we will

refer to the elements of η(Spin(7)) by the epithet "anti-Cayley 4-planes" The

concerned reader will be pleased to know that we will not use this terminology

any further than the next theorem and the remark following. Also, we now

disable the analytic assumption.

Theorem 3.12. Suppose that M6 C O is a complex, non-Kάhler, asymptoti-

cally parallel submanifold of O. Let O = P4 θ Q4 be the orthogonal direct sum

so that the rulings of M6 are parallel to Q4. Both P4 and Q4 are anti-Cayley

planes with the orientation compatible with the rulings of M. Moreover, the

orthogonal projection O -> P4 induces a map M6 -> P4 whose image is an

oriented minimal surface in P4.

Conversely, if we start with an anti-Cayley splitting O = P 4 θ β 4 which is

orthogonal and let S C P4 be a surface, then S X Q4 C O will be complex if and

only if S is minimal. Moreover, if S is minimal (and is not a complex curve in P4

for some one of P4 9s complex structures) then S X Q4 is a complex, non-Kάhler,

asymptotically parallel submanifold of O.

Remarks. A specialized version of this theorem was proved by Calabi [2].

In order to see how his theorem relates to ours, we give a brief discussion of his

result. If Q4 C O is an anti-Cayley subspace and moreover 1 G Q4, then one

can show that Q4 is actually a subalgebra of O isomorphic to the quaternions.

In particular Im<24 = Q4 Π ImO is an "associative" 3-plane in ImO. Calabi

showed that if A3 c Im O is any associative 3-plane and S C A3 is a surface,

then S X (A3)1- C ImO is a complex submanifold if and only if S is minimal.

(In this formula, (A3)1- is the orthogonal 4-plane in ImO, not all of O.)

Clearly our theorem implies Calabi's and shows that, up to a rigid Spin(7)

motion of O, Calabi's examples are exactly those asymptotically parallel

complex, non-Kahler submanifolds which happen to lie in a hyperplane in O.
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As Calabi points out in his examples, the complex structure on S X Q4 is not

the product structure unless S C P 4 is a complex curve in P4 with respect to

one of its canonical complex structures. In this case, of course, S X Q4 is

actually a Kahler submanifold of O. (In Calabi's examples the condition was

that S not be a plane.)

Proof. First suppose that M6 is as in the theorem's hypotheses. Let

^\M) be the reduced frame bundle with/! orthogonal to the rulings (we let

X: M6 -• O simply be inclusion) as in the proof of Theorem 3.8. It follows that

P 4 = -4Λ Λ /ϊ Λ/; Λ/ΐ and Q4 = -4/2 Λ/2 Λ/3 Λ/3. We have already seen

that the asymptotically parallel assumption implies, by (3.26) that

(3.35) a2 = a3 = s2 = s3 = 0.

From this, we conclude, using (3.11) and (3.23'), that

(3.36) 02 = θ3 = 1>2 = f)3 = κ* = κ2

3 = 0 ,

while

(3.37) |1=fl1c1ω1, 0ί=cfaι.

Considering the basic structure equation dx = /ω' + yjω1', we see that if we

project onto P4 orthogonally to Q4 by e: O -» P 4 , we get

(3.38) d(eoχ)=fχω
ι + /1ω

1.

Thus e o x has rank 2 and H is normal to the image while fx is tangential. By

restricting to a leaf of ω2 = ω3 = 0 (the annihilator of the fiber foliation of

e © JC), we see that we get the adapted frame bundle of the image surface in P 4 ,

say S. In particular, fλ is a (1,0) vector for the natural complex structure on S

as a surface (oriented) in P 4 and ω1 is a (1,0) form. By the structure equations

(3.3) and the formulas (3.36) and (3.37) we compute

(3.39) dfλ — -naxcλω
λ — nc\ωλ +/iKi

Since dfx Λfx= Omod Ωι'°(S) (= {ω1}), we see that the tangential Gauss map

S -» G(2, P 4 ) (which associates to each point in S the oriented tangent plane

-2//j Λ/j) is holomoφhic. It is well known that this is equivalent to the

property that S is a minimal surface in P 4 . (Warning: remember that the

complex structure that we use on G(2,R^) is conjugate to the one used by

Chern in [7].)

Conversely, let O = P 4 θ Q4 be an anti-Cayley splitting and let S C P 4 be

an oriented surface. Let M6 = S X Q4. Let 9Γ ( 1 )(M) C S'be the bundle over M

consisting of pairs (x; (n, /, n, /)) so that x G M, -2in A n is the oriented

normal to TXM9 -2ifx Λfx is the oriented tangent to S, and -4/ 2 Λ/2 Λ/3 Λ/3

= β 4 , as an oriented plane. This bundle exists (and has fiber ί/(l) X 1/(2))
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because of our assumption that P4 and Q4 are anti-Cayley. If we differentiate
the equation -4/ t Λ / 2 Λ / 3 Λ / 3 Ξ g 4 w e immediately get

(3.40) Θ2 = θ3 = ί>2 = ί ) 3 - κ2 = κ3 = 0.

(Twelve relations should have been expected anyway since dim τj(Spin(7)) =
12.) This simplifies the structure equations on n and/Ί to

-5 1 o -θι '
κ\ θι 0

(3.41) </(«,/„»,/,) = ( » , / , « , / , )
0 -θι -ip -

θ1 0 ϊ)
1 κ\

Since v — 0, dv — 0, so (1.36) implies

(3.42) -ξ1 Λω1 -θx Λω1 = 0.

So Cartan's lemma implies that there exist a, b, c, so that

(3.43)
« •

Clearly the components ̂ 4, 5, C on M6 are gotten from α, fe, c by multiplying
each of these scalars by the 3 X 3 matrix with a 2 in the upper left-hand corner
and zeros elsewhere. Therefore M6 is complex if and only if b = 0. The
equations (3.41) and (3.43) combine to give

(3.44) /j Λ dfx = ω\bn + bn) Λfx modtω1}

so we see that S is minimal if and only if b — 0 (if and only if M6 is complex).
Similarly, M is Kahler if and only if b — c = 0 (by Theorem 3.5) and this is

equivalent to the condition dπAnAf=dfAnAf=0. This last differential
condition is satisfied if and only if the change of frame along any connected
component of S is complex linear. In other words, S is a union of complex
curves (where each piece may be complex under a different complex structure
o n ? 4 ) .

Finally, if c ψ 0 but b — 0, M 6 is complex and the ζ>4-ruling is clearly the
asymptotic ruling of M. q.e.d.

For our final result of this section we turn to the study of symplectic
immersions. The scarcity of examples other than the Kahler case is explained
by the following improvement of Theorem 3.3.

Theorem 3.13. Any immersion X: M6 -> O whose induced U(3)-structure is

symplectic is also Kahler.

Proof. Assume that X: M6 -» O induces a symplectic ί/(3)-structure on M.
Let ^X{M) be the adapted frame bundle. By Theorem 3.3 we know that C = 0
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and tr B = 0. In particular

(3.45) θ='Bω.

If we differentiate this relation and use (1.36), we get

(3.46) - κ Λ ί + flΛ/p-[ί]| ='dBω + ' # ( - * Aω-[θ]Aω).

Since ίj = Aω + Bω, when we compare in (0,2) parts of both sides of (3.46) we

find

(3.460 ['Bω] A Bω ='5['2?δ] Λ ω.

Since tr B — 0, we may use the identities (1.21) and (1.36e) to rewrite this
equation in the forms

-B [ω] ABω- [ω] Λ'BBω = -±*BB[ω] A ω,

B[Bω] A ω +['BBω] Aω = ^BB[ω] A ω,

(-B'B + tr *BB -*BB)[ω] A ω ='BB[ω] A ω,

since the ωι are independent, it follows that

(3.47) VBB + B'B = tr *BB I3.

If B = 0, we are done, so we assume 5 £ θ and restrict our attention to a
neighborhood of a point where B φ 0. Since (3.47) is invariant under conjuga-
tion by a unitary matrix, we may put B in upper triangular form and compute
using the condition tr B — 0. We find that B must be of the form

(3.48) B = efU-ιTU,

where / is a complex function, U is a 3 X 3 unitary matrix, T is the constant
matrix

(3.49) T =

and β is a nontrivial cube root of unity: β2 + β + 1 = 0. In particular, the
form II1'1 is Hermitian, so we may choose a unitary frame field which
diagonalizes it (and hence B as well).

Thus, let (n, /, n, f) be such a frame field on our neighborhood and pull
down all the forms on ^X(M). We now have

(3.50) B = efT.

We now return to the equation θ ='Bω = Bω armed with this new informa-
tion. We have

dθ = dBω + Bdω

1
0

0

0
β

0

0
0

β2
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using (1.36) and simplifying, we get

- κ Λ Θ + θ Λ i p - [ θ ] Λ Ϊ ) = dB Λ ω - B ( κ Λ ω + [ θ ] Λ ω ) ,

o r

(dB - Bκ + KB- ipB + [Bω]A) A ω = 0,

or

(3.51) {dfT- Γ/c + fcΓ+ZpΓ- [fω]e^fA) Λ ω = 0.

In particular, by Cartan's lemma, we see that all of the entries in the 3 X 3
matrix in the parentheses are multiples of (ω1, ω2, ω3}. Checking the terms on
the diagonal and using the fact that the ωι and ω' are independent, we
immediately see that A must be diagonal and that df+ip = 0 modjco1, ω2, ω3}.
Examining the diagonal terms more closely, we see that df+ip = 0. If we
differentiate this last result we get

(3.52) d{ip) = 'ξ Λ ί) +'0 Λ θ = 0,

and this implies that even the diagonal terms of A must be zero, so A — 0.
Equation 3.51 now simplifies to

(3.53) (TK - ICΓ) Λ ω = 0,

and this implies that K is diagonal. Using the structure equation for K, we get

die =-K Λ K + ϊ) Λ'ϊ) + θ Λ'θ - [θ ] A[θ]

= Bω Λ'ωB + 2Bω Λ*ωB-*ω A BBω.

However, this last expression is never diagonal while B ^ 0. Thus, we have a
contradiction and B φ 0 while C = tr B — 0 is impossible.

4. The complex curves in Sβ

In this section, we turn to a different aspect of the geometry of the
octonians. We have already seen that S6 C Im O is endowed with an almost
complex structure. Clearly the subgroup of the Spin(7) transformations which
leaves S6 invariant and preserves its orientation must fix both 1 and 0 E O. It
follows that this group is G2. We have seen that the function u: G2 -> S6 and
the functions/: G2 -* C ® R Im O allow us to regard G2 as the bundle of special
unitary frames in S6 and that left multiplications in G2 act as the special
unitary transformations of S6. Since this action is simply transitive on the
special unitary frames, the general theory tells us that if U C S6 is connected
and φ: U -> S6 is a special unitary map, then φ is the restriction to U of the
action on all of S6 induced by a left multiplication in G2.
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A submanifold Mk C S6 (or an immersion φ: Mk -> S6) will be said to be
almost complex if the tangent space TxM

k (or the image <$>JJΓxM
k)) is a

complex subspace of TXS
6 (or Tφ(x)S

6) for all JC G Af *.
Proposition 4.1. ΓAere is no M4 C S6 which is almost complex. Moreover,

any (smooth) map φ: [/-> S6 (where U C S6 is open and connected) whose
differential is complex linear at each point of U is either a constant map or the
restriction to U of a G2-action S6 -> Sβ.

Proof Suppose that M4 C Sβ is almost complex. Let ^(M4) Q G2 be the
space of frames (w; / ) so that u G M4 and {/2, /3, /2i/3} spans ΓMM4. §(M4)
is a ί/(2)-bundle over M. Since du=f(-2iθ) +f(2iθ\ we see that 01 = 0 on
<$(M4) and that ί 2 Λ ί 3 Λ f l " 2 Λ 9 3 (^0) descends to be a well-defined
volume form on M4. By (2.17), we have

0 = dθι = -κ\ Λθ2-κ\Λθ3- 2Θ2 A θ\

It follows that dθι Λ # 2 Λ # 3 = -2Θ2 Λ« 3 Λί" 2 Λfl 3 = 0, which is a con-
tradiction.

Now suppose that φ: U -> 5 6 has complex linear differential where U C S6

is open and connected. Let U' C ί/ be the open set where φ has maximal rank.
The complex rank of φ on U' cannot be 1 or 2 since in that case either the
fibers of φ or the image of φ (locally) would be almost complex 4-manifolds in
S6, which we already know to be impossible. If the rank of φ on U' is 0, then
φ: U -» S6 is the constant map. Hence let us assume that the rank of φ (over C)
is 3 on U'. Then φ is locally a diffeomorphism. We are going to show that φ
must actually be a special unitary transformation on U\ then we will be done.

Choose a special unitary frame field {/l5 /2, f3] on a neighborhood of
u G t/', and choose another special unitary frame field {g1? g2, g3} on a
neighborhood of φ(w) in S6. Let {ωz} be the forms dual to {/} and let {η1} be
the forms dual to {gj. By (2.17), we have

dω=[ω]Aω mod0 l l 0 (S 6 ),

If Φ*(/) — &4~l where ^ is a 3 X 3 complex matrix with detΛ ^ 0 , we
dualize and get

φ*(η)=Aω,

(note that we are using the complex linear assumption to ensure that forms of
type (1,0) are preserved). In view of the formulae for dω and dη mod Ω1'°(5'6),
we see that this implies

d(Aω)=A[ω]Λω=[Aω]ΛAω
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Thus, we have A[ω] Aω = [Aω] A Aω. If we use the identity 'M[ΛΓα] Λ Ma
= (det M)[a] A α, and the fact that ω1 Λ ω2 A ω3 φ 0, we immediately get

'A A = det AI3

which clearly implies that det A = 1, so A is special unitary, q.e.d.
The above proposition shows that any invariants of the almost complex

structure of S6 are also special unitary invariants of S6

9 so it is natural to use
the S£/(3)-structure on S6 to study questions about the complex structure.

One of the most interesting features of the almost complex structure on Sβ is
the presence of "complex curves" on S6. These are defined as follows: Let M2

be a connected Riemann surface. A map φ: M2 -> S6 will be called a complex
curve if φ has complex linear differential at each point and φ is not the
constant map.

One of the reasons for studying such objects is that Harvey and Lawson [12]
have shown that the cone on φ(M2) is absolutely mass minimizing in ImO =
R7. In fact, this cone is associative in their sense. Conversely, if C3 C ImO is
an associative cone with vertex at 0 E ImO, then C3 Π S6 is a complex curve
at its smooth points. In the usual techniques for studying singular minimal
submanifolds, it is important to be able to understand the cones which are
minimal. Thus the study of complex curves in S6 is intimately related to the
structure of singularities of associative submanifolds of Im O (see [12]).

We will develop a theory of complex curves in S6 which is analogous to the
Frenet formulas for a real curve in Euclidean 3-space. Let φ : M 2 - * S 6 b e a
complex curve (we always assume that M2 is connected). We let x: ®ίφ -> M2

and Tφ -* M2 be the pull back bundles of G2 -> S6 and Tlfi(S6) -> S6 respec-
tively. In formulas, we have

%={(*, g) £ M2 X G2\φ(x) = u(g)},

Tφ= {(x9v) G M2 X T^(S6)\v G T^(

O

X)(S6)}.

Of course, since Tι'°(S6) has a special unitary structure with G2 as its unitary
frame bundle, it follows that Wφ is the special unitary frame bundle of Tφ.
Moreover, the natural map ^φ -> G2 pulls back both K and θ to be well-defined
forms on ®lφ which we continue to denote by K and θ (since we will now work
on Sψ until Theorem 4.7, this should cause no confusion). Also, for functions
and sections whose domain is in M2, we will often work on ^φ and pull these
quantities up from M2 via x* without comment. For example, any section
s: M2 -> Tφ can be written in the form s — fts

ι where the / are actually maps
fi'.Φφ-* Tφ and st are functions on ®ίφ. Using this convention, the pull back of fc
induces a connection on Tφ which is compatible with its special Hermitian
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structure. Namely V: Γ(Γφ) -> T(Tφ ® T£M2) is given by

Since we are working over a Riemann surface, it is well known that there is a

unique holomorphic structure on Tφ so that V is compatible with the holomor-

phic structure (see [15]). We suppose that Tφ is given this holomorphic

structure and refer to Tφ hereafter as a holomorphic, special Hermitian vector

bundle over M2 of rank 3.

Another thing to notice is that (01, 02, θ3} are semi-basic with respect to

x: Sψ -> M2. Moreover, they are of type (1,0) since φ: M2 -> S6 has complex

linear differential.

Lemma 4.2. If we set I = /• ® θ\ then I is a well-defined section of Tφ Θ (T)*

(where (T')* = Λ}j0M2 as a holomorphic line bundle). Moreover I is a nonzero

holomorphic section of this bundle.

Proof. That I is well defined is clear. Moreover, I has values in Tφ ® (Γ')*

by definition. It remains to show that I is holomorphic and that 1 ^ 0 . Choose

a uniformizing parameter z on a neighborhood of x0 E M. In a neighborhood

of X" ! (Λ: 0 ) C 9^, there exist functions αz so that θι = aldz. It follows that

0i Λ 0J = 0, so we have dθi = -K) Λ 0λ This translates to (ί/βz + κ)aJ) Λ ί/z

= 0 so there exist &1 so that

da} + /cjα^ = Vdz.

Thus, when we compute 91 E Γ(Γφ ® (Γ')* ® (Γ)*), we get

31 = d(ff Θ fl') = 7Γ0'1 o ( v ί / fl1") ® dz)

= fi®dz®π0Λ(bidz)

= 0,

so I is holomorphic. If I = 0, then by our definitions φ: M2 -> 516 has rank 0 at

every point and hence must be a constant map, contradicting our assumptions.

Remark. It is clear that I is the section of Tφ ® (7")* which represents the

"evaluation map" φ^Γ') -• Tφ.

Since I ^ 0, we see that there exists a holomorphic line bundle T C Tφ so

that I is a nonzero section of r Θ (Γ')* We let R be the ramification divisor of

I. That is,

R= Σ
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R is obviously effective, and we have (see [11])

τ = r ® [ Λ ] .

In particular, we have

deg r = deg Γ + deg R > deg T = χ ( M ) .

Now we adapt frames in accordance with the general theory. We let
5φ(1) C % be the subbundle of pairs (JC, g) where /3(g) E τΛ. Then ^ ( 1 ) is a
C/(2)-bundle over M. The canonical connection on T is described as follows: If
s: M -> T is a section, then 5 = /353 for some s3 well-defined on ^ ( 1 ) . Then

Vs=f3®(ds3 + κ3s3).

Similarly, the quotient bundle Nφ — Tφ/τ has a natural holomorphic Hermitian

structure. Let us let (fλ), (/2): ^ ( 1 ) -> iVφ be the functions / ι ? /2: <^(1) -> Γφ

followed by the projection Tφ -* JVφ. If 5: M -> Nφ is any section, then s =
1 2 f o r ^ l a n d s2 o n ^Φ(1) a n d w e h a v e

Note that since I has values in T ® (7")*, we must have β1 = tf2 = 0 on ^
so that I = /3 ® θ3. If we differentiate these two equations using (2.17) we get

dθx = -κ\ Λ ί 3 = 0, dθ2 = -κ2 Λ 9 3 - 0 .

It follows that κ\ and κ\ are of type (1,0).
Lemma 4.3. Let II = (fx) ® / 3 ® κ3 + (/2) ® / 3 (8) κ2, where/3 is the dual

off3 (sof3: 3Fφ

(1) -> T*). ΓΛen II ft α holomorphic section ofNφ ® T* ® (Γ')*
We omit the proof. It is similar to that of Lemma (4.2). II is the analogue of

the first curvature of the map φ: M2 -> S6. The following lemma shows that
this intuition is correct.

Suppose II = 0, then we must have κ\ = κ2 = 0 on ^ ( 1 ) . But then the
structure equations (2.15-2.16) show that d(-2iu Λ/3 Λ/3) = 0 so that u
always lies in the 3-plane ξ3 = -2iu Λ/3 Λ/3 which is fixed. We have just
proven

Lemma 4.4. // II = 0, then φ(M) C S2 = ξ3 Π S6 where £3 is a fixed three
dimensional subspace of Im O.

Remark. The three planes of the form -2/wΛ/3 Λ/3 in ImO are the
associative planes in ImO. There is a (real) 8 parameter family of them in
G(3,ImO).

From now on, let us assume that II ^ 0. Let F be the flexor divisor of II.

That is

F= Σ oτdp(ll) p.



224 R. L. BRYANT

F is effective and we have a result analogous to the one for I: There exists a
holomorphic line bundle v C Nφ so that II is a section of v ® T* ® (71')*, so

^[F]^τ^r-[f]0 [R] ®r® r.

In particular,

deg P = 2deg T + deg F + deg R > 2deg T = 2χ(M).

We set /? = JVφ/y and note that β inherits a holomorphic Hermitian struc-
ture. Moreover, we may adapt frames further ^ ( 2 ) c ̂ ( 1 ) so that for each
(x, g) G <$f\ we have (/2)(g) G pχ.

Then Sφ(2) is a U(l) X ί/(l)-bundle over M. A section of v is of the form
s — (Λ)^2 a n d we have the formula

We let ((/!»: ^ ( 2 ) -> ̂ 8 be the reduction of (fx)mod v. Then a section σ: M2

β is of the form σ = ((/1))σ1 and we have

Since II is a section of v ® T* ® (Γ')*, on ̂ ( 2 ) we must have II = (/2) 0 / 3 ® κ2

and K3 = 0. Differentiating this, we get

J/C3 = -κ\ Λ /c2 = 0.

Since κ2 7̂  0 and is of type (1,0) (vanishing only at isolated points) we see that
κ\ is of type (1,0).

Let (/ 2 ) : ^ ( 2 ) -* v* be the obvious dual map.
Lemma 4.5. Let III = ((/Ί)) ® (/ 2 ) ® κ2, ίΛ̂ « III w « holomorphic section

ofβ ®v*<8> (Γ)*.
(Proof omitted.)
We say that the curve has null-torsion if III = 0. Since there are no almost

complex M4 c S6, it is clear that this condition will not have as simple a
counterpart as the case of curves with zero torsion in CP3. Another difference
between curves in CP3 and S6 is that S6 has an S£/(3)-structure rather than
just a ί/(3)-structure as CP3 does. Thus the holomorphic, metric isomorphism
Λ 3 Γ 1 ' °5 6 ^C implies

τ<8> v® β ̂  C

canonically.
If III ̂  0, we define the planar divisor by

P= Σ oτdp(lll)-p.
p:lΏ(p)=0
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In this case, we have

β = [p] ® p® r .

Theorem 4.6. Let M2 — P1, then any complex curve φ: M2 -> S6 either has

image in an S2 ( = ξ3 Π S 6 ) or Aαs null-torsion.

Proof. If II = 0, then φ(M 2) C S2 (= ξ3 Π S6), so assume that II φ 0.
We must show that III = 0. If not, we have, for R9F,P> 0,

β=[P]®v®T\ f=[F]^τ0Γ, τ=[R]®Γ,

which implies, since T ® *> ® /? is trivial, that

(Γ)6 ® [3R + 2F + P] ̂ C

thus deg r < 0, but deg T = 2 when M = P1.
Remarks. The computation in this theorem actually shows that if M2 has

genus g, then any complex curve φ: M2 -».S6 with nonnull-torsion must satisfy

12(g - 1) = 3 deg R + 2deg F + deg P,

where each of the divisors R, F, and P are effective. (More precisely, the
effective divisor 2>R + 2F 4- P is linearly equivalent to six times the canonical
divisor.) This puts severe restrictions on the bundles T, V, and β. For example,
if g — 1, so that Λf2 is an elliptic curve, then a complex curve φ: M2 -> S16 with
III ^ 0 must satisfy Λ = F = P = 0, so that T=T',v = (Γ) 2 , β = (Γ) 3 .

By analogy with the situation of curves in CP3, one might expect that once
the degrees of T, V, and β are fixed, the space of complex curves φ: M2 -> S 6 is
finite dimensional. We do not know if this is the case.

We will now show that the complex curves with null-torsion display a much
greater variety. In fact, we will show that every Riemann surface M has an
infinite family of complex curves φ: M2 -> Se with no bound on the degree of
the ramification divisor R.

We do this in several steps. First, we transform the problem of studying
null-torsion complex curves in S6 to a problem in the holomorphic category.

If φ: M2 -» Se is a complex curve with II =£ 0, we can define the binormal
mapping bφ: M2 -» G(2, ImO) by letting bφ(x) be the oriented plane -2ifλ Λfx

where (/.) G ̂ ( 2 ) is an adapted frame at x G M. It is easily seen that bφ is well
defined and is a lifting of φ:
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Theorem 4.7. Let φ: M2 -> S6 be a complex curve with II φ 0. Then the

binormal mapping bφ: M2 -> G(2, ImO) is holomorphic {with respect to the

natural complex structure on G(2, Im O)) // and only if φ satisfies III = 0.

Moreover, in this case bφ is an integral of the holomorphic differential system

£ = {a G Qι

cG(29 ImO) | η*(a) = Omod κ2, icf, 01}. Conversely, any noncon-

stant holomorphic curve b: M2 -» G(2, ImO) wΛ/cA w an integral of £ λαs /Λe

property that φ = π ° b: M2 -> S 6 w α complex curve with either II = 0 or

φ

Proof. By Proposition 2.4 and the commutative diagram

I
^ i

M 2 >G(2,ImO)

we see that ftφ is holomoφhic if and only if the forms {κ?,κf, β\02,03}
restrict to Sψ(2) to be of type (1,0). Since we already have κ\ = θx = θ2 = 0, and
since θ3 is certainly of type (1,0), we see that the only further condition
required is that /c2 be of type (1,0). Thus bφ is holomorphic if and only if
κ\ = 0, i.e., Ill = 0.

The differential system £ is of type (1,0) by definition. When we compute the
structure equations, we get

dκ = 3θΛθ\ 2 3

_ > mod{ K, , icf},
dκ\ = 3Θ3AΘ1\ l ] U

dθι = -2θ2Aθ3 mod{κ2,κϊ,θ1}.

Since dtmod £ consists of forms of type (2,0), we conclude that £ is locally
generated by holomorphic 1-forms and is therefore holomoφhic (see below for
a more explicit description). By the argument above, if φ: M2 -» S6 satisfies
II φ 0, III = 0, then b*(£) = 0, so bφ: M2 -* G(2, ImO) is an integral of £.

Conversely, suppose that b: M2 -> G(2, ImO) is a nonconstant holomoφhic
curve which is an integral of £. By Proposition 2.4 (or directly from the
structure equations), we see that t ± = L+ C 77l'°G(2,ImO) has the property
that the differential of π: G(2, ImO) -* S 6 is complex linear and injective when
restricted to L+ . Thus φ = π ° b: M2 -> S6 is complex and ramifies only when
b does (in particular, φ is not a constant map). We now easily verify that if we
adapt frames along φ so that/3 is tangent to φ and/j spans b, then the resulting
ί/(l) X ί/(l)-bundle % C M X G2 satisfies κ2 = κ\ = θλ = 0 (because b is an
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integral of £) and θ2 = 0 (because f2 is tangent to φ). If κ\ = 0 on §"6, then we
have already seen that the three-plane -2iu Λ/3 Λ/3 = ξ3 is constant on ®ϊb

and φ(M) C ξ3 Π S 6 = S2. If κ3

2 ^ 0, then % = ^ ( 2 ) so that b = bφ as de-
sired.

Corollary 4.8. // Λf2 w compact and φ: M 2 -* S 6 w a complex curve with
null-torsion, then φ is algebraic. In particular, it is real analytic.

Proof. By Theorem 4.7, such curves are of the form Φ = ir ° bφ where
bφ: M2 -> G(2,ImO) is a holomorphic curve. Since we have a natural imbed-
ding G(2, Im O) C CP6 (see below) as a nonsingular five-quadric, the curve
bφ: M2 -> CP6 is algebraic. Finally, the projection η: G(2, ImO) -* S6 is clearly
algebraic, q.e.d.

In order to construct examples, it will be necessary to study the differential
system £ more closely. This differential system was discovered by Cartan and
Engel in connection with their early work on the exceptional group G2. We will
now give a brief exposition of this theory.

First, as is well known, the manifold G(2, Im O) may be interpreted as a
submanifold of the projectivization of C® R ImO. Explicitly, if xAyG
G(2,ImO) where x j G l m O form an orthonormal pair, then we identify
x Ay with the complex line in C ® ImO spanned by x — iy. Extending the
real inner product on O complex linearly to a complex inner product on
C ® ImO (which we still denote by (,}), we see that (x — iy, x — iy) =
((x, x)— (y, y)) — 2i(x, y)= 0 when {x, y} form an orthonormal pair. It
follows that the above map x Ay -» (x - iy)C imbeds G(2,ImO) C CP6 as
the five-quadric of null-lines (under the inner product (,)) in C ® R I m O .
With this identification, we may now write the map η: G2 -» G(2,ImO) as
η = (f\C) E CP6. Since dη = dfx mod /j, we see from the structure equations
that this imbedding is holomorphic.

Second, we need the fact that G2 is defined algebraically as the group of
algebra automorphisms of O (see [12]). If we extend the inner product and
multiplication of O complex linearly to C ® R O = O c , then O c is a complex
inner product algebra which contains O C O c as the subalgebra invariant
under complex conjugation (not Oc-conjugation). The group of (complex)
automorphisms of O c is a 14-dimensional complex Lie group which we denote
by G2(C). We have G2 Q G2(C) as the subgroup which commutes with complex
conjugation (or equivalently, which preserves O C O c). If we define
(z(Λ), f(h), g(h)) = (ε, E, Έ)h where h G G2(C) and (ε, E, Έ) is as defined in
(1.18), then z, /, and g, are vector valued functions on G2(C) with values in
ImO c = C 0 R I m O and we easily verify the multiplication table and structure
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equations of G2(C) given by

z

Ί
'g

z

-1

i'f

-i'g

f
-if

l-'g]
-nL

g

ig

-nl3

(» = *(!-«)),

d(zfg) =

0 -i'η i'θ

-2iθ K [„]

\ 2iη [θ] -'K

where 0, η, and K are left-invariant 1-forms on G2(C) with values in M3X1(C),
M3X1(C), and sl(3, C) respectively. If we restrict these functions and forms to
G2 C G2(C), we get η — θ, *κ + ϊc = 0 and z = z, g = /, so that these equations
reduce to our known structure equations for G2- The map [/J: G2(C) -> CP6

which sends h E G2(C) to the line in O c spanned by fλ(h) has image
G(2, ImO) C CP6. We may see this as follows: By the above multiplication
table,/!2 = 0 so

so/! spans a null-vector of ( , ) . By the structure equations

d[fΛ = - W +/2«f +/3«? - £20
3 + ̂ 2

so [/J: G2(C) ̂  G(2,ImO) C CP6 has rank 5 and is therefore surjective. Thus
G2(C) acts as a group of bi-holomorphic transformations of G(2, Im O). More
is true: G2(C) preserves the system £. This follows immediately from the facts
that G2(C) preserves a differential system on G(2, Im O) whose pull backs to
G2(C) are linear combinations of {η\ κ2, tf} (this in turn is obvious from the
structure equations) and that when we restrict the forms (η1 κ2, K]} to G2, we
get {θ\ κ\, κ\).

More algebraically, we can define L+ C ΓG(2,ImO) as follows: If v E
ΓG2(C) satisfies η\v) = κ\{υ) = κ3

x(υ) = 0, then d[fλ](v) E L + , but we also
have

The multiplication table shows that the three-plane /, Λ g2 Λ g3 is exactly the
kernel of right multiplication by fλ in ImO c . Thus L+ = g2 Λ g3mod fx C
ΓG(2, ImO) shows that L+ (and hence £) is an algebraically defined subbun-
dle of ΓG(2,ImO) (in the holomorphic category) via complex octonionic
multiplication. Since G2(C) acts as algebra automorphisms of O c, this gives us
another proof that G2(C) leaves £ invariant. (Cartan in [6], proves a striking
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converse: The pseudo-group of bi-holomorphic transformations of G(2, Im O)

which preserve £ is exactly the pseudo-group generated by the action of G2(C).

This is the complex analogue of Proposition 4.1, but it is much harder to prove.

We refer the interested reader to [6].)

From our point of view, it will now be necessary to display £ explicitly on an

affine coordinate chart on G(2,ImO) in order to construct integrals. The

affine coordinate pieces are described as follows: Let z G G(2, ImO) be given

and let Pz

5 C P 6 be the tangent projective to G(2,ImO) at z0. It is easy to see

that P/o Π G(2,ImO) = Vz\ is a singular 4-quadric in P/o. We let A5

ZQ =

G(2,ImO) - VZQ. It is easy to see that A5

ZQ =* C 5 analytically. The following

theorem is due to E. Cartan and we only sketch a proof below. See [6] for

details.

Theorem 4.9. There exist coordinates (f, w, wl9 w2, z): A5

ZQ -> C5 which are

bi-rational and so that the differential system £ restricted to A5

ZQ has a holomorphic

basis of the form

dw — wλdξ9 dwx — w2dζ, dz — (w2) dξ.

Sketch of proof. Let S5 C G2(C) be the subgroup which is connected and

which satisfies 0 = κ\ — κ\ — κ\ — κ\ = κ\ — κ\ — θι — η2 = η3 when these

forms are restricted to S5. Then S5 has complex dimension 5 and the

remaining forms ( 0 2 , 0 3 , ηx, κ2, κ3} form a basis for the holomorphic left

invariant forms. The remaining structure equations satisfy

dκ2 = 3θ2Λη\ dκ3 = 3θ3 Λη\dηι = - 2 0 2 Λ 03, dθ2 = dθ3 = 0.

Using first, θ2 and θ3, then η1, and then κ2 and /c3, we see that there exist

unique coordinates x2, x3, y, z 2, z3 on S 5 (centered at the identity) satisfying

θ2 = dx2, θ3 — dx3, ηι — dy — x2dx3 + x3dx2,

κ2 = dz2 + 3x2dy - t(*2)
2</*3> A = dz3 + 3x3dy + f (x3fdx2.

One can verify that the function [/J: G2(C) -> G(2,ImO) restricts to S5 to

give a bi-rational map

(with respect to the natural algebraic structure on G(2,ImO) and that on C 5

induced by the {x2, x3, y9 z2, z3] coordinates).

If we now set

ξ = x 2 , w2 = -2x3, w}=y- x 2 x 3 ,
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then the coordinates (f, w, wx, w2, z) are clearly bi-rationally equivalent to

(JC2, x3, y, z2, z 3). Moreover, elementary calculation shows that the forms

listed in the theorem span t. q.e.d.

An immediate corollary of this theorem is that the integrals of £ can be

written (locally) in the form

where/is an arbitrary holomorphic function of f.

With this in mind, we now prove:

Theorem 4.10. Given any Riemann surface M and any integer r, there exists

a complex curve φ: M -* Sβ with II φ 0, III = 0 and with deg R > r where R is

the ramification divisor ofφ.

Proof. Let M have genus g, and let / be a meromorphic function on M with

a single pole of order m at p0 and simple zeros pλi—- ,pm. Thus the divisor off

is of the form -mp0 + px + Λ-pm (where the pa are necessarily distinct).

Consider the differential df. Its divisor is of the form (df) = -(m+ \)p0 + D

where D is an effective divisor, D = Σf αf4rf- (tfz > 0) and deg D = 2g + m — 1

= Σfίi,-. (Note that D = 0 implies M = P 1 and m = 1.) Let £(iVp0 - 6Z>) be

the (finite dimensional) vector space of meromorphic functions on M with a

pole of order at most N at p0 and a zero divisor effectively containing 6D. By

Riemann-Roch, for iV sufficiently large we have

l(Np0 - 6D) = d im c £( JV/?0 ~ 6D) = N - C (N » 0),

where C is a constant depending on the genus of M and the degree of D. For

h G fc(Np0 — 6D), the ratio dh/df represents an element of fc((N — m)p0 —

D') where D' = Σf-(5αf - 1)^ > 0. (If D = 0, then we set Ό' = 0.) Further-

more, d2h/df2 = d(dh/df)/df represents an element of β ( ( # - 2m)^ 0 - D")

where Z>" = Σl-(4αl — 2)^z. Now consider the differential

This differential has only one pole (at p0) so it has no residues. Let {ys \ s —

1, ,2g} be a basis of Hλ(M,R) and consider the quadratic forms Qs on

£(Npo-6D) defined by
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The necessary and sufficient condition that ω(Λ) be expressible in the form
dh = ω(h) is that Qs(h) = 0 for all s. We let

HN= {h<Ξ £{Np0 - 6D) I Qs(h) = 0 for all J } .

For definiteness, let us set

h{p)=jPω{h)
P\

5for all ft £ HN. It follows that the curve φ: M — {p0} -> C5 given by

£ = / , W = A, wλ=dh/df,

is an integral of

— w2dξ, dz — (w2) dξ,

and it ramifies exactly over the divisor D. (Clearly this is the largest ramifica-
tion since this is where df vanishes. Our choice is such that dh vanishes at least
on 6Z>, d(dh/df) vanishes at least on D", d(d2h/df2) vanishes at least on
D'" - Σί(4έiI - 3)4, > D, while dh clearly vanishes over D.)

By definition of HN, its codimension in fc(Np0 — 6D) is at most 2g, so we
get dim HN > N - C - 2g. In particular, for N > 0, HN φ (0). Finally, again
by Riemann-Roch, the map t(Np0 — 6D) -> C m given by Λ ι->
(h(P\)>'' '>h(Pm))ιs surjectiυe for sufficiently large N. Thus, for large enough
N, we may assume that we can choose h E HN so that h(pa) φ h(pβ) for
aφ β. For such φ: M — {pQ} -* C5, the curve is generically 1-1 and hence
does not multiply cover its image. Since the functions/, ft, dh/df, d2h/df2, ft
have only one pole at p0, it follows that they are algebraically related, so that
φ(M — {p0}) is an algebraic curve in C5. Composing this with the bi-rational
mapping C5 -» G(2,ImO) = Q5 of Theorem 4.9 gives a map Φ: M2 ->
G(2, ImO) which is generically 1-1, ramifies at least over D (it may also ramify
over p0), and is an integral of £. It follows that the projection φ: M2 -»
G(2,ImO) -> 5 6 is a complex curve in S 6 which ramifies over D (and {/?0}
possibly). We now want to show that φ: M2 -» S 6 is locally 1-1. If II Φ 0, then
this is no problem since then we have b% = Φ so if φ were a ramified covering
of its image, Φ would be also (but we know it is not). Thus, we need only
consider the case where II = 0. If II = 0, by the proof of Theorem 4.7, we see
that when we adapt frames for the map Φ: M2 -> G(2,ImO) so that θ2 = 0,
then we must also have κ\ = 0. Thus Φ has a local lifting to G2 as an integral
of the system

K 2 = K3 = K2 = βl = 02 = Q
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(plus conjugates). This system is completely integrable on G2 and its 10
parameter family of integrals drops to G(2, ImO) as a 10 parameter family of
linear P^s in G(2,ImO). Thus II = 0 implies that Φ: M -> G(2,ImO) is a
generically 1-1 covering of a P1, i.e. M — P 1 and Φ is unramified. Thus, if we
make m > 0, φ: M2 -» S6 is a generically 1-1 complex curve in S 6 of genus g
and ramification at least degZ) = 2g + m — 1. Clearly we can make the
ramification divisor R have degree greater than r by simply choosing m
sufficiently large.
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