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GEODESIC PERPENDICULARS AND EULER
CHARACTERISTICS OF PROJECΠVE VARIETIES

TOSHIYUKI MAEBASHI

Introduction

In this paper we propose to investigate an old problem: To find the number
of perpendiculars drawn from a given point to some submanifold X. Our
candidate for X is an Λ-dimensional algebraic subvariety of complex projective
iV-space CP(N\ and the perpendiculars mean the geodesic lines cutting X
orthogonally in CP(N). We shall call these lines geodesic perpendiculars, and
answer the above problem in this particular case.

We first assign -I- or — to every geodesic perpendicular by a method to be
explained in §§7 and 8. The number of positively-signed geodesic perpendicu-
lars drawn from a point of CP(N) minus that of negatively-signed ones is
called simply the number of geodesic perpendiculars drawn from that point.
This number turns out to be a constant on some open dense subset of CP(N),
and will be denoted by n(X). Let χ(X) and χ(X Π H) be the Euler character-
istics of X and X Π H, a nonsingular hyperplane section; let T( X) and [-H] be
the tangent vector bundle and the line bundle associated to a hyperplane
section X Π H respectively. The following triangle of equalities holds:

"00

fcn(T(X) ® [-H]) = χ(X) - χ(XΠ H)
x

In this paper we will give a proof of the equality of each oblique side of the
above triangle, by calculating some curvature integral in a way similar to [5],
[7], [12] and by using the Morse theory. As a byproduct we obtain the equality
on the base. It is interesting to note that, as to this equality, a much more
general formula exists. To be specific, let L be a nonsingular divisor on X.
Then we have

χ(X)-χ(L)=jcn(T(X)®[-L]),
J γ
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where [-L] is the line bundle corresponding to the divisor -L. This is a

consequence of the adjunction formula [2], [10] (e.g., see the formulas (II, 28) in

[10, p. 323]). If X is a complete intersection of multi-degree {dx + 1, -,dN_n

+ 1), we can easily calculate the integral of cn(T(X) ® [-H]) in the following

way.

Let ω be the Kahler form on X, and set

1

Then

fcn(T(X) ® [-H]) = mnX degree of X.
J x

The absolute number of geodesic perpendiculars drawn from a generic point

is of course generally greater than | n( X) \ , but in some cases they can be

expected to be the same. Take the example of a complex quadric X with even

n. Then we can show that n(X) is the absolute number and equals 2 (see §12).

The present author would like to express his gratitude to Professors S. S.

Chern and S. Kobayashi for their hospitality which he received when he stayed

at Berkeley to start this work.

1. Complex projective space

Let π be the natural projection of C ^ + l — 0 to complex projective iV-space

CP(N). The restriction of π to the unit sphere S2N+ι in CN+ι will be denoted

by %, or briefly by m if there is no fear of confusion. Then (S2N+\ πs, CP(N))

is a circle bundle. For z E CP(N) the coordinates zo, -,zN of z G π~\z) are

homogeneous coordinates of z, and are especially called normal coordinates if

z E SN+ι. Consider the holomorphic map π^ between the tangent vector

bundles T(CN+ι - 0) and T(CP(N)).

From now on we consider C ^ + 1 as a hermitian space with the inner

product: (£, w) = zovvo + +zNwN where z9w E CN+\ z = (z o , -,zN) and

w = (wo, -9wN). Let z E S2N+X and z = ττ(z), and denote the orthogonal

complement of Cz in C ^ + ι by Mz. Further we write 9H~ for the complex

hyperplane through z and parallel to Mz. Then

9n= U (z, gitF)
! 6 5 2 Λ r + I

can be viewed as a vector subbundle of T(S2N+1). In fact we have
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where SI on the right side expresses the product bundle with typical fiber R.
On the other hand π^ gives a vector space isomorphism of each fiber (DH~ onto
TZ(CP(N)). Using this isomorphism, we can define a hermitian metric in
TZ(CP(N)) so that TΓ* | 9ϊtz~ becomes an isometry. The metric on CP(N) thus
obtained is the Fubini-Study metric

Then in normal homogeneous coordinates, the corresponding volume form
turns out to be [3, p. 289]

(1) dzx Λ dzλ Λ ΛdzN Λ dzN + + dz0 Λ dz0 Λ ΛdzN__x Λ dzN_x.

Let B2N be the unit ball in hermitian space C^. Then the map which sends
(zx,- ',zN) to the point of CP(N) with homogeneous coordinates 1
— }jzιzι +, +zNzN zx, - -,zN is volume-form preserving.

2. Gauss maps

We write G(m, N + 1) for the Grassmannian of m-planes (through the
origin o) in C^ + 1 . The tautological vector bundle over G(m, N + 1) will be
denoted by S(m, N + 1), and the corresponding projectivized vector bundle
by PS(m, TV + 1). Let x E G(m, TV + 1), and let y G &(m, N + 1) be a point
lying over x. Then^ can be regarded as a complex line contained in m-plane x,
and further as one in C^+ 1, i.e., a point of CP(N). Thus we can get a
holomorphic map of PS(m, iV + 1) into CP(N). We may call this map the
tautological Gauss map, and denote it by G.

Let I be a differentiable manifold of real dimension 2n. Consider a
differentiable map φ of X into G(m, N + 1). Then we have a bundle map φ of
the induced bundle φ*(P&(m, N + 1)) to P&(m9 N + 1). We denote by Gφ,
the composition of G and φ, and called it the Gauss map associated to φ. Now
suppose that m = N — n + 1, and that Gφ be surjective. Then we can pro-
pound a problem of Gauss-Bonnet type. An interesting example will be
presented in what follows.

3. The Gauss map Gφ considered in this paper

Let I b e a nonsingular algebraic sub variety of CP(N), and n the complex
dimension of X. The tangent vector space Tz( X) at z of X can be considered as
a subspace of TZ(CP(N)\ the tangent vector space at z of CP(N). Let %2 be
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the orthogonal complement of TZ(X) in TZ(CP(N)) with respect to the Fubini-
Study metric given in §1. Then there exists one and only one (N — n)-
dimensional linear subspace of CP(N) which passes through z and is tangent
to %z at z. We denote it by 9ΪZ.

We can find a finite collection of homogeneous polynomials ft E
C[zo, ,zN], 1 < i < /, such that the underlying set of Zis constituted by all
roots of /-, 1 < / < /. Then 31 z consists of the complex hnes which he in the
(N-n+ l)-plane (grad fl9 ,grad fh z) C C" + 1 , where

•=(&••••$) ( ι = i - ι )

and ( > denotes the plane spanned by " ". In this way we get a map of
XioG(N - n + l , N + 1):

z^φ(z) = (grad fl9> ,grad /„ z).

The fiber over φ(z) of PS(N - n + 1, N + 1) is exactly 91 z. We write the
induced bundle φ*(P&(N - n + 1, N + 1)) as 9Ϊ. 9? has a natural almost
complex structure which is not necessarily integrable. The Gauss map associ-
ated to φ sends 9ί to the complex projective space of the same dimension
differentiably.

Let us introduce inhomogeneous coordinates into CP(N) by

(2) xλ — —, 9χN — —,
z o zo

where z is supposed to be a point of Uo — {z E CP(N) \ z0 φ 0). Consider a
complex quadric given by

(3) zo

2 + +zN

2 = 0

as X, and use (2) to express Gφ by

_ •X1 ~r XQXI _ XN T XpXjγ

1 i- Xo 1 i- Xo

where H Ί / , ^ are inhomogeneous coordinate on the image space, and x0 is
an inhomogeneous coordinate on CP(\). We therefore have

d (** ~ X^dx° + dXi + x ° ^
' (1 + *o) 2 l

where i- l, ,N. From (3) it follows that

2 — Y 2 — . . . — Y 2 —

l X2 XN
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We can view JC0, x2, ,xN as independent variables. On the other hand

dxx = — (-x2dx2 *NdxN)

xλ

Hence we can write

dwλ A dwx A ΛdwN A dwN

^*' - Jdx0 A dx0 A dx2 A dx2 A - > AdxN A dxN,

where / is the Jacobian determinant which we calculate below. First we see

dw, Λdw,= \ X'~ *' |4
2 dx0 Λ dx0 + (] ~ '} X°'/ dx, Λ ̂ ,.

I 1 + x 0 1 4 I 1 + *o I

Λ

The factor dx0 Λ cίx0 appears in two ways, as the first term in the above
dwt Λ dWj and as

(l — I x o | 2 )(x ( — 3c,)(jc, — x.) . .
i ' ' ' ' ^ - —dx0 Λ dx0 Λ (dx, Λ dx, ~ dx, A dx,),

u v \ i j i j/
I 1 4- Y 1°I i -r x0 i

where i φj. Hence the expansion of the left side of the above equation (*)
decomposes into three parts:

The first part is

N

A 2 I xi |2 I xi ~ xi | 2 ^ o Λ dxo ^ dx2 A dx2 A AdxN A dxN,
i=\

the second is

-dx0 A dx0 A dx2 A dx2 Λ AdxN A dxN,

and the last one is

A(x{ ~ X\) Zd \Xi ~~ xi)\X\xi ~^~ XiX\)

-dx0 A dx0 A dx2 A dx2 A - - AdxN A dxN.
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By putting

~ \χo\*y
\2N+2 I

we obtain

/ = the jacobian of the Gauss map of quadric (3)

N

| i I v I27V+2 I v |2 V Zi i i) '

I i -t- x o \ \ x λ \

N o w let us go back to a nonsingular ^-dimensional projective variety

X C CP(N). We choose a unitary frame (el9- -,en) over an open U C X for

T(X). We can find el9- -,en E 9H in a unique way such that JΓ*(£,-) = ei9

i = 1, ,Λ. Let us denote by S~ C 91L~ the subspace which is spanned by

el9"-9enaiz. Put
Then & is a vector bundle over π~\X), isomoφhic to the pull-back of T(X),
and el9'"9en form a frame for S. We extend the frame to a unitary frame
(?!,- JN) for 9IL| flr"1(Λ'). Then

e0 = f, el9"-9eN

form a unitary frame of product bundle β^^1 with C ^ 1 as typical fiber over
ir-\X). Taking a local section σ of (S2N+2

9 π, CP(N)) over U9 we consider
eo, —,eN as vector-valued differentiable functions defined over U. On each
fiber 9ί z of the bundle 9ί in §3, we introduce normal homogeneous coordinates
Uo>un+\>'">UN w i t h respect to eO9en+l9'-9eN. Obviously uθ9un+l9--9uN

can be also regarded as normal coordinates of point u of CP(N — n). The map
defined by

( 7 ill I-* M P -\- 11 P A- -I-11

' / ^^ 0 0 n-\-1 n-\~ λ i t*NeN

gives an isomorphism between U X CP(N — n) and 9Ϊ | U. Up to this isomor-
phism, the Gauss map Gφ can be expressed by
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4. A connection

For fixed z £ I , SF are parallel to one another. Denote by &z the w-dimen-
sional linear space through the origin which is parallel to S~. Then we can
define a map of X to G(n, N + 1) by z \-+ &z. Denote by S the pull-back by this
map of tautological vector bundle S(AZ, N + 1) over G(n9 N + 1). We see
easily that the vector bundle & over X is isomorphic to T(X) ® [-H]. Intro-
duce a connection in this bundle by orthogonal projection as follows [6].

First we write

where A, B range over 0,1, , JV. Then
ωAB + «>BA = 0, ωOn+ι = = ω0N = 0.

In what follows, let letters r, s, run through n + 1, ,JV, and /, y,
through 1, ,w. Now we would like to make a change in notation. Write Ω/r

instead of ω/r, co; instead of ω/0, and ω0 instead of ω^. Then

j

der = -
7

The matrix form (co/7 ) gives a connection on S, and the curvature forms 0/y are

defined by

Then

where γ* runs through 0, H 4- 1, ,N. We denote the curvature matrix by θ. It
is interesting to note that θ does not depend on the choice of section σ. In fact
let λσ be the second section of (S2N+\ IT, CP(N)). We write 0' for the
corresponding curvature matrix. Then

θ' = d(ω + d(log λ ) l j + (ω + </(log λ ) l J Λ (<o + rf(log λ ) l J

= 0 + ί/(log λ) Λ ω + ω Λ ί/(log λ) = 0.
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5. Volume form dvN

Remember that the Gauss map Gφ sends N into CP(N). Let us rewrite the

volume form dυN of CP(N) in the following way:

dvN = (-l ± Λ dzA> Λ Λdz
A f i ,

where Al9 — ,AN = 0, -9N9 and we use normal homogeneous coordinates.

We begin with the calculation of G£(dvN). Write

Adz, .
ΛN

ωΛl*
— dzA Λ

Let us consider n linearly independent infinitesimal vectors dz, δz, on

U C X and (N — n) linearly independent infinitesimal vectors d'u, δ'u, on

CP(N - n). We identify dz, δz, with (ώ,0),(βz,0), , and d'u, δ%

with (0, d'u), (0, δ'w), respectively. Gauss map Gφ sends them to

TZ(CP(N)); they are given by

~ Σ ( W0Ω/0 + Σ WA> ) ̂ / + Σ

On the other hand we have

uodeo + 2 urder = woo
r

Note that any unitary transformation in CN+ι leaves the volume form (1)

invariant. Hence we can take el9 -,en, e0, en+x, ,eN as the base of CN+ι

without any change in (1). Consider the matrix

21

fl2,n + 2

a\,N+l

a2,N+\

n,N+\

0

0

0

0
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where

*2n = ~

an+\,n+\ = ^M0> α n + 2,π+l = ^ M 0>* ' *,

Λ l f ί +1 = Σurωrs(dz)>a2,s+\ = Σ «r ω «(^)» * * * »
r r

α π + l j 5 + 1 =dus,an+2s+λ =δus9- , (s = n + 1, ,JV).

Then ω ^ . . . ^ equals the minor of type (1, ,iV; Aλ + 1, , ^ + 1) of this

matrix. On the other hand, dυN remains invariant even if we replace z by λz

such that λ E C and | λ | = 1,[3]. Therefore we can assume, for a while, that

each line vector of the matrix is orthogonal to ϋ' — (0, ,0, M0, wn + 1, ,uN)

E C ^ + 1 at the point under consideration. Hence we see that

the A -th component of ϋ' = ( - l ) Λ ~ ι the minor of

type ( l , ,iV; 1, ,fc, -,N H- l) (up to a common factor),

where the roof over the letter k means that the letter is to be omitted. From

this fact it follows especially that if {Ax, -,AN) Z${0, ,« — 1}, then

ωA ...A vanish. Hence we have
Λ\* ^N

Λ ("oΩno + Σ « A r ) Λ

Thus there are integrals of the form:

f uo

aoΰo

β"un+ι

a%+ι

β' • • • uN

a"-ΠN

β^dυN_n,
JCCP(N-n)
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where αo, ,aN_n and /?0, -,βN-n are nonnegative integers. If we suppose
ι/0 E R and w0 > 0, then the above integrals become

(4) V-Λ r "^j

-dun+x Λ rfi/^! Λ Λί/W;v Λ dΰN,

where ΰ ^ " " =• {(ιιπ+1, -,uN) E CN~" | un+]ΰn+] + + ^ 5 ^ < 1}. Then
the integrals

Fλadλ Λ dλ
β

vanishes for a strictly positive integer a. Hence the integrals (4) must vanish

unless α0 = βo, ,aN-n = iβ̂ -M- We therefore find

. .. .^Γ-l /Σσ(η, ,rjΩK j iΛΩ, .Λ
(5)

Λ rn,sj
JCP(N-n)

where o(rU"',rn) is the signature of the permutation (*v ,rπ), and the
meaning of the summation is a little complicated, though it is clear from the
context. But after the calculation is made in the next section, this summation
will be replaced by a simple one.

6. Calculation of a Dirichlet's integral

Let M0, ,«m be normal homogeneous coordinates of u E CP{m\ and
α0, ,am arbitrary positive real numbers. Then we have

Lemma.

/ ("o«
JCP(m)

- \«o~i / - \«m-ij m Γ(αo) * * * Γ(αm)
« ) (umum) dυm = πm \ —*-r

Proof. Let / ( T ) be a continuous function of one real variable running
through [0,1]. Then, according to [13],
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Let us denote by / the integral on the left side of (6). Then

Λdum A dΰm

where we have put w, = t2i_λ + ̂ Λt2i with t2i_l9 t2i reals (/ = 1, ,m).

Suppose al9 ,am be integers > 1 (still α0 is arbitrary), and expand the factors

(hi-i2 + hι2Y> (s = ai ~ 1) Then / becomes a sum of Dirichlet's integrals of

type (6). Each term of the sum has a common factor

/ ' ( I - τ ) - - | τ - + - + - - I J τ ( = *(«, + + « m , «0)),

and other factors of each term do not contain α0. Hence we can write / in the

form:

Γ(α0) X a factor not depending on a0

Γ(αo+ - +αJ

Let us consider / as a function of real variables α 0 , ,am > 0 again. Since / is

symmetric with respect to these variables, we can write

Γ(«0) Γ(αJ
C Γ ( « 0 + •••+«„) '

where c is a constant. We can determine c by setting α 0 = = am = 1. In

fact, we get c — πm. This completes the proof of the lemma.

Going back to (5) and using the above lemma, we can rewrite the right side

of (5) in the form:

N-n I JI\ \ r

J χ { r r ) ί f j ;

Λ * * ΛKs Λ

where cn(&) is the highest Chern class of the vector bundle & defined in

§3, the first summation ranges over all the permutations of 1, ,Λ, and

jf(/ = 1, ,/ι) run through 0, n + \, ,N.
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7. Geodesic perpendiculars

Let z, wGCP(TV) (Z ̂  w). Let zθ9-—9zN and wo,--9wN be respective

normal homogeneous coordinates, and write

_, _ w — (w, f )f _ w — (w, z)z

\w-(w,z)z\ /l - ( t f , z ) (w,z) '

We may assume that (H>, z) E # and (w, z) > 0. Then we can find an angle θ0

( 0 < 0O < π/2) such that

cos0o = (w, z), sin0o = /l - (w, z)(w, z) .

Define a map i: CP(1) -> CP(N) by ι(w) = mj^u^z + i^w') where w0, I^ are
normal homogeneous coordinates of M E CP(1). Then we have

We can see that i is an isometry, θ h+ (cos β, sin θ) is a geodesic on CP(1) with
arc length 0, and ι(CP(l)) is totally geodesic in CP(N). Hence

θ h* (cos 0, sinθ) — cos 0z + sin θ w'

is a geodesic joining z with w. Therefore the distance δ(z, w) between z and w
is given by cos δ(z, w) = (z, w). If we replace (z, w) by | (z, w) | , we obtain the
expression of δ(z, w), which does not depend on the special choice of normal
homogeneous coordinates. Thus cosδ(z,w) = | (z ,w) | where 0 ^ δ(z, w) <
π/2.

Let H> E CP(N) - X and z E X. The unit tangent vector of the geodesic
joining z to w is π*(w'), which is orthogonal to X if and only if w E
(eπ+i, * •»£#> ̂ ) . In terms of the Gauss map, this means that we can draw
from w a geodesic cutting x orthogonally if and only if w belongs to the image
of Gφ. We call such geodesies "geodesic perpendiculars from w". Suppose any
foot point z of geodesic perpendiculars from w be not conjugate to w in
CP(N). Then the absolute number of geodesic perpendiculars from w is the
cardinality of G^\w), that is, G^x is in 1-1 correspondence with the set of
geodesic perpendiculars from w. Lety E G^\w). Then the geodesic perpendic-
ular corresponding to y is said to be positive or negative according as the
Jacobian of Gφ at y is > 0 or < 0. We define the number of geodesic per-
pendiculars from w to be the number of positive ones minus that of negative
ones.

From now on we do not assume homogeneous coordinates zo, ,zN be
normal. We introduce local coordinates xl9-—9xninX9 and consider zθ9- -9zN
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as holomorphic functions of xλ, ,xn. Set

h(z,z)=^l%fi- for zGX,wGCP(N).
(z, z)

We restrict h on X and view it as a function on X in what follows. First we
have

_x (z, w) I dz „ (w, z) \

Since

^rA(z, ί ) = 0 ~-^h(z, z) = 0 (i = 1,

Λ(z, z) has a critical point at z if and only if w belongs to

ImGφU {t?

Suppose that Λ" is in general position, namely, that there is no hyperplane
containing X. Then h takes a positive value at some point on X, and the
maximum points of h belong to Im Gφ. Thus we have

Proposition. // X is in general position in CP(N)9 the Gauss map Gφ is
surjectiυe. In other words, we can draw at least one geodesic perpendicular from
any point of CP(N) to X.

It follows from the surjectivity of Gφ that

(9) ί dυN = degree ofGφ=f dυN.
JSK JCP(N)

From (7) and (9), we obtain

degree of Gφ= ί cn(&).
J Y

8. The signs of the hessian and the perpendicular

Throughout this section, we consider only generic w G CP(N). The geodesic

perpendiculars from w to

X' = X- {zGX\(z,w) = 0}

is in 1-1 correspondence with the foot points of them. The purpose of this
section is to find a relation between the sign of a geodesic perpendicular from
w and the sign of the hessian of h at its foot z. By differentiating (8) formally
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with respect to wA,wA, we have

• v 93 zA I oz „ ι

(11)
3*, (f, 2)

3z,

8x, (f, z)

Suppose z e Γ be a foot point of a geodesic perpendicular from w. The
equality (8) implies that

dw>ί υ Λ /

d

so that

(12)

On the other hand, we introduce inhomogeneous coordinates

n+l
Un U 0

and the range space CP(N) of Gφ respectively.

for the fibers diffeomorphic to CP(N). Since j ^ , -
respect to xn+1, -jA^, we can write

- ^ are holomorphic with

Since an infinitesimal vector (dxn+λ9— 9dxN) is sent to the tangent vector
space TW(CP(N)) injectively by the Gauss map Gφ, we can solve these
equations for dxn+l9- -,dxN. Hence we have

dxr=
A = \

Denote the matrices

d2h d2h
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by H, H' respectively. Then the hessian of h is equal to the determinant

H H'
e —

H' H

Note that in (12) we can set dw0 = 0, dwx — dyx, ,dwN = dyN. Hence we

have

e dxλ A ΛdxN Λ dxx A ΛdxN

) n ( N - n )= (-\)n(N-n)e dxxΛ Λdxn A dxλ A Adxn

Adxn+ι A - AdxN A dxn+x Λ • Λ /̂jc^

d2h

+ Σ άΓaΓ-^. J Λ

Λ

Λ Λ
Λ * * Λ

= {lBXAxdyA)/\...A(^BnAdyAn)

Λ ^ M + 1 Λ " " " A d X

Λdxn+iΛ---ΛdxN

S^.dvΛ Λ •••

+ 1 ^ ) Λ Λ(Σ C n + 1 ,^_ w ^_

where

Since

we can get

Λ

B\\ "" 'B\N

Bnι Bn.V

Q+1,1 ' ' ' Q+l.ΛT

-'NN

= the jacobian X ίίxj Λ AdxN A dxx A AdxN,

the hessian = B\\B

c\\c
X the jacobian.

Thus we can state the following proposition.
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Proposition. Let z E X' be a nondegenerate critical point of h. Let p be a

point over z of the bundle 31 such that the image of p by the Gauss map is just w.

Then

the index ofh at z = 0 (mod 2) if the jacobian atp > 0 ,

the index ofh at z = 1 (mod 2) if the jacobian atp < 0,

where the jacobian means that of the Gauss map Gφ.

We write

X'w={z<ΞX\(z,w)φ0},

where w ranges over CP(N). Hence hw(z) is connected with the distance

δ(z, w) by the relation: cosδ(z, w) = | hw(z) | (see §7). At this stage, the

following proposition is almost clear.

Proposition. hwis a Morse function on X^for generic w.

Using Bertini's theorem, we can get

Corollary. There exists at least one w E CP(N) such that X'BW is a nonsingu-

lar subυariety and hw is a Morse function.

9. An application of the Morse theory

Here in this section, we owe [11] very much. By means of the corollary in the

preceding section we can find a continuous (real positive) function on X such

that h\X — X Γ\ H is a Morse function where if is a hyperplane with nonsin-

gular X Π H. Note that h assume the value 0 on X Π H, and define Xa =

h~\a,+oo)(a > 0). Then for sufficiently small ε, Xε is contained in a tubular

neighborhood (in X) of X Π H. Since the Euler characteristic χ( ) is additive,

we have χ(X) = χ(X, Xε) + χ(Xe, 0 ) . On the other hand, χ(Xe9 0 ) = χ(H

Π H) because X Π H is a deformation retract of Xε. Hence we have

Suppose that h have exactly k critical points with indices rl9 9rk respectively,

in X — X Π H. Then X has the same homotopy type as Xε U oλ U Uσ^

where σ, are r-cells (/ = 1, , k ) . Write

the number of critical points with positive indices of h | X — X Π H

a = — the number of critical points with negative indices

(by the Morse theory)

the number of even-dimensional cells α, — the number of

odd-dimensional cells σ/? = χ{X9 Xε).
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Then

a — the number of geodesic perpendiculars from a generic point of CP(N)

= degree of the Gauss map Gφ

Jx

We can therefore state our final formula

χ(X) = χ(X Π H) +fcn(T(X)
J Y

10. A formula on Chern classes

Let I(X) be the homogeneous ideal of X. For / G I(X) we denote by df(z)
the linear form o n C ^ 1 defined by

The subspace of ( C ^ 1 ) * which is spanned by df(z) (/ G I(X)) is determined
by z where z — π(z). Hence we denote it by Sz. Identifying the variety of
(N - «)-planes in (CN+ι)* with G(N -n,N+ 1), we have a map: X -> G(iV
— n, N + 1) which sends z to §>z. We denote by S the vector bundle induced
from the tautological vector bundle over G(N — n, N + 1). On the other hand,
we can assign to each z G X the linear subspace

( K , ,HV) I df(z)(wo, ,κv) = 0 for any/ G /(*)}.

This gives rise to a map: X - ^ G ί w + l j i V + l ) , which induces a vector bundle
Γ over X from the tautological vector bundle over G(n + 1, N + 1). Let us
consider the product bundle over X with typical fiber C^ + 1 . We denote it by
QN+ι. To each (£, w) G G ^ 1 we can assign a linear form on (Sz)* by defining

Note that the right side defines the same element for different z over z in §*,
the dual of 5. Thus we can find an exact sequence of vector bundles over X

where ^ is the kernel of K.
Define the action of the multiplicative group C* by λ(z, ξ) = (λz, λ£),

where λ G C* and (z, £) G ΓίC^4"1 - 0). Taking the quotient by this action,
we have a vector bundle homomorphism of [H] + +[H] (N + 1 copies) to
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T(CP(N)), where [H] denotes the hyperplane bundle over CP(N). This
homomorphism can be imbedded in an exact sequence called the Euler
sequence:

0 -> β -> [H] + + [H] -> T(CP(N)) -> 0

where β is the product bundle over CP(N) with typical fiber C, [7]. Quite
analogously to the Euler sequence over the complex projective space, we have

0^[-H] -* $-+T(X) ® [-H] ->0

or

o-*e^<ϋ ® [H] -» r( jf) ->o.

These exact sequences imply two relations among the total Chern classes:

From these we obtain a formula:

(13) c(T(X)®[-H])c([-H])c(S*) = l,

using which we may calculate c^TX^O ® [-i/]) in some cases.
Now suppose A" to be a complete intersection. Then we can find N — n

homogeneous polynomials fx, *,/#_„ which generate I(X). We write
dx 4- 1 = the degree of/j, -,dN_n H- 1 = the degree offN_n,
d = the multi-degree, i.e., = dj + +dN_n + (N — n).

In this case we have

S ! * [ - # ] * + . . . + [-H]d»-\

where the exponents d( mean the JΓfold tensor product with itself. The
formula (13) therefore turns out to be

(14) c(T(X) ® [-H])c([-H])c(Hd<) • • • c(H«»-) = 1,

which allows us to compute cn(T(X) ® [-H]). In fact, write

c(H) = 1 +ω.

Then we have

(modω"+ 1)
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12. Examples

1. Suppose X to be a linear subspace. This is the simplest example. From
(15) we see

cn(T(X) ® [-H]) = the Λth term of iΛ

 l

 λ = ωn.
(1 - ω)

Hence

n(X) = jωn= 1.

2. Take a nonsingular plane curve of degree d as the next example.
Obviously χ(X Π H) = the degree of Z = rf. On the other hand from (15) we
have

and therefore

= -d(d-3).

The latter is the so-called genus formula, [8], [9]. Since

cι(T(X)®[-H])=cι(X)-ω,

we can get the Gauss-Bonnet formula

fcx(x) = χ(x) - χ(xn H)+jω = x(x).

3. The final example is the complex quadric defined by

z0

2 + + z / = 0.

In this case we know that the Betti numbers b0, , bn of X are given by

b2i-x = 0, b2i — 1 unless 2i — n,

bn = 2 for « = 0 (mod2), fe0 = 1,

where i — 1, ,Λ, and of course « = N — 1, so that

r/i + 1 if Λ = 1 (mod2),

We therefore have

fO if n = 1 (mod2),
(16) n(X) - | 2 = d e g r e e o f χ ύ n Ξ θ ( m o d 2 )
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But to get (16), it is easier to use the integral of cn. Actually the «th Chern class

is given by the «th term of the series

\ = l + w

2 + ω4 + .
1 - ω 2

This implies

Hence we can obtain the same result as (16).

Now we know that the jacobian of Gφ is always nonnegative for the

even-dimensional complex quadrics (§3). Therefore we have the following

theorem.

Theorem. We can draw exactly two geodesic perpendiculars from a generic

point of CP(N) to an eυen-dimensional complex quadric.
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