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INTRODUCTION
This paper is a continuation of the joint papers with Donald Spencer, parts I

and II of the same title which appeared in Acta Math. 136 (1976) 103-239 and
parts III and IV of the same title which appeared in this journal 13 (1978)
409-526. We continue our study of the integrability problem for pseudogroups
or for Lie equations and the program embarked upon in parts I and II and
outlined in [17] for proving the solvability of the integrability problem for all
Lie pseudogroups acting on Rw which contain the translations. Our proof
follows to a large extent Guillemin's program for solving the integrability
problem for flat pseudogroups and relies on Galois theory type methods
similar to those introduced by Sophus Lie in his work on partial differential
equations. In this work, these methods provide us with solutions of the
non-linear partial differential equations associated to this integrability prob-
lem.

Communicated by D. C. Spencer, March 29, 1980. This work was supported in part by National
Science Foundation Grants MCS 78-02459 and MCS 79-04683.
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In parts I and II of this paper, we started a program announced in [14] of
studying the integrability problem in terms of transitive Lie algebras. If Rk is a
Lie equation on a manifold X and x E X, we defined a non-linear cohomology
Hx(Rk)x, which is a set with a distinguished element 0. The integrability
problem for Rk (for a precise formulation of the problem, see [33]) is solvable
if and only if Hι(Rk)x = 0 for all x E X. If Rk is formally transitive, this
non-linear cohomology depends only on the transitive Lie algebra R^ x of
formal solutions of Rk at x. To a real transitive Lie algebra L and to a closed
ideal / of L, we associated non-linear cohomologies Hι(L) and Hι(L91) in
such a way that H\L, L) = i/^L), and i / 1 ^ J = H\Rk)x whenever Rk is
analytic and formally transitive. The integrability problem for formally transi-
tive Lie equations is reduced to the study of the non-linear cohomology of
transitive Lie algebras and their closed ideals. If / is a closed ideal of the
transitive Lie algebra L, the quotient L/I is again a transitive Lie algebra and
we proved that, if H\L, I) = 0 and H\L/I) = 0, then H\L) = 0. By
repeated applications of this result, if we consider a Jordan-Holder sequence of
Guillemin [20] for L, that is, a descending chain

L = IODIXD > Ώlk = 0

of closed ideals of L such that, for 0 <</ < k — 1, either Ij/Ij+\ is abelian or
there are no closed ideals of L properly contained between l and / + 1 , it
follows that to prove that Hι(L) = 0 it suffices to show that
Hι(L/Ij+l9 Ij/IJ+ι) — 0 for the closed ideal Ij/Ij+\ of the transitive Lie
algebra L/IJ+l9 with 0<j<k— 1; clearly the ideal Ij/Ij+\ is either a closed
abelian ideal or a non-abelian minimal closed ideal of L/IJ+ι. We are
therefore lead to study the cohomology ίϊι(L, I) of a closed abelian ideal or a
non-abelian minimal closed ideal / of L. In §11 and §18, we proved that, if / is
an abelian ideal of a transitive Lie algebra L, the non-linear cohomology
H\L91) is isomorphic to the linear Spencer cohomology H\L91) introduced
in [16] and that the vanishing of HX(L, I) is equivalent to the local solvability
of a linear differential operator associated to /.

In this paper we turn our attention to the study of the non-linear cohomol-
ogy Hι(L, I) of a non-abelian minimal closed ideal / of a real transitive Lie
algebra L. According to [20], / possesses a unique maximal closed ideal / of /
and R — I/J is the non-abelian and simple transitive Lie algebra canonically
associated to /. The commutator ring KR of R is the algebra of all R-linear
endomorphisms of R which commute with all inner derivations of R. By a
result of [20], KR is a field, and we say that / is of real or complex type
according to whether KR is R or C. In parts I and II, we conjectured that
ίϊι(L, I) = 0; the examples of Conn [5] of non-abelian minimal closed ideals
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of complex type for which this cohomology does not vanish show that this
Conjecture I of §13 is false, as is Conjecture II. The main result of this paper
(Theorem 26.2) is the proof of Conjecture I for a non-abelian minimal closed
ideal of real type, namely:

Theorem I. Let L be a real transitive Lie algebra and I a non-abelian
minimal closed ideal of L of real type. Then HJ(L, I) = 0 for j > 0 and
H\L91) = 0.

In a sequel to this paper, we shall study the cohomology of non-abelian
minimal closed ideals of complex type and present counterexamples to the
integrability problem arising from these ideals generalizing those of Conn [5].
In [6], Conn associates to a non-abelian minimal closed ideal / of complex type
of a real transitive Lie algebra L an algebraic invariant, the Levi form, which is
a vector-valued Hermitian form. In particular, we shall present a proof of

Theorem II. Let L be a real transitive Lie algebra and I a non-abelian
minimal closed ideal of L of complex type. If the Levi form of I vanishes, then
HJ(L91) = Oforj > 0 andH\L, I) = 0.

We now briefly outline how the solvability of the integrability problem for a
Lie pseudogroup acting on Rn which contains the translations can be deduced
from Theorems I and II and the results of parts I and II. Let L be a real
transitive Lie algebra possessing a fundamental subalgebra L° and an abelian
subalgebra A such that

In fact, the transitive Lie algebra corresponding to such a pseudogroup has this
property. Consider the Jordan-Holder sequence for L introduced above. In §11
and §13, we proved that the linear differential operator associated to any
abelian quotient Ij/Ij+\ is an operator with constant coefficients and we
deduced from the Ehrenpreis-Malgrange theorem that Hι(L/IJ+ι, Ij/Ij+X) =
0. If Ij/Ij+\ is a non-abelian minimal closed ideal of complex type of L/IJ+X,
then the Levi form of Ij/Ij+1 vanishes. Therefore Theorems I and II imply that
Hx(L/Ij+ι, Ij/Ij+X) = 0 whenever Ij/Ij+X is a non-abelian minimal closed
ideal of L/IJ+X. From these results, we deduce that Hι(L) = 0 and that the
integrability problem for pseudogroups acting on Rn containing the transla-
tions is solved. Furthermore these methods also give us a proof of Conjecture
III of §13.

We now present an outline of the reduction of Theorem I to Theorem 26.1
which is based on §13 and is given here in §26. Let L be a real transitive Lie
algebra and / a non-abelian minimal closed ideal of L of real type. According
to the classification of the real simple infinite-dimensional transitive Lie
algebras (see [21], [22], [34] and [36]), the Lie algebra Όeτ(R) of derivations of
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the simple transitive Lie algebra R associated to / possesses a natural structure
of transitive Lie algebra in which R is a closed ideal of codimension at most
one. Moreover Deτ(R) has a fundamental subalgebra Deτ°(R) such that
R° - R Π Der°(#) is a fundamental subalgebra of R and

(see [6]). The normalizer N of the unique maximal closed ideal of / of / in L is
an open subalgebra of L. Let F be the local ring of formal power series on the
finite-dimensional vector space (L/N)* endowed with the Krull topology. The
Lie algebra Der(F) of derivations of F has a natural structure of transitive Lie
algebra; if F° denotes the unique maximal ideal of F, the subalgebra Der°(F)
of Der(F) consisting of all elements ξ of Der(F) satisfying ξ(F°) C F° is a
fundamental subalgebra of Der(F). Since Der(Λ) is a transitive Lie algebra
and F is a linearly compact topological algebra, there is a structure of
linearly compact Lie algebra on the Hausdorff completion Όer(R) ®R F of
Der(.R) (8>RF. The action of Der(F) on F determines a structure of linearly
compact Der(F)-module on Deτ(R) έ R f , the semi-direct product

Der(# ®R F) = (ΌQT(R) <S>R F) θ Der(F)

has a natural structure of real transitive Lie algebra,

Der°(# ΘR F) = (Der°(#) ®R F + Der(Λ) <8>R F°) θ Dero(i^)

is a fundamental subalgebra, and Z£ <S>RF is a non-abelian minimal closed
ideal of this Lie algebra; we call the ideal R <§>R F the Lie algebra R with real
parameters (see [6]). According to the topological version of Conn [6] of the
structure theorem of Guillemin [20], there is a continuous morphism of
transitive Lie algebras

whose restriction to / is an isomorphism

Φ : / - + # Θ R F

such that

ΌQT(R & R F) = Φ(L) + Der°(Λ <8>R F).

By results of [16] and §10, Φ induces isomorphisms of cohomology

H*(L91) -+ H*(Όer(R 0 R F)9 R Θ R F)9

Hι(L91) - Hι(Όπ(R (δR F), R®RF).

Theorem I follows from Theorem 26.1 which asserts that

HJ(ΌGT(R & R F ) , R <8)R F ) = 0, H^De^Λ 0 R F ) , Λ ®R F ) = 0,
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fory > 0, where R is a simple transitive Lie algebra, with KR = R, and F is the

ring of formal power series on a finite-dimensional vector space U.

In §§22-25 to prove Theorem 26.1, for each simple transitive Lie algebra R,

with KR — R, and each finite-dimensional vector space U, we construct ex-

plicitly a formally integrable and formally transitive analytic Lie equation R\

of order k, with k — 1 or 2 depending on whether Der(R) equals R or not, on

an analytic manifold X9 a formally integrable analytic first-order Lie equation

Rx such that R^ a is a closed ideal of Λ*, a for all a G X, a. formally integrable

and integrable finite form Px of Rλ and an isomorphism of transitive Lie

algebras ψ: R^ x -> Όeτ(R Θ R F) such that Ψ C i ί ^ J = R ® R F, where Λ: is a

point of X. Then we show that the linear Spencer cohomology Hj(Rλ) and the

non-linear cohomology Hx{Px)α, defined in terms of the ©-complex (see §7),

vanish for ally > 0 and α G X; it follows that the assertions of Theorem 26.1

hold for R and U. If Jk(T) is the bundle of λ -jets of the tangent bundle T of X,

the Lie equation Rx is a sub-bundle of JX(T) and Pλ is a sub-bundle of the

bundle Qx of 1-jets of local diffeomorphisms of X. If u is a section of

T* ® JX{T\ we denote by π0u the section of T* ® / 0 (Γ) determined by u. Let

2) j be the compatibility condition for the operator © of the non-linear Spencer

complex; the set Zx(Rλ)α of ® rcocycles a t a E Xconsists of the germs at α of

sections u of Γ* <8> Rx which satisfy ΦjW = 0 and πou(α) close to 0. The

vanishing of the non-linear cohomology H\Px)α is proved using the following

necessary and sufficient condition given by Proposition 22.7: for all u E

Z\Rx)α we can solve the equation ©φ — π0u for some germ φ of an invertible

section of P{.

According to the classification results referred to above, the simple transitive

Lie algebra R is either finite-dimensional or isomorphic to one of the follow-

ing:

(i) the Lie algebra of all formal vector fields on RM;

(ii) the Lie algebra of all formal vector fields with zero-divergence on Rw,

with n>2;

(iii) the Lie algebra of all formal symplectic vector fields on R2w, with n>\\

(iv) the Lie algebra of all contact vector fields o n R 2 w + 1 , with n > 1.

If R is equal to one of the transitive Lie algebras (ii) or (iii), these

constructions are made in §23 and the corresponding vanishing of the linear

and non-linear cohomology is proved in Theorem 23.1, while the analogues for

the Lie algebra (iv) are accomplished in §25 and Theorem 25.1. The case of a

finite-dimensional Lie algebra R is considered in §24 and the vanishing of

cohomology for the Lie algebra (i) is given by Proposition 22.9.

We give a unified treatment of the Lie algebras (i)—(iii) and of finite-dimen-

sional Lie algebras in terms of the class of Lie equations whose solutions
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preserve a differential form. Let X, Y be analytic manifolds and p: X -> 7 an
analytic surjective submersion. We assume that the dimension of Y is equal to
that of the vector space U. In §22, under certain regularity assumptions, we
associate to a differential form ω along the fibers of p a first-order Lie equation
JX(V; ω) on the bundle V of vectors tangent to the fibers of p and a finite form
QX(V; ω) of JX(V; co). The solutions of JX(V\ co) are the vertical (with respect to
p) vector fields ξ on X which preserve ω, that is, for which the Lie derivative
£(ξ)ω of co along ξ vanishes. If Jk(V) denotes the bundle of fc-jets of V, a
section w0 of T* ® J0(V) operates on the space of differential forms along the
fibers of p and associates to co the differential form co"°. If u is a section of
T* <8> JX(V), the fundamental formula (22.20) relates the actions of the section
uo = πoιι of T*®J0(V) determined by u and of the exterior differential
operator dx/γ on differential forms along the fibers of p to Φ ^ . We denote by
Sj the sheaf of invertible sections of Qx. If JX(V; co) is formally integrable and
QX(V; co) is a formally integrable and integrable differential equation, in
Proposition 22.8 we obtain as a consequence of Proposition 22.7 a criterion for
the vanishing of the non-linear cohomology of QX(V; co) or of JX(V\ co) at
a G X: if u E Z\JX{V\ ω))α, it suffices to find a germ / at a of a local
diffeomorphism of X over Y such that

(1) /*co = coM°,

where u0 = πou; in fact the relation (1) guarantees that the unique element
φ E S j satisfying 7roφ = /and 2)φ = w0 is a germ of a section of d ( F ; co).

In §23, we suppose that ω is an analytic volume or symplectic form along the
fibers of p; we prove that JX(V; co) is a formally integrable and involutive Lie
equation and that QX{V\ co) is a formally integrable and integrable finite form
of JX(V; co) (Proposition 23.3). If co is a symplectic (resp. volume) form and
u E Z\JX(V\ ω))a, with a G X and u0 = πQu, then co"° is closed according to
the fundamental formula (22.20) and is the germ of a symplectic (resp. volume)
form along the fibers of p; moreover every such germ can be obtained in this
way. Darboux's theorem with parameters (resp. an elementary result about
ordinary differential equations) gives us the existence of a germ/at a of a local
diffeomorphism of X over Y satisfying f*ω = ωu°, and hence the vanishing of
the non-linear cohomology of QX(V\ ω) at a. A QX(V\ co)-structure on X is
equivalent to a non-singular differential 2-form (resp. ^-form, where q —
rankF) along the fibers of p and is formally integrable in the sense of
Malgrange [33] if and only if this differential form is closed, and hence is a
symplectic form (resp. is always formally integrable). If co is a symplectic form,
this last remark can be used to derive directly the fact that ω"° is a germ of a
symplectic form for u G Z\JX(V; ω))a and u0 = πou without requiring our
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formula (22.20). Finally, we construct a second-order formally integrable and
formally transitive analytic Lie equation J£T\ ω ) o n l whose solutions over
connected open subsets of X are the p-projectable vector fields ξ satisfying the
relation £(ξ)ω = ρ*g ω, for some real-valued function g on Y. If rank V > 2,
for x G X we verify that ̂ ( F ; ω)x is a closed ideal of the transitive Lie algebra
/^(T; <*>),, and that, if R is the Lie algebra (ϋi) with In — rank V (resp. the Lie
algebra (ϋ) with n — rank F), there is an isomorphism of transitive Lie
algebras

such that iK /ooίF; ω)x) = R ®R F; it follows that the non-linear cohomology
of the closed ideal R ®R F of Der(Λ <8>R F) vanishes.

If R is a finite-dimensional Lie algebra, in §24 we consider a Lie group Go

whose Lie algebra g0 is isomorphic to R. If X — Y X Go and p: X -» 7 is the
projection onto the second factor, the left-invariant and right-invariant
Maurer-Cartan forms of Go induce non-singular g0-valued 1-forms ω and σ
respectively along the fibers of p. From the identity (24.4) relating the Lie
derivative £(£)ω of ω along a vertical vector field ξ on X to the exterior
derivative dx/γ(σ, ξ) of the go-valued function (σ, £), we deduce that JX(V; ω)
is a formally integrable Lie equation whose solutions over open subsets of X
whose fibers over Y are connected are the vertical vector fields whose restric-
tions to each fiber are right-invariant vector fields on Go. From the formula
(24.7) relating the first-order (non-linear) differential operators 5D^/y of §4
and ®ω, which corresponds to the equation QX{V\ ω), we infer that the
solutions of QX(V\ ω) over open subsets of X whose fibers over Y are
connected are the local diffeomorphisms of X whose restrictions to each fiber
are left-translations of Go and, using properties of the operator ® ^ / y , that
QX(V; ω) is a formally integrable and integrable finite form of JX(V; ω)
(Proposition 24.3). If ®x>x/γ is the compatibility condition for the operator
S5^ / y, the Maurer-Cartan equation satisfied by ω is Ί)x >Ayyω = 0. Using this
fact and the fundamental formula (22.20), we obtain the commutative diagram
(24.17) connecting the non-linear Spencer ©-complex of JX(V; ω) and the
sequence of §4 involving the operators ® x / y and ©1>Λyy. If u G Zι(Jx(V; ω))a,
with a E X and w0 = πow, then ωu° is a germ of a non-singular Q0-valued
1-form along the fibers of p satisfying the equation (£XyX/Yu>Uo = 0; moreover
every such germ can be obtained in this way. Proposition 4.1, which is a
consequence of Frobenius' theorem, says that this sequence of §4 is exact and
hence gives us a germ at a of a local diffeomorphism / of X over Y satisfying
®x/γf= ω"°> which is precisely equation (1), and the vanishing of the
non-linear cohomology of QX(V; ω) at a. The exactness of this sequence is the
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assertion of the second fundamental theorem with parameters for the Lie
group Go. A QX(V\ to)-structure on A"is equivalent to a non-singular g0-valued
1-form v along the fibers of p and is formally integrable if and only if
®\,X/YV = Q- This last remark can be used to show directly that 3)ιtX/Yω

Uo = 0
for u E Zι(Jι(V; ω))a and u0 — πou without requiring our formula (22.20). The
analytic first-order Lie equation JX(T; ω) on I , whose solutions are the
p-projectable vector fields ξ satisfying t(ξ)ω = 0, is formally integrable and
formally transitive. For x E l , w e verify that JJ(V\ ω)x is a closed ideal of the
transitive Lie algebra JjίT\ ω)x and that, if R is simple, there is an isomor-
phism of transitive Lie algebras

such that yp(JO0(V; ω)x) "= R<S>RF. Thus the non-linear cohomology con-
sidered in Theorem 26.1 vanishes whenever R is finite-dimensional. We remark
that, if U is zero-dimensional and 7 is a point, the Lie equation JX{V\ ω) and
its finite form QX(V\ ω) can be described in a much simpler way without the
use of ω (see §20) and the vanishing of the cohomology in this case is given by
Proposition 17.2.

In §25, we study the case of the Lie algebra (iv). If ω is an analytic contact
form along the fibers of p, the Lie equation JX{V\ W\ corresponding to the
equation (ft(ξ)ω) Λ ω = 0 for vertical vector fields ξ, whose solutions are the
contact vector fields along the fibers of p, is not formally integrable. We
introduce a first-order Lie equation RX(V; ω) (resp. Rx(ω)) which corresponds
to the equations

£(£)ω = /ω, t(ξ)dx/γω - fdx/γω + a A ω

for the vertical (resp. p-projectable) vector field £, where / is a real-valued
function on X and a is a 1-form along the fibers of p depending on ξ. The
solutions of RX{V\ ω) are precisely the contact vector fields along the fibers of
p. In Proposition 25.2, using the explicit form of the contact vector fields, we
show that this equation R}(V; ω) is formally integrable and integrable and that
it is involutive and can be obtained from JX(V; W) by the methods of [10]; in
fact, it is equal to the projection in Jλ(V) of the first prolongation J2(V; W) of
the equation JX(V; W). This enables us to apply the results of [10] to deduce
that Hj{Rλ(V\ ω)) = 0, fory' > 0. To verify that a certain differential equation
Pλ(V\ ω) C Qx is a formally integrable and integrable finite form of Rλ{V\ ω),
we are lead to examine properties of a finite form Qλ{V\ W) of JX(V\ W) and
then to construct explicitly elements of the first prolongation P2(V\ ω) of
PX(V\ ω) in order to apply results of [9]. If u E Z\RX(V\ ω))β, with a E X and
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M0 = 7row, then by means of the formula (22.20) we see that ωu° is a germ of a
1-form along the fibers of p satisfying the condition

(2) ω Ό

in fact the relation (2) implies that ω"° is a germ of a contact form and
moreover every germ of a contact form along the fibers of p can be obtained in
this way (Propositions 25.5 and 25.6). Darboux's theorem with parameters
gives us the existence of a germ at a of a local diffeomorphism / of X over Y
satisfying (1); from equation (2) we infer that/verifies the additional relation

(3) ω«o Λ (f*dx/Yω - (dx/Yω)u°) = 0.

The equations (1) and (3) guarantee that the unique element φ G S , satisfying
πoφ = /and Φφ = u0 is a germ of a section of PX(V\ ω) (Proposition 25.4). Our
criterion now insures that the non-linear cohomology of PX(V; ω) vanishes. The
equation (2) expresses the condition that a germ u0 at a of a section of
Γ* ® J0(V), with wo(α) close to 0, be of the form u0 — πQu for some u E
Z\RX(V\ ω))α. Finally, the analytic Lie equation Rx(ω) is formally integrable
and formally transitive; for x G X, we verify that R^iV; ω)x is a closed ideal
of the transitive Lie algebra RO0(ω)x and that, if R is the Lie algebra (iv) with
2n + 1 = rank F, there is an isomorphism of transitive Lie algebras

such that ψ ί ^ ^ F ; ω)x) = R <S>R F. It follows that the assertions of Theorem
26.1 hold whenever R is the Lie algebra (iv).

Finally, we ought to point out to the reader that all differential equations
considered throughout this paper are assumed to be of order greater than or
equal to one. We wish to thank D. C. Spencer for his constant encouragement
and advice during the preparation of this paper.

CHAPTER V. THE COHOMOLOGY OF NON-ABELIAN
MINIMAL CLOSED IDEALS OF REAL TYPE

21. Lie Algebras with parameters

Let K be a field endowed with the discrete topology. We begin by recalling
the following definitions.

Definition. A linearly compact Lie algebra over K is simple if it contains
no non-trivial ideals.

According to [20, Proposition 4.3] a linearly compact Lie algebra is simple if
and only if it contains no non-trivial closed ideals; clearly such a simple Lie
algebra is transitive.
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Definition. Let L be a transitive Lie algebra over K and / a closed ideal of
L. A Jordan-Holder sequence for (L, /) of length A: is a properly nested chain

/ = /0 D / , D /2 Z> D JΛ = 0

of closed ideals of L such that, for all 0 <y < k — 1, either Ij/Ij+\ is abelian
or there are no closed ideals of L properly contained between I. and IJ+ι.

If / is equal to L, we call such a descending chain a Jordan-Holder sequence
for L. The existence of such sequences for (L, /) was proved by Guillemin [20,
Theorem 6.1] (see also Theorem 12.2).

Let L, E be linearly compact Lie algebras over K and suppose that E is
endowed with the structure of a linearly compact L-module such that the
elements of L act on E as derivations of the Lie algebra E, that is,

(21.1) ξ ' h i , V2] = [ί * i?i> ϊhl + hi> € * Ήi]*

for I G L, Tjj, η 2 G £. We define a structure of linearly compact Lie algebra M
on the linearly compact topological vector space E X L by setting

[ ( ^ P € I ) , ( ^ 2 » € 2 ) ] = (ii "ni-ti'li + [ η i ^ i U ί i έiD

The Jacobi identity for M follows from (21.1). We identify £ (resp. L) with its
image in M under the Lie algebra homomorphism /: E -> M sending η into
(η, 0) (resp.7: L -* M sending ξ into (0, ξ)). lΐφ.M^L denotes the projection
sending (η, ξ) E E X L into ξ, the sequence

is an exact sequence of linearly compact Lie algebras which is split by j \
moreover

for ξ G L, η E E. Thus Λf is an inessential extension of L by the closed ideal E
which we call the semi-direct product of L and E and often denote by E θ L.
A closed Lie subalgebra F C E which is also an L-submodule of E determines
a closed ideal F of M.

Let E, F be linearly compact topological vector spaces over K. If {Ea}a(ΞA,
{Fβ}β(ΞB are fundamental systems of neighborhoods of 0 in E and F respec-
tively, we endow the tensor product E ®KF with a structure of topological
vector space by letting the subspaces

Ea®κF+ E®κF
β,

with a E v4, β E B, of E ®# F be a fundamental system of neighborhoods of 0.
The Hausdorff completion of E ®κ F is a linearly compact topological vector
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space which we denote by E ®κ F; we have a canonical injective mapping

E®KF-*E®KF

which enables us to identify E ®KF with a dense subspace of E ®KF. The
tensor product E ®κ F may be canonically identified with the projective limits

lim(E/Ea) ®K(F/Fβ) = ]im(E/Ea) ®KF= timE ®K(F/Fβ).

If one of the spaces E or F is finite-dimensional, then E <8>κ F coincides with

E®KF.
Let F be a linearly compact (associative) algebra over K, that is, a topologi-

cal algebra over K whose underlying topological vector space is linearly
compact, and let R be a linearly compact Lie algebra over K. The tensor
product R ®κ Fhas a structure of Lie algebra determined by

for ξl9 ξ2 E R, /j, f2 E F. Then it is easily verified that there is a unique
topological Lie algebra structure on R®KF which extends this Lie algebra
structure on R ®κ F. Let L be a linearly compact Lie algebra. Assume that F is
a linearly compact L-module such that the elements of L act on F as
derivations of the associative Lie algebra F, that is,

for £ E L, /j, /2 E F. The action of L on R ®κ F, determined by

for £ E L, TJ E R, f G F9 extends to give us a structure of linearly compact
L-module on R®KF such that (21.1) holds for ξ E L, ηl9 η2 E # <S>̂ F. There-
fore we may define the semi-direct product of L and R<8> F according to the
construction given above.

Let 1 be the trivial line bundle over the manifold Y which is associated to
Jx(Tγ\ Y). Thus Fγ = JJ\\ Y)y is a geometric JJTY\ 7^-module, for y E y,
and a linearly compact algebra, and the elements of JJ<TY\ Y)y act as
derivations of the algebra Fy. We denote by Fy° the kernel of π0: /^(l; Y)y ->
70(l; Y) . Let L be a real transitive Lie algebra, / a closed ideal of L and Z/ a
closed subalgebra of L. According to the above construction, we obtain the
semi-direct product

of the transitive Lie algebra JJJγ', Y)y and the JJJγ\ Y^-module
L ®RFy. By [6, Lemma 3.1], M i s a transitive Lie algebra and, if L° is a
fundamental subalgebra of L, then

°®Fy + L® Fy°) θ J£{TY; Y)y
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is a fundamental subalgebra of M. Moreover the JJ<JY\ y ̂ -module / ® R Fy is
a closed ideal of M and the semi-direct product

{L'®Fy)®JjTγ;Y)y

is a closed subalgebra of M. We say that the ideal / ®R Fy of M is the L/e
algebra I with real parameters. If the closed ideal / of L is a non-abelian and
simple Lie algebra, then it is easily verified that / ® R i ^ is a non-abelian
minimal closed ideal of M. If L is a non-abelian and simple Lie algebra, then
as JJίTγ\ Y)y is a simple transitive Lie algebra when the dimension of Y
is ^ 1, we see that

MDL®RFyD0

is a Jordan-Holder sequence for M.
Assume that the manifold X is the product Y X Z of Y with a manifold Z

and that p: X ̂  y is the projection onto the first factor. Since Tx = TYy θ Tz z,
if JC = (j>, z) G y X Z, we have an isomorphism TZz -> ^ thus a vector field
I on y determines a p-projectable vector field p~ιξ on X, while a vector field η
on Z determines a vector field prf !η on X, and a /?-form on Z determines a
section of Λ PV* over X On the other hand, we obtain a morphism of Lie
algebras

(21.2) σx:Jo0(TY;Y)y^JO0(T;p)x,

sending^(^(j) intoy^p'^X c), where x G X satisfies p(jc) — y, which is a
splitting of the exact sequence of Lie algebras

o - Jjy)x - jjτ\ P)x ?*JjτY\ Y)y - o.

If x = (j>, z) E y X Z, the mapping

sending yJηXz) ^jj,f){y) intoyjp*/- pr£lijXx), where /is a real-valued
function defined on a neighborhood of y and TJ G ?ΓZ 2, determines an isomor-
phism

(21.3) X:JjTz;Z)2®Fy^

of linearly compact Lie algebras, which by restriction induces an isomorphism

λ: C{TZ; Z)z ®Fy + JjTz; Z)z <§> Fy° - j£(V)x.

If x = (y, z), the mapping

(21.4) λ: (JJTZ; Z)z ® Fy) ® JX{TY; Y)y-+JjT; p)x,
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sending (£, η) into λξ + σxη, is an isomorphism of transitive Lie algebras
between the semi-direct product of JJiTγ\ Y)y and the JJtTγ\ Y) -module
JO0(Tz;Z)z ®Fy and /^(Γ p)^; this mapping induces the isomorphism (21.3)
and the isomorphism

λ: (j£(Tz; Z)z A Fy + JjTZ9 Z)z Θ i*0) θ /TO°(Γy; Y)y -> j£(Γ; p) ,

of fundamental subalgebras. Therefore the mapping

sending ξ ® TJ into [σ^ξ, η], endows /ooCK)̂ . with the structure of a linearly
compact JJίTγ\ Y^-module, and the mapping (21.3) is an isomorphism of
JJJY\ y^-modules. If the dimension of Z is > 1, then JJtTz\ Z)z is a
non-abelian and simple Lie algebra, and so JJ(TZ\ Z)z Θ F and /ooίK)^ are
non-abelian minimal closed ideals of the semi-direct product and JJ(T\ ρ)x

respectively; moreover

(JJTZ; Z)z ® Fy) QJJTY\ Y)y D JjTz; Z)z ®FyD0

(21.5) JjT;p)xDJjV)xD0

are Jordan-Holder sequences for the semi-direct product and JX(T; p)x respec-
tively. The mapping

sending jjj\\z) Qj^ifXy) into f(y)η(z), determines a surjective mapping

* JΛTZ9Z)g&Fy->TZwI;

it is easily seen that the diagram

Z\ ® F) φ ;»(Γ y ; Y) ^ Tz z ® T

(21.6) λ

is commutative.
Let L be a transitive subalgebra of JJiTz\ Z)z and / a closed ideal of L. If

L° is the fundamental subalgebra L Π J£(TZ; Z)z of L, then

M=(LbFy)®JjTY9Y)y

is a transitive Lie algebra, / <S> /^ is a closed ideal of M and

° ® Fy + L & iv°) θ J^(Γ y ; 7)^
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is a fundamental subalgebra of M. The image of M under the isomorphism
(21.4) is a transitive subalgebra of JJiT\ ρ)x and the image of the closed ideal
/ ® Fy of M is contained in JjίV)^ moreover

By restriction, the mapping cy induces a surjective mapping

t»:L&Fy^Tz%z9

and so we obtain an injective mapping

(©• θ 7r* o j ,*- 1 ) 0 id: ( Γ * z Θ Γ f ) β C

(21.7) ' „ A

f

 χ χ

-((L0^)*Θ;JΓ 7 ;7 ) ; )0C.

The characteristic variety Ύ(M, / <§> i^,C) of the closed ideal / & i^ of M
over C is a subvariety of the image of (21.7). Since the characteristic variety
\{Jλ(V), C) of the Lie equation Jλ(V) is equal to T* ® C, by Theorem 16.4 (i)
the characteristic variety Ύ^J^T; ρ)χ9 JOO(V)X, G) is equal to the image of the
injective mapping

7r* o r*-1 <g) id: 7;* ® C -> / J Γ ; p)* ® C.

Therefore if L = J^T?; Z)2, from the commutativity of diagram (21.6) we
deduce that the characteristic variety ΎiM^L® Fy9C) of the closed ideal
L <8> i^ of M is equal to the image of the mapping (21.7).

We no longer assume that X is the product 7 X Z , but only suppose
that p: X -> 7 is a fibered manifold. Let x G l with 7 = p(x) and let Z be the
submanifold p~\y) of A"; we denote by z the point x considered as a point of
Z. Then there is a local isomorphism φ: y x Z - ^ I o f fibered manifolds over
Y defined on a neighborhood of (y9 z) such that ψ(y9 z) — x. The mapping λ
defined above together with the isomorphism <p gives us an isomorphism of
transitive Lie algebras (21.4), which by restriction induces an isomorphism
(21.3), and a commutative diagram (21.6). Thus whenever the rank of Fis >• 1,
we see that (21.5) is a Jordan-Holder sequence for the transitive Lie algebra

UK P)X
In §26, we shall require the following result which is the realization theorem

of Guillemin-Sternberg [24, Theorem III]:
Proposition 21.1. Let Lbe a linearly compact real Lie algebra and N an open

subalgebra of L. Let Y be a manifold whose dimension is equal to that of L/N9

andy E Y. Then there exists a morphism of pairs of topological Lie algebras

ψ: (L, N) - (jjTy Y)y, C{TY- Y)y)

such that φ(L) is a transitive subalgebra ofJ^Ty; Y)y.
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Such a morphism φ is called a transitive representation of (L, N) on

J^{TY\ Y)r It is easily verified that the kernel of φ is the largest ideal D™N of

L contained in N; in particular if / is an ideal contained in TV, then φ maps /

into zero.

22. A class of Lie equations determined by forms

We continue to assume that p: X -» Y is a surjective submersion. Let E be a

fibered manifold over Y and E' be the fibered manifold p~λE over X If

e' = (x, e) E £', with x<ΞX9e<ΞE, then Fβ,(£') is equal to Te(E/Y). Let

be the monomorphism of vector bundles over X, whose restriction to the fiber

over x E X is induced by the mapping

and denote its image by p*(SkT$). Let

pk:p-ιJk(E;Y)^Jk(E')

be the morphism of fibered manifolds over X sending (x, jk(s)(y)) into
7^0 o p)( x), with x E l , ί 6 δ ^ and p(x) = y.

Proposition 22.1. The morphism ρk is a monomorphism ofaffine bundles over

Pfc_! whose associated morphism of vector bundles is induced by the monomor-

phism of vector bundles

p* 0 id: SkT* ®E>T(E/Y) -> SkT* ®E>V(E')

over E'.

Proof. Let/be a real-valued function on Y satisfyingjk-\(f)(y) = 0, with

y E Y. If u is the unique element of SkT$y satisfying εu —jk(f)(y), then for

x E X, with p( c) = y, the element p*« is determined by the relation

ε ( p » = Λ ( / ° p ) ( * )

To prove the proposition, it suffices to show that, if s is a section of E over a

neighborhood of y and £ E Ts(y)(E/Y), we have

(22.1) pΛ(x, jk(s)(y) + u®ξ) =jk(s ° p)(x) + p> ® £,

where ξ on the right-hand side is considered as an element of V^x^y^(Ef). In

fact, let s be a deformation of the section s, that is, a mapping i: £/ X (-ε, ε) ->

^ , where ί/ is a neighborhood of .y satisfying s(b,0) — s(b) and (̂fc, t) E £ f t

for ft E I/, / E (-ε, ε), such that

dt



610 HUBERT GOLDSCHMIDT

Then the mapping s': ρ~\U) X (-ε, ε) -> E sending (a, t) into s(p(a), t) is a
deformation of the section s o p over ρ~ι(U) satisfying

dS'jx, Q I >
Λ l/=o *'

considered as an element of PJJCf5(>,))(/ί') According to [9, Lemma 5.1 and
Proposition 5.1], we know that

(22.2) Λ

(22.3) jk(s o p)(jc) + p > ® ξ =Λ(σ

where σ is the section

b»3(b9f(b))

of £ over a neighborhood of y, and σ' is the section

of E' over a neighborhood of x. Since σ' = σoρ,we see that

(22.4) Jk{°')(x) = Pk(x>Jk(

and so (22.1) follows from (22.2), (22.3) and (22.4).
Now assume that E and E' are vector bundles over X. If φ: E -+ E' is a

morphism of vector bundles, we denote by

Jk(φ):Jk(E)^Jk(E')

the unique morphism of vector bundles sendingyΛ(^)(jc) intojk(φs)(x), where
s is a section of E over a neighborhood of x. If P: S -> S' is a differential
operator of order A:, let

p,{P):Jk+ι{E)-*Jt{E')

be the moφhism of vector bundles sending^+/(s){x) mio jt(Ps\x\ where s is
a section of £ over a neighborhood of x.

For the remainder of this section, assume that E is a vector bundle over Y.
The sequence

0 _ p - ig _ &χ -ΛJJU ηf ® % A / r > Λ2Ύ"
(22.5)
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is exact, where q = rank F, and formally exact in the sense that the sequences

0 - p-%(E; Y) -^ Jk(p->E) P * - l f e / r ) > Jk_l(V* Θx E)

(22.6)

are exact for k > 0..Indeed, it is easily seen that the sub-bundle p*T$ ®XE of
T* ®XE, corresponding to the differential equation ρλ{p~λJλ{E\ Y)) C Jλ{ρ~λE)
on p~λE, is involutive. Moreover the sequences

(22 7) ° ~* P*(SkT*) ®*E -> SkT* ®*E ~* Sk~ιT* <S> F* ®XE

-> S2T* ® Λ k~2V* ®XE -* T* 0 Λ ^ F * ^ ^ -> Λ kV* ®XE -* 0,

whose mappings are induced by the mappingsPι(dX/Y), are exact and (22.5) is
the Spencer sequence of this formally integrable first-order equation on ρ~ιE
constructed according to the method of [8, Theorem 5.1]. Furthermore, if
Rx C/j(A r F* ®χE), with r> 1, is the differential equation equal to the
kernel of po(dx/γ\ from the involutivity of ρ*Γ£ <8>XE and the exactness of
the sequences (22.7) and (22.6), we deduce by [8, Proposition 4.3] (see also the
proof of [3, Theorem 4.4]) that gx is involutive and that Rλ is formally
integrable, with πQRλ — Λ r F * ®XE. According to [10, Theorem 3], the exact-
ness of the sequences (22.5) and (22.6) implies that

(22.8) HJ{pλ{p-λJλ{E\ Y))) = 0, H\Rλ) = 0, for/ > 0.

By Proposition 16.4, for x E X, the characteristic variety Ύ^p^J^E; Y)), C)
is equal to the subspace p*T$pM ® C of T* Θ C. From the exactness of the
sequences (22.7), we see that the characteristic variety Ύx(Rl9C) is equal to
T* ® C.

Next we recall the following formulas. If u E 3"* ®/1(?Γ) and u0 = ττow,
ύ0 = v~λ © w0, then, for ξ, ry E ?Γ, we have the identity

(ξ Λ η, Φ lW>

which is given by [18, Lemma 3.1] and which is equivalent to the identity

ΰoU, η] = [So(O> «o(η)] + [δo(0. ̂  + [f. "o(^)]
(22.10) - ϊ -- 1 £(^ 1 «(ξ))(( ϊ ' + Mo)τ,)

+ uo)ξ) ~r-\ξ Λ i,, ©,«>.
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The relation (22.9) is analogous to the formula for the operator S), on
/0(?Γ)* ® J0)oϊ Lemma 1.3:

<€ A η , a l t t > = - [(id - ao)J, (id - ύo)ή] + (id - ύo)[l ή]

where u E /0(?Γ )• ® ^ ( ξ Γ ) , w0 = 7row, fi0 = w0 O V and { , i | G / 0(?Γ), ί = ^

If M G Γ * ^ / 0 ( Γ ) , we set w = y"1 o M G T* ® Γ. The mapping sending
into the element

au = (id + fi)*α = a o (id + δ)

of Λ Γ*, where id is the identity mapping of Γ, is an endomoφhism of the
exterior algebra Λ Γ*. If M G (Γ* O / 0(Γ))Λ , it is an isomorphism; if u = 0, it
is the identity mapping. If α G Λ °Γ*, then au — a. We also set au =
„*-!(„*«)«, for a G Λ/0(Γ)*. For v = )8 ® TJ G Λ Γ ® Γ and a G Λ P , we
define the element

of Λ Γ* and extend this operation to arbitrary v by linearity. Then

(22.12) vΆu(a Λβ) = (vλua) Λ jβ" + ( - l ^ V Λ ( t^ jS),

for all ϋ G Λ r ^ T ^ G Λ qT*, β G Λ p . Next, if w is a section of
Γ* 0 JQ{T\ for ϋ = j8 ® ή E Λ/0(?Γ )* <8> ^(ίΓ), α E Λ/0(?Γ )*, we define the
element

of Λ/o(9")* ®/,(?Γ) and extend this operation to arbitrary v by linearity.
Then

(22.13) £ » ( « Λ β) = ( £ » α ) Λ /?« + ( - l ) " α " Λ ( e ^ ϋ ) ^ ) ,

for all v e Λ %Cϋ )* ® /,(!Γ), α £ Aχ(<ϋ)*, β e Λ/0(!Γ) ; moreover if
v e /0(!Γ)* W , ( 5 ) , « ε /0(f )*, then

(22 14) < έ Λ η ' £ " ( ϋ ) α > = < ( i d + u

If M is a section of Γ* ® /0(Γ) and ω is a form on X, then the following
proposition gives us the fundamental formula (22.15) relating dω" and (dω)u.
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Proposition 22.2. Let ω be a section of Λ Γ* and u a section of T* ® JX(T)
over X. Then

(22.15) rfαΛ - (dω)u° = (r" 1 ° ©,*)*„« - *>*

where u0 = τrow α«ί/ w w /λe secί/OAz ( P * " 1 ® ^ " ^ M ofJ0(T)*

Proof. Let w be a section of Γ* <S> / ^ Γ ) over ^ we set M0 = v~x © M0. Since

</ is a derivation of Λ?Γ* of degree 1 and the relations (22.12) and (22.13) hold,

it suffices to verify (22.15) when ω is a real-valued function / o r a 1-form on X.

In the first case, for ξ E ?Γwe have

which reduces to (22.15) with ω = /. Next, suppose that ω is a 1-form on X; for

ξ, η e 9", we have by (22.10) and (22.14)

<{ Λ η, d<c"o)= ξ <η, ««o>- η • (ξ, ««»>_ ( [ ^ η]f ω«o)

= € < η , « > - η • < € , « > - < [ € , η ] , « >

+ 1 (ΰo(v), ω > - TJ <M0(^)> « > - <wO[^ V], «>

= <ξ Λ η, dω)+ ξ • (ΰo(η), ω > - η <S 0 (O, ">

<€ Λ i,, ^ω>+ ί <δo(il), ω>- η • (ϋo(ξ), ω)

-<[ao(ξ),ao(η)],ω)-([ΰo(ξ),η],ω)

- δ o ( η ) <(id + δ o ) ί , ω>- ({v + «0)η,

= <ί Λ η, (dω)"° + (v-* o φ l M ) s „ - v*£Uo(ίi)(j>*-ιω)),

from which we deduce (22.15) when ω is a section of T* and hence also in the

general case.

Let /: X -» X be a local diffeomoiphism defined on an open set U. If £ is a

vector field on U, we define the vector field/^l on f(U) by
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for x E U. If ω is a section of Λ T* over X, it is easily seen that

(22.16) £(«)/•« = / • £ ( / • € ) " •

If £ is a p-projectable section of T over an open set U C X and η E
then £(!)τj E Λ°V; if ω is a section of Λ P , then £(£)« is the section of
Λ F* satisfying

(22.Π) <η, e({)«>= £(0<η> «>- <£(ίh> *>>>
for all η E ΛΎ. If /: X -» X is a p-projectable local diffeomorphism defined
on U9 then /„,£ is a p-projectable vector field on f(U) and formula (22.16)
holds. If g is a real-valued function on Y, then

If £ is section of F, then

(22.18) £(ξ)ω = ί/x/y(ξΛω) + ξλdx/γω,

and so

e({)<fjr/y« = dx/γe,(ξ)ω;

if ω is a section of Λκ*<8>^, formula (22.17) or (22.18) defines a section
£(ί)ω of Λ P 0 ^ £ . If j E J ί ( Γ p) and α E Λ/O(T)*, then £,(ξ)a E
Λ J 0(F)* is determined by

(22.19) <η, e(ξ)α>= t{l)(η, a)- ( £ ( | ) η , α>

for all η E Λ/0(°\Γ). Moreover if \<ΞJλ(V\ a E A/ 0 (T)* ® S^, formula
(22.19) defines e( | )α E Λ/0(F)* <8>x£.

If M is a section of V* ® J0(V), the operations depending on u described
above are easily modified to define elements αM, vλua of Λp<8>j£, for
a<Ξ ΛV* ®XE, t ) G Λ P 0 F , and £M(ϋ)α of Λ/O(Ύ)* 0 S x , for v E
Λ/^Ύ)* Θ Ji(Ύ), α E Λ / ^ T ) * ^ S^. If M E Γ* 0 /0(K) and a E
Λ F * ® χ £ , we set au = av, where υ — UxV. According to (1.5) and the
definition of the bracket on ΛΓ<8) JX(T\ for u G$* ® JX(Ύ) the element

f ΛT* 0 /0(Ύ) depends only on U\V\ we set

and thus obtain an operator

The following proposition is a generalization of Proposition 22.2 and gives us
the fundamental formula (22.20) relating dx/Yω

u and (dx/Yω)u, where u is a
section of Γ* Θ / 0(F) and ω is a section of Λ F* ®XE over X
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Proposition 22.3. Let ω be a section of Λ p ®XE and u a section of

V* ® JX(V) over X. Then

(22.20) dx/γω"* - (dx/γω)u° = ( ^ o Sύux/Yu) KUQ ω - v*ZUQ{ύ){v*-'ω),

as sections of Λ F* ®XE, where u0 = πou and ύ is the section {v*~λ ® v~x)u of

Proof. If we restrict the forms of both sides of (22.15) to Λ V, we obtain

(22.20) when ω is a section of Λ F * . The proposition is an immediate

consequence of this special case.

We now introduce a class of Lie equations determined by forms. Let ω be a

section of Λ p <8>XEover X, and let

be the linear differential operator sending ξ into £ ( £ ) ω The kernel Jk(V\ ω) of

pk-\(Dω) is a sub-bundle of Jk(V) with possibly varying fiber. Then ξ E Jλ(V)

belongs to JX(V\ ω) if and only if £(ξ)v*-ιω = 0, where ξ = v~ιξ. It follows

that if JX{V\ ω) is a vector bundle, then it is a Lie equation whose λ th

prolongation is Jk+x(V; ω), and which is the Lie equation determined by the

form ω. Let gk(V; ω) C SkJ0(T)* ® J0(V) be the kernel of πk_x: Jk(V; ω) ->

Λ_,(K; ω), where/0(F; ω) = J0(V).

In §23 and §24, we shall consider sections ω, and the corresponding Lie

equations, satisfying the condition of the following:

Proposition 22.4. Let ω be a section of Λ r F * ®XE over X, with r>l. If

there are isomorphisms of vector bundles

σ: V^Ar~]V* ®XE,

T: Λ rV* ®XE -> Λ Ύ* ®XE

over X such that the diagram

A''"1 Ύ

commutes, then Jλ(V; ω) is a formally integrable Lie equation, gx{V\ ω) w

involutive, π0: JX(V; ω) -> /0(*O " surjective, and

(22.21) JΪ>(/1(K;«))=0, /ory>0.

Moreover, for x E X the characteristic variety of JX(V; ω) over C is equal to

dfr= 1> ^ to 2? ® C i/r > 1.
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Proof. First if r> 2, since σ, τ are isomorphisms and the sequence (22.6) is
exact, Jk(V; ω) is equal to the image of the kernel of

under the isomorphism

Jk(σ-ι):Jk{Λr-ιV* ®XE) ^ Jk{V)

induced by σ"1. Next if r = 1, the commutative and exact diagram

0 > Jk(V; ω) ^ Jk(V) Pk~l ω y Jk^(V* ®x E)

(22.22)

0^p-%(E;Y)

whose mappings /^(σ) and / ^ . ^ T ) are isomoφhisms of vector bundles,
induces an isomorphism Jk(V; ω) -> ρ~ιJk{E\ Y). The conclusions of the pro-
position are direct consequences of our discussion of the sequence (22.5) and
the equations p^p'^E; Y)) and Rl9 and of (22.8).

A local mapping X -> X over Y is a p-projectable mapping inducing the
identity mapping of Y. If / is such a local mapping X -> X over Y, let © ω /
denote the section/*ω - ( o o f Λ p &*£. Let

be the morphism of fibered manifolds over X sending φ —jk(f)(a) into
Λ-i(®ω/Xα)» where / is a local diffeomorphism of X over 7 defined on a
neighborhood o f α G X If target φ = Z?, we define an isomorphism

f U Λ ^ ®^)^Λ-i(Λ^ ®^)e

by setting

Φ(Λ-i(«)(*)) =Λ-i(/*«)(fl).

where M is a section of Λ p (E)χj£; over X; then the diagram

vφ(Qk(v)) P t - l ( U /t

(22.23) *
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commutes. Indeed, if g, is a one-parameter family of local diffeomorphisms of
X over Y defined on a neighborhood U of b, with g0 the identity mapping of
£/, we set ψ(/) = jk(gt)(b) and let ξ be the section dgjdt | , = 0 of Fover U; then

and

/>*-i(® J . Φ(Λ(O(*)) = />*-,(*> J . | ψ ( 0 Φ | f = 0

«?«)(*) L

= Φ A )
From the commutativity of (22.23), we see that Jk(V; ω) is a vector bundle if
and only if/?Λ_,(2)ω) has constant rank. Let

be the moφhism of fibered manifolds sending jk(φ)(a) intoyA:(/?0(S)ω)<ί))(α),
where φ is a section of £?i(*0 over a neighborhood of α G X\ then the diagram

(22-24)

is commutative.
Let Qk(V; ω) be the sub-groupoid of Qk(V) consisting of the fc-jets φ G

Qk(V) satisfying/?^_1(©ω)φ = 0. An element φ of β ^ F ) belongs to β,(K; ω)
if and only if φί^*"^) = ^*-1co. By [9, Proposition 2.1], if Jk(V\ ω) is a vector
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bundle, then Qk(V; ω) is a fibered submanifold of Qk(V) and a differentiate
groupoid which is a finite form of the Lie equation Jk(V; ω), whose solutions
are the local immersions /: X -> X over Y satisfying f*ω — ω. Moreover from
the commutativity of (22.24) and [9, Proposition 4.4], we deduce that if
JX(V; ω) is a vector bundle, then

KQk+χiY\ ω) = KQkAV) Π Jk(Qx(V; ω))

since Qk+x(V) — (Q\{V))+k\ therefore if JX(V\ ω) is a vector bundle,
Qk+\(V\ω) is the A:th prolongation of Qλ(V\ ω). We write

thus by Proposition 7.2, if /j(K; ω) is a vector bundle, we have

(22.25) Φ ( 2 2 ( F ; ω)) C ?Γ ® ̂ ( Ύ ; ω).

The following lemma is needed for our study of QX(V; ω) and provides us
with a partial converse to Lemma 2.3:

Lemma 22.1. Let φ be a section of S 1 ? vW/λ 77 oφ = / , αwd u a section of
(J0(T)* ® Γ ) Λ . Then the following are equivalent:

(ii) φ w ίΛe sectionj\(f) — f° u ° v of§ίλ.
Proof. By Lemma 2.3 (ϋ),yΊ(/) — / ° M ° p i s a section of S Γ According to

Lemma 2.3 (in), it suffices to prove the following: if φ,φx G 2 , satisfy
7roφ = πoφx and $)φ = Φφj, then φ = φ1# In fact, by (2.41)

φ ( φ φ]1) - φ ^ Φ φ ) + Φφ^1 = Φx{®Φλ) + ΦΦT1 = ®(φi ΦT1) = 0.

Therefore φ φ^1 =y 1(π 0(φ φ]1)) =j\(I\) and so φ = φ l β

Recall that if u G (Γ* ® Jk(T))Λ , then according to Lemma 2.2 we obtain

an element ΰ E (/oC77)* ® Λ ( Γ ) ) Λ s u c h t h a t

If it = 0, for α G Λ F* O x £:, ί E Λ F, we have

(22.26) <€,α>= <(id + ί̂ "1 ° κ)(id -ΰop)ξ9a)= ((id - S o F ) { , α " ) .

Proposition 22.5. Let ω, a be sections of Λ P 0 x f and u a section of
(T* ® J 0 ( F ) ) Λ over X. Let f be a local immersion X-> X over Y. Then:

(i)φ —jx{f) — f° ΰ° v is a section of'*t,λ(V) satisfying ®φ — ΰand^φ — u\
(ii) we have

(22.27) (ξ,φ(v*-ιω))= ((r"1 - ΰ)ξ,f*ω),

forξ e Λ/0(K), αnrfφ(»'*-Iω) = y -'α if and only iff ω = a";
(iii) φ /ί α section o/S,(F; ω) i/αnd o«/y i//*ω = ω".
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Proof, (i) By Lemmas 22.1 and 2.2 (iii), we need only show that φ is a

section of QX(V). By Lemma 2.3 (i), we have φ(ξ) = v(f(v~ι - w)ξ), for

ξ G / 0 (Γ), and so pφ(ξ) = pξ. The desired result is a consequence of Proposi-

tion 6.1 (ϋ).

(ii) For ξ G Λ/ 0 (K) , we have

(ξ, φ(r*-ιω))= (φ(ξ), v*~ιω)= (v(f{v~x - ΰ)ξ), v*~ιω)

= «v-l-ΰ)Lf*ω),

and according to (22.26)

(ξ,v*-ιa)= ((v~ι - ΰ)ξ9a
u).

Since v~λ — ΰ: J0(V) -> V is invertible, we deduce that φ ^ * " ^ ) = α if and

only iff*ω = au.

(iii) is an immediate consequence of (i) and (ii), with a — ω.

From Lemma 22.1 and Proposition 22.5 (iii), we deduce that

(22.28) f*ω = ω φ φ ,

for φ G S,(F; ω) w i t h / = πoφ.
A section u of (Γ* ^ ^ ( F ; ω ) ) Λ determines a section ω"° of Λ P ^ ^ ^ ^

where u0 = 7row. In the next proposition, we investigate the relationship

between the integrability condition ©JM = 0 on w, an integrability condition

(22.28) on ωu° and the existence of local diffeomorphisms /: X -* X over Y

satisfying f*ω = ω"°.

Proposition 22.6. Let ω be a section of Λ V* ®XE and u0 a section of

(T* ® J0(V))A over X. Let f be a local diffeomorphism X -> X over Y defined on

a neighborhood of a G X. Then of the following assertions, (i) and (ii) are

equivalent while (iii) implies (iv):

/

(ii) there is a section φofQx(V; ω) over a neighborhood of a satisfying πoφ = /

and&φ = wo;

(iii) there is a section u of(T* ® Jλ(V\ ω)) Λ such that πou = u0 and%λu — 0

on a neighborhood U of a;

(iv) we have

(22.29)

on a neighborhood Uofa.

Moreover, if JX(V\ ω) is a vector bundle and the finite form QX{V\ ω) of

; ω) is formally integrable, assertion (i) or (ii) implies (iii).
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Proof. The equivalence of (i) and (ϋ) is a consequence of Lemma 22.1 and

Proposition 22.5. Next assume that (iii) holds. If we write Jλ{V\ ω) =

v~xJλ{V\ ω), then ύ = (p*" 1 ® v~ι)(uιv) is a section of J0(V)* ® /,(Γ; ω), and

so

where v = wo,κ. Since ®i,Λyy(Wικ) = 0, we apply Proposition 22.3 to ω and w.κ

to obtain (iv). Finally, assume that Jλ(V\ ω) is a vector bundle and that

d ( K ; ω) is formally integrable, and that (ii) holds. There is a section ψ of

S 2 (F; ω) over a neighborhood of a such that ^ ψ = φ; then by (22.25), M = ©ψ

is a section of (Γ* ® /,(K; ω)) Λ satisfying 7row = M0 and © ^ = 0.

The proof of part (i) of the following proposition resembles the argument

used to prove Proposition 7.6 (see also the end of the proof of Theorem 8.1).

Proposition 22.7. Let Rk C Jk(T) be a formally integrable Lie equation. Let

Pk C Qk be a finite form of Rk whose Ith prolongation we denote by Pk+ι. Assume

that πk: Pk+ι -> Pk is surjective.

(i) IfuEi Z\Rk)a, with a E X, and ύ is the image of u in Zι(Rk)a under the

mapping (7.13) andφ E tyk a, then the following assertions are equivalent:

(c) there is an element φλ G ^ + 1 satisfying

πkφλ = φ, S)φ1 = u.

(ii) Suppose that Pk is a formally integrable and integrable finite form of Rk. If

u E Z\Rk)a and ύ is the image of u in Zι(Rk)a, then the following assertions

are equivalent:

(a) the cohomology class ofu in Hx(Pk)ka vanishes',

(b) the cohomology class ofύ in Hx{Pk)ka vanishes',

(c) there exists φ E ^ a satisfying Φφ = πk_λu.

(iii) Suppose that Pk is a formally integrable and integrable finite form of Rk.lf

for all u E Zι(Rk)a, with a E X, we can solve the equation ©φ = ^ - i w ' for

φ E \ a , then H\Pk)ma = OJor all m > k, a E X.

Proof, (i) Clearly (c) => (b) => (a). We now verify that (a) =* (c). Suppose

u E Z\Rk)a and φ E Φk a satisfy (a) with (πoφ)(a) = b. Choose ψ, E Φk+ha

with τrk\pι = φ. Since (πk_ιu)φ = 0, we have

and (see §1)
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Sincegk is 1-acyclic, there exists v G gk+x such that δv = ur'\ According to [9,

Proposition 7.1], πk: Pk+X -> Pk is an affine sub-bundle of πk: Qk+l\Pk -> Pk9

and so the mapping (7.4), with / = 0, namely

is an isomorphism of Lie groups over X and thus ψ2

 = d~lQ belongs to

and ψf1 ψ2 G $k+Ub, with ii oίΨΓ1 ψ2)(6) = a; then

Hence φ, = ψ2

 ] ψ, E ^ + l f β satisfies π^φj = φ and 5Dφ, = M.

(ϋ) Clearly (a) => (b) => (c). We now verify that (c) =» (a). If u G Z\Rk)a and

φ G ̂  a satisfy ©φ = %-jM, then according to (i) there exists φλ G ̂ Λ + l f β ,

with πkφx — φ, such that 3)φ1 = w. Since P^ is integrable, there exists / G

Sol(P^ β such thatΛ+i(/Xfl) = Φi(«) T h e n ^ + i ί / " 1 ) Φi belongs to %+ha,

and by (2.41)

(iii) is a consequence of (ii) and Proposition 7.8.

From Propositions 22.5 and 22.7 (iii), we obtain directly:

Proposition 22.8. Let ω be a section of Λ V* ®XE. Assume that JX{V\ ω) is

a formally integrable Lie equation and that QX{V\ ω) is a formally integrable and

integrable finite form ofJλ(V\ ω). If for all u G (?Γ* ® JX(Ύ; ω))fl

Λ , with a G X,

satisfying Ί^xu — 0, there is a local diffeomorphism/: X ^> X over Y defined on a

neighborhood of a satisfying f*ω = ωu°, where u0 = πou9 then

PiQiiV; ω))m,a = 0, Hι(Jx(V; ω ) ) β = 0,

for all m> l9aGX.

The sub-bundle QX(V) of Qx is a formally integrable and integrable finite

form of the formally integrable Lie equation JX(V), and its λ th prolongation is

Qk+ι(V). The following proposition is a special case of Theorem 8.1 and also

follows directly from Proposition 22.8 with ω = 0, taking / to be the identity

mapping of X.

Proposition 22.9. For all m> 1, α G X, we have

H\Qx{V))ma = ̂  H\Jx(V))a = 0.

By the exactness of (1.3), we also have

HJ(Jλ(V))=0, fory>0.
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If x G X, there are structures of analytic manifolds on a neighborhood U of x

in X and on ρ(U) compatible with the structures of differentiable manifolds on

X and Y such that p( ί/ is analytic. Then Jλ(T\ p) is a formally transitive and

formally integrable analytic Lie equation; since Jλ(V) C Jλ(T; p) is a formally

integrable Lie equation satisfying (6.3), for * G X and j > 0 we have

, 30Ϊ &(JJT', p)x, JjV)x) = HJ(JX(V))X = 0,
1 ' H\UT;P)X,JJV)X) = HU(V))X = O,

by Proposition 22.9.

Let Z be a manifold and assume that p: X -> Y is the fibered manifold pr^

Y X Z -> Y. If x = ( j , z) G X, from the properties of the isomorphism (21.4)

of transitive Lie algebras given in §21 and (22.30), we deduce:

Proposition 22.10. IfZ is a manifold, then for z G Z andy G Y, we have

HJ({JJTZ; Z)2 €> Fy)φJjTγ; Y)y, JX(TZ; Z)z ® Fy) = 0

for] > 0, and

H1{{JJTZ; Z)2 d> /;) Θ/J7V; 7),, / J Γ 2 ; Z) z d» Fy) = 0.

Finally, we assume again that p: ^ -> Y is an arbitrary surjective submer-

sion, and further that E is a trivial vector bundle over Y. If ξ is a p-projectable

vector field on X, formula (22.17) defines a section £(ξ)ω of Λ V* ®XE, while

formula (22.18) determines an element £(£)« of Λ/ 0 (F)* 0 * £ , for all

I G ̂ (Γ; p), α G Λj^Ύ)* 0 S x . The differential operator

sending ξ into £(£)ω, extends the differential operator considered above; the

morphism of vector bundles

(22.31) pk_t(Dω):Jk(T; p) - Λ_,(Λ V* ®XE)

determined by this operator Z)ω, sending jk(ζ)(x), with ξ G 9"p x , into

Λ-i(^ωί)(χ)> i s a n extension of the morphism pk-\{Dω) considered above.

The kernel Jk(T\ ω) of (22.31) is a sub-bundle of Jk(T; p) with possibly varying

fiber and satisfies

Jk(V;ω)=Jk(V)CιJk(T ,ω).

An element ξ of JX(T\ p) belongs to Jλ{T\ ω) if and only if t(ξ)v*~ιω = 0,

where | = ^"^. It follows that if Jλ(T\ ω) is a vector bundle, it is a Lie

equation whose fcth prolongation is Jk+ι(T\ ω). Moreover, we have the exact

sequence

0 - Jk{V; ω)x - Jk(T; «) , - Λ ( Γ r ; y)
p ( J t )
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for x e X, and

[Λ+i(Γ; ω),Λ+1(Γ; «)] c/ k(Γ; «),

[Λ + i(Γ;«),Λ + 1 (K;ω)]c/ t (F;ω),

for k> \. For xGI,we write

by (22.32), /^(F; ω)x is a closed ideal of the linearly compact Lie algebra

Let Z be a manifold and assume that p: X -» y is the fibered manifold pr^
y X Z -» y. Denote by F the integrable sub-bundle of T consisting of vectors
tangent to the fibers of pr2: Y X Z -> Z. We have the decomposition

and p induces an isomorphism

piF-p"1^.

If ξ E Γ(y, Γy), then ξ = p-1f is the unique p-projectable section of V
satisfying pξ = ξ. Clearly Jλ(V'\ p) is a formally integrable Lie equation whose
A:th prolongation isJk+l(V';p) and p induces an isomorphism

p:Jk(VΊp)-+p-%(Tγ;Y),

whose inverse we denote by

(22.33) o:p-%{Tγ;Y)^Jk{V';p).

For x e X, with y = p(x), and ξ ε Γ(y, Γy), the mapping (22.33) sends
i n t o

and we have

(22.34) k ί . Vl],

for I, i) G /^(Γy; Y^ The mapping

q. Λ r ^ jΓ p),

determined by (22.33) with k = oo is equal to the mapping (21.2) and its image
is J^V; p)x. Moreover, we have the decomposition

Jk(T;p)=Jk(V)ΘJk(V';p);

for k = oo, this gives us a decomposition of JJtT\ ρ)x as the semi-direct
product of its closed subalgebra/^F'; p)x and its closed ideal JO0(V)x.
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Let ω z be a form on Z with values in the vector space E. We assume now
that the vector bundle E is the trivial vector bundle over Y whose fiber is the
vector space E and that ω is the section ώz oϊ Λv* ®XE determined by the
form ωz. The p-projectable vector field ρ~ιξ on X determined by a vector field ξ
on 7 clearly satisfies the relation t(p~ιξ)ω = 0. Hence we have the decomposi-
tion

(22.35) Jk(T; ω) = Jk(V; ω) Θ Jk{V, p).

Moreover for x — (y, z) e YX Z, the image JJiV'\ p)x of the moφhism of
Lie algebras (21.2) is contained in JJtT\ ω)x and JJίY\ ω)x is a JJiTγ\ Y)y-
submodule of JJtV)x, and JJtT\ ω)x is the semi-direct product of its closed
subalgebra/^F; p)x and its closed ideal/^(F; ω),,. Therefore the sequence

(22.36) 0 -> Jk(V; ω)x - Jk(T; ω)x ^Jk(TY', Y)β(x) -, 0

is exact for 1 < k < oo. It is easily seen that the image of the semi-direct
product

under the isomorphism (21.4) is equal to JJtT\ ω)x and that the restriction

of the mapping (21.3) is an isomoφhism of JJίTγ\ 7^-modules.

23. Some simple Lie algebras with parameters

Let q be the rank of V and assume throughout this section that q > 1. Let E
be a vector bundle over Y and r> I. A section ω of Λ rV* <8XE over Xis said
to be non-singular if the mapping

(23.1) ω: V-* S\r~xV* ®XE,

sending ξ into ξ λ ω, is an isomoφhism of vector bundles over X.
Proposition 23.1. Let ω be a non-singular section of Λ rV* <8>XE over X.
(i) Ifu is a section of Γ* Θ J0(V) over X, then u is a section of(T* ® J0(V)) Λ

if and only ifωu is a non-singular section of ΛrV* <8>XE over X.
(ii) /// is a local mapping X -> X over Y defined on an open set U, then f is

an immersion of U if and only if f*ω is a non-singular section of Λ rV* <8>XE
over U.
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Proof, (i) If u G T* ® J0(V) and o = (id + v~ι o M) the diagram

commutes; the mapping ω" is an isomorphism if and only if the mapping υ is
an isomorphism, or equivalently if u G (T* ® J0(V))A .

(ii) For x G U, the diagram

r
h )f(x)

r~1 V* 6to F\

is commutative; thus the mapping f*ω of the diagram is an isomorphism if and
only if/*: F,. -> Jy (JC) is an isomorphism, or equivalently if and only if/is an
immersion on a neighborhood of x.

In this section and the next, we shall examine three types of non-singular
sections of the vector bundles Λ r F * ®XE and the corresponding Lie equa-
tions. For the remainder of this section, we assume that E — 1 and that r — q
or r = 2.

A section of Λ qV* is non-singular if and only if it does not vanish at any
point of X. A non-singular section ω of Λ qV* is called a volume form along
the fibers of p; the restriction ωx of ω to a fiber X = p~ι(y), with j> G 7, is a
volume form on Xy. If ω is a non-singular section of A V*9 then the rank of V
is even and equal to q = 2/?, with/? > 1; if q is even and equal to 2/?, a section
ω of A 2 F * is non-singular if and only if the section ωp of Λ qV* does not
vanish at any point of X. A non-singular section ω of A 2 F * is called a
symplectic form along the fibers of p if dx/γω = 0; the restriction ω^ of such
a symplectic form ω to a fiber Xy9 with j G 7, is a symplectic form on Xy.U X
is the product 7 X Z of 7 with a manifold Z and p: Λ" -» 7 is the projection
onto the first factor, and if ω z is a volume or symplectic form on Z, the section
ώz of A r F * determined by ω z is a volume or symplectic form along the fibers
of p.
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Proposition 23.2. Let ω, ω' be two non-singular sections of Λ rV*. If r — 2

or r — q9 then for all a G X9 there is a section u0 of (T* ® J0(V))A such that

ω' = ωM° on a neighborhood of a.

Proof. There are frames {al9- 9aq}9 {αj, 9a'q} for V* over a neighbor-

hood Uofa £ X such that

ω = ax Λ Λ ^ , ω' = αj Λ Λα^,

when r — q, or such that

« = Σ «27-i Λ «2j> «' = Σ «27 - i A α'2, ,
7 - 1 7 = 1

when r = 2, according to Cartan's lemma. Let t> be the section of F* ® V over

£/ satisfying v*(aj) = αj, for 1 < y < q, and let u0 be a section of T* ® / 0 ( F )

over t/ satisfying (id + p~ι O UΛV — v. Then ω' = ω"°, and w0 is a section of

(Γ* ® J0(V))A by Proposition 23.1 (i).

Let ω be a non-singular section of Λ rV*. Assume that either r — q,oτ that

r — 2 and ω is symplectic. Since dx/γω — 0, by (22.18) the hypotheses of

Proposition 22.4 are satisfied with σ equal to the mapping (23.1) and τ to the

identity mapping of Λ rV*. Therefore JX(V; ω) is a formally integrable Lie

equation whose λ th prolongation is Jk+x(V; ω), and QX(V; ω) is a finite form

of JX(V\ ω) whose kth prolongation is Qk+x(V; ω); moreover πo(Jx(V; ω)) =

J0(V) and (22.21) holds.

Let (w, y) be a local coordinate for A" on an open neighborhood U of a G X

compatible with p, that is, w = (w1,- -,wq) is a coordinate along the fibers of

p and j> = {y\ ,j>m) is a local coordinate for 7 o n p(t/). First, suppose that

ω is a volume form along the fibers of p; then ω is the restriction to Λ qV of

the g-form

AέΛv1 Λ Λdwq,

where A is a real-valued function on U. We solve the equation dg/dwι = Λ for

a real-valued function g on a neighborhood of a. If z1 = g, z7 = w7 fory > 2,

then ω is the restriction to Λ qV of the #-form

ί/z1 Λ dz2 A Λdz*,

and (z\- - ,zq

9 y\- - -,ym) is a local coordinate on a neighborhood Uf of

flEl compatible with p. A vertical vector field ξ = ΣJ = 1 ξ
Jd/dzJ on £/r is a

solution of JX(V; ω) if and only if
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Next, if ω is a symplectic form along the fibers of p, according to Darboux's
theorem with parameters, there are functions z1,- -9z

q on a neighborhood of a
such that ω is the restriction to Λ 2 F o f the 2-form

2 dz2J~x A dz2J\
7 = 1

Since ω is non-singular, (z\ -9z
g, y\--,ym) is a local coordinate on a

neighborhood U' of α compatible with p. In either case, the vertical vector field

(23.2) ξ0 = 2 z>/-
j=\ %zJ

on t/' satisfies £(ξ0) = rω and £(p*/ | 0 ) = rρ*/ <o, if / is a real-valued
function on p(ί/') Clearly we may assume that zJ(a) — 0 for 1 <y ^ q\ then
wehave£0(tf) = 0.

Proposition 23.3. (i) Let ω, ω' be two volume or two symplectic forms along
the fibers of p. If a, b EL X, with p(a) = p(fe), there is a local diffeomorphism
f: X -* X over Y defined on a neighborhood of a such that f(a) = b and
f*ω = ω'.

(ii) If ω is a volume or a symplectic form along the fibers ofp, then Qλ(V\ ω)
is a formally integrable and integrable finite form of the formally integrable Lie
equation JX(V\ ω), whose kthprolongation is Qk+ι(V; ω).

Proof, (i) There are local coordinates (z, y) on a neighborhood U of a and
(z', y) on a neighborhood £/' of 6 compatible with p, where j = (j^1,- -,ym) is
a local coordinate for Y on a neighborhood of p(a). From the above discus-
sion, if ω and ω' are volume forms, we may assume that ω is the restriction to
Λ qV of the #-form dz1 Λ Λdzq on U and that ω' is the restriction to Λ qV
of the f̂-form dzΛ Λ Λ Jz'9 on t/'; similarly, if ω and ω' are symplectic
forms, we may suppose that ω is the restriction to A2V of the 2-form
Σ?=ιdz2j~ι Λ Jz 2 y on U and that ω' is the restriction to Λ 2V of the 2-form
Σ*=ιdz'2j~λ Λdz'2J on [/'. We may also suppose that z(a) = z\b). The
mapping / defined on a neighborhood of a sending the point of U with
coordinate (z, y) into the point of U' whose (z', >>)-coordinate i s equal to
(z, y) is a diffeomorphism over Y and satisfies f(a) = b and /*ω = ω', since

(ii) We begin by proving that for φ E QX(V; ω), with source φ - a, there is
a local diffeomorphism/: X -> X over 7 defined on a neighborhood of 0 such
thaty^/Xα) = φ and/*ω = ω. If we take ω' = ω in (i), we see that it suffices
to verify this assertion when target φ is also equal to a. Assume that (z, y) is a
local coordinate compatible with p on a neighborhood U of a, with z(a) = 0
and X P O ) ) = 0, satisfying the conditions with respect to co described in the
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proof of (i). Let φ G Qλ(V) with source φ = target φ = a. If φ: J0(T)a

sends ϊ/(θ/θzy) into Ίβι=x aljv(d/dzι), for 1 <j < ?, and K V 3 / ) i n t o K 3 / 3 /

+ Σ^=! βfi/dzι), for 1 ^ / ̂  m, then the mapping /defined by

with

/=1 1=1

is a local diffeomorphism of X over Y on a neighborhood of a which satisfies

j\(f)(a) = φ; moreover /*ω = ω if and only if φ(p*~ιω) = ^* - 1ω, or if φ G

d ( K ; ω). Thus we have verified our assertion, which implies that πλ: Q2(V\ ω)

-> β ^ F ; ω) is surjective. Since g ^ F ; ω) is 2-acyclic and gk(V\ ω) is a vector

bundle for k > 1 by Proposition 22.4, we apply [9, Theorem 8.1] to β ^ F ; ω)

and deduce that it is a formally integrable finite form of JX(V\ ω). With respect

to the analytic structure on U determined by the coordinate (z, y\ the form ω

is analytic and the open sub-bundle of QX(V; ω) ( ( / consisting of all elements

φ G Qλ(V; ω) with source and target belonging to U is an analytic and

formally integrable differential equation on U, and therefore integrable. That

Qι(V; ω) is integrable now follows from (i) with ω = ω'.

The equivalence of assertions (i) and (ϋ) of the following proposition shows

that the mapping T* ® JX(V) -» ArV*, sending u into ω"°, with w0 = ττow,

induces a surjective mapping from Zι(Jx(V; ω))a to the set of germs at a G X

of volume or symplectic forms along the fibers of p.

Proposition 23.4. Let ω be a volume (resp. symplectic) form along the fibers

of p and let a EL X. If ω' is a section of Λ qV* (resp. Λ 2 F * ) over a neighbor-

hood of a, the following assertions are equivalent:

(i) ω' is a volume (resp. symplectic) form along the fibers of p on a

neighborhood of a;

(ϋ) there is a section u of(T* 0 JX(V\ ω))A such that © xu = 0 and ω' — ω"°,

with M0 = τrow, on a neighborhood of a;

(iii) there is a section φ of QX(V\ ω) over a neighborhood of a such that

ω' = ω"°, with u0 = Φφ.

(iv) there is a local diffeomorphism f: X ^> X over Y defined on a neighbor-

hood of a such thatf(a) — a andf*ω = ω'.

Proof. (ii)=»(i): Proposition 23.1 (i) shows that ω"° is non-singular; the

implication (iii) => (iv) of Proposition 22.6 gives us the relation (22.29), and so

dx/Ύ^ = 0.

(i) => (iv) is given by Proposition 23.3 (i).
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(iv) => (ϋi): According to Proposition 23.2, there is a section u0 of (T* ®
/ 0 (F)) Λ such that ω' = ω"° over a neighborhood of a; assertion (iii) is given by
the implication (i) => (ϋ) of Proposition 22.6.

(iii) => (ii): Since QX(V\ ω) is a formally integrable finite form of JX(V; ω) by
Proposition 23.3 (ii), the implication (ii) => (iii) of Proposition 22.6 tells us that
assertion (ii) holds.

The proof of the implication (ii) => (iii) of the above proposition gives us the
more precise statement:

Corollary 23.1. Let ω be a volume (resp. symplectic) form along the fibers of
p and let a EL X. If u is a section of(T*® JX(V; ω))Λ satisfying <Dxu — 0, there
exists a section φ of§ίx(V; ω) over a neighborhood of a such that © φ = πou.

Since QX(V; ω) is a formally integrable and integrable finite form of the Lie
equation JX(V\ ω) by Proposition 23.3 (ii), Corollary 23.1 together with Pro-
position 22.7 (iii), or the implication (ii) => (iv) of Proposition 23.4 together
with Proposition 22.8 gives us:

Theorem 23.1. Let ω be a volume or a symplectic form along the fibers of
p: X-+ Y. Then for allm> 1, Λ G X, we have

Hι(Qx(V; ω))m,a = 0, H\JX(V; ω))a = 0.

The existence of the local coordinates for X satisfying the conditions with
respect to ω described in the proof of Proposition 23.3 (i) shows that the
sequence (22.36) is exact for x E X and 1 < k < oo; therefore JX{T\ ω) is a
formally transitive and formally integrable p-projectable Lie equation whose
A th prolongation is Jk+x(T; ω). From (22.32), we deduce that J^V; ω)x is a
closed ideal of JJiT\ ω)x, for x G X.

Let {ω} be the sub-bundle of Λ rV* generated by the section ω and let
φ: Λ rV* -* {ω} be a projection of Λ rV* onto this sub-bundle. Let Ef denote
the quotient bundle Λ rF*/{ω} and ψ: Λ rV* -> E' be the natural projection.
For k > 2, let

Φk(ω):Jk(T; p) -> Jk-X(E') Θ Jk.2(V*)

be the moφhism of vector bundles sending jk(ζ)(x), with ξ G 3"p>JC, into
( Λ - I ( Ψ Λ « € X Λ ) , jk-x(dx/γf)(x)l where / is the unique element of 6 ^
satisfying ψDωξ=fω. The kernel J'k(T\ ω) of Φ^(ω) consists of all fc-jets
jk(ξ)(x)9 with ξ G ?Γp x, for which there is a real-valued function / o n 7 such
that

(23.3) Λ

then
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We set

J'k(V;ω)=Jk(V)nJ'k(T-ω),

for k>2. By means of the morphisms Φk(ω), we see that, if J{(T\ ω) (resp.
J{{V\ ω)) is a vector bundle, then its kth prolongation is Jk+2(T> ω) (resp.
Jk+2(V; ω)). If ξ0 is one of the vertical vector fields (23.2) and/is a real-valued
function on y, then jk(p*f - ξ0) is a section of Jk(V; ω), for k>2. Using
(23.3), it is easily verified that

(23.4) [/£+i(Γ; ω), /£+ 1(Γ; ω)] C /£(Γ; ω),

(23.5) [JΪ+i(Γ; ω), /£+1(K; ω)] C Λ(F; «),

for fc > 2. For x E: X and fc > 2, the mapping

/£(K;ω) x -. 7^,(1; y)p ( J C ),

sending jk(£)(x\ with { G Ύ , , into jk-λ{f)(p{x)\ where / is a real-valued
function on Y such that (23.3) holds, is easily seen to be well-defined. Because
of the existence of the vector fields (23.2), the sequence

0 -> Jk(V ω) -> J'k(V\ ω) -> p " V i ( l ; 7 ) ^ °'

induced by these mappings, is exact. We immediately deduce from this fact
and (23.4) that J{(V\ ω) is a formally integrable Lie equation whose kth
prolongation is Jk+2(V\ ω). For x E X, we consider /^(l; ^)P(X) as an abelian
Lie algebra, and we write

If ξ0 is one of the vector fields (23.2) defined on a neighborhood of x satisfying
~ 0> the morphism of Lie algebras

sending ^(/Xpίx)) intoyjp*/* foX^λ where/G 0yfP(jc), is a splitting of
the exact sequence of Lie algebras

0 -» / J F ; « ) , - j ; ( F ; « ) , - / J l ; r ) p ( J t ) - 0;

clearly the image of this mapping is a closed abelian subalgebra of J£(V; ω)x

which is a complement of JJiV\ ω)x in J^(V; ω)χ9 and so the quotient
J*(Y'> ω)x/^co(Y* ω)χ ^s abelian. Moreover the existence of the local coordi-
nates for X satisfying the conditions with respect to ω described in the proof of
Proposition 23.3 (i) shows that the sequence

P
0 - J'k(V; ω)x - Jk(T; ω)x ^Jk(Tγ; Y)p(x) - 0
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is exact, for x E X and 2 < k < oo; therefore by (23.4) we see that /2'(JΓ; ω) is
a formally transitive and formally integrable Lie equation whose A th prolonga-
tion is J'k+2(T; ω). From (23.5), we deduce that

(23.6) [/ί(?Γ; ω), ^(Ύ; ω)] C JX(Ύ; ω),

if /^(Γ; ω) = v~%(T\ ω), and that J'JV\ ω)x and /^(F; ω)x are closed ideals of
the transitive Lie algebra J^(T\ ω)x,ίoτxG X; moreover/^(Γ; ω)^ is a closed
transitive subalgebra of J^(T; ω)x. With respect to the structure of analytic
manifold on an open set U C X determined by a local coordinate on U
satisfying the conditions with respect to ω described in the proof of Proposi-
tion 23.3 (i), the section ω is analytic and the Lie equations JX(V; ω) and
J2{T\ ω) are analytic and satisfy (23.6); hence for x E X andy > 0, we have

(23 7) fWΓ' <*)*> J~(V> ω )*) = HJ(Jι(v> «))* = °>
H\J^T; ω)x, JJV\ ω)x) = H\Jλ{V; ω))x = 0,

by Proposition 22.4 and Theorem 23.1. According to Proposition 22.4, the
characteristic variety \(Jλ(V\ ω), C) of JX(V\ ω) is equal to T* 0 C if q > 1,
and to ρ*TYp(X) ® C if q = 1 and ω is a volume form. Hence by Theorem 16.4
(i), the characteristic variety Ύ(J^(T; ω)x, J^V; ω)x,C) is equal to the image
of the injective mapping

7r* o v*~λ 0 id: T* ® C -> J^(T; ω)* 0 C

if q > 1, or to the image of p*7y p ( x ) ® C under this mapping if q = 1.
If the manifold Y consists of just one point, then V — T and ω is either a

volume or a symplectic form on X. Applying the above results to ω, we see that
JX(T\ ω) and J^T; ω) are formally transitive and formally integrable Lie
equations on X, and that /^(Γ; ω)^ is a closed ideal of J^(T; ω)x of codimen-
sion one, for x E X\ moreover there is a closed abelian subalgebra of j£(T; ω)x

of dimension one which is a complement to J^iT; ω)x in J^(T\ ω)x. If ω is a
volume form on X, the solutions of Jλ{T\ ω) (resp. J'2(T\ ω)) are the vector
fields with zero-divergence (resp. with locally constant divergence), JJ<T\ ω)x is
the Lie algebra of formal vector fields with zero-divergence, and the local
diffeomorphisms solutions of QX(T\ ω) are the volume preserving diffeomor-
phisms of X. If ω is a symplectic form on X, the solutions of JX(T; ω) (resp.
/2'(Γ; ω)) are the symplectic vector fields (resp. the vector fields ξ satisfying
£(£) ω — cω> where c is a locally constant function depending on £), JJiT\ ω)x

is the Lie algebra of formal symplectic vector fields, and the local diffeomor-
phisms solutions of QX(T; ω) are the symplectic diffeomorphisms of X. If
n ^ 2, in either case the transitive Lie algebra JjiT', ω)x is non-abelian, simple
and infinite-dimensional; moreover if ΏeτiJ^T; ω)x) denotes the Lie algebra
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of derivations of JJ(T\ ω)x, according to [7] the mapping

sending ξ into the derivation ad(ξ) of JJ^T', ω)χ9 is an isomorphism of Lie
algebras (see [6, Corollary 2.2]).

We no longer assume that 7 is a point. Let b E Y and let Z be the
submanifold Xb of X. We consider the volume or symplectic form ω z, restric-
tion of ω to Z. If a E Z, a local coordinate on a neighborhood of a satisfying
the conditions with respect to ω described in the proof of Proposition 23.3 (i)
determines a local isomorphism φ: Y X Z -> X of fibered manifolds over Y
defined on a neighborhood of (ft, a) such that φ(b9 a) = a and ώ z = φ*(ω). If
7 G Y, z E Z with φ(y, z) — x, the mapping φ induces an isomorphism (21.4)
of transitive Lie algebras; under this isomorphism, it is easily seen that the
image of the semi-direct product

M' = (J'JJZ; <oz)2 <§> Fy)®JjTγ; Y)y

is the transitive subalgebra J'J(T\ ω)x of JJiT\ ρ)x, that the images of the
closed ideals J'JJZ\ ωz)z ® Fy and JJiTz\ ωz)z ® Fy of M' are the closed
ideals J^(V\ ω)x and JJiV\ ω)x of J^(T; ω)x respectively, and that the image of
the closed subalgebra

M=(JJTZ; ωz)z ® Fy)®JjTγ; Y)y

of AT is the closed subalgebra JJiT\ ω)x of J^(T\ ω)x. If the dimension q
of Z is > 1, since JJ<TZ\ ωz)z is a non-abelian and simple Lie algebra,
Λo(̂ z> ωz)z ̂  ^, is a non-abelian minimal closed ideal of M' or of M;
therefore JJ^V\ ω)^ is a non-abelian minimal closed ideal of J'JίT\ ω)x or of
JjίT\ ω)x whenever q > 1. If ωz is a volume form on a one-dimensional
manifold Z, then JJtTz\ ωz)z is abelian, and therefore so are the ideals

JJΪZ* <*z)z ® ^ a n d / o o ( F ; ^)χ T h u S

M' D /;(ΓZ; ω z) z & FyD JjTz\ ωz)z ®FyDθ,

MDJjTz;ωz)z®FyD0,

/;(Γ; ω)x D /;(F; «), D / J F ; ω), D 0,

are Jordan-Holder sequences for the transitive Lie algebras Λf, M,
/4(Γ; ω)Λ, /^(Γ; ω)Λ. If S2 is a closed abelian subalgebra of J£(TZ\ ωz)z which
is a complement to JJ<TZ\ ωz)z in/^(^z* ωz)z»
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is a closed subalgebra of M' which is a complement to JJ<TZ\ ωz)z ® Fy in Λf.

From the commutativity of diagram (21.6), we deduce that the characteristic

variety Ύ(Λf, JJTZ\ ωz)z <8> Fy, C) of the closed ideal JJTZ\ ωz)z ® Fy of W

over C is equal to the image of the injective mapping (21.7), with L —

J'J<TZ\ ω z) z, if the dimension q of Z is > 1, or to the image of T\y ® C under

this mapping if q = 1 and ωz is a volume form.

We restate some of these results in

Proposition 23.5. Let ω be a volume or a symplectic form along the fibers

of p: X -> Y. Let x G X with y — ρ(x), and Z = P - 1 (JC). // ωz is the volume or

symplectic form on Z, restriction of ω to Z, then J^(TZ; coz)x and JJiTz\ coz)x

are transitive subalgebras of JX(TZ'9 Z)x, and JJ^ΓZ\ ω z ) x is a closed ideal of

codimension one ofJ^(Tz; ωz)x. Moreover, there is an isomorphism of transitive

Lie algebras

{UTZ; *z)x ® Fy) Φ UTY; Y)y - /;(Γ; ω)x

mapping the closed ideals J'J<TZ, ωz)x <§> Fy and JJ<JZ\ ω z ) ® Fy of the semi-

direct product onto the closed ideals J^(V\ ω)x and JJίV\ ω)x of J^(T\ ω)x, and

the closed subalgebra

of the semi-direct product onto the closed subalgebra /^(Γ; ω)x ofJ^{T\ ω)x.

Let ωz be a volume or a symplectic form on a manifold Z. Let p: X -» F be

the fibered manifold pτx: Y X Z -* Y and ω be the volume or symplectic form

ώ z along the fibers of p determined by ωz. We have the decompositions (22.35)

and

Jί(T;ω)=J'k(V;ω)9Jk(V;p),

and

J^(T; ω)x = /i(K; «), θ σ.ί/jΓy; Y)y),

JJT-, ω)x = JJV; ω)x Φ σ,(/JΓ y; r ) y ) ,

for x = (y,z)EYXZ. Therefore /;(F; ω), and JJV; ω)x are /JΓ,,; 7),-

submodules of JX(V)X, and the restrictions

of the mapping (21.3) are isomorphisms of JX(TY; y)y-modules.
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From (23.7) and Proposition 23.5, we deduce the following:

Theorem 23.2. // ωz is a volume or a symplectic form on a manifold Z, then

for z EL Z andy E Y, we have

H(J'JTZ\ ω z) z ® Fy)®JjTγ; Y)ytJjTz', <oz)z ® Fy) = 0

forj > 0, and

Hλ{{j^(Tz; ω z) z & Fy) Θ JJTY; Y)y9 JjT* ωz)z S> Fy) = 0.

If we take Y to be a point and Z = X in Theorem 23.2, we obtain:

Corollary 23.2. // ω w # volume or a symplectic form on X, then for x E X
andj > 0, we have

HJ(JJT; ω)x) = 0, H\JjT\ ω)x) = 0.

24. Finite-dimensional Lie algebras with parameters

In this section, we consider a third type of non-singular sections of the

vector bundles Λ r F * ®XE and the corresponding Lie equations.

Assume that p: X -> Y is a bundle G of Lie groups over Y. The Lie algebra Q

of G is the vector bundle over Y whose fiber Qy at y E Y is F / ( 7 ) (G), where

/(j>) is the identity element of Gy. We consider the bracket on g as a morphism

of vector bundles

which, when restricted to the fiber g^, is the usual bracket defined in terms of

πgλMnvariant vector fields on Gy. The Maurer-Cartan forms of G

ω: V-* g, σ: V^ g

are defined by

for I E F g; if g E G and ρ(g) = ^, the restrictions of ω and σ to F g = Tg(Gy)

are respectively the left-invariant and right-invariant Maurer-Cartan forms of

the Lie group Gy. They define isomorphisms of vector bundles

ω: V-* p - 1 g, σ: K-> ρ-1g
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over 7, and we consider ω and σ as non-singular sections of V*<8>XQ.

Moreover ω satisfies the equation

dx/γω ~ i[ω,ω] = 0,

where the bracket is given by (4.1) with g endowed with the above bracket.
The bracket on g induces a structure of Lie algebra on Γ(7, g). Let

be the homomorphism of Lie algebras sending ξ into the vertical vector field
i(ξ) on X whose restriction to Xy is the right-invariant vector field on Gy whose
value at I(y) is ξ(y), for all j G F . Then

(24.1) <*(€)>

for gGG. Let

Ad: V

be the isomoφhism of vector bundles over X sending u E V* ® Qy, with
g E G and ρ(g) = y, into (id ® Ad g)u. Then

(24.2) σ = Ad(ω).

Lemma 24.1. Ifη is a vertical vector field on X whose restriction to Xy is a

left-invariant vector field on Gyfor ally E Y, and ξ is an arbitrary vertical vector

field on X, then we have

(24.3)

as sections of p"1 g over X, and

(24.4)

Proof. There is a one-parameter family of sections g, of G over Y such that
g,(y) is a one-parameter subgroup of Gy for allj G 7, and

η(^) = ^ g gί(>;) | r = 0>

for g E Gy, j G Y. If φ,: G -» G is the diffeomorphism sending g G Gy into

g g,(y), withy E 7, then η = dψt/dt | ( = 0 , and if ξ is a vertical vector field on

X,

/ = 0

=-#i(g • g7\y)) • g,(y) |,=o>
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for g E Gy. Thus

,*],σ>(g) = -[jt |,=0

= - j ^ U g?(y)) • (g,(y) • g'1) |,= 0

\t=o

| f = 0

and so (24.3) holds. On the other hand, (TJ, ω) is a constant function on each

fiber of X, and hence

(24.5) <η, £ ( € ) " > = £(0<iJ . " > + < h . €], « > = <[iJ, ί ] , «>•

According to (24.2) and (24.3), we thus obtain

< η , A d ( £ ( O « ) > = <[i», € ] ,Ad(«)>= <[η, ξ], σ>

from which we deduce (24.4).

We also write E for g and consider the differential operator Dω: Ύ

Ύ* <8> S^ sending £ into £(£)ω. According to (24.1) and (24.4), the diagram

(24.6) lid L I Ad

is commutative; since its vertical arrows are induced by isomorphisms of vector

bundles and (22.5) is exact, its rows are exact. If ξ is a vertical vector field on

X, from (24.5) it follows that £(€)« = 0 i f and only if [ξ9 η] = 0 for all vector

fields η satisfying the left-invariance condition of Lemma 24.1. It is easy to

verify that this holds if and only if ξ belongs to the image of i. We thus obtain

a direct proof of the exactness of the top row of diagram (24.6). The

hypotheses of Proposition 22.4 are satisfied with r=\ and τ — Ad. Therefore

JX{V\ ω) is a formally integrable Lie equation whose fcth prolongation is

Jk+x{V\ ω), and Qλ(V; ω) is a finite form of Jλ(V\ ω) whose λ th prolongation
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is the fibered manifold Qk+λ(V\ ω); moreoverirQ(Jλ(V\ ω)) = J0(V) and (22.21)
holds. The solutions of JX{V\ ω) over open subsets of X whose fibers over Y are
connected are the vector fields of the form *(£), with ξ a section of g over an
open subset of Y. Furthermore, diagram (22.22) is commutative and exact, and
Jk(σ~λ) induces an isomorphism of vector bundles

over X\ in fact, by (24.1) we see that ιk sends (g, jk(ξ)(y)) into jk(ι(ξ))(g)9

with g G G satisfying ρ(g) = y and ̂  G Γ(7, g). The bracket of g induces a
structure of linearly compact Lie algebra on ̂ ( g ; Y)y9 foxy G 7, by setting

for ξ,i|G T(Y9 g). The mappings ^ give rise to an isomorphism of linearly
compact Lie algebras

for gG G, with p(g) = y.
The bundle p"]G over Xis equal t o G X y G considered as a bundle over Jf

via the projection onto the first factor, and the sheaf of sections of p~ιG over X
is §x. Sections of ρ~xG are precisely the graphs of local mappings G -* G over
Y. We identify a mapping/: G -> G over y defined on an open set U C G with
its graph/: U^ p~ιG9 and the k-jetjk(f)(x) with^(/)(*), for c G ί/. We
thus consider Qk(V) as an open fibered manifold of Jk(p~ιG). If /is a local
mapping G -* G over y defined on an open set U, let α(/) : U -* G9 β(f):
U -> G be the mappings over y defined by

for flGί/. Then

a(β(f))=f9 β(a(f))=f,

and so α, /? determine isomoφhisms of fibered manifolds over U

sending;^/)(α) intoyΛ(α(/))(α) and7t(j8(/)Xα) respectively and satisfying

Lemma 24.2. ///: G -> G w a local mapping over Y, then

(24.7) Ad(f*ω-ω) = a(f)*ω

as sections ofV* ®χQ.
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Proof. Let ξ G Va9 with a G G and p(a) — y, and choose a one-parameter

family at of elements of Gy such that ao = a and dajdt | , = 0 = £. Then

and

Thus

(ξ, α(/)*«>= <α(/U,ω>= (/(α) a"1)"1 «(/),€

= Ad α ( < / ^ , ω > - < € ,«>)

= Ad α <€, /*ω - ω>,

and so (24.7) holds.

If g is a section of G over an open set U C Y, let ί(g) be the mapping G -> G

defined on p'\U) by

)) α,

for α e p"'(^) Then t(g) is a local diffeomorphism of G over y satisfying

(24.8) α ( t ( g ) ) = g o p ;

the left-invariance of ω means that

t(g)*ω = ω.

Thus i determines a morphism of fibered manifolds

(24.9) 'k'P-lJk(G;Y)-+Qk(V;ω)

over Xsending (α, Λ ( ? ) ( P ( Λ ) ) ) i n t 0ΛW^)Xα) ?

 w i t h « E

We consider the sequence (4.6) (with ^ = G), where
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the bracket is given by (4.1) with Q endowed with the bracket considered
above. From (24.8) and Lemma 24.2, we obtain the commutative diagram

(24.10) id

/ o p _ * p-ig _> g^ "*/*> γ * β g ^ ~ i ^ / * , Λ 2 Ύ *

which is the finite form of diagram (24.6). Since its vertical arrows are bijective
and its bottom row is exact by Proposition 4.1, its top row is also exact.
Therefore the solutions of QX{V\ ω) over open subsets of X whose fibers over Y
are connected are the local diffeomorphisms of G of the form ι(g), with g a
section of G over an open subset of Y.

If E' is a vector bundle over G, let E' ®P->G V be the vector bundle whose
fiber over (a, b)eGXYG\sE^® Vb. If a, b G X, with p(β) = p(fc), and if
u G T* ® F6, we denote by wΛω the element of (F* 0 jg) f l equal to the
composition

and by

τ(ω):T*®p->GV->V*®xQ

the mapping sending u into w Λ ω. Moreover, if

Δ Λ _ l f l :S Λ Γ - ^ S ^ Γ ^ P

is the moφhism of vector bundles determined by

for ί i , . . . ,ξk G 71*, where | 7 indicates that ξy is to be omitted, we denote by
τk_γ(ω) the composition

id®τ(ω)

•

then τo(ω) = τ(ω). Since ω is a non-singular section of V* ®XQ, from the
exactness of (22.7) we deduce that the sequence

p*®id , T^_j(io)

(24.11) 0 - SkT*Ma) ® F6 ^SΛΓ* ® F6 . ( S ^ T * ® V* ®xQ)a

is exact, for a,bG A" with p(a) — p(b).
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We now study the morphisms

of fibered manifolds over X determined by the first-order differential operators

© x / y and 2)ω from §x to Ύ* ® &χ. We let />_i(®;r/γ) a n d P-\(®ω) b e t h e

projection pτλ: p~λG -> Xonto the first factor.

Proposition 24.1. For k > 0, ίΛe mapping pk(^)x/γ) (resp. pk(^ω)) is a

morphism of affine bundles over pk_ι(
c£)x/γ) (resp. pk-\(^ω)) whose associated

morphism of vector bundles is induced by τk(ω).

Proof. It suffices to show that

(24.12) Pk(®χ/γ)(φ + u) = pk(®x/γ)φ + τk(ω)u9

for φ GJk+ι(ρ~ιG)9 u G ShT* ®p-iG V and k > 0, where the sum on the

right-hand side is that of two elements of the vector bundle Jk(V* ®χQ).

According to [9, Propositions 5.6 and 5.3], we need only verify this for k = 0.

Indeed, if /, / ' E §Xa, a G X9 with f(a) = f(a) = b, and if u G T* ® Ffe

satisfy

then/^: Fα -> F 6 is equal to/* -h M,K. Hence we obtain

Po(S>x/γ)(Mf')(<>)) = (/'*«)(β) = « ° (

which gives us (24.12) for k — 0.

From the commutativity of diagram (24.10), we deduce that of the diagram

(24.13)

Qk(V; ω)

whose rows are complexes and whose mappings Jk(a) and /A_,(Ad) are the

isomorphisms of fibered manifolds over X determined by α and Ad respec-

tively. We now verify that its bottom row is exact.
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Proposition 24.2. The set of elements φ ofJk(p~ιG) satisfying />*_i(® x/γ)Φ
= 0 is equal to pk(p'λJk(G; Y)).

Proof. We proceed by induction on k. For k = 0, the result is trivial with

J-ι(V* ®χ g) = 0. Assume that it holds for k — 1, with k>l9 and let φ =

Jk(f)(a) b e a n element of Jk(p~ιG), where / G § J f l , α G Z , satisfying

Pk-ι(^x/γ)Φ ~ 0 Then by our induction hypothesis, we may write

Jk-\(f)(a) -Jk-\(S ° P)O)> for some section g of G over a neighborhood of

p(a). Since πk-\Jk(f)(a) = ̂ k-xJkiS ° PX«), by [9, Proposition 5.1] there is

an element u G S^TJ ® Vb, where b=f(a), such that

(24.14)

As

we deduce from (24.14) and Proposition 24.1 that τk_λ(ω)u = 0. Since the

sequence (24.11) is exact, there is an element v E SkTγtP^ ® Vb such that

(p* ® id)ϋ = M. By Proposition 22.1 and (24.14), we have

Pk(a,jk(g)(p(a))+v)=jk(f)(a),

concluding our proof.

Since ρk is injective, by Proposition 24.2 and the commutativity of diagram

(24.13), we see that (24.9) is an isomorphism of fibered manifolds and deduce

the following:

Proposition 24.3. // X is a bundle of Lie groups G over Y and ω is the

Maurer-Cartan form of G considered as a section ofV* <8>χg, then Qλ{V\ ω) is a

formally integrable and integrable finite form of the formally integrable Lie

equation JX{V\ ω), whose kth prolongation is Qk+χ(V; ω); moreover (24.9) is an

isomorphism of fibered manifolds over X.

Let

γ 2 : Λ 2 Γ

be the mappings sending u and v into ωu and ω ° v~ι ° v^A2V= (v~ι o v^Λ2V) Λ ω

respectively. We have the identities

(24.15) γi®<ί> = Φ;r/yπoφ, forφ £ S , ( F ; ω),

(24.16) Y2®i« = ©i^/y(Yi«bw)» for M E ?Γ* 0 / , ( Ύ ; ω).

Indeed, for ψ G S / F ; ω), we have / = ττoφ E §x and (24.15) is the relation

(22.28). If u E ?Γ* ® ̂ ( Ύ ; «), then M = ( P * " 1 0 ^"^(w^) is an element of
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/0(
c\Γ)*<8)/1(

c\Γ;ω)andso

where u0 = πou and v = MO.K. Hence if we apply Proposition 22.3 to ω and w,κ,

we obtain

.«)|Λv)Λtt« - i ([«, ω] \«0

since ® w / r ω = 0. These two identities imply that the diagram

o~x§ • 2 2 (F; ω) • (?Γ* ® /j(T;

(24.17) id

Ύ*

whose top row is the non-linear Spencer complex of JX(V\ ω) and whose

bottom row is the exact sequence (4.6) (see Proposition 4.1), is commutative.

The following proposition is the analogue of Propositions 23.2 and 23.4 for

Maurer-Cartan forms. The equivalence of assertions (i) and (ii) of the following

proposition shows that the mapping γj ° π0: T* <8> Jλ{V) -> V* <S)̂  g induces a

surjective mapping from Z\Jλ(V\ ω))a to the set of germs at a E X of

non-singular sections v of F* <8>x ς satisfying ©i ? Λyyf = 0.

Proposition 24.4. Let ω' be a section of V* ΦxQ over X. Then there is a

section u0 of Γ* 0 J0(V) over X such that ω' = ωu°. If a G X, the following

assertions are equivalent:

(i) ω' is non-singular and satisfies the equation

Ji,^/rω/ " ^λ-/yω/ "" '} = 0

on a neighborhood of a;

(ii) there is a section u of(T* ® JX{V\ co))Λ such that πou = M0 and%λu — 0

on α neighborhood of a\

(iii) rΛere w α 5ectow φ 6>/ S ^ F ; co) ot>er α neighborhood of a satisfying

(iv) there is a local diffeomorphism f: X -> X over Y defined on a neighborhood

of a such that f(a) = a and f*ω — ω'.
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Proof. Let v be the section of F* ® V over X equal to the composition

and let u0 be a section of T* ® / 0 ( F ) satisfying (id + v ι o uΛv — v; then

ω' — ωu°.

(ii) =>(i): If u is a section of (Γ* ® JΊ(F; ω)) Λ satisfying T7 ow = w0 and

Φ1w = 0, Proposition 23.1 (i) shows that ω"° is a non-singular section of

F* ® x Q. The relation (25.16) tells us that S^ x / y ω M ° = 0; this fact can also be

obtained as a consequence of the implication (iii) => (ii) of Proposition 22.6.

(i) =>(iv): Taking X— G in Proposition 4.1, we obtain a local mapping

f: X -* X over Y defined on a neighborhood of a satisfying f(a) = a and

f*ω — ω'. From Proposition 23.1 (ii), it follows that/is a local diffeomorphism

on a neighborhood of a.

(iv) => (iii) is given by the implication (i) => (ii) of Proposition 22.6.

(iii) => (ii): Since QX(V\ ω) is a formally integrable finite form of JX(V\ ω) by

Proposition 24.3, the implication (ii) => (iii) of Proposition 22.6 tells us that

assertion (ii) holds.

Since QX(V; ω) is a formally integrable and integrable finite form of the Lie

equation JX(V\ ω) by Proposition 24.3, the implication (ii) =» (iii) of Proposi-

tion 24.4 together with Proposition 22.7 (iii), or the implication (ii) =» (iv) of

Proposition 24.4 together with Proposition 22.8 gives us:

Theorem 24.1. // X is a bundle of Lie groups G over Y and ω is the

Maurer-Cartan form of G considered as a section of F* <8>jg, then for all m > 1

and a E Xwe have

H\QX(V; ω))ma = 0, H1(JX(V; ω))a = 0.

If the manifold Y consists of just one point, then G is a Lie group, V — T

and ω is the left-invariant Maurer-Cartan form of G. The Lie algebra g of G

endowed with the discrete topology is a transitive Lie algebra. Applying the

above results to ω, we see that JX(T; ω) is a formally transitive and formally

integrable Lie equation on X = G, and that for g G G the image of the

monomorphism of transitive Lie algebras

sending ξ G $ i n t o y ^ i ^ X g ) , where t(ξ) is the right-invariant vector field on

G whose value at the identity element of G is ξ9 is the transitive subalgebra
JoST'y ω)g

 oΐJoo(τ)g- The solutions of JX(T\ ω) (resp. β,(Γ; ω)) over connected

subsets of X are the restrictions of right-invariant vector fields on G (resp.

right-translations of G).
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We no longer suppose that Y is a point, and assume now that G is the trivial
bundle of Lie groups prji Y X Go -> 7, where Go is a Lie group. If Q 0 is the Lie
algebra of Go endowed with the discrete topology, then Q is the trivial vector
bundle Y X Q0 of Lie algebras, and for y E Y we have the isomorphism of
linearly compact Lie algebras

(24.18) Qo®Fy->J00(Q;Y)y

sending ξ ^j^ifXy) into ̂ (s 1 )(>>)> where/is a real-valued function on Y and
s is the section of g over Y defined by s(b) = f(b)ξ, for b E 7. Moreover, the
left-invariant Maurer-Cartan form ω0: TGQ -» g0 of the Lie group Go de-
termines a section of F* <8>x Q over X, which is in fact equal to the Maurer-
Cartan form co of the bundle G of Lie groups. According to the discussion at
the end of §22, the sequence (22.36) is exact for x E X and 1 < k < oo;
therefore/j(Γ; ω) is a formally transitive and formally integrable p-projectable
Lie equation whose kth prolongation is Jk+ι(T; co). From (22.32), we deduce
that

(24.19) [/2(?Γ; ω)9Jx(Ύ'9 co)] CJX(% co),

if J2(T; co) = v~ιJ2(T; co), and that JJiV\ ω)x is a closed ideal of the transitive
Lie algebra JJ(T\ ω)x, for x E X. With respect to a structure of analytic
manifold on Y compatible with the structure of differentiate manifold of Y
and the structure of analytic Lie group of Go, the Lie equations Jλ(V; co) and
JX(T; co) are analytic and satisfy (24.19). Hence for x E X andy' > 0, we have

(24 20) H(JΛT> ")*•'COC; ω)*) = HJ(Jι(v'> »))* = °'
H\JJT\ ω)x,JjV\ ω)x) = Hι(Jλ(V; ω))x = 0,

by Proposition 22.4 and Theorem 24.1; moreover by [16, Corollary 13.1] and
Corollary 10.1, we obtain

H'iJ^T; ω)x) =

for all x E X and j > 0. According to Proposition 22.4, the characteristic
variety \{Jλ(V\ co),C) of Jλ(V\ ω) is equal to P*TYpix) ® C. Hence by Theo-
rem 16.4 (i), the characteristic variety ΎiJ^T; ω)x, J^V; ω)x,C) is equal to
the image of ρ*TYpM ® C under the injective mapping

π0* o „•-! 0 id: τ; ® C -> / J Γ ; co)* ® C.



LIE EQUATIONS. V 645

If x = (>>, g) E Y X Go, setting Z = Go, z = g and ω z = ω0, according to
the discussion at the end of §22, we see that under the isomorphism (21.4) the
image of the semi-direct product

is the transitive subalgebra J^T; ω)x of J^iT; p)x and that the image of the
closed ideal JJTGf;, ωo)g ® Fy of M is the closed ideal JJV\ ω)x of JJJ\ ω)x.
In fact, the diagram

ιn ® id

; ω) x ,

whose vertical arrows are the isomorphism (24.18) and the restriction of
the isomorphism (21.3) and where tg: Q0 - ^ / 0 0 ( Γ G Q ; ω0) and ιx are isomor-
phisms, is commutative. If g0 is a non-abelian and simple Lie algebra, then
JJJ^G^ ω o ) g <S> Fy and JJίV\ ω)x are non-abelian minimal closed ideals of M
and JJiT\ ω)x respectively; moreover

JJT; a)x D Jjy; ω)x D 0

are Jordan-Holder sequences for the transitive Lie algebras M and JJ(T\ ω)x

respectively. From the commutativity of diagram (21.6), we deduce that the
characteristic variety Ύ(M, JjiTG^ ωo)g ® Fy9 C) of the closed ideal
JOO(TG0>

 ω o ) g ®
 F

y

 o f M o v e r c i s e c l u a l t o t h e image of 7^^ <δ> C under the
injective mapping (21.7), with L = /^(Γ^; ωo)g.

From the above discussion, we obtain:
Proposition 24.5. Let Go be a Lie group and g 0 the Lie algebra of Go

endowed with the discrete topology. If ω0 is the Maurer-Cartan form of Go, then
for g G Gwe have an isomorphism

V 0 o -*JΛTG*> ω o ) g

// ω is the Maurer-Cartan form of the bundle of Lie groups X — Y X Go, for
x E Xwith ρ(x) = y, there is an isomorphism of transitive Lie algebras

( f l 0 ® F )̂ θ JJTY; Y)y - 7JΓ; ω)x

mapping the closed ideal g 0 ® F of the semi-direct product onto the closed ideal
Jjy ω)xofJJT;ω)x.
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Let g be a finite-dimensional real Lie algebra; then Q endowed with the

discrete topology is a transitive Lie algebra. Let Go be a Lie group whose Lie

algebra g0 is isomorphic to g. We deduce from (24.20) and Proposition 24.5

the following:

Theorem 24.2. Let § be a finite-dimensional real Lie algebra. Then for

y E y, we have

HJ{{Q ® Fy) Θ JJTY; Y)y, Q ® Fy) = 0

forj > 0, and

H'{(Q ® Fy) ® JJTY; Y)y, Q®Fy)= 0.

If we take Y to be a point in Theorem 24.2, we obtain:

Corollary 24.1. Let $be a finite-dimensional real Lie algebra. Then forj > 0,

we have

25. The contact algebra with parameters

Assume throughout this section that the rankg of V is > 1. Let ω be a

nowhere vanishing section of V and let W be the sub-bundle of V of

codimension one consisting of all vectors ξ E V satisfying (ξ, ω ) = 0. We say

that ω is a contact form along the fibers of p if the mapping

(25.1) W^W*

sending ξ into (ζ^dx/γω)^w is an isomorphism of vector bundles. This

condition is equivalent to the fact that the rank of V is odd and equal to

q = 2p + \, with p > 1, and that the section ω Λ (dx/Yω)p of Λ qV* does

not vanish at any point of X. We assume throughout this section that ω is a

contact form along the fibers of p. The restriction ωx of ω to a fiber Xy, with

y E 7, is a contact form on the odd-dimensional manifold Xy. If X is the

product 7 X Z of 7 with a manifold Z and p: X -> 7 is the projection onto

the first factor, and if ω z is a contact form on Z, the section ώ z of K*

determined by ωz is a contact form along the fibers of p.

Let (z, y) be a local coordinate for A" on an open neighborhood oϊ a E X

compatible with p, where y — (y\ - -,ym) is a local coordinate for Y on a

neighborhood of p(a). According to Darboux's theorem with parameters, there

are functions ί, υ\ , 1 ^ , w1, , wp on a neighborhood of a such that ω is the

restriction to Fof the 1-form

p

(25.2) dt + 2 ( w ^ 7 ~ t?'"
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and t(a) = vJ(a) = wJ(a) = 0, for 1 <y ^/>. From the properties of ω, we see
that

(t9v
ι

9->9v'9w
ι

9 - 9w*9y
ι

9 -9y
m)

is a local coordinate on a neighborhood of a E ^compatible with p.
Proposition 25.1. Let ω\ ω' be two contact forms along the fibers of p. //

a, b E X, there is a p-projectable local diffeomorphism /: X -> X defined on a

neighborhood of a such that f(a) = b and f*ω — ω'; moreover if ρ(a) = p(b),

there is such a diffeomorphism inducing the identity mapping of Y.

Proof. There are local coordinates (z, y) and (z', y') on neighborhoods U
of a and U' of b respectively compatible with p, where y = (y\ ,j>m),
y' — ( J , Ί ? . . >ym) are local coordinates for Y on ρ(U) and ρ(U') respectively.
If p(a) — ρ(b), we may assume that y = y\ From the above discussion, we
may also suppose that ω is the restriction to V of the form (25.2) on U, with
t = z\ vJ = zj+λ and wJ = zj+p+\ for 1 <y </?, that ω' is the restriction to V
of the form (25.2) on U'9 with t = z'\ vj = z'J+ι and wj = z'j+*+\ for
1 <j <p9 and that z(#) = z\b\ Let / be a local diffeomoφhism Y -* Y
defined on a neighborhood of ρ(a) with f(ρ(a)) = ρ(b)\ if ρ(α) = p(fe), we
suppose that / is the identity mapping of Y. The mapping / defined on a
neighborhood of a sending the point x of U with coordinate (z, y) into the
point of U' whose (z\ y') coordinate is equal to (z, y'(f(p(x)))) is a p-projec-
table diffeomorphism and satisfies/(α) = b and/*ω' = ω, since z' ° j ' — z.

If {ω} is the sub-bundle of V generated by the section ω and <p: V* -+ W* is
the canonical projection, we have the exact sequence

0 -» {ω} -* F* ^ W* -» 0.

Let P:Ύ-+ %* be the first-order linear differential operator sending ξ into
<p£(£)ω. We denote by £" the vector bundle over X which is the quotient of
V* θ /\2W* by its sub-bundle generated by the section (ω9(dx/γω)\A2W)9

and we let ψ: P Θ Λ 2W* -> £ be the canonical projection. Let β: ?Γp -> S be
the differential operator sending ξ into ψ(£(£)ω, (£(ξ)ί/ x / y ω)| Λ 2^), and

be the morphism of vector bundles sending jk(ζ)(x) into</Λ_,(βί)(x), where

Let /: I -̂  I be a p-projectable local diffeomoφhism defined on a neigh-

borhood [/ of a E X, with/(α) = b, and ξ a p-projectable vector field on U;

then f+ξ is a p-projectable vector field on /(£/). If Φ=jk+\(f)(a% the

isomoφhism
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sends jkU)(a) into/*(/*€X&) andJk(V)a ontoJk(V)b. Let

(25.3) Φ:Λ-i(Λ^-Λ-i(Λ^)β

be the isomorphism sending jk_x(a)(b) into</ jk_1(/*αXα), where a G Λ0^*. If

/*ω = ω, since f*dx/γω = dx/γω, by passage to the quotient the mapping

(25.3) determines isomorphisms

From relation (22.16), it follows that the diagrams

φ

J*(T;p)b

P*-i<Q)

are commutative. From Proposition 25.1, with ω' = ω, we deduce thatpk_x(P),

Pk-\(Q) a n ^ ^ e restriction of pk-x{Q) to /^(F) are morphisms of vector

bundles of constant rank.

Let Jk(V; W\ Rk(V\ ω) and Rk(ω) = Rk(T; ω) be the kernels of the mor-

phisms

respectively. From the above discussion, we see that Jk(V; W), Rk(V;W) and

Rk(ω) are vector bundles and that 7ΓΛ: Jk+ι(V; W) -» /A(F; W) is of constant

rank for all k, l> 1; moreover the &th prolongations of 7,(F; ̂ F), /?,(F; ω)
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and Rx(ω) are Jk+ι(V; W\ Rk+ι(V; ω) and Rk+ι(ω) respectively. The sub-
bundle Jk(V; W) oΐJk(V) depends only on Γand W, and is equal to

{ζeJk(v)\[ξ9Jk(w)]cjk_x(w)}9

or to

Indeed, if ξ =jk(ξ)(x), with ξ E %, x E X, then ξ belongs to the kernel of
pk-ι(P) if and only if

Λ - i « 1 . £ ( * ) « » ( * ) = -Λ-i«[f, V], ω»(jc) = 0,

for all η 6 %., or equivalently if and only ifjk-x([ξ, y])(x) is an element of
Jk-x(W) for all η G %. Since

[ί, Λ(i)(*)] = β(ί)Λ-i(i) =Λ-.([f, n])(*)
where | = v~ιξ, η E ^ , we obtain the above descriptions of the kernel of
pk-ι(P). Moreover jk(ξχx\ with ξ E %, belongs to Jk(V; W) if and only if
there is an element/ G 6 χ j c such that

Λ-i(ε(ί)«-/«)(*) = o.
We denote by ω the section v*~λω of J0(V)*. An element ξ E Jλ(V) belongs to
JX(V; W) if and only if £( |)ω = cω for some c E R, where ξ = v~ιξ, or
equivalently if and only if (t(ξ)ω) Λ ω = 0. It follows that Jλ(V\ W) is a Lie
equation whose solutions are the vertical vector fields ξ satisfying £(£)ω = /co,
for some real-valued function / on X. If ξ is a solution of Jλ(V\ W) over an
open set U and g is a real-valued function on p(ί/), then (g © p)£ is a solution
of /,(K; JF) over ί/. By (22.18), the restriction of P to % is the mapping
% -» 6llί* induced by the isomoφhism of vector bundles (25.1). Therefore the
sequences

are exact. From [10, Theorem 3], we infer that

(25.4) Hj(jλ(V\ W)) = 0, for; > 0.

From the definition of the operator Q, we see that jk(ζ)(x\ with ξ E %
(resp. £ E 3"p x ) , belongs to Rk(V\ ω) (resp. Rk(ω)) if and only if there are
elements/ E 0 I j c and α E Ύ* such that

Λ-.(β(f)«-/«)(*) = o,
( ' j jk_,{t{ξ)dx/γω-fdx/rω-a/\ω){x) = 0.
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Therefore

(25.6) [**+i(ω), Λ*+1(K; ω)] C Rk(V; ω),

(25.7)

(25.8)

We denote by Ω the section v*~ιdx/γω of Λ 2/0(F)*. An element ξ G
(resp. JX(T\ p)) belongs to Rλ(V\ ω) (resp. /t](ω)) if and only if there are
elements c G R and α G J0(V)* such that

(25.9) £( | )ω = cω, £( |)Ω = cΩ + α Λ ω.

If Λ+iίfX ^λ w ^ ? E % ' belongs to / Λ + 1 (F; W) and/is an element of Θ X x

such that jk(t(ξ)ω - fω)(x) = 0, then

or equivalently

jk-ι{£(S)dx/γω -fdx/γω - dx/γfΛ ω)(x) = 0;

thusjk(ξ)(x) G Rk(V\ ω) and so

(25.10) τ r ^ + 1 ( F ; ^ ) c ^ ( F ; ω ) .

From (25.8) and (25.10), it follows that

( 2 5 Π )

The moφhism of vector bundles

sending ^(f )(x), with f ε % , into

Λ - i ( ( £ ( ί K / r « -

where/is an element ofΘXx satisfying

is well-defined, and by (25.5) its kernel is equal to Rk(V; ω). We set R0(V; ω)

U); if

gk C S%(T)*9J0(V), hk C S%

are the kernels of the mappings
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respectively, where J_λ(V) = 0, we have

(25.12) hkCgk9

for k > 0, and g0 = J0(V).
If U is a finite-dimensional vector space, for u E U* ® (/, a E Λ U*9 we

obtain an element w Λ α of Λ £/*. If α E I/*, then

(25.13) <«,«*<*>= <«({),«>,

for £ E £/; if a E Λ 2ί/*, then

(25.14) (ξ Λ TJ, MΛα>= (u(ξ) Λ η , α ) + ( ξ Λ W(η), α>,

for ξ, η E £Λ If u E /0(Γ)* ® / 0(F), α E Λ/0(K)*, we also write u λ a for the
element vλa of Λ/0(F)*, where t> = 0(w) is the restriction of u to J0(V).
From the description (25.9) of RX{V\ ω), we see that u G/0(Γ)* ® / 0 ( Π
belongs to g! if and only if there are elements c E R and α E J0(V)* such that

(25.15) MAάJ^cω, WΛΩ = cΩ H- α Λ ω.

The sub-bundle p(/0(Γy)*) of/0(Γ)*, whose fiber over JC E Xis ^*" !(ρ*Γy p ( j c ) ) ,
is equal to the annihilator of/0(F); hence p(J0(Tγ)*) (8) / 0(F) is a sub-bundle
of gx and the sequence

(25.16) 0 - p(/ 0 (Γ y ) ) ®

is exact. The image gi = ί(gi) of g! consists of all u E / 0 (F)*
satisfying (25.15) for some c E R and α E /0(K)*. If {co} is the sub-bundle of
J0(V)* generated by the section ω and Ω denotes the restriction of Ω to
Λ 2J0(W), the kernel of the mapping

(25.17) ίi->{S},

sending u E gλ into wΛω, consists of all u E J0(V)* ® / 0 ( ^ ) satisfying UΛΩ
= 0, where t> is the restriction of u to J0(W), and contains the sub-
bundle {ω} ®J0(W) of /0(K)* ®J0(V). Indeed, if u E J0(V)* ® / 0(F), by
(25.13) we see that wΛω = 0 if and only if u belongs to J0(V)* ® J0(W); for
u E / 0 ( ^ ) * ® JQ(W\ by (25.14) the restriction of u λ Ω to Λ %(W) is equal to
υ Λ Ω. Let a E Z and choose an element ξ° of / 0 ( ^ ) β

 n o t belonging to J0(W)a9

i.e., satisfying (ξ°, ω) φ 0. The unique element M0 of (J0(V)* ® / 0(F))β, whose
restriction to / 0 (^)e ^s ^ identity mapping of J0(W)a and which verifies
uo(ξ°) = 2ξ°, belongs to gla and satisfies w0Λω = 2ω, according to (25.13)
and (25.14); therefore the mapping (25.17) is surjective. If ί) is the subspace of
g l f β consisting of the elements u of (J0(V)* ® JQ(W))a satisfying u(ξ°) = 0
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and v Λ Ω = 0, where v is the restriction of u to J0(W)a, then we easily see that

the fiber of the kernel of (25.17) over a is equal to

Hence if {w0} is the subspace of gλa generated by w0, we obtain the decom-

position

(25.18) gUa = ί) θ ({ω} ® J0(W))a θ {Mo},

which depends only on the choice of the element ξ° of J0(V)a satisfying

The proof of the following proposition is based in part on [23, §7].

Proposition 25.2. Ifω is a contact form along the fibers of p, then Rλ(V; ω) is

a formally integrable and integrable Lie equation, with

Rk{V;ω) = πkJk+x{V;W),

( 2 5 1 9 ) π0Rι(

Moreover gλ is involutive and

(25.20) H''(Rk(V;ω))=09 forj>0.

For a E X, the mapping

(25.21)

sending ξ into ξλω is an isomorphism, and the characteristic variety of Rλ(V\ ω)

over C is equal to T* ® C.

Proof. Let a E X. If £ is a vertical vector field on a neighborhood of a, we

write σo(ξ) = vξ(a) and, whenever y^-^ίX^) = 0, with A: > 1, we denote by

σk(ξ) the element jk(ξ)(a) of (5V 0 (Γ)* 0 / 0 (K)) β , which belongs to AΛfβ if ξ is

a solution of RX(V; ω). Let (ί, v, w, y) be a local coordinate on a neighborhood

U of a compatible with p, where v = (v1,- —9v
p), w = (w1,- ,wp) and

J — ί̂ 1** * '>ym) is a local coordinate for Yon ρ(U). We write z = (z1,- ,z*)

for (/, D, >v). Assume that ω is the restriction to Fof the form (25.2) on U, and

that

/(α) = 0, i)(fl) = w(fl) = 0,

then dx/γω is the restriction to Λ 2V of the 2-form

/>

ontΛ
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Since ω(a) = (dt)a, the subspace Wa of Va is spanned by the elements
(3/3t>7)α, (d/dwJ)a, with 1 ̂ j<p. We may therefore identify the quotient
W% of T* with the subspace

of Γ*, and hence also the quotients SkW* of SkT* and SV 0 (^)* of S%(T)*a

with subspaces of 5*7? and SkJ0(T)* respectively. In fact, ε(SkWf) is equal to
the space of A:-jets

/ = /(v, w) is a homogeneous
I p O i y n o m i a i of degree A: in (υ, w) \'

^ η 9JQ(V)

be the mapping sending u into

If TJ =Λ+1(3/3ίXΛ), we write δ, = ^ moreover if η =jk+χ(d/dyi)(a), we set

δ̂  = δη for 1 < / < m. Then (SVoίfF)* ® / 0 (^)) β

 ί s e c l u a l t o t h e subspace
m

(S*/0(Γ)* ®/ 0(K)) β Π kerδ, n Π kerδ"

of(S%(T)*®J0(V))a.
If f =7/t(IXα), where £ is a vertical vector field on a neighborhood of a, for

any multi-index α = (α,, ,αm) we set

If € belongs to (SV0(Γ)* ® / 0(F))α, then

j - ξ = σk(yaξ) G {Sk+WJO(T)* ® / 0 ( F ) ) β .

If f is the vertical vector field

(25.22) {= 2 yaL,
0<|α|<A;

with

€ . = £ €!,(*)£> 0 < | α | < * .

on a neighborhood of α, since ω is the restriction to Fof the form (25.2) on U,
we see thatjk(ξχa) belongs to Rk{V\ ω)α if and only iίjk(ξα)(α) is an element
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o f Rk-\a\(V> ω)a

 f o Γ all I α | < fc; we infer that ξ =jk(ξ)(a) belongs to gka if

and only if ξa =Λ-|« |(£«X α ) i s a n element of g*_ H f β for all \a\<k. For

k > 1, we set

and g 0 = J0(V)a. Since gk+x is the kth prolongation of g1? it is easily verified

that

(25.23) fl*+i = (fli)+*

for k > 0, where (Qx)+k is the kth prolongation of g, considered as a subspace

of ( / 0 ( Ό ® J o ( Π ) β or of (J0(W)* ®J0(V))a (see [9, §6]). From the above

discussion, we infer that ξ =jk(ξ)(a) belongs to gka and 8tζ = 0 if and only if

we may choose ξ to be a vector field (25.22) with

ι=\ ΰz

on a neighborhood of a, and/ fc_jα |(€α) E ^ _ | α | for all | α | < k. We thus have

the decomposition

(25.24) g , ) α n k e r δ ; = 0 y" • g , , , .

If/is a real-valued function on U, the vertical vector field

on U satisfies

moreover

(25.25)

and

( 2 5 2 6 ) (

if g is a real-valued function on p(ί/). Thus by (25.11), ξf is a solution of

R^V; ω), and the mapping (25.21) is surjective. If £ is a solution of Rλ(V\ ω)
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over a neighborhood U' C Uoίa satisfying ξ λ ω = 0, then by (22.18)

t(ξ)ω = ξλdx/γω = gω,

for some function g on U''. Comparing coefficients of dt in the above equality,
we conclude that

= 0, ξλω = 0.

Since ω is a contact form, we infer that ξ = 0, and so (25.21) is an isomor-
phism. This argument also shows that R^iV; ω)a consists of all jets j^iξfXa),
with/a real-valued function on U; therefore hka is equal to the space of all
elements σk(ξ) of (SkJ0(T)* ® J0(V))a9 where £ is a solution of Rλ{V\ ω) over
U satisfying^.,(£)(«) = 0 if k > 1. For k > 0, it follows that the space h'k
consisting of all elements σk(ξf) = σk(ηf), where ηf is the vertical vector field
given by

7 dwJ

and/is a real-valued function on U satisfyingjΛ(/)(α) = 0, and the space
consisting of all elements

where f — f(t, y) is a function on U satisfying^.x(f)(a) = 0 if fc > 1, are
subspaces of hk a, and that

(25.27) hk,a = K®K, forA:>0.

We now show by induction on k that

(25.28) u,a = Ka,

for k>0. First, we consider the case k = 0. As

\ d ϋ 7 / \ owJ I

for 1 <y </?, and

37) =«b(€-i).

we have the equality Λ'o = /0(W^)α, and A'o' is the subspace generated by
v(d/dt)a. Hence
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and the mapping π0: R^iV; ω) -> J0(V) is surjective. Next, for k = 1, the

space h\ admits a decomposition

h\ = a x ® a 2 ® α 3 ,

where c^ is the subspace consisting of all elements oλ{κ]f\ with/ = /(ι;, w) a

homogeneous polynomial of degree 2 in (ϋ, w), and where α 2 (resp. α 3) is the

subspace generated by the elements

σM tVΊ = σ i ^ - ^ ) ' σ i *— = σi(έ/t>;)>\ 9t)y / \ 9vv7 /

with 1 <y < p (resp. by the elements

with 1 < i < w, 1 < y <p). On the other hand, the space h'{ is equal to the

direct sum

of the subspace {oι(ξ_t)} generated by σx(ξ_t) and the subspace b generated by

the elements

σ, y -7r —

Clearly we have the equality

(25.29) α 3 θ ^ (p(/ 0 (τy) ) ®/ 0 (

Let ξ° be the element KV 9 ' )* of /0(^)β'»
 a s (%°>ΰ)= 1, we have the

decomposition (25.18) of g! a corresponding to ξ°. In fact,

and the mapping 0: g, a -» f, α induces isomorphisms

From the exactness of (25.16) and from (25.18), we deduce that

(25.30) gUa - (p(J0(Tγ))* β / 0 ( F ) ) o Θ α, Θ α 2 Φ {σ,( | . , )}

from the above decompositions of h[, h'{ and g! α, and by (25.27) and (25.29),

we obtain the equality (25.28) with k = 1. Furthermore, from (25.30) we see

that

(25.31) g1 = α i .



LIE EQUATIONS. V 657

We continue to identify W% and J0(W)* with subspaces of Γ* and J0(T)*
respectively as above, and for k > 0 let

V Sk+ιWa* -*{S%{W)* ®J0(W))a

be the mapping determined by the relation

if εu = jk(f)(a), where / = /(t>, w) is a homogeneous polynomial of degree
k + 1 in (t>, w). If γ denotes the inverse of the isomorphism (25.1), then it is
easily seen that τk is equal to the composition

and is injective; in fact, τ0 is equal to the isomorphism v ° γ. It follows that the
diagram

0 0

•Sk+2W*

(25.32)

0 —• (W* ® Sk+ J W*)a > (W* ® SkJ0(W)* ® J0(V)\

id ® τ f c _ 1

*(A2w

is commutative and exact. In order to complete the proof of the equalities
(25.28), we now proceed to show by induction on k that qk is equal to the
image of τk for k> I. The equality (25.31) says that this assertion holds for
k = 1. Assume that Qk is the image of τk for some k ^ 1. By (25.23) and [9,
Lemma 6.3], Qk+X is equal to the first prolongation of the subspace Qk of
(S'VoίPΓ)* Θ J0(V))a. It follows from this remark that, if u G (5 ί A : + 1/ 0(^)* 0
/ 0(F))α, then w belongs to α^+i if and only if δu e Ŵ* ® g^, or equivalently if
and only if there is an element v of (W* 0 S*+ ! ^ * ) β such that (id ® τk)v = δu.
By the commutativity and exactness of diagram (25.32), this property of v
implies that δv = 0 and so holds if and only if there is an element w of
Sk+2W* satisfying (id <£> η^δw = δu; finally, this equality is equivalent to the
relation τk+λ{w) — w, and we conclude that Qk+ι is equal to the image of τk+ι.
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In particular, we have just shown that

(25-33) v Sk+'W: -* Qk

is an isomorphism for k > 1, and that Qk C h'k for k > 1. As g0 = J0(V)a

hQa, by (25.26) we have

for A: > 0. From this inclusion and (25.24), it follows that

gktankerδ~Chk<a, ΐork>l.

By (25.25), δ, induces a surjective mapping

(25.34) «,: * * + i , β - V - forfc^O.

Thus if (25.28) holds for some k > 1, the diagram

ker ^

n

fl

0,

whose vertical arrows are induced by the inclusions (25.12), is commutative
and exact; hence it provides us with the equality (25.28) with k replaced by
k + 1, and so (25.28) holds for all k > 0. From the isomorphisms (25.33)
together with the commutativity of the top square of diagram (25.32), we easily
see that the basis

dV 9 ' —)

oϊJ0(W)a is quasi-regular for the subspace QX of (J0(W)* ® J0(V))a. Therefore
from the surjectivity of (25.34), the equalities (25.28) and (25.24), we infer that
the basis

of J0(T)a is quasi-regular for g, Λ, and so g, a is involutive (see [24, Appendix]).
Since every element of hka is of the form σk(ξ), where ξ is a solution of
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Rλ(V\ ω) over U satisfying^.x(ξ)(a) = 0iίk>l9 from (25.28) and (25.7) we
deduce that Rλ{V\ ω) is a formally integrable and integrable Lie equation.
From (25.8) and (25.10), we now obtain (25.19). Since the mappings πk:
Jk+ι(V; W) -> Jk(V\ W) are of constant rank for all kj>\, according to [10,
Proposition 8] we have

HJ(RX(V; ω)) - H\Jλ{V\ ω)), fory > 0,

and thus (25.4) gives us (25.20). From the decomposition (25.30) of g1 a and the
definitions of aλ and α2, we easily see that the characteristic variety
\(Rι(V\ ω),C) of RX(V; ω) over C is equal to T* ® C, concluding the proof
of the proposition.

We now construct a formally integrable finite form of the Lie equation
RX(V; ω). Let P(F*) be the projectivized bundle of V*, and denote by [a] the
image of a G V*, with a φ 0, in P(F*). Let

be the morphism of fibered manifolds over X sending jk(f)(a) into
7A:_1([/*ω])(α), where / is a local diffeomorphism of X over Y defined on a
neighborhood of α G X\ the subset Qk(V; W) of Qk(V) equal to
φjk-i(Λ-i([ωD) consists of all fc-jets Φ=jk(f)(a) of β ^ F ) satisfying
Jk-\(f*ω-g<*)(<t), f o r s o m e

 ^ E Θ Λ Γ , ^ O Γ equivalent^ Φ ί Λ - ^ J H J C
Λ - i ( ^ ) τ h u s δik(^ w ) i s a sub-groupoid of Qk(V). We now show that it is
a fibered submanifold of Qk(V) and a finite form of the Lie equation
Jk(V\ W\ Up E Jk(P(V*))a with aEXzndp =jk([a])(a% where α is a section
of V* over a neighborhood of a satisfying a(a) Φ 0, then the mapping

sending jk(β)(a), with β G Ύα*, into

is surjective, and its kernel is the subspace of Jk(V*)a generated by jk(a)(a).
Therefore Up =jk([ω])(a), the projection φ: F* -> Ŵ* enables us to identify
Vp(Jk(P(V*))) with Λ(^*) β . If φ G β^(F), with source φ = a, target φ = b,
the isomoφhism (25.3)

(25.35) φ:A

determines a diffeomoφhism

in turn, this mapping induces an isomoφhism
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which can also be obtained by passage to the quotient from the mapping
(25.35), that is, the diagram

T flf*\ Φ T

commutes. If p — Φk_x(φ) = Φ(jk-X([ω])(b))9 an argument similar to the one
used to show that diagram (22.23) commutes gives us the commutativity of the
diagram

Vφ(Qk(V))-*-*-+Vp(Jk.

Pk i

Since /Λ(K; WΓ) is a vector bundle, we see that Φk_x is of constant rank and by
[9, Proposition 2.1] that Qk(V; W) is a finite form of Jk(V\ W). Let

be the morphism of fibered manifolds sending jk(Φ)(a) into jk(Φo(Φ))(a\
where φ is a section of QX(V) over a neighborhood of a G X; then the diagram

id

is commutative. Hence by [9, Proposition 4.4], we have

KQk+χ{v\ w) = λ,ρfc+1(F) n Λ(ρ,(F; w))

since β^+
Qι(V; W).

Let

fc; therefore is the A:th prolongation of
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be the morphism of fibered manifolds over X sending φ = jk(f)(a) into

Jk-\[{f*dx/γ<* ~ 8dx/γω)\Λ2w)(a)>

where / is a local diffeomorphism of X over Y defined on a neighborhood of
a E X and g is an element of 0^ e satisfying jk_x(f*ω — gω)(a) — 0. If
b = target φ, the isomorphism (25.3) induces by passage to the quotient an
isomorphism

an argument similar to the one used to show that the diagram (22.23)
commutes gives us the commutativity of the diagram

Ψk-l ° V

Jk-i(A2W)b,

where Jk(V\ W) = v~λJk(V\ W). Since Rk(V\ ω) is a vector bundle, we see that
ΨΛ_, is of constant rank, and by [9, Proposition 2.1] that the set Pk{V\ ω)
consisting of all λ>jets φ G Qk(V; W) satisfying Ψk_λ(φ) = 0 is a sub-groupoid
and a fibered submanifold of βΛ(F; W). Therefore Pk(V\ ω) is a finite form of
the Lie equation Rk(V\ ω), whose solutions are the local immersions/: X ^ X
over Y which satisfy f*ω — gω for some real-valued function g on X, or
equivalently (/*ω) Λ ω — 0. An element φ of QX(V) belongs to PX(V; ω) if
and only if there is an element c G R such that

(25.36) φ(ω) = cδ, φ(Ω) = cΩ on Λ

Let

be the morphism of fibered manifolds sending jk(Φ)(a) into jk(%(Φ))(a),
where φ is a section of QX(V; W) over a neighborhood of α G I ; then the
diagram
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is commutative. Hence by [9, Proposition 4.4], we have

λ * Λ + i ( K ; ω) = λ f c β f c + 1 (K; W) Π / Λ (Λ(K; ω))

since β Λ + 1 ( F ; W) = (β,(K; 0^))+*; therefore PΛ +,(K; ω) is the Λ th prolonga-

tion of P,(K; ω).

Proposition 25.3. If ω is a contact form along the fibers of p, then PX(V\ ω) is

a formally integrable and integrable finite form of the formally integrable Lie

equation Rλ(V; ω), whose kthprolongation is Pk+ι(V\ ω).

Proof. We begin by verifying that

πx: P2(V\ ω)-+PX(V; ω)

is surjective. If a E X, let Ga be the set of φ E PX(V; ω) with source φ =

target φ = a. If we take ω' = ω in Proposition 25.1, we see that, in order to

show that the mapping πλ is surjective, it is sufficient to prove that Ga C

πιP2(V; ω) for all a E X. Let a E: X and let (t, t>, w, ^) be the coordinate on a

neighborhood U of a considered in the proof of Proposition 25.2. For λ Φ 0,

let Λλ be the local diffeomorphism of X defined on a neighborhood of a

sending the point with coordinates (ί, t>, w, y) into the point with coordinates

(λt,λυι, > 9λυp,w\- ' ,wp, y)\

then Λ£ω = λω and hλ{a) — a, and so hλ is a solution of PX(V\ ω). If φ E Gα

satisfies (25.36) for some c E R, theny1(Λ1 / c)(α) φ belongs to Ga and satisfies

(25.36) with c — 1. To verify our claim, we need only show that every element

φ of Ga satisfying (25.36) with c = 1 belongs to πxPx(V; ω). Let φ E QX(V)

with source φ = target φ = a satisfying φ(ω) = ω. If φ: / 0 ( ^ ) o "* Jo(T)a is

given by
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with Kj<p9Ki<m9 then the mapping fx defined by

t>Wi= Σ (fl/o' + c/V),

P

for 1 <y</?, 1 < i < w, is a local diffeomorphism of X over y on a
neighborhood of α; moreover it is easily verified that /fω = ω if and only if
φ(Ω) = Ω on Λ \{W)a. Let

α = ^ ( λ Λ W - μ V ) ;
7 = 1

the mapping f2 defined by

ΌJ o f2 = (1 -f α)t)V + λ^, w> o /2 = (1 + a)wj + /ι >ί,

for l^j^p, Ki<m, is a local diffeomorphism of X over y on a
neighborhood of α. It is easily verified that

f*ω = (1 + α) ω — 2tadx/Ya,

and hence that

f?dx/γω = ( 1 + a)2dx/Yω + 2(1 + 2α)rfAr/yα Λ ω

+ 2α j (w-Wjr/y^ - έ̂/jf/yw '̂) Λ

Since α(α) = 0, we have

and

J\{f*dx/Yω ~ 0 + *)2dχ/γ<* + 2 ( 2 + 2«)^Λr/^α Λ

which shows thaty2(/2)(tf) belongs to JP 2(^ ω ) Finally, the mapping/3 defined
by

m m

vj o /3 = VJ + 2 #y , w> 0/3 = ̂ + 2 y/y,
1 = 1 1 = 1

m ί P \

ι = l \ /=1 /
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for 1 <τ ^p, 1 < i < m, is a local diffeomorphism of X over Y on a
neighborhood of a. It is easily seen that/3*ω = ω and that

since α(fl) = 0. Thus if φ is an element of Pλ(V\ ω), then fx is a solution of
PX(V; ω), and so y2(/iXα) a n c * ΛίΛX*) belong to P2(^> ω ) ' consequently
Φ ~Λ(Λ ° Λ ° /iXβ) i s a n element of P 2 ( ^ ω ) satisfying Tηφ = φ, and so our
assertion holds. Since gj is 2-acyclic and gk is a vector bundle for A: > 1 by
Proposition 25.2, we apply [9, Theorem 8.1] to PX{V\ ω) and deduce that it is a
formally integrable finite form of RX(V; ω). With respect to the analytic
structure on U determined by the coordinate (f, t>, w, y\ the form ω is analytic
and the open sub-bundle of PX(V\ ω)^ consisting of all elements φ E PX(V\ ω)
with source and target belonging to U is an analytic and formally integrable
differential equation on ί/, and therefore integrable. That PX(V; ω) is inte-
grable now follows from Proposition 25.1 with ω' = ω.

The following proposition is the analogue of Proposition 22.5 (ϋi) for
PX(V; ω) and its proof is based on Proposition 22.5 (i) and (ii).

Proposition 25.4. Let u be a section of (T* ® J0(V))Λ over X and let f be a

local immersion X -> X over Y defined on an open set U. The section φ =

jx(f) — f° ΰ o v ofQ,x{V) is a section oftfx(V\ ω) over U if and only if there is a

real-valued function g on U such thatf*ω — gωu and

(25.37) «" Λ (f*dx/γω - g(dx/γω)") = 0.

Proof. According to Proposition 22.5 (i), φ is a section of QX(V). Let g be a
real-valued function on U. By Proposition 22.5 (ii), with a = gω, we see that
φ(ω) = gω if and only if f*ω = gω"; by (22.27) and (22.26), for ξ G Λ %(W)
we have

((v-1 - ΰ)£, f*dx/γω),

(ξ, gΩ>= <(,-' - «){, g(dx/γω)").

Since the sub-bundle Wu of V consisting of all vectors ζ E V satisfying
(£, ωM>= 0 is equal to

Wu = (id - ΰ o ̂ )PF = (id + v~λ o II)" V ,

we deduce that φ(Ω) = gΩ on Λ 2J0(W) if and only if f*dx/γω =
on Λ 2 JF"; this last condition is equivalent to

f*dx/γω - g(dx/γω)u = aΛωu,
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for some section a of V* over U, and hence to (25.37). The desired result is

now a consequence of the description (25.36) of P,(F; ω).

If u is a section of F* ® J0(V) and v is a section of Λ / 0 ( F ) * ® ̂ ( F ; W),

we have the relation

(25.38) (eM(t>)«) Λ i> Λ>" = 0,

which we require for the next proposition. Indeed, if t? = α ® | , with a SL

section of Λ / 0 ( F ) * and ξ & section of JX(V; W), then

( £ » ω ) Λ v*-ιωu = aΛ (t(ξ)ω)U Λ ^ " V

The following two propositions are the analogues of Propositions 23.2 and

23.4 or of Proposition 24.4 for contact forms.

Proposition 25.5. Let ω be a contact form along the fibers of p and u0 be a

section of (T* ® J0(V))Λ over X. If a E X, the following assertions are equiva-

lent:

(i) ωu° is a contact form along the fibers of p and

(25.39) ω«o Λ (dx/γ«r> - {dx/Yω)u") = 0

on a neighborhood of a;

(ii) relation (25.39) holds on a neighborhood of a;

(iii) there is a section u of(T* ® RX{V\ ω ) ) Λ such that πou = u0 and^λu — 0

on a neighborhood of a\

(iv) there is a section φ of Φ,(F; ω) over a neighborhood of a satisfying

(v) there is a local diffeomorphism /: X -> X over Y defined on a neighborhood

of a such that

f*ω = ωu\ ω"° Λ [f*dx/γω - (dx/Yω)u°) = 0;

(vi) there is a local diffeomorphism f: X -> X over Y defined on a neighborhood

of a such that f(a) = a andf*ω — ωu°, and (2539) holds on a neighborhood of a.

Proof, (iii) => (ii): Let u be a section of T* Θ Jλ(V; W) satisfying πou = u0

and ® xu = 0; then ύ = (^*" ! ® ^ X ^ K ) is a section of / 0 ( F ) * ® ̂ ( F ; »Γ).

Since %x χ/γ(u\V) = 0, we apply Proposition 22.3 to ω and M|Fand obtain

ωu° Λ (dx/γω
u° - (dx/Yω)u°) = -ωu° Λ ^ ( ώ j ω = 0,

by (25.38), where v = w0)κ.
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(ii) =» (i): If (25.39) holds on an open set U, then

ω«o Λ {dx/γω"o)p = ω«» Λ ((dx/γω)u° + (dx/γω"° - (dx/Yu>)a°))"

Since id + v'λ ° u0: V ̂  V is invertible, (ω Λ (dx/γω)p)u°, and hence also

co"° Λ (dx/γω
u°)p, does not vanish at any point of U. Thus ωu° is a contact

form on U.

(i) => (vi) is given by Proposition 25.1.

(vi) => (v): Since f*ω = ωM°, we have f*dx/Yω = dx/Yω
u° and the desired

identity follows from (25.39).

(v) => (iv) follows from Propositions 25.4 and 22.5 (i).

(iv) =» (iii): Since PX(V\ ω) is a formally integrable finite form of RX(V; ω) by

Proposition 25.3, there is a section ψ of %(V\ ω) over a neighborhood of a

such that TΓjψ = φ; then w = ©ψ is a section of (Γ* ® /^(K; ω ) ) Λ satisfying

τrow = Moand®!M = 0.

The following proposition, together with the equivalence of assertions (i) and

(iii) of Proposition 25.5, shows that the mapping T* ® JX(V) -> V*9 sending u

into ω"°, with u0 = πou, induces a surjective mapping from Zι(Rλ(V; ω))a to

the set of germs at a G X of contact forms along the fibers of p.

Proposition 25.6. Let ω be a contact form along the fibers of p and ω' a

section of V* over X. Then ω' is a contact form along the fibers of p if and only if,

for all flGl, there is a section u0 o/(Γ* ® J0(V))A such that ω' = ωu° and

(25.40) ω' Λ (dx/Yω' - (dx/Yω)u°) = 0

on a neighborhood of a.

Proof. Assume that ω' is a contact form along the fibers of p. Let W be

the sub-bundle of V consisting of all elements { 6 F satisfying (ξ, ω') = 0.

According to Cartan's lemma, there are frames {α l9 ,α2/?} for W* and

{αj, ,OL'2P} for PΓ'* over a neighborhood t/of a G X such that

p p

(dX/Yω)\Λ^V= Σ «2y-l Λ«2y> (^/y ω 0|ΛV = Σ «2>-l Λ«2y»
7 = 1 7 = 1

and there are sections f, f' of Vover 1/ such that <?, ω> = 1, (Γ, ωr> = 1. Let v

be the unique section of V* ® F over t/ satisfying ϋ(f') = f and whose

restriction to W is the section t; of W* ® W determined by ϋ*(α y) = αj, for

l < 7 < 2 / 7 . Let M0 be a section of Γ" ® J0(V) over t/ satisfying

(id + v~ι o i ι o ) | K = υ\ since v + w0: K->/ 0(K) is an isomorphism, w0 is a

section of (Γ* ® / 0 ( H ) Λ Then ω' = ωM° and dx/γω
r = (ί/ x / y ω) M ° on Λ 2W'\
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hence (25.40) holds on U. The converse is provided by the implication (ϋ) =» (i)

of Proposition 25.5.

Since Pλ(V\ ω) is a formally integrable and integrable finite form of the Lie

equation Rλ(V\ ω) by Proposition 25.3, the implication (iii) =» (iv) of Proposi-

tion 25.5 together with Proposition 22.7 (iii) gives us the following:

Theorem 25.1. Let ω be a contact form along the fibers of p. Then for all

m > 1, a G X,we have

Hl(Px(V; ω))m,a = 0, Hι(Rx(V; ω))a = 0.

The existence of the local coordinates for X satisfying the conditions with

respect to ω described in the proof of Proposition 25.1 shows that sequence

0 -> Rk(V; ω)x - Rk(ω)x ^Jk(Tγ; Y)p(x) - 0

is exact, for x G X and 1 < k < oo; therefore by Proposition 25.2 and (25.7),

we see that Rx(ω) is a formally transitive and formally integrable p-projectable

Lie equation whose A th prolongation is Rk+ι(ω). From (25.6), we deduce that

(25.41) [&2(«)> %(rm>«)] c %(r> ω ) ?

if R2(ω) = v~ιR2(ω), and that R^iV; ω)x is a closed ideal of the transitive Lie

algebra ^ ( ω ) ^ , for x G X. With respect to the structure of analytic manifold

on an open set U C X determined by a local coordinate on U satisfying the

conditions with respect to ω described in the proof of Proposition 25.1, the

section ω is analytic and the Lie equations Rλ{V\ ω) and Rx(ω) are analytic

and satisfy (25.41); hence for x G X and j > 0, we have

(25 42) ^ Λ « ( « ) χ . RJV' «)*) = HJ{RX{V; ω))x = 0,

Hι(Roo(ω)x,RjV;ω)x) = H\Rι(V;ω))x = 0,

by (25.20) and Theorem 25.1; moreover by [16, Corollary 13.1] and Corollary

10.1, we obtain

for all x G X and j > 0. According to Proposition 25.2 and Theorem 16.4 (i),

the characteristic variety ΎiR^ω)^ Rjy\ ω)χ9C) is equal to the image of

the injective mapping

π* o v*-1 0 id: T* ® C -* R^ω)* 0 C.

If the manifold Y consists of just one point, then V — T and ω is a contact

form on X. Applying the above results to ω, we see that Rλ(ω) = RX(T; ω) is a

formally transitive and formally integrable Lie equation on X. The solutions of
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Ri(ω) are the contact vector fields, R^iω)^. is the contact algebra for x E X,

and the local diffeomorphisms solutions of PX(T; ω) are the contact transfor-

mations of X. The transitive Lie algebra RO0(ω)x is non-abelian, simple and

infinite-dimensional; moreover if Der i/ t^co^) denotes the Lie algebra of

derivations o f i ^ J ω ^ , according to [7] the mapping

sending ξ into the derivation ad(£) of R^ω)^ is an isomorphism of Lie

algebras (see [23, §7] and [6, Corollary 2.2]).

We no longer assume that Y is a point. Let b E Y and Z be the submanifold

Xb of X. We consider the contact form ω z , restriction of ω to Z. If a E Z, a

local coordinate on a neighborhood of a satisfying the conditions with respect

to ω described in the proof of Proposition 25.1 determines a local isomorphism

φ: Y X Z -> X of fibered manifolds over Y defined on a neighborhood of

(b, a) such that φ(b9 a) — a and ώ z = φ*(ω). If j> E 7, z E Z, with φ(y, z) =

x, the mapping φ induces an isomorphism (21.4) of transitive Lie algebras;

under this isomorphism, it is easily seen that the image of the semi-direct

product

is the transitive subalgebra RO0(ω)x of JJ(T\ p) x , and that the image of the

closed ideal RJ,ωz)z ® Fy of M is the closed ideal RJV\ ω)x of R^ω)^

Since ^oo(ω z) z is a non-abelian simple Lie algebra, R00{o^z)z <8> F and

RJiV\ ω)x are non-abelian minimal closed ideals of M and Roo(ω)x respec-

tively; moreover

Roo(ω)xDRΰO(V;ω)xD0

x

are Jordan-Holder sequences for the transitive Lie algebras M and R^iV; ω)

respectively. From the commutativity of diagram (21.6), we deduce that the

characteristic variety Ύ(M, ^ ( ω ^ <8> Fy, C) of the closed ideal RO0(ωz)z ® Fy

of M over C is equal to the image of the injective mapping (21.7), with

L = ΛO O(«Z) Ϊ.

We restate some of these results in

Proposition 25.7. Let ω be a contact form along the fibers of p: X -> Y. Let

x E: X with y — ρ(x), and Z — p~ι(x). / / ω z is the contact form on Z, restriction

of ω to Z, then the contact algebra RO0(ωz)x *s a transitive subalgebra of

JJ<TZ\ Z)x; moreover, there is an isomorphism of transitive Lie algebras

UTγ\ Y)y - *«(«)*
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mapping the closed ideal Rn(ωz)z® Fy of the semi-direct product onto the closed
ideal RJV;ω)x of ΛJω),.

Let ωz be a contact form on a manifold Z. Let p: X -> y be the fibered
manifold pΓj: Y X Z -> y and ω be the contact form ώz along the fibers of p
determined by ω z. We have the decompositions

Rk(ω) = Rk(V;ω)<DJk(V9p)9

and, forx = (y,z)EYXZ,

Λ j ω ) , = ΛαoίK; <o)x Θ σ,( J j j y ; 7 ) , ) .

Therefore RJiV\ ω)x is a JJtTΎ\ y^-submodule oίJjy)x, and the restriction

of the mapping (21.3) is an isomorphism of/^(Γy; y) -modules.
From (25.42) and Proposition 25.7, we deduce the following:
Theorem 25.2. // ωz is a contact form on a manifold Z, then for z E Z,

y E Y andj > 0, we have

jωz)z & Fy) θ jJTγ Y)y, Rx(ωz)z ® Fj = 0,

Hi{{Rjωz)z ® Fj θ JJTY; Y)y, Rjωz)z ® Fy) - 0.

If we take Y to be a point and Z = Xin Theorem 25.2, we obtain:
Corollary 25.1. // ω is a contact form on X, then for x E X andj > 0, we

have

HJ(Rjω)x) = 0, H\Rx(ω)x) = 0.

26. The cohomology of non-abelian minimal closed ideals of real type

Let R be a simple real transitive Lie algebra. The commutator ring KR of R
is the algebra of all R-linear mappings c: R -> R such that

for £, η E R. If R is non-abelian, then according to [20, Proposition 4.4] the
ring KR is a finite algebraic extension of R; therefore KR is always a field
which is either R or C.

If Der(iϊ) denotes the Lie algebra of derivations of R, we may identify R
with the closed ideal of Der(R) of inner derivations of R. If R is finite-dimen-
sional, it is a classical result that Όeτ(R) = R, and we let R° be any proper
subalgebra of R. According to the classification of the real simple infinite-
dimensional transitive Lie algebras (see [34] and [36]) and the computation of
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their Lie algebra of derivations given in [7], if R is infinite-dimensional and
KR = R, there is an isomorphism of pairs of Lie algebras from (Deτ(R), R) to
one of the following pairs of transitive Lie algebras, whose restriction to R is
an isomorphism of transitive Lie algebras:

(i) (JJiTz\ Z) z, JJiTz\ Z)z), where Z is a manifold of dimension > 1 and
z E Z;

(ii) (J^(TZ; ω z) z, JJiTz\ ω z) z), where ωz is a volume form on a manifold Z
of dimension ^ 2 and z E Z;

(iii) {JfJiTz\ ω z) z, JJ<TZ\ ω z) z), where ω z is a symplectic form on a mani-
fold Z of dimension ^ 2 and z EL Z\

(iv) (Λ0 0(ωz)z, Λoo(ωz)z), where ω z is a contact form on a manifold Z of
dimension ^ 3 and z E Z.

This isomorphism endows Der(Λ) with the structure of transitive Lie
algebra in which the transitive Lie algebra R is a closed ideal of codimension at
most one. In all four cases, the images of Der(Λ) and R under this isomor-
phism are transitive subalgebras of J^{TZ\ Z) z and so clearly the subalgebra
Der°(#) of Der(Λ), whose image under this isomorphism is equal to the
intersection of the image of Der(li) with J£(TZ; Z) z, is a fundamental subalge-
bra of Όer(R) such that R° = R Π Der°(/ί) is a fundamental subalgebra of R,
and

(26.1) ΌQT(R) = R + Der°(/0

(see [6, Corollary 2.2]).
If Fy — /^(l; Y)y9 with j / 6 7, as we have seen in §21, the semi-direct

product

- (Der(Λ) &RFy) ® J^Ty , Y)y

is a transitive Lie algebra, and

R /$, + Der(Λ) ®R Fy°) θ /Jg(

is a fundamental subalgebra of Der(Λ <8>R i^); moreover the closed ideal
R®RFy of Der(.R <S)Ri^) is a non-abelian minimal closed ideal if R is
non-abelian. We denote by

π:Όn(R®RFy)-*JO0(Tγ;Y)y

the natural morphism of transitive Lie algebras. In fact if KR = R, then by [6,
Proposition 3.2], Der(i^ <8>R i^) is canonically isomoφhic to the Lie algebra of
derivations of R 8>R Fy9 although this fact is used neither in this paper nor in
the proofs of any of the results of [6] which we need.
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From the above classification results, Proposition 22.10 and Theorems 23.2,
24.2 and 25.2, we deduce:

Theorem 26.1. Let R be a simple real transitive Lie algebra with KR = R.
Then for y E Y9 we have

forj > 0 and

Moreover according to the computation of characteristic varieties of §§21,
23, 24 and 25, we see that R ®R Fy is an elliptic ideal of Der(# ®R Fy) if and
only if R is finite-dimensional and Y is zero-dimensional (i.e., Fy = R).

Let L be a real transitive Lie algebra and / a non-abelian minimal closed
ideal of L. Then according to [20, Proposition 7.1], / possesses a unique
maximal closed ideal / of / and R = I/J is a non-abelian simple transitive Lie
algebra which is canonically associated to /. We say that the non-abelian
minimal closed ideal / is of real or complex type according to whether the
commutator field KR is R or C.

Assume that the ideal / is of real type. We now prove that the non-linear
cohomology of / vanishes following the argument given in §13. We endow
Der(Λ) with a structure of transitive Lie algebra and let ΌQX°{R) be a
fundamental subalgebra of Der(#) satisfying the conditions described above.
By [20, Proposition 6.2], the normalizer N of / in L is an open subalgebra of L,
and is therefore of finite codimension in L. We now suppose that the
dimension of the manifold Y is equal to that of L/N, and let y E Y. By
Proposition 21.1, there is a transitive representation

φ: (L, N) - {jjTY\ Y)y, J°(TY; Y)y)

of (L, N) on JJtTΎ\ Y)y. Consider the transitive Lie algebra Der(# &R Fy)
and its fundamental subalgebra Der°(i£ <S)R fj,). According to the topological
version [6, Theorem 4.2] of the structure theorem of Guillemin [20, Theorem
7.1], there is a continuous morphism of transitive Lie algebras

which induces by restriction an isomorphism

(26.2) Φ:I->R®RFy

of closed ideals, such that π © φ = φ. Since R ®R Fy is contained in Φ(L) and
(26.1) holds and since φ(L) is a transitive subalgebra of J<JTγ\ Y)y, we see
that Φ(L) is a transitive Lie algebra satisfying

(26.3) ΌQT(R & R Fy) = Φ(L) + Der°(* <8>R Fy).
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Since (26.2) is an isomorphism, by [16, Corollary 13.1 (ϋ)] and Theorem 10.4
(iv), Φ induces isomorphisms of cohomology

H*(L,I)->H*(φ(L),R&RFy)9

Because of (26.3), from [16, Theorem 13.2] and Theorem 10.5 we obtain
isomorphisms of cohomology

H*(Φ(L), R ®R Fy) - H*(ΌGT{R ® R Fy), R ®R Fy),

H1(Φ(L), R &R Fy) - H}{Όeτ(R ®R Fy), R ®R Fy).

Composing these isomorphisms, we obtain isomorphisms of cohomology

H*(L, I) -» H*(Όeτ(R ® R Fy), R ®R Fy),

H\L, I) - tf'(Der(* ®R Fy), R ®R Fy).

From Theorem 26.1, we deduce that Conjecture I of §13 holds for non-abelian
minimal closed ideals of real type, and so we have:

Theorem 26.2. Let L be a real transitive Lie algebra and I a non-abelian
minimal closed ideal of real type. Then for j > 0, we have

&(L9I) = 09 Hl(L9I) = 0.

Furthermore, if K = R or C, since (26.2) is an isomorphism, Corollary 16.1
tells us that

Ύ(L, /, K) - (Φ* 0 id)(Ύ(φ(L), R &R Fy9 K))9

where Φ* ® id: Φ(L)* Θ K -> L* 0 K is the injective mapping induced by Φ.
By (26.3), if we compute the characteristic varieties of the closed ideal R <8>R Fy

of Der(# &>R Fy) and of Φ(L) using the fundamental subspace

(R®RFy)nΌer°(R®RFy)

of R ® Fy and the fundamental subalgebras Der°(iί ®RFy) and Φ(L) Π
Der°(,R <§)R i^) of Der(# ΘR Fy) and Φ(L), we see that the mapping

induces a bijective mapping

Ύ(Der(* ΘR F J , Λ & R Fy9 K) - Ύ(φ(L), R Θ R /^, A").

Therefore the mapping

Φ* ® id: (Der(# 0 R i^))* ® K ^ L* ® K
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induces a bijective mapping

Ύ ( D e r ( * 6 R Fy)9 R ® R Fy, K) - Ύ(L, /, K).

We conclude that the closed ideal / of L is elliptic if and only if the closed

ideal R ® R Fy of Der(jR <8>R Fy) is elliptic. This last condition holds if and only

if R <8>R Fy is a finite-dimensional Lie algebra. We have thus proved:

Proposition 26.1. A non-abelian minimal closed ideal of a transitive Lie

algebra of real type is elliptic if and only if it is finite-dimensional
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