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1. Definitions and theorems

We consider immersions and embeddings/: M -» E3 of a closed surface M
into euclidean three-space E3, in the smooth (C°°) and the polyhedral ( =
piecewise linear = PL) category. Occasionally we will mention the topological
category.

For any line / in E3 we can choose the parallel projection tπι of E3 into an
orthogonal plane α,. We will use polar coordinates (r, θ) and euclidean
coordinates (w, v) — (r cos 0, r sin θ) around (0,0) = / Π α, in that plane.

The line / is said to be transversal to / in case there is a neighborhood
Up C M for any point p Ef~\l) = {q E M: /(#) G /}, for which the projec-
tion

is an isomorphism (diffeomorphism, etc.) onto its image, which image we can
assume to be a round disc r < 8 for some δ > 0. Then we define the geometri-
cal degree d — d{f)oϊ the surface /,

O 1 ) <*(/) = sup / t r a n s v e r s a l ^(/) < oo,

to be the least upper bound of the number of points dt(f) of f~\l) for all
transversal lines /. The number d((f) is constant on each component of the
open dense subspace of/-transversal lines in the Grassmann manifold Gr of all
lines in E3. Any transversal line can be moved into the position of any other
one in such a way that the number of points dt{f) changes by an even number
at isolated times at which the line is not transversal. In E3 we can moreover
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move / away from/(M), so that eventually dt{f) is zero. We easily conclude
Lemma 1. The geometrical degree d(f) < oo is even for smooth or PL

immersed closed surfaces f: M -> E3. If d(f) = 2, then f is an embedding of the

2-sphere onto a convex surface. The degree d(f) is finite for a PL-surface.

Observe also that if h(x, y, z) is a polynomial of degree m in euclidean
coordinates x, y, z for E3, and f.M^E3 is an embedding into the real
algebraic variety with equation h(x, y, z) = 0, then

(1.2) geometrical degree d(f) < algebraic degree m,

(over C the two degrees are equal).
In order to define the geometrical class of a surface /, we examine (and

define) the "number of tangent planes C/(/)" through a general transversal
line / as follows. The function θι = θ — θ o / modulo π, in terms of the polar
coordinate 0, is well defined on M\f~\l) = {q E M: f(q) (£ /} with values in
the circle R/πZ. It has no critical points near/- 1(/) and it is constant on each
plane through /. We call the transversal line / general for a smooth surface in
case the function θι is nondegenerate. We denote by c,+ (/) the number of
critical points with relative extreme value (maximum or minimum), and by
cj(f) the number of other critical values (saddle points), and we put cz(/) =
cΐ if) + cj{f).

We call the transversal line / general for a piecewise linear surface (the pieces
are the simplices of some triangulation of M) in case the function θt has only
isolated critical points, say c;

+ (/) with relative extreme values, cj (/) others,
with C/(/) = c,+ (/) + cf (/) as "total number of tangent planes". But in the
PL-case the level curve {q E M: #/(/(#)) = γ} of a critical nonextreme value γ
is seen to consist near the isolated critical point/? of an even number 2(m + 1)
of straight line segments (m > 1) each ending at/? G M, and then that critical
point must be counted with multiplicity m in cj (/) in order to agree with the
Morse theory to be applied later. Compare Kuiper [6].

In the C°° and PL-categories the general lines form an open dense set in Gr,
and C/+ (/), cj~ (f),dι(f) are constant on each component of this subspace.

Definition. The geometrical class of the immersion f.M^Eis the least
upper bound

(! 3 ) c = c(f) = sup/general

We also put

(1.3)' c + ( / ) = sup/ g α i c r a lc/

+

0 3 ) " C(f) = sup/general cΓ(f).
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Clearly

In §2 we prove the main theorem relating class and degree:
Theorem 1. For any smooth or polyhedral immersion /: M -» E3 of a closed

surface, we have

(1.4) c(f)>d(f)-χ(M)

where χ(M) is the Euler characteristic of M.
Our interest in the class of a surface originated in its relation to tightness.

For a map of a closed surface into euclidean space tightness has a simple
characterization. The map/: M -» E3 is tight if the set

f-\h)={qeM:f(q)(Ξh}

is connected for any closed half space h bounded by a plane. A smooth
immersion / in E3 can be shown to be tight if and only if the total absolute
curvature

which is > 4 — χ(M), attains its minimal value 4 — χ(M). See [6]. We also
prove, in §2,

Theorem 2. The geometrical class of a TIGHT smooth or polyhedral immer-
sion f: M -> E3 of degree d(f)> 4 satisfies the equality

(1.5) c(f) = c-(f) = d(f)-χ(M).

By Lemma 1 the assumption d(f)^ 4 only excludes convex surfaces (S2).
If / is a general line which does not meet the convex hull %f(M) of/(M), then
tightness of/is seen to imply c/~ (/) = 2, as there could not be more than two
"extreme" tangent planes through /. Then by the Morse equality cz

+ (/) —
cj (/) = χ(M), we obtain

(1.6) c/(/) = 4 - χ ( M ) .

Even so c(/) can take bigger values as seen in the end of §4.
Theorem 2a. For a tight smooth immersed surface f: M -* E3, if the Euler

characteristic χ(M) Φ 2, then the geometrical class can be made as large as we
please by a C1-smallperturbation, while preserving tightness.

This answers problem 4 in [7] in the negative.
In the rest of the paper we are interested in immersions and embeddings /

for which d(f) and c(f) are small, and which are tight as well if possible. In
the polyhedral case and for orientable surfaces all wishes can be attained.
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Theorem 3. There are tight polyhedral imbeddings f: M -» E3 of geometrical
degree 4 and class 4 — χ(M) for any orient able surface M of genus g > 0.

Construction. For g = 0 we take the surface of a cube. For g — 1 we delete
from the cube the convex hull of the union of two concentric equally large
squares in opposite faces, and take the boundary of the remaining ring. See
Fig. la.

For g>2 we proceed as follows. See Fig. lb. Let Bx be the convex body
which is a vertical cylinder with basis the two-disc of a regular g + 1 - g ° « ,
g ^ 2, and constant height. Consider in each vertical rectangular face a
concentric rectangle Di9 / = 0,1, ,g, and let these rectangles all have the
same size. The convex hull

B2 = %(D0UDι U ••• UDg)

is a second convex body. Then the boundary of the closure of BX\B2,
f(M) = M = d(Bλ\B2), is a polyhedral, tight(!) surface of genus g. Its
geometrical degree is d(f) — 4, because M is contained in dBx U 92?2, the
union of two convex surfaces, and its class is 4 — χ(M) by Theorem 2.

FIG. la FIG. lb

Nonorientable closed surfaces M seem to have no immersions of gemetrical
degree 4, and we can prove that for χ(M) odd. However if we allow "locally
stable" maps (generalizing immersions), we do have examples for the projective
plane and the Klein bottle. Without going into the definition we recall that a
smooth or PL map /; R2 -> R3 is stable but not an immersion at 0 G R2, if it is
homeomorphic near 0 £ R2 to a cone on a circle immersion with one transver-
sal self intersection in a plane a not containing /(0).
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F I G . 2a F I G . 2b F I G . 2C

In Fig. 2a we have the Petrobras surface a PL-stable map of the real
protective plane onto the boundary of the union of four cubes with side 1,
placed as indicated in the cube with equation sup{| x\ ,\y\ , | z |} < 1. Stable
singularities are at (x, y, z) — (±1,0,0), etc. There is a triple point of the
surface at (0,0,0) where the coordinate plane parts of the surface meet.
Self-intersections are on the coordinate axes. The geometrical degree is clearly
4, but the map is not tight.

In Fig. 2b we restrict the body of Fig. 2a to the part

p ^ - f 2= x\x + ey +fz\< 1.

The surface (boundary) then obtained determines again a locally stable poly-
hedral map of a real projective plane, of geometrical degree 4, which is seen to
be tight as well. Also c(f) = 3. This "heptahedron" is found already in [11,
Fig. 288].

In Fig. 2c we suggest a tight locally stable polyhedral map of the Klein
bottle with geometrical degree 4 and class 4. The self intersection segment rrf

has stable singularities at its end points r and r'. (Observe that the set in Fig.
2c is not the image of a locally stable map of a torus.)

In the rest of the paper we give examples for smooth surfaces.
Theorem 4 (§3). There are smooth {even locally algebraic) embeddings in E3

of geometrical degree 4 for orientable closed surfaces of any genus g > 1.
This was announced in [10] by R. Thorn as an insight of E. Calabi.
We recall also in §3 that there is a real algebraic model (surface) of algebraic

degree 4 for any orientable surface of genus g < 7.
Theorem 5 (§4). There are smooth {even locally algebraic) TIGHT embed-

dings in E3 of geometrical degree 6 for orientable surfaces of any genus g > 2.
Theorem 6 (§5). There is a smooth TIGHT embedding in E3 of geometrical

degree 4 for the orientable surface of genus g — 2. The given example is a
component of an algebraic variety of algebraic degree 5.
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Conjecture. There is no tight smooth surface of geometrical degree 4 in E3

of genus g > 3. Calabi constructs an example of genus 3.

We will make some comments about the robustness of the degree and of

tightness under C4-small perturbations of our examples in §3,4,5.

Generalizations. 1. Lemma 1 and Theorems 1 and 2 remain true for

smooth and PL immersions of a closed surface M into euclidean iV-space EN,

N > 3, with suitable modifications in the definitions and proofs. In particular

instead of lines / one takes affine subspaces of codimension 2 in EN.

2. Theorem 1 remains true for immersions of a closed surface M into real

projective TV-space RPN

9 N > 3, with suitable modifications in the definitions.

The degree d(f) can be odd, for example d(f)= 1 for the straight projective

plane R P 2 in RPN. Surfaces of geometrical degree 2 in R P 3 are either convex

surfaces of algebraic quadratic hyperboloid surfaces. The last are homeomor-

phic to the torus. We intend to discuss immersions of nonorientable surfaces of

small degree in another paper.

2. The relation between class and degree

We recall the Morse equality: If φ: M -* R is a nondegenerate smooth

function on a closed manifold with μ7 critical points of index j, then

j

F o r a surface p u t μ 0 + μ 2 — c+ a n d μ λ — c ~ . T h e n

(2.1) c+-c-

Suitably modified the same holds for continuous functions with isolated

critical points on a closed surface, for example on a polyhedral surface. We

now prove

The litte Morse equality: (2.1) holds also for maps of a closed surface M into

the circle Sλ with all critical points isolated {see [12]).

Proof. Let the map φ: M -> S\ — R/πZ say) have c(φ) = c + (φ) + c~ (φ)

isolated critical points, all other points assumed regular for <p. Let [s — 2ε,

s + 2ε], ε > 0, be an interval of regular values. φ~\s) is a union of k(> 0)

circles, ψ~\[s — 2, ε, s + 2ε]) is a union of k orientable bands in M. Delete

these bands and close each of the 2k bounding circles of the rest of M by a

cone, so that a new abstract surface Λf is obtained. Extend the function φ over

the cones to obtain φ' so that the only new critical points of φ' are k relative

maxima with value s — ε and k relative minima with value s + ε, in the
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obvious way. The new function φ' on the new manifold ΛΓ, for which
χ(M') = χ(Λf) + 2k, has invariants:

c + (φ') = c + ( φ ) + 2fc, <Γ (φ') = c " ( φ ) .

As φ' maps into an interval (embeddable in R) the usual Morse equality holds
(see [6]):

χ(M) + 2k = χ(M') = c+ (φ') - c- (φ') = c+ (φ) + 2k - c~ (φ).

Hence the little Morse equality follows.
Next let/: Λf -> £ 3 be a smooth or polyhedral immersion of a closed surface

Λf and / a general line. We prove with d, = dt{f\ cj — cj~ (/), etc.:
Lemma 2.1. c7" = dt- χ(Λf) + c,+ > dt - χ(M).
Proof. See §1 for the meaning of round neighborhoods Up, p £/"*(/), and

of θt = θ o f. Take out such round neighborhoods [/,,- , Ud, dt — 2m from
M, one for each point/? Ef~\l), and connect θt/2y-i and dU2J by a cylinder
to obtain a new abstract surface M' with (clearly)

χ(M') = χ(M) - </,.

Assume the discs f(U2j-\) and f(U2J) disjoint, and extend/to get/', mapping
the cylinders onto tubes around /. Then/XΛΓ) avoids /, and β[ — θ ° / ' maps
Λf' into the circle R/7rZ. We may assume that the critical points of θ on f'(M')
are the same as those of θ on f(M). Since 0/ is defined at all points of Λf', the
little Morse equality holds and we have

Hence Lemma 2.1 follows.
Another proof. The above proof does not apply in case d{ is odd, which

may happen with immersions into RP 3 . Therefore we present a second proof.
Replace M by a new abstract surface Λf', by taking out the open round disc Up

for p Gf~\l) again, and identifying diametrical points on dUp. Two such
diametrical points have the same value of θt ° / in R/τrZ. The new manifold
Λf (obtained by dt such "blowing ups", as they are called) has χ(Λf') = χ(Λf)
— dh and the function θt ° / has the same critical points as on Λf(!); Lemma
2.1 follows as before.

Theorem 1 follows from Lemma 2.1 by taking least upper bounds for
general lines /:

c(f)>c-(f)>d(f)-χ(M).

Proof of Theorem 2. We now assume that / is tight and d(f)> 4. For a
general line / which does not meet the convex hull %f(M) we observed already

c+ = 2, c, = 4 - χ ( M ) .
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For a general line / which does meet %f(M), clearly by definition of tightness,
c7

+ = 0 and, by Lemma 2.1

Taking upper bounds for all general / we get the equality of Theorem 2:

3. Smooth (even locally algebraic) orientable surfaces

of geometrical degree 4

A smooth two-sphere or revolution of degree 4. Any tangent line / in an

asymptotic direction of a piece of smooth surface of negative Gauss curvature
has in general local contact of order three, and a small perturbation of / can
give a contribution three to the degree d{. Sweeping around such asymptotic
tangents it seems hard to obtain d(f) — 4 for surfaces of high genus g > 2.

It is also interesting to observe what can happen if one rotates a convex
curve γ in a vertical plane around a disjoint vertical line in that plane. If γ is a
round circle we get the standard torus of algebraic and geometrical degree 4. If
γ is a square with two vertical sides, or a smooth approximation like the curve
with equation

we get again an embedded torus with geometrical degree 4, as W. Kϋhnel
observed for p > 4. But if we place the diagonal of the square, or a smooth
approximation, parallel to the vertical axis, then the embedded torus of
revolution so obtained has geometrical degree at least six. Look and see!

Even so, following a conviction of E. Calabi, we now proceed to get smooth
surfaces of degree four of any genus g. We start from the following real
algebraic variety Mo of algebraic degree four in euclidean coordinates x, y, z
ΪOTE3:

r 2 = x2 + j ; 2 + z2, ε > 0 small.

The planes z = constant are said to be horizontal. Mo is contained in the thick
two-sphere

S : ( r 2 - l ) 2 < ε 4 ,
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and also in the convex domain

567

which for small ε > 0 cuts away a cap from the top of the thick two-sphere.

cap

sphere

FIG. 3a

Half rays from the origin (0,0,0) give two or no intersection points with Mo.
We have an embedded two-sphere, and a surface of revolution of algebraic and
hence geometric degree 4. See Fig. 3a.

The surface has two large convex parts where K> 0; one exterior C e x t and
one interior C i n t. The asymptotic curves in the complement are tangent to the
boundary of Ce x t where the Gauss curvature is K — 0. They show a pattern as
on the standard torus. It is not generic from the differential point of view as
Thorn and Kergosien observed in [3].

Near the boundary of C i n t the asymptotic curves end in cusps, orthogonal to
that boundary. Now for small ε, all asymptotic tangents are nearly horizontal
(!). That is why they cannot harm in the surface with respect to degree at
points of Mo which are far away. We use this in our constructions later. The
degree is not influenced if we perturb only C e x t and C i n t keeping them convex,
and unchanged near their boundaries. We may do this in such a way that for
some small 8 > 0 and z < 1 — δ, the surface coincides there with parts of two
concentric spheres with radii rλ and r2 close to 1 and | r2 — rλ | very small.

We call the part outside these two spherical parts a Calabi handle attached to
the pair of spheres. For small ε > 0, it is as small as we please. The surface is
clearly not tight, but is still an embedded 2-sphere of revolution of geometrical
degree 4.
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Finally for small ε we can take two concentric spheres with radii rλ and r2,
with I r2 — rλ | very small, and by attaching g + 1 disjoint Calabi handles we
obtain a smooth orientable embedded surface of genus g, which is seen to be of
geometrical degree 4.

(g = 1 Klein bottle)

FIG. 3b

A smooth Klein bottle of geometrical degree six. By taking three concentric
spheres with radii very close to each other, we can connect by suitably
attaching g + 2 Calabi handles and obtain a smooth immersion of geometrical
degree six for any nonorientable surface of even Euler characteristic, χ(M) =

Real algebraic surfaces of algebraic degree 4. These have been studied and
classified by Gudkov [2], Kharlamov [4], [5]. The sum of the Betti numbers
s < 20, but < 16 for connected surfaces, so that the genus is g < 7. See Thorn
[9] and Milnor [8] for earlier but weaker inequalities. We can obtain these
surfaces with formulas like (3.1). Here are examples.

A "regular" surface with the symmetry of the cube, of genus 5 and degree 4 is
given by

{ 3 2 ) ( r 2 - l ) 2 + ε 4 ( l + ε ) ( * 4 + / + z 4 ) = ε 4 ,

r2 = x2 + y2 + z2, ε > 0 small.

Observe that the unit sphere r — 1 is interior to the surface xΛ + yA + zΛ = 1
and tangent at exactly 6 points where caps from the thick sphere are taken
away.

A "regular" surface with the same symmetry of genus 1 and degree 4 is given
by

( r 2 - l ) 2 + ε 4 ( l + ε ) | i 2 (x + ey + fz)4 = ε\

where the analogous tangencies are at points (x, y, z) = -ί,(± 1, ± 1, ± 1).
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Exercise. Find a regular algebraic surface of algebraic degree 4 of genus 3,
with the symmetry of the regular simplex.

Algebraic surfaces of geometrical degree 4 of any genus g. C*-robustness of

geometrical degree. Those smooth surfaces of geometrical degree 4 and genus
g Ξ2* 2 which we constructed above can be assumed to have the following
property.

A plane which is orthogonal to the tangent plane at a point p of a surface is
called an orthoplane at/?, which meets the surface in an orthoplane section. In
our examples the 4-jet of any orthoplane section at any point/? of the surface is
not flat. This means that in suitable coordinates in the orthoplane the section
has an equation

v = a2u
2 + <x3u

3 + α 4 w 4 + •• , wi th(α 2 ,α 3 ,α 4 ) 7^(0,0,0).

This property is invariant under perturbations which are C4-small: all deriva-
tives of order 1,2,3, and 4 are small. This implies that locally the degree of our
surfaces does not increase with C4-small perburbations. Since in our examples,
there is also no possible increase globally under such perturbations, the degree
four remains unchanged. In other words, the degree four of our surfaces is a
CΛ-robust property. Then as we can C4-approximate by (a component of) an
algebraic variety, we find (locally-^algebraic models of geometrical degree four,
for orientable surfaces of any genus g.

Exercise (Conjecture). If we choose N sufficiently large, and then ε > 0
sufficiently small, the following equation defines an algebraic surface of genus
g and (probably) of geometrical degree 4:

4. TIGHT smooth (even locally algebraic) orientable surfaces
of geometrical degree six and any genus g

We first construct smooth surfaces. Start from a round torus of degree 4
obtained by rotating a circle around a disjoint line in its plane. Any projective
transform is also tight and of degree 4. Moreover the strictly convex part where
K > 0 can be modified at will as long as it remains strictly convex, i.e., K > 0.
Choose two points/? and ^ o n a round sphere. Place a projectively transformed
standard torus such that its negative curvature-part approximates the line
segment/?# and such that the two tangent planes along the points where K — 0
cut the sphere, and are parallel to and near to the tangent planes to the sphere
at p and q. With a modification we can arrange that the convex part of the
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surface contains almost all of S2 except two small neighborhoods Up and Uq of
p and q. We have attached one handle to the two-sphere S2 near p and q so
that the geometrical degree of the surface obtained is four. The new surface is
tight: at each point where the Gauss curvature is K > 0, there is a globally
supporting half-space h.

Next we attach g such mutually disjoint thin handles near to chords pjqj,
j — 1, ,g, to the round sphere, and such that no straight line meets more
than two handles. We get a surface Mg of genus g, which is tight and whose
geometrical degree is seen to be six. The geometrical class is then 6 — χ(Mg)
by Theorem 2. See Fig. 4.

Robustness and algebraic examples. The degree six of these surfaces is as
before a C4-robust property. Tightness on the other hand is not robust at all.
However, if we can keep some high order jet at the union of the plane (!) sets
of points where K — 0, fixed, then we have enough freedom for a C4-small
perturbation to obtain tight locally algebraic surfaces of geometrical degree six.
Here is an explicit construction.

Let/, = 0, ,/g = 0 be the polynomial equations of the disjoint projective
transforms of a standard torus with fj > 0 representing the unbounded compo-
nent of the complement for/ = 1, ,g. Each torus has two highly supporting
half-spaces given by linear inequalities in the coordinates

ht>09 i = 2j-l92j\j=l9 ,g.

h > 0 p

FIG. 4
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The smooth surface we constructed has an equation / = 0 for some C°°-func-
tion /, for which we can assume by construction that it coincides with the
polynomial function Π5= i jζ in the union Uy of the two sets

{/>:suPj,Λ,(ι0>0}, j?: Π Λ ? ( J > ) < Y |

for some small γ > 0. The complement Vy = E3 \ Uy of Uγ in E3 is homeomor-
phic to an open ball.

Define the C°°-function φ: E3 -* R as zero on Uy and by

on Vy. Let g be a polynomial approximation of φ on a large compact convex
set W, which contains Vy and the surface M, such that the sum of the squares
of all derivatives up to and including those or order k obeys

II g — φ III < ε, for some ε > 0,

and at all points/? G W.
We had

/= IU + Φ ΠV
7 = 1 z = l

and obtain the polynomial approximation on W

U
7 = 1 i = l

For ε > 0 small and k > 4 we find the desired surface M£ of genus g with the
equation f*~ = 0, which C4-approximates Mg. M^ is diffeomorphic with M9

has the same points and 3 jets at each top-cycle-set M Π (hι > 0), has Gauss
curvature K ^ 0 outside these top cycle sets, is a component of an algebraic
variety, is tight, and has geometrical degree six by C4-robustness of degree
under the given circumstances, as there are no global dangers for degree
increases. The geometrical class 6 — χ(Mg) of Mg is unchanged.

Tight surfaces with large class and degree. Proof of Theorem 2a. Consider a
point p on a tight surface M with χ(M) φ 2, at which the Gauss curvature is
K < 0. For any C2-small perturbation near to p the curvature remains nega-
tive, and the surface remains tight. There is however a perturbation, as
C2-small as we please, such that a tangent line / in an asymptotic direction at p
contains some line segment of the perturbed surface AT. With a second
C2-small perturbation of M' we can arrange the line / to be transversal to the
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new surface M" at as many points as we please. Then the degree and, by
Theorem 1, also the class of our tight surface M" are as large as we please. It
could be made oo.

5. A TIGHT smooth embedding with geometrical degree four

of a surface of genus two

We construct a smooth surface M = M2 of genus two with properties and
symmetries as those of the example in Fig. lb. It will turn out to be a
component of the real algebraic variety of algebraic degree five with equation

{ ( x , j , z ) : K z < l } c R ,

2y{y2 - 3x2)(\ - z 2) + (x2 + y2)2 = (9z2 - - z 2 ).

Construction and geometry of M. Consider the function, on the x, >>-plane,

(5.2) η(x, y) = 2y(y2 - 3x2) + (x2 + y2f.

This function has the symmetry of the equilateral triangle, as y(y2 — 3x2) is
the real part of (y + ix)3. We want the level curves of our surface M to be
similar to the level curves of η. The graph of the function η as a monkey saddle
at x = y = 0, and its asymptotic curves are nearly orthogonal to each other
close to (0,0). Some levels are given in Fig. 5a.

FIG. 5a

If we put η = z2 — 1, we get monkey saddles at heights z = +1 and - 1 , and
three vertical tubes in between. But this surface does not close either above or
below. We proceed to change levels by similarities. As in Fig. lb we do want
three highly supporting vertical planes for tightness. To prepare this we



GEOMETRIC CLASS AND DEGREE 573

determine double tangents y — c for each level curve of η, and we arrange by a

similarity x = cu9 y — cv that these level curves are tangent to the vertical

plane y = 1. Then automatically by rotational-symmetry of order three, they

are doubly tangent also to the other two corresponding vertical planes. Let us

calculate the intersection of the plane y — c and the level curve

2y(y2 - 3x2) + (x2 + y2f = η = constant.

We get

x4 + 2c2x2 + c 4 + 2c 3 - 6cx2 - η = • 0,

that is,

[JC2 + c(c - 3)] 2 4- c2(8c - 9) - η = 0.

In order for y — c to be a double tangent we must have

(5.3) η = c2(8c - 9).

For any η we only want the largest value of c. Now we substitute x — cu and

y — cυ in

2y(y2 - 3x2) + (x2 + y2f = c2(8c - 9),

and find

2v(v2 - 3u2)c3 + (u2 + ϋ 2 ) V = c2(8c - 9),

or

2v(v2 - 3M2) + c(w2 + v2)2 = ίβ - I

Finally we replace (w, t>) by (JC, y) and take

We get the equation announced in (5.1),

2y{y2 - 3x2)(\ - z2) + (x2 + y2)2 = (9z2 - l)(l - z 2 ) .

The monkey saddles are at heights z — ±\. For ^ < z 2 < 1 the level curves

at height z is one closed curve. These curves converge for z -> ± 1 to the points

(x, y, z) = (0,0,±l). It then is geometrically seen that (5.1) defines a closed

surface M of genus 2.

The geometrical degree of M is 4. Any line which meets M transversally

must meet it in an even number of points, the ends of intervals in which the

line meets the body B bounded by M. This even number is at most four since

the algebraic degree of (5.1) is five. So M is of geometrical degree 4.
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Next we intersect the surface M with the vertical plane y — 1. We find the
equation

(x2 + 3z2 - if = 0

of an ellipse &λ counted twice. It is the interaction of M with the highly
supporting vertical plane y — 1. Analogous ellipses S2 and S3 occur in the
vertical planes obtained from>> = 1 by rotation over 2ττ/3 and 4ττ/3 about the
z-axis.

For making a nice model (Fig. 5b), we take x9 y and 3z as unit orthogonal
coordinates. The union of the three ellipses &x U S2 U S3 divides the surface
M into two open parts M+ and M~ each of which is orthogonally projected
into the horizontal plane z = 0 with only folds along the intersection of M with
z — 0. The points of M" have K < 0 except at the monkey saddle points where
K = 0. The points of M+ are on the boundary of the convex hull %(M)9 and
have K > 0 except at the top and bottom where x = j = 0.

z = 1

FIG. 5b
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To check negative Gauss curvature K < 0, we study convenient plane sec-

tions through any point p G Λf", one for which the curvature vector points

inside the body B9 and one for which the curvature vector points outside B.

This suffices for K(p) to be negative. Here are sections which do this for us in

large parts of M~.

(i) Take vertical planes y — c. By looking at horizontal sections (!) we see

that such sections are at most tangent at the obvious points in the plane of

symmetry z = 0: In between, the isotopy type of the section does not change.

For c < 1, but close to 1, the section consists of two closed embedded curves

one inside the other. As the geometrical degree of the union is 4, the inside

curve is convex, and so its curvature vector points outside B. The same applies

to the sections obtained from those discussed by rotation about the z-axis over

2τr/3 and 4τ7/3. See Fig. 6 [(i) out], for the part of M~ covered by this case.

(ii) For horizontal plane sections we get three ovals for 9z2 — 1 < 0, which

can be shown to be convex. At the points covered (see Fig. 6 [(ii) in]) the

curvature vector points inside B.

(iii) Also the vertical plane sections y = ax through the z-axis can be easily

understood. They have horizontal tangents of the z-axis and that makes some

of the parts of the section convex or concave leading to curvature vectors

pointing inside. See Fig. 6 [(iii) in]. We do not elaborate the small remaining

part of M ".

(iii)

( ϋ )

FIG. 6

All points ofM+ not on the z-axis have positive Gauss curvature K > 0. Again

by looking at vertical sections and horizontal sections one convinces oneself of

this fact. We did not work out a formal calculation.
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