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Introduction

Let M and M be complete connected Riemannian manifolds of dimension

2) and n + p respectively. Hong [3] introduced a notion of planar geodesic

immersions as follows: An isometric immersion/of M into M is called & planar

geodesic immersion if each geodesic on M is locally mapped under the immer-

sion into a 2-dimensional totally geodesic submanifold of M. Planar geodesic

immersions of M into an (n + /?)-dimensional sphere Sn+P(c) of constant

curvature c have been completely classified by Little [4] and Sakamoto [9]

independently, who stated that M is a compact symmetric space of rank one,

and/ i s rigid to the 2nd or 1st standard immersion according as M is a sphere

or not. In particular, concerning with isotropic immersions which are intro-

duced by O'Neill [8], Sakamoto proves that the following properties are

equivalent:

( l )/ i s nonzero constant isotropic and parallel,

(2)/is planar geodesic,

(3) for any geodesic γ on M, / ° γis a circle on M.

On the other hand, minimal immersions of compact symmetric spaces into a

sphere have been investigated by Wallach [11]. Let M = G/K be a compact

symmetric space where the isotropy action of K is irreducible, and let Δ be the

Laplacian operator for (Af, ( , ) ) , where (, > is some G-invariant Riemannian

structure up to scalar multiple. Let Vλ be an eigenspace with an eigenvalue λ of

Δ, and for any real-valued functions gλ and g2 on Af, let (gi, g 2) = / Λ / £ I & 2 < ^

Then Vλ is a vector space over R endowed with the inner product (,). For each

nonzero eigenvalue λ, let (gj, -,gq+ λ} be an orthonormal basis of Vλ9 where
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q + 1 = dim F λ . We then define/λ: M -> R«+ 1 by

Then it is seen in [11] that/ λ is a minimal isometric immersion of (M, (, » into

Sq+\ which is called the standard immersion of M. With regard to the degree

of the immersion in the sense of Wallach, if the degree of/λ is not greater than

3, then it is rigid. In particular, in the case where M is a compact symmetric

space of rank one, we denote by fr the standard immersion corresponding to an

rth eigenvalue λ r. It is seen that a planar geodesic immersion is closely related

the first standard immersion fλ which is with degree 2 except for the sphere.

When the rigidity of the standard immersion fr is being carefully considered, it

seems important to study the structure of the immersion with degree 3. As a

matter of fact, the degree of the standard immersion fr is calculated by

do Carmo-Wallach [1] and Mashimo [5], [6], whose results imply that/ 3 of Sn

into SN(3) is the only one example with degree 3, where N(3) = n(n + \)(n +

5)/6 — 1. In order to characterize geometrically the immersion, the author [7]

introduces a notion of cubic geodesic immersions, which is more general than

that of the planar geodesic immersions. An isometric immersion of M into M is

called a cubic geodesic immersion if each geodesic in M is locally mapped under

the immersion into a 3-dimensional totally geodesic submanifold of M. The

standard immersion /3 of Sn into SN^ is of course an easiest model of the

cubic geodesic immersion. As a characterization of/3, the following theorem

for cubic geodesic immersions is proved in [7].

Theorem. Let M be an n(> 3)-dimensional compact simply connected

Riemannian manifold, and f be a full isometric immersion of M into Sn+P(c),

where p > 2. Iffis minimal and isotropic, then the following statements hold:

(1) /// is properly cubic geodesic, then for each geodesic γ in M,f° γ is a helix

in Sn+P(c).

(2) /// o γ is a helix in Sn+P(c) for any geodesic y in M, then M is isometric to

Sn, and f is rigid to the standard immersion /3 ofS" into SN(3\

In this paper, we shall be concerned with another analytical characterization

of the standard immersion/3 of Sn into SN^\ which generalizes the concept of

parallelness of the second fundamental form. The purpose of this paper is to

prove the following.

Theorem. Let M be an « (> 2)-dimensional complete simply connected

Riemannian manifold, and let f be a full isometric immersion of M into Sn+P(c).

Iffis minimal and isotropic, and the second fundamental form σ of f satisfies

(0.1) (V2σ)(w, u, u, u) + /2σ(«, u) = 0

for any unit vector u at any point x in M, where I is a positive constant, then M is

isometric to Sn, and f is rigid to /3.
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1. Preliminaries

Let M be an n(> 2)-dimensional connected orientable Riemannian manifold
equipped with the Riemannian metric g, and let /be an isometric immersion of
(M, g) into (n + /?)-dimensional Riemannian manifold (M, g). The metrics on
the tangent bundles TM and TM are denoted by (, >. Let V and v" be the
Riemannian connection on (M, g) and (M, g) respectively. The metric and the
connection on the pull b a c k / T M induced from ( , ) and V are also denoted
by ( , ) and v . Moreover, we have an orthogonal sum f~TM = TM θ NM,
where NM denotes the normal bundle for /. Let D denote the normal
connection on NM induced from V. Now denote by X and Y (resp. ξ and η)
vector fields tangent (resp. normal) to M. We then recall the following
equations, which are called Gauss and Weingarten formulas:

(1.1) VXY= VxY+o(X9Y),

(1.2) Vxξ = ~

for any vector fields X, Y and ξ on M. The tensors σ and Aζ are called a second
fundamental form of f and a shape operator in the direction of ξ respectively.
A^( X) is bilinear in ξ and X, and for each normal vector field ξ on M we have

(1.3) (Aι(X)9Y)=(σ(X,Y),ξ)

for any X,Y E TM. Hence 4̂̂  is symmetric and self-adjoint with respect to
(, >. We define a linear mapping A of NM into a set End(ΓM, TM) of all
symmetric linear transformations of TM by A(ξ) = A^.

We next define a connection V' induced on the vector bundle f'TM as
follows: For any NM-valued tensor field Γof type (0, k) we define V^Γby

(VxT)(Yλ9 ,Yk)
(1.4) k

= Dx(T(Yι, ,Yk))-
r=\

for any vector fields X,Yl9 -9Yk on M, and v T is defined by ( V T )
(Yλ9'-,Yk,X) = (VχjΓ)( V , Yk) It is an TVM-valued tensor field of type
(0, k + 1). Furthermore we denote by v'2T the covariant derivative of v T
with respect to the induced connection v ' , and then we can inductively define
V ' T . Denote by R and R the Riemannian curvature tensors for v and V
respectively. We recall following fundamental equations which are called the
equation of Gauss and Codazzi respectively:

(R(X, Y)Z9 W)= (R(X9 Y)Z9 W)+ (σ(X9 W)9 σ(7,
( " < ( J f Z ) σ (
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(1.6) {R(X9 Y)Z}N = (Vσ)(7, Z, X) - (v'σ)(X, Z, 7)

for any vector fields on Λf, where the superscript TV denotes the normal
component. In particular, for the second fundamental form σ it follows from
(1.2) and (1.4) that

V*(σ(y, Z)) = (Vσ)(7, Z, X) + a(v*7, Z)

+ σ ( l r , V j r Z ) - ^ σ ( y t Z ) ( J f ) .

The immersion/is said to be parallel if V'σ = 0.
We denote by Mm(c) an w-dimensional complete simply connected Rieman-

nian manifold of constant curvature c, which is called a real space form', it
consists of a sphere Sm(c), a Euclidean space Rm and a hyperbolic space
Hm(c). Fron now on we assume that the ambient space is a real space form of
constant curvature c. Then the equations of Gauss and Codazzi are reduced to

(R(X, Y)Z, W) = c((X, W)(Y9 Z>- (X, Z)(Y9 W))

+ (σ(X,W),σ(Y,Z))-(σ(X,Z),σ(Y9W)),

(1.6)' (Vσ)(y, Z, X) = (v'σ)(X, Z, 7)

for any vector fields X, 7, Z on W on M. The normal vector field defined by
ί) = Tr σ/n is called a me#« curvature vector of the immersion. In the case
where the mean curvature vector t) vanishes identically,/is said to be minimal.

Now for any fixed point x in M and any unit vector u at x, the vector
σ(w, w) is called anormal curvature vector in the direction of u. If every normal
curvature vector has the same length for any unit vector u at x9 then the
immersion is said to be isotropic at x. If / is isotropic at any point on M,
namely if the length of a normal curvature vector depends only on the initial
point, then the immersion is said to be λ-isotropic, where λ is the length. The
isotropy λ is continuous, the square of which is smooth on M. The immersion/
is λ-isotropic at x if and only if the second fundamental form satisfies

(1.8) @3<o(wi> "2)> σ(w3, ϋ)>= λ2@3<tt1, w2>(w3, v)

for any unit vectors ut{i — 1,2,3) and v, where @w denotes the cyclic sum
with respect to vectors ul9— -,um. This is equivalent to

(1.9) <σ(κ,n),σ(tt,ϋ)>=0

for any orthogonal vectors u and v at x [7]. If λ is constant on M, then / is
said to be constant isotropic. In the sequel we assume that the immersion f is
nonzero constant isotropic on M with the constant isotropy k, and moreover it
is minimal. The minimalness implies that for any orthonormal basis {eλ, -9en}

of the tangent space Mx at any point x9 Σ^V'σX^ , ei9 u) — 0 and

Σ^v^σXe,-, ei9 w, v) = 0 for any vectors u and v at x.
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Remark. In the case where n ̂  3, if / is isotropic and minimal, then it is

constant isotropic. In fact, M is an Einstein manifold, and the Ricci curvature

S is given by S(X, Y) = {(n - l)c - {(n + 2)λ2}(Λr, Y) for any vector fields

XandY.

From the definition of the connection V' and the fact that/is Λ -isotropic it

follows that

(1 10) ί ®

and it implies

((v'σ)(X,X,Y),σ(X,X))=0

and <(v'σ)(Λf, X, X),σ(X, Y))- 0 for any vector fields. Accordingly, they

yield @4((V'σ)(Ar

1, X2, X3), a{XΛ, Y))= 0, which together with (1.10) implies

that

(1.11) <(v'σ)(*,, X2, X,), σ(X, 7)> = <53(o(Xlt X2),(v'o)(X3, X, Y))

for any vector fields.

2. Locally symmetric spaces

Let/be an isotropic and minimal immersion of M into M — Mn+P(c), and

A the shape operator of NM into End(ΓM, TM) which is a symmetric and

self-adjoint mapping. This section is devoted to finding a sufficient condition

for M to be locally symmetric. We suppose that A satisfies

(2.1) T r V W ) = L<^U),Y>

for any vector fields X, Y and ξ, where L is a constant. For any fixed point x

on M, we consider a sufficiently small neighborhood of x. For a vector field Z,

let c — c{t) be a smooth curve passing through c(0) = x and satisfying

c'(0) = Z(x). For any vector field X the value of VZX at x depends only on

the vector Z(x) and the value of X along the curve c. Accordingly we may

suppose that Vze, = 0 for any orthonormal basis {eu- ,en) of Mχ9 because

each of them is extended to a parallel vector field along c for small values of t.

Differentiating (2.1) in the direction of Z and taking account of the derivative

of the function (Aξ(X), Y) with respect to Z, we have

Z(Ύτ AξAσ(Xγ)) = TτA(v,σχXtγtZ)Aξ + ΊτAσ{VzXY)A^

(2.2) +ΎrAσ(XfVzY)Aξ + Σ <σ(X, Y), (Vσ)(^(e z ) , ei9 Z)
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Under the assumption (2.1), from (2.2) it follows that

L((v'σ)( Jf, Y, Z), 0 + L(σ(X, Y), Dzξ)

w^At + 2 (o(X, Y)Λ V'σ)(^(e,), elt Z)

By virtue of the above equation at x and the property (A^(X), Y) =
<£,σ(X,Y)>,wehave

, 7, Z), |>=

+ (ξ,(v'o){Z,AβίXtYy(el),eί))}.

Thus using (1.11) and taking the cyclic sum with respect to X, Y and Z give the
following relation at x:

3L((VΌ)(X, Y, Z), ξ)=

for any vector fields.

Now we consider a normal vector ξ — Σyσ(ey, ^(Vσ)(^,y,z)(ey)) a t x Then
the left-hand side of (2.3) is equal to 3LΎτA(V'σ)(^,y, zΛ a n c^ the second term
of the right-hand side of (2.3) is equal to 3Σ/ J (σ(e / , A(v,σ)(X γjZ)(ej%
(V'σ)(Z, Λ^y^e,.), ef )), because v'σ is symmetric. Consequently, combin-
ing this relation together with (2.1) we have

• (σ(ei9 ej), (v'σ)(e,, A:,, Z))(o{ek,ex), σ(X, Y))9

from which it follows that

(2 4) />J' * /

+ 3 Σ IIΣM<α(e,.,ey),(v'σ)(e,,e1 >em)>σ(e,,e1)||2.

Given an orthonormal normal frame {iπ + 1, *,έn+^}» we denote simply by
Λα the shape operator >4(|α) for the normal vector ξa (a — n + 1, , « + / ? ) .
In the sequel, indices α, )S, run over the range ( « + 1,••-,«+/?). We
define a symmetric linear transformation H = (Haβ) on Λ̂ M by Haβ =
Ύv(AaAβ). Using (2.4) we shall verify the following.
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Lemma 2.1. // the shape operator A of NM into End(ΓM, TM) satisfies

σ(X Y) = L(Aξ(X), Y) for any vector fields X, Y and £, where L is a

constant, then M is locally symmetric.

Proof. In terms of the symmetric linear transformation H, it is easily seen

that the condition given in Lemma 2.1 is equivalent to H(σ(X, Y)) = Lσ( X, Y).

Since the matrix (Haβ) is positive semi-definite, from the condition it follows

that L is nonnegative.

Suppose that L — 0. Then it is easily seen that the immersion / is totally

geodesic. Since it is a contradiction to the nonzero constant isotropic immer-

sion, L must be a positive constant. Taking account of this property and (2.4),

we seeΛ ( v , σ ) ( e >e. ^ ( e , ) = 0, which means <(V'a)(e,., ej9 ek), σ(eh em)) = 0 for

any indices /, ,m. Because σ and v ' σ are linear forms, we have

<(v /σ)(w 1, w2, M 3 ) , σ(w4, w5)>= 0

for any unit vectors w^l = 1, ,5) at any fixed point x, from which we can

show that M is locally symmetric. This concludes our proof.

3. Second fundamental forms

In this section let M be a complete ^-dimensional Riemannian manifold, and

/ a nonzero constant isotropic minimal immersion of M into M = Mn+p(c).

To begin with let us analyze the assumption concerning the second fundamen-

tal form, which is given by

(3.1) ( V 2 σ ) ( X , X, X, X) + / 2HX|| 2σ(X, X) = 0

for any vector field X on Λf, where / is a nonnegative constant. Now let φ be an

m-form on a vector space V. For any vectors t;,, -9vm and any permutation T

in a symmetric group of order m, we define an m-form τφ by (τφXΌl9- ,υm)

= φ(υ τ ( 1 ) , . . .υ τ ( O T ) ) , and the symmetrizer Sm by SmΦ(vl9--,vm) =

Σ(τφ)(vλ9" -9vm)9 where the summation runs over all permutations T. Because

of the multi-linearity of σ and V'2σ, the equation S4{(v'2σ)(A r

1, Jf2, Z 3 , X4)

+ l\Xλ9 X2)σ(X3, X4)} = 0 follows from (3.1). By taking account of the fact

that the 4-form v ' 2 σ is symmetric with respect to the first three elements, and

that σ and (, > are also symmetric, the above equation is reduced to

, X2)o(X39 X4)
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for any vector fields, which together with the Ricci identity implies

6(v'2σ)(X,, X2, X,, Y) = @3{(-3c + 3k2 - 12)(XX, X2)o(X3, Y)

( 3 2 ) + (3c + 3£2-/2)<y,*,>a(X2,*3)

-6Σa(Aa(Xλ),X2)β(X3,Aa(Y))}.

Taking account of the minimality of the immersion, from (3.2) we obtain that

12Σασ(Λα(X), Aa(Y)) = {-3nc + (n + 4)(3k2 - l2)}σ(X, 7)

for any vector fields X and 7, where k is the constant isotropy. By using the

relation Σao(Aa(Xl AJJ)) = Σi,j(σ(X9 <?,.), σ(7, e/)>σ(e/, ey), the condition

of the isotropic immersion, and the left-hand side of the above equation

we can easily show that the condition of Lemma 2.1 is satisfied, where L =

\{3nc - 3nk2 + (n + 4)/2}. Thus we arrive at

Lemma 3.1. M is locally symmetric.

Since the sectional curvature is continuous on Sp X Sp for any point/?, where

Sp is a unit sphere in Mp9 there exist orthonormal vectors u and v at/? in such a

way that the sectional curvature K(u, v) of the linear space spanned by u and t>

attains the minimal value δ 0 . We define a linear transformation Ku of Mp into

itself by A^w = R(w9 u)u for any vector w at /?, and then v becomes an

eigenvector of Ku with an eigenvalue δ 0, because δ 0 is the minimal value of the

sectional curvatures at/?. Therefore by the Gauss equation we get

(3.3) 3<σ(κ, v), σ(«, w))= {c + k2 - δo)(v, w)

for any vector w at/?.

Proposition 3.2. 4̂ complete n-dimensional Riemannian manifold M cannot

be minimally and nonzero constant isotropically immersed in Rn+P or Hn+P(c), so

that condition (3.1) is satisfied.

Proof. For any point x in M and any unit vector w at %, let γ^ be a

geodesic parametrized by the arc length and passing through x — γw(0) with

the initial vector w. Now we set W — γ^. Differentiating (3.2) in the direction

of Wand taking account of the definition of V'3σ, we obtain

= @3{(-3c + 3k2 - l*)(Xl9 * 2 > ( v ' σ ) ( * 3 , 7, W)

+ (3c + 3k2 - /2)<7, ^Xv'σKJf 2 , X39W)

-6Σa(Aa(Xx)9X2)(v'σ)(X39Aa(Y),W)}.
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From this equation and the Ricci identity with respect to (v / 3 σ) (X, 7, Z,V9W)
it follows that

®3[i(9c + 3fc2 - 12){(W, Z,>(Va)(X2, X3, Y)

-<Y, X,>(v'σ)(X2, X3,W) • +Σa(Aa(Xι), X2)}

(3.4) {(V'σ)(*3, Aa(Y), W) -(v'σ)(X3, Aa(W), Y)}

+ Σa{(Aa(W), Xx)(v'σ)(X2, X3, Aa(Y))

-(Aa(Y), Xi)(v'σ)(X2, X3, Aa(W))}] = 0,

in which we set X, = Y(ι'- 1,2,3), and suppose that Y and W are orthonor-
mal. We then have

(3 5) ^c + 9k

30Σ<Λ(y) W){Ό){Y9 7, Aa(γ)) = o.

Now for any orthonormal basis {e,, -,en} of Mx, the vector Σa(Aa(Y),

W)Aa(Y) at x is expressed as Σ,(σ(y, W\ σ(7, e,))*?,. At the given point /?,

combining (3.5) and the above relation together with (3.3), we obtain (10δ0 — c

— k2 — /2)(v /σ)(w, w, v) = 0. Since the immersion is /c-isotropic, (3.3) yields

3(σ(w, w), σ(t>, w ) ) = (-2c + k2 + 2δ o )(υ, w). Taking account of (3.4) at the

point /?, setting ^ = 7 = 1 / and X2 = X3= W = υ, and combining the equa-

tion together with (3.5) and the above equation, we have

(c + k2 + I2 - 10δo)(V'σ)(t;, Ό,V) = 0

by a direct calculation.

Suppose that / is positive. Then we have

(3.6) c + k2 + I2- 1 0 δ o = 0 ,

unless it follows from the last equation that (V rσ)(ϋ, υ, v) — 0, which shows

that kΨ = 0, because of the assumption (V' 2σ)(F, V, F, V) = -/2σ(F, V).

Since (3.3) implies that c + k2 - δ 0 > 0, (3.6) means 9δ0 > /2. Thus M must be

of positive curvature and is compact by Myers' theorem. This together with the

property of minimal immersions shows that c is positive.

In the case where / = 0, it is easy to see that c is positive. Thus the proof is

complete.

As a direct consequence of the process of the proof, Lemma 3.1, and the well

known properties about symmetric spaces we have the following lemma.

Lemma 3.3. // / is positive, then the universal covering manifold of M is a

compact symmetric space of rank one. If I — 0, then f is parallel.
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Remark 1. We give here an example of submanifolds satisfying v ' σ ^ O
and v' 2σ = 0. Let M be a surface in a Euclidean 4-space R4 defined by

xx - f cos t2dt, x2 = ί sin t2dt, x3 - ( cos t2dt, x4 - f sin t2dt.
JQ JQ JO JQ

This immersion satisfies above properties, but its surface is neither minimal
nor isotropic.

Remark 2. Parallel immersions of M into a real space form and the
submanifolds have been completely classified by Takeuchi [10]. By means of
the above example it seems that isometric immersions of M into Mn+P(c)
satisfying v ' σ 2 θ and v' 2σ = 0 and submanifolds cannot be classified in the
form similar to the beautiful one in [10].

Remark 3. The example in Remark 1 can be generalized to a complete
hypersurface in Rn+\ which preserves above properties for the immersion.

4. Determination of M and /

In this section let M be a complete simply connected n(> 3)-dimensional
Riemannian manifold, and let / be a full isotropic minimal immersion of M
into Sn+P(c\ where the constant isotropy k is positive. The isometric immer-
sion/: M -> Sn+P(c) is said to be full, if f(M) is not contained in any totally
geodesic hypersurface of Sn+P(c). In particular, the condition (0,1) for the
second fundamental form is assumed. This section is devoted to determining
completely the submanifold M and the immersion /. Now we consider the
decomposition of the normal space with respect to the immersion /. For any
point x in M, the normal space Nx is given by Nx = (dfx(Mx))N, superscript N
means the orthogonal complement into the tangent space Mf(x) of the ambient
space. The second fundamental form σx at x is a linear symmetric map of
Mx X Mx into Nχ9 and satisfies σx(X, Y) = (yxY)N, where X and Y are vector
fields on a neighborhood of x in M. For convenience' sake, we put σ2x — σx,
and so σ2x can be regarded as a linear map of a symmetric square S2(MX) for
Mx into the normal space Nx. Set Λ̂ 1 = σ2x(S2(Mx)), which is called a first
normal space of the / at x. Thus Λ̂ 1 is the linear subspace of Nx spanned by
normal vectors σx(u, v) for any vectors u and v at x9 so we see that dim Nx < \
(n + 2)(« — 1), because/is minimal. A point x in M is said to be 2-regular if
Λ̂ 1 is of maximal dimension with respect to the basic points. Here we calculate
the dimension of the first normal space. Denote by Ko (resp. k0) the
maximum (resp. minimum) of the sectional curvature of M at x, and choose
an orthonormal basis {ev- - -,en} in Mx in such a way that K(eι,e2) = K,
where K = Ko or k0. Then Kee2 = Ke2 and Keeλ — Keλ for the curvature
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transformation Ku, which together with the Gauss formula implies that ( σ u ,
σ2r)~ (σi2>σir>— 0 f°Γ r > 3, where o{ei,ej) is simply expressed as σ/y.

Because /is fc-isotropic, we have

(4.1) < ° u . * 2 r > = < σ l 2 , σ l r > = 0 , r>3.

By Lemma 3.3, the submanifold may be considered as an ^-dimensional

symmetric space of rank one, which consists of a sphere S", a complex

protective space PCn (n = 2m > 4), a quaternion projective space PQn (n =

4m > 8) and a Cayley projective space PCa. When the curvature transforma-

tion Ku with respect to the vector u at x is regarded as the linear transforma-

tion of the orthogonal complement to the vector uin Mx, we suppose that the

maximal eigenvalue of Ku has multiplicity s — 1. We divide the range / =

(1,•••,/!}; n - ms, into m parts Il9 ,/m, where/^ = {(/? - 1> 4- 1,•••,/*?},

and indices/?, #, run over the range 1, ,m. Then for any point x there

exists an orthonormal basis {el9'"9em} of M x such that # 0 = AΓ(^, βj) = AΓ0

= 4/:0 for i, y E /^ or k0 for / e Ip9j Elq,p=£ q. Denote (Λ(^, e})ek, eλ) by

Λ^/. From this value of the sectional curvatures and (4.1) it follows

(4.2) Rijki = 0, <σiif σjk)= (σij9 aik)= 0

for mutually distinct induces /, j and k. By a direct calculation and applying

the first equation of (4.2), we obtain the following relations for any constants

a, b9 c and d such that a2 + b2 = 1 and c 2 + ί/2 = 1, and mutually distinct

indices /, j , k and /:

(4 3)
cek

= a2c2Kik + a2d2Ku + b2c2Kjk

On the other hand, the isotropicness and the Gauss formula imply

( 4 4 ) 3<σ / y.,σw>=Λ |. f c / y + Λ///kj

for mutually distinct indices. The right-hand side of the above equation shall

be shown to be equal to 0. In order to prove the fact, the following four cases

are considered:

(i) each index is contained in a different range,

(ii) two of four indices are contained in a certain range; for example,

U j e l r

(iii) three of four indices are contained in a certain range; for example,

i, j , k G Ip9

(iv) four indices are all contained in a certain range; for example, /, j , /c,
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For case (i) it is obvious that Ktj = Kik = Ku = KJk — KJl = Kkl — k0,

which imply Kae +beek = koek and Kae +beeι — koe{. These show that

K(aei + be-, cek + de{) = k0, from which it follows that the necessary conclu-

sion is given. In case (iv) we can come to the conclusion after the discussion

similar to that of case (i).

Case (ii) is also easily verified. Lastly we shall investigate the remaining case

(iii). Under the assumption we get Keei — koe^ Keβj = koβj and Keek — koek,

which imply K(aet + bβj + cek, eλ) — k0 for any constants a, b and c such

that a2 + b2 + c2 — 1. Accordingly we see that Kaei+be+ceeι — koeh so that

RiklJ + Rilkj — 0 by taking the inner product of the left-hand side of this

equation with the vector ek. Using the first Bianchi's formula we come to the

conclusion. Thus

(4.5) (ou,okl)=0

for mutually distinct indices follows from (4.4). This will lead the following

lemma.

Lemma 4.1. The dimension of the first normal space is constant on M, and

any point on M is 2-regular.

Proof. For the orthonormal basis {el9'"9en} of Mx chosen as above

suitably, the Gauss formula implies that the square of the length of σ/y for

distinct indices / andy is equal to \(c + k2 — Ko) = Kλ or \{c + k2 — k0) —

ku and moreover (σiJ9 σ^ )— k2 — 2Kλ or k2 — 2kλ. Now we suppose that

Ko = c + k2. We then have || σij | | 2 = 0 (resp. k0) for ι, j G Ip (resp. i G Ip, j

E Iq, p φ q). On the other hand, since the immersion is &-isotropic,

2ΣJ = 1 l |σ / y | | 2 = (n + 2)k2 holds and therefore (n - s)c = (n + s)k2. For any

point x in M and the matrix (Haβ) of order/? defined by Haβ = TrAaAβ, it is

seen in [7] that

(4.6) ΣβHaβAβ = LAa, L = i{3nc- 3nk2 + (n + 4)/ 2},

and the rank of the matrix is bounded below from n(n + 2)/4 and above

from (n + 2)(n — l)/2; in particular, the rank is equal to the upper bound if

and only if M is of constant curvature c — S2/[n(n — 1)], where S2 is the

square of the length of σ. Since rL — ΎτH — S2, the rank r satisfies r <

(n + 2){n — s)/(2s), which contradicts to the lower bound of r. Thus it is

possible to assert that Kx is positive, so that Ko < c + k2. This yields that each

normal vector σ/y is nonzero. In order to prove the lemma it is sufficient to

show that the normal vectors σπ, 1 < / < n — 1, and σiJ9 1 < i <j <n, are

linearly independent. Then dim iV̂ 1 = (n + 2)(n — l ) /2 . Suppose

that Ί/lZl cijOa + Σ / < 7 α / y σ z y = 0 for any constants at and atJ. The inner product

of this relation with σkl(k < I) implies akι = 0, because of (4.2) and (4.5). Thus
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Σ?= ,' a,σu = 0, and

(Σ?=,' apH, σ n ) = aλk
2 + (a2 + + α , ) ( * 2 - 2Kλ)

(4.7) = 0.
( Σ r r 1

1

f l , σ , , , σ 2 2 ) = a x ( k 2 - 2 K λ ) + ( a 3 + - - - + a s ) ( k 2 - 2KX)

+ a2k
2 + (as+] + • • • +an_x)(k2 - 2kx)

= 0,

from which it follows that Kx(ax — a2) = 0, so that ax = a2 since Kx is

p o s i t i v e . S i m i l a r l y w e h a v e ax = ••• = as, as+x = • • • = a2s, ,a(m_X)s+x =

• = αB_,. Accordingly

Substituting the inner product of this equation with σ u for that with σ s + l s + 1 ,

we obtain (as - als){k2 + (s - \)(k2 - 2Kλ) - s{k2 - 2kx)} = 0. From the
property Ko < c + k2 it follows that as = a2s. Similarly we have as = a2s =

• = a(m_l)s. Thus we have

where r = .s(m — 1). Repeating the similar process one gets that Kxar+λ = 0,

so that ar+ λ = 0, which asserts that normal vectors σ^ and σf- • are linearly

independent, because of (4.7). q.e.d.

The property (4.6) mentioned in the proof above implies that a normal

vector atj for any indices is an eigenvector of the linear transformation H of the

normal space Nx. Since σ/7 are linearly independent, the rank r of H is not less

than (n + 2){n — l)/2, in consequence of the proof of Lemma 4.2. On the

other hand, it is already seen that (n + 2)(n — l)/2 is the upper bound for the

value of the rank r. Hence r — (n + 2){n — l)/2, and M is of constant

curvature. Using this we shall prove

Proposition 4.2. M is isometric to the sphere of constant curvature —,———r.
j\n i z*\

Proof. Since M is of constant curvature, say c0, it it easily seen that the

Gauss equation and the isotropicness imply that the square S2 of the length of

the second fundamental form σ satisfies

(4.8) 2(n-l)(c-co) = (n + 2)k2, S2 = n(n - \)(c - c0).
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For the square S3 of the length of v'σ, the formula of Simons' type in this
situation yields

which implies that S3 is a nonnegative constant. On the other hand, from
the assumption (0. 1) it follows that for any vector field X,
<(V'σχjSf, X, X\(VΌ)(X, X, X))= kΨ\\X\\6, whichimpUes

> X29 X3)9 (V'σ) (X49 X5, X6))

= kΨS6(Xl9 X2)(X3, X4)(X5, X6)

for the symmetrizer S6, because of the linearity of v 'σ and ( , ) . Taking
account of the minimality of the immersion, we get 6 S3 — n(n + 2)(/i + 4)k2l2

from the above equation, and hence I2 = 3S3/[(n + 4)^2] in consequence of
(4.8). Thus S3 is a positive constant, because of the assumption that / is a
positive constant. Combining (4.8), (4.9) and this relation, and using that fact
M is of constant curvature, we obtain

(4.10)

which implies that the square S4 of the length of v' 2σ is equal to
3(n + 2)S3[n(n + 4)52]. On the other hand, the formula of Simons' type for
the tensor field V/3σ yields 54 = {nc — 3(« + l ) ^ } ^ . Thus we have

Since S3 is positive, the assertion is therefore proved.
In the remainder of this section, we shall investigate the structure of the

immersion/. By Lemma 4.1 each point in M is 2-regular. Now in general we
consider the decomposition of the orthogonal complement of the first normal
space concerning with the isometric immersion / of M into M = Mn+P(c).
Denote by M2 the set consisting of all 2-regular points in M. M2 is open in M.
For any point x in M2, we set O2 = dfx(Mx) θ Nx\ which is called a second
osculating space of / at x. For the 2-regular point x we define a trilinear map
σ3x of MXXMXX Mx into (O,2)" by σ3x(X, 7, Z) = (Vz(σ2x(X, 7)))^ for
any vector fields X, Y and Z, where the superscript N2 denotes the orthogonal
projection into (O2)N. Thus σ3x is well defined and symmetric, and induces a
linear mapping σ3x of the symmetric third power S\MX) of Mx into (O2)N. σ3x

is called a third fundamental form of/at x, and a linear subspace N2 defined by
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Nx — σ3x(S3(Mx)) is called a second normal space of / at x. The second normal

space at x is the orthogonal complement in (OX)
N of the linear subspace

spanned by (v'σ)(w, v, w) for any vectors w, v and w at x9 so dimJ/Vx

2<

w(« + l)(w + 2)/6. The point * in M2 is said to be 3-regular if Λ^2 is of

maximal dimension with respect to basic points.

Coming back to the situation where we discuss at present, we see

σ3x(X9 7, Z) = (v'σ)(X, 7, Z), which means that the second normal space at

x is the linear subspace spanned only by vectors (v'σ)(w, v9 w) for any vectors

M, t> and w at x, because V'σ is orthogonal to σ. Now let us take up the

dimension of the second normal space at each point x in M. Combining

<(V'σ)(Z, y, Z), σ(£/, V))= 0 together with (4.9) and (4.10) we obtain, by a

straightforward calculation,

; X2, X,),{v'c){X,Y,Z))

*3, y>(z, z>
(4.11) 9(n + 2)4

+ <Z3, Z><^, 7 » - (n + 2)<Z,, Z>«Z 2 , Ύ>(X3, Y)

+ (X2,Y)(X3,X))].

For a suitably chosen orthonormal basis {e1?- -,en) of M^, we denote simply

by σ/yA: a normal vector (v'σ)(ei9eJ9ek). Since the immersion is minimal,

ΣjOijj = 0 for each index / holds. At each point x, since it is already seen that

(σ(w,, M 2), (V'σ) (u3,u4,u5))=0 for any vectors in Mx, the second normal

space Nx is a linear subspace spanned by vectors oijk(i, j \ k = 1, ,«), and

therefore dim N? < n(n + 4)(w - l)/6.

In general, let M3 be the set consisting of all 3-regular points in M2. Then M3

is open in M 2 . For any 3-regular point x, we denote by 6^ the direct sum of Ox

and Nx, which is called a third osculating space of / at x. We now proceed

inductively and suppose that the (j — Inosculating space OJ

x~
λ of / at the

(j — l)-regular point x is defined. Then it is possible to define a linear

mapping σJX of the symmetric jth power SJ(MX) of Mx into (O^~ι)N by

σjx(Xl9 -9Xj) = (Vχ[θj-\X{X2,- * ',Xj)))Nj-1 for any vector fields, where the

superscript Λ̂  _, denotes the orthogonal projection into (O^~ι)N. Then σjx is

called a yYΛ fundamental form of / at JC, and Λ^"1 = σjx(SJ(Mx)) (resp.

6M = O/" 1 θ NJ~λ) is called ay'/Λ normal (resp. osculating) space at x. Clearly,

the process must be eventually stopped, because of dimC^ < dim Mx. Thus

there exists a first integer # for which σy = 0 fory > q and σ̂  does not vanish

identically. Then q is called a degree of/, and the set M^ is open in M.
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Concerning the regularity of points in M we have

Lemma 4.3. The dimension of the second normal space is constant on M, and

each point in M is 3-regular.

Proof. In order to verify these assertions, it is sufficient to show that the

first statement is valid. Namely, by means of (4.11) a number of linearly

independent normal vectors oijk may be calculated, because Λ^2 is spanned by
σijk> * ̂  '» h k^n.Ψe put A = \n\n + 3)c2/(n + 2)4. Then the square of

the lengths of the vectors σ l π , σ1 1 2 and σ123 are given as follows: l lσ H 1 | | 2 =

6(n - \)A, | | σ π 2 | | 2 = 2(/i + \)A and Ilσ 1 2 3 | | 2 = (n + 2) A, which mean that

any vector σiJk for any indices is not zero. Next, normal vectors which are not

mutually orthogonal are limited to the following two types, except for

<°,7*> °ijk)*0'> (°ui> °uj)= ~6A> (°uj> °jkk)= ~2A f o r a n y mutually distinct

indices. The linear combination Σ ^ ^ aijkσijk are considered, where ainn = 0

for / = 1, ,«. The inner product of σ l π and σ122 with Σ ,•<,•<* aijk°ijk ~ 0 are

reduced to (n — l ) α π l — α 1 2 2 — — aXmm = 0, where m — n—\, and

- 3 α π l + (n + l)tf122 — — α l w m = 0, which imply aιu = α 1 2 2 . Similarly we

have cL\\\—ci\22— = fl]mm = 0, which together with the above equations

means that the coefficients aijk except for mutually distinct indices are equal to

0. It is almost obvious that for mutually distinct indices, aijk = 0, which

implies that the normal vectors belonging to the second normal space are

linearly independent, except for σlnn for / = 1, ,Λ. Thus dim N2 >nH3 — n.

Therefore the dimension of N% is equal to n(n + 4)(« — l)/6 for any point x

in M, and hence is constant on M. By means of the definition of 3-regularity,

this means that any point on M is 3-regular. q.e.d.

On the other hand, an isometric immersion / of M into Sn+q C Rn+c*+λ is

said to be linearly rigid, if there is a linear transformation g oϊRn+q+ι with the

following property: if g(f(M)) C Sn+q, and g ° /: M -> W+q+λ is also an

isometric immersion, then g is an orthogonal transformation. Linear rigidity is

a weaker notion than rigidity, and it is seen in [11] that the rigidity for minimal

immersions induces the linear rigidity, and in particular for isotropy irreduci-

ble symmetric spaces of compact types, rigidity and linear rigidity are essen-

tially the same notion. It is also seen in [11] that if M is analytic, / is full, and

the degree of /is not greater than 3, then/is linearly rigid.

We come back to the proof of the main theorem. Suppose that n > 3. By

Lemma 4.3, each point in M is 3-regular. Moreover, the assumption (0.1)

implies that the 4th fundamental form vanishes identically on M, so that the

degree of/is equal to 3. In particular, it implies that the direct sum of N* and

N* is invariant under the parallelism of the normal bundle, since it follows

from Lemmas 4.1 and 4.3 that the dimension of N* θ N% is constant, say q, on

M. Then a theorem due to Erbacher [2] yields that M is contained in an
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(n + g)-dimensional great sphere in M = Sn+P(c). Thus we have q—p, and

therefore n + p = iV(3), since the immersion/is full. We note that /is analytic,

because M — Sn(c0) is analytic and / is minimal. By the theorem due to

Wallach and the relation between the rigidity and the linear rigidity,/: Sn(c0)

-> Sn+P(c) is rigid, and there exists an orthogonal transformation g of Rn+p+ι

such that g ° / = /3.

Suppose that n = 2. In the proof of the case where n > 3, the restriction of

the dimension is not necessarily essential except for Lemma 4.1. In this

situation, Lemma 3.3. shows that M is isometric to a sphere, and by means of

Lemma 4.2 the constant curvature c 0 is equal to c/6. Thus the dimension of N*

is equal to 2 for any point x in M, and Lemma 4.1 is true for n — 2.

This concludes the proof of the theorem stated in the introduction.

Remark. Let M be an w-dimensional Riemannian manifold, and let / be a

minimal immersion of M into M = Mn+P(c) satisfying the condition that

(V'2σ)(w, w, M, u) + /2σ(w, u) — 0 for any unit vector w, where 1 is a nonnega-

tive constant. Then it seems of interest to classify such (M, / ) .
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