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FAMILIES OF PERIODIC ORBITS:
LOCAL CONTINUABILITY DOES NOT

IMPLY GLOBAL CONTINUABILITY

KATHLEEN T. ALLIGOOD, JOHN MALLET-PARET
JAMES A. YORKE

1. Introduction

For fixed points of zeroes of a map depending on a parameter, local
continuability is closely related to global continuability. Let F: R X R" -> R"
be a C1 function depending on a scalar parameter α. If F(a0, x0) = 0, and
D(a x)F(aθ9 x0) has full rank, then the zero (α0, JC0) is locally continuable in
the sense that a path of zeroes extends from it through a neighborhood of
(α0, x0). The global behavior of a connected component C of zeroes through
(α0, x0) can also be described. We have two possibilities:

(a) C — {(αo>
 xo)} i s connected; or

(b) both components of C — {(«0»
 xo)} a r e unbounded in (α, x)-space.

It is reasonable to say that the set of zeroes through (α0, x0) is globally
continuable whenever C satisfies (a) or (b). The fact that these are the only
possibilities is easily seen in the generic case (where Z)(α x)F(a, x) has full rank
whenever F(a9 x) = 0); it has also been shown to be true in the nongeneric
case, assuming only that DxF(a09 x0) is nonsingular [1]. Hence the conditions
for local continuability in fact imply global continuability.

For solutions of a differential equation dx/dt = F(a, x), (again depending
on a parameter α), we can relate the behavior of periodic orbits to that of fixed
points. Each point on a periodic orbit is a fixed point of the Poincare return
map T (to be defined later) associated with the orbit at that point. (In the
following, orbit will always mean periodic orbit.) Such an orbit is locally
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continuable if and only if each point on it is a locally continuable fixed point
of T. The Poincare index of the orbit is the Brouwer fixed point index of T. If
the index is nonzero, then the orbit is locally continuable. In particular, the
Poincare index is nonzero if Dx(T — idx) is nonsingular.

A generic family of periodic orbits exhibits global behavior analogous to
that of fixed points—provided the initial orbit is locally continuable and is not
a Mόbius-type orbit. (Loosely speaking, a Mόbius orbit is one whose unstable
manifold is nonorientable.) The generic class considered here is discussed in
[2]. For a connected component C of such a family and an orbit p0 on C at
a = α0, at least one of the following must hold (see [2] and [4]):

(a) C — {(ct0, po(t)): t > 0} is connected; or each component of C —

{(«o>/>o)}e i t h e r i s

(bl) unbounded in (α, x)-space, or

(b2) has unbounded periods; or

(c) there is a generalized Hopf bifurcation, i.e., the diameter of the orbits
goes to zero as the family approaches a stationary solution.

Any family of periodic orbits which satisfies one or more of the above
conditions could be said to be globally continuable.

The question remained: are these the only possibilities for an orbit which is
locally continuable, that is, for which the Poincare index is nonzero? The
objective of this paper is to show that the answer is no. We present an example
of a differential equation dx/dt — F(a, x) and a particular (necessarily Mόbius)
orbit γ which has a nonzero Poincare index, but which is not globally
continuable. The orbit γ is contained in a family C of orbits such that one
component of C \ γ is bounded (with bounded periods), and the diameters of
all orbits in C are strictly positive. (See [2] for the definition of an "orbit
index" for which the index of γ is zero.)

We construct the example as follows. Let /: R4 -» R4 be a C1 function such
that x — f(x) has a Mόbius orbit solution γ. We define a homotopy fa — F(a,-)
of/such that

(1) γ is contained in a family γα of Mόbius orbits for a near αo;

(2) a second family T2a or orbits (with approximately twice the period)
bifurcates from Γα at a — ax; and

(3) the family Γ1>α (the low-period continuation of Ta for a > aλ) and the
family Γ2 α coalesce and annihilate each other at a — α2.

The only orbits contained wholly within some ε-neighborhood of C are those
in the families described. We should also note that this example persists under
small C1 perturbations and can be made real analytic.
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A schematic diagram of the example is shown, in which each point on the

1-dimensional branched curve C represents a periodic orbit. For a< au each

orbit in the family Γα is a Mόbius orbit. After the bifurcation at a = α,, the

orbits on the upper branch of C—the family Γ2 α —are all hyperbolic; the

orbits on the lower branch Γj Λ are attractors.

2. A globally noncontinuable example

Given a differential equation dx/dt = F(a, x\ F : R X R " ^ R", the main
tool for analyzing a periodic solution γ of F is the Poincare map. Let (α0, x0)
be a point on γ, and let D be an w-dimensional disk perpendicular to
(0, F(aθ9

 xo)) a t (αo> xo) τ h e Poincare map T is defined for (al9 xλ) in D
sufficiently close to (α0, x0) as follows: let T(al9 x{) be the x-coordinate of the
point where the trajectory through (al9 xx) next hits D. (The a coordinate is
ax.) We say μ is a multiplier of γ if it is an eigenvalue of the (n — 1) X (n — 1)
matrix of partial derivatives DxT(a0, x0). An orbit with an odd number of
multipliers (counted with multiplicities), in (-oo, -1) is called a Mόbius orbit.

We begin with a differential equation
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where/: R4 -» R4 is infinitely differentiable and has a hyperbolic Mόbius orbit
γ as solution, γ has one multiplier μx < -1, and two multpliers μi9 i = 2,3,
such that -1 < μ2 < 0 < μ3 < 1. (I.e., the orbit is unstable on an invariant
Mobius band M, and M in turn is an attractor in R4. See Fig. 2.1.) For an orbit
with no multipliers on the unit circle, such as γ, the Poincare fixed point index
of T is (-l)σ +, where σ+ is the number of multipliers (counted with multi-
plicites) in (1, oo). Since the index is nonzero, we know that the fixed point x0

(and hence the orbit γ) has a local continuation.

M

Fig. 2.1
The periodic orbit γ is shown in R3 X {0}. The unstable manifold of γ is a
Mόbius band M. The Mόbius band is an attractor in R4.

The example will be described in four main steps:
Step 1. A period doubling bifurcation. We perturb x = f(x) so that μ{

crosses - 1 , resulting in a period doubling bifurcation from Γα. Let Γ, α be the
continuation of the family Γα through low-period orbits, and let Γ2 α be the
family of double-period orbits. We will denote by γj (respectively, γ2) a single
orbit on the family Γ l ί β (respectively, Γ2 J . Notice that yx is an attractor; and
γ2, which is unstable on the Mόbius band M, has an orientable neighborhood
in M (Fig. 2.2).
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Fig. 2.2

The unstable family of orbits Γα has undergone a period doubling bifurcation.

Orbits γ, on the stable family Γ1>α and γ 2 on the unstable family Γ2 α are

shown. The period of γ 2 is approximately twice that of yλ. The Mόbius band

M remains an attractor in R4.

Step 2. Unlinking the orbits. In Fig. 2.3 we see that

the Mόbius band, are linked in R3.
and γ2, as subsets of

Fig. 2.3

The orbits y] and γ 2 are linked as subsets of the Mόbius band in R3 X {0}.

We shall proceed with the deformation of x — f(x) by indicating how

neighborhoods of the orbits move continuously through R4. Let Nx and N2 be

closed disjoint tubular neighborhoods of yx and γ2 respectively in R4. Techni-

cally, this continuous motion is an isotopy G: I X (Nx U iV2) -^ R4. (An iso-

topy is a homotopy of embeddings ga: Nx U N2 -» R4.) We can extend G to an
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ambient isotopy H: I XR4 -* R4, (an isotopy of diffeomorphisms). Let x =
F(a^ x) be the differential equation described above with periodic solutions yx

and γ2. Define F : / X R 4 ^ R 4 as follows: if y is the point such that H(a, y) —
x, let F(a, x) = DxH(a, y)F(a^ y). In other words, move the solution curves
via the function H; then calculate the tangents to these curves to get the vector
field.

Assume that the Mόbius band M lies in R3 X (0); i.e., p4(M) = 0, where
Pi'. R4 -> R is the projection on the z'th factor, / = 1, ,4. We will use the 4th
coordinate to unlink γ! and γ2 by homotoping yx away from x4 = 0 so that
P4(NX) Γ)p4(N2) is empty. For ease of conceptualization, we can now also
unlink yx and γ2 in R3, (e.g., let p3(Nx) Π p3(N2) be empty, as Fig. 2.4
represents). Let Nx = Nx Π R3.

Fig. 2.4

Tubular neighborhoods Nx and N2 of the orbits γ, and γ2 respectively are
shown. The neighborhoods are now disjoint in R3, after being unlinked in R4.

Step 3. Untwisting the flow about yx. Since Nx — yx is homeomorphic to

Sι X Sι X /, we can describe points in this open set in terms of two angles, θx

and θ2, and the distance p from γ^ Notice that with these coordinates,
dp/dt < 0 (since γ, is an attractor), and dθ2/dt9 the rate of twist of trajectories



FAMILIES OF PERIODIC ORBITS 489

around γ 1 } is nonzero. Let Wbe a closed tubular neighborhood of yx properly

contained in Nx. In order to eliminate the "Mόbius" twist in W, we homotop

dθ2/dt to 0, keeping dx/dt unchanged outside Nx. Relabel W as Nx. Now yλ is

an attractor with multipliers 0 < μi < 1 for / = 1,2,3.

Step 4. Annihilation of the two families. If we look at what has happened to

the original two-dimensional neighborhoods Nx Π M — Mx and N2 Π M — M 2,

we see that yx is unstable and γ2 is stable in the orientable neighborhoods Mx

and Af2, respectively. In Fig. 2.5(a) we see M2 as a subset of Λf. Fig. 2.5(b)

shows the same M2 in which the doubly-twisted band has been isotoped (in R3)

to an "interwoven" one without twists.

(a) (b)

Fig. 2.5

Two isotopic representations of the 2-dimensional neighborhoods M2 of γ 2

are shown. The drawing in (a) depicts M2 as a subset of the Mpbius band.

The successive drawings in Fig. 2.6 represent an isotopy of M2 in R4 which

eliminates the "weave" in M2. The crossing indicated in Fig. 2.6(b) requires a

deformation of the shaded portion in the 4th coordinate as in the earlier

argument.

(c)

Fig. 2.6

The three successive drawings represent an isotopy in R4 of the neighborhood

Λ/2 The transition from (a) to (b) requires a deformation of the shaded

portion in the 4th dimension in order to avoid self-intersection.
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Before continuing with the final steps of the deformation, we claim that the

families Tx a and T2a have thus far been isolated from other periodic orbits

which might have been created throughout the homotopy of x — f{x). Orbits

in the family Yx a are attractors and thus can be the only orbits inside a

neighborhood of Γj α. Since the orbits in Γ2 α are all hyperbolic, they also are

isolated within a neighborhood of Γ2 α, as the following argument shows.

Suppose there exists a sequence of orbits ( η / ) / e N , not contained in Γ2 α,

converging to an orbit γ2 in T2a. Let (α 0 , x0) be a point on γ2, To be the

Poincare map for γ2 at (α 0 , x0), and Ao be the matrix DxT0(a0, x0). Assume

further that (α / 5 xt) is a point on τj , and that Tt is the Poincare map for ηi9 at

(oίj, xt), and At is the matrix DxTt{ai9 xt). Then there will be a sequence of

points (α,, *,.),• e N converging to (α 0 , x0) such that 7;w(α/, xt) = (α,-, xt) for

some m > 1. If m = 1, two sequences of fixed points of the 7] 's converge to

( α 0 , JC0). But this contradicts the fact that / — Ao is an isomorphism. For

m > 1, we refer to the following theorem.

Theorem [3]. Let T:Rn ^ Rw be C\ and let 0 be an isolated fixed point of

each iterate Tk, although the neighborhood of isolation may depend on k. Let

m > 1 be an integer. Let ε > 0 and let

If S:Rn -* Rn is sufficiently near T in the C 1 norm on this disk, that is, if

I T — S \c(B(ε)) ^ 1 > t n e n a necessary condition for there to exist x E B(ε) with x,

S(x), -9S
m~ι(x) distinct but Sm(x) = x is that there exist y G Rn with

y, Ay,- ,Am~λy distinct but Am(y) —y.

For / sufficiently large, Tt satisfies the conditions on S. Hence if (α, , xt)9

7] (αf., jcf-),- -,Ti

m~\ai, xt) are distinct, and 7;w(αz, x>) = (α, , x,-), then there

will exist a point j in R3 such that j>, Ay,- -,Am~λy are distinct, and Amy — y.

But AJ, for all j G N, has only one fixed point, namely 0. Thus the claim is

verified.

Proceeding with the deformation, we now stretch Nλ so that the length of yλ

is equal to that of γ2, and move yx back into R3 X {0}, (see Fig. 2.7(a)). As yx

and γ2 are homotoped together, we let dx3/dt go to zero at points between the

orbits in Mλ and M2. Of course, dx3/dt must be kept nonzero at points in

Mx — yx and M2 — γ2 so that no new periodic orbits are introduced (Fig.

2.7(b)). Finally, we have one orbit γ remaining (Fig. 2.7(c)) which disappears as

dx3/dt is homotoped from zero to a positive value for (some) points on γ (Fig.

2.7(d)).
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(b)

Fig. 2.7

The orbits γ, and γ2 are homotoped together. As the drawing in (a) shows,

dx3/dt is negative for points on Mλ and M2 between the orbits. In (b) both

orbits are shown in the same neighborhood. As γj and γ 2 are brought together

from (b) to (c), dx3/dt goes to zero at these points. Finally, from (c) to (d),

dx3/dt is homotoped from zero to some positive value for points on the (now

single) orbit γ, and the orbit disappears.
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