COMPACT FOUR-DIMENSIONAL EINSTEIN MANIFOLDS

YOSHIHIRO TASHIRO

There are few known examples of compact four-dimensional Einstein manifolds (see N. Hitchin [1]), and all of them are symmetric. The purpose of this paper is to give a class of Einstein manifolds having the following properties: They are diffeomorphic to a product $S^{2} \times S^{2}$ of two 2 -spheres, not symmetric, and their sectional curvatures are not definite. The source is a theorem in [2] on a conformal diffeomorphism of a product Riemannian manifold to a 4-dimensional manifold with parallel Ricci tensor.

1. We consider a function ρ of a variable x satisfying the differential equation

$$
\begin{equation*}
\left\{\rho^{\prime}(x)\right\}^{2}=-4 C \rho^{3}+2 B \rho-A \tag{1.1}
\end{equation*}
$$

which is rewritten in the form

$$
\begin{equation*}
\left\{\rho^{\prime}(x)\right\}^{2}=-4 C(\rho-\alpha)(\rho-\beta)(\rho-\gamma) \quad(\alpha<\beta>\gamma) \tag{1.2}
\end{equation*}
$$

where A, B, C are constants, $C>0$, and $\rho^{\prime}(x)$ denotes the ordinary derivative of ρ with respect to x. Then the constants α, β and γ satisfy

$$
\begin{align*}
& \alpha+\beta+\gamma=0 \\
& 2 C(\alpha \beta+\beta \gamma+\gamma \alpha)=-B \tag{1.3}\\
& 4 C \alpha \beta \gamma=-A
\end{align*}
$$

$\alpha>0, \gamma<0$, and β and A have the same sign.
The function ρ is a real periodic elliptic function in the range $[\beta, \alpha]$. By use of Jacobi's elliptic functions with modulus $k=\sqrt{\alpha-\beta} / \sqrt{\alpha-\gamma}$, the function ρ is expressed as

$$
\begin{equation*}
\rho=\frac{\beta-\gamma k^{2} \mathrm{sn}^{2} u}{\operatorname{dn}^{2} u} \tag{1.4}
\end{equation*}
$$

where we have put $u=\sqrt{C(\alpha-\gamma)} x$ for simplicity. We denote by $4 K$ the periodicity modulus of Jacobi's elliptic functions, and put $L=K / \sqrt{C(\alpha-\gamma)}$.

The function ρ is of period $2 L$, and takes the minimum value β at $x=0$ and the maximum value α at $x=L$. The derivative of ρ in x is given by

$$
\begin{equation*}
\rho^{\prime}(x)=\frac{2 \sqrt{C}(\alpha-\beta)(\beta-\gamma) \operatorname{sn} u \operatorname{cn} u}{\sqrt{\alpha-\gamma} \operatorname{dn}^{3} u} \tag{1.5}
\end{equation*}
$$

The second derivative $\rho^{\prime \prime}(x)$ satisfies the differential equation

$$
\begin{equation*}
\rho^{\prime \prime}(x)=-6 C \rho^{2}+B, \tag{1.6}
\end{equation*}
$$

and takes the values

$$
\begin{align*}
& \rho^{\prime \prime}(0)=2 C(\beta-\gamma)(\alpha-\gamma)>0 \tag{1.7}\\
& \rho^{\prime \prime}(L)=2 C(\alpha-\gamma)(\beta-\alpha)<0 \tag{1.8}
\end{align*}
$$

in consequence of the relations (1.3).
Now let S be a 2-dimensional manifold with metric form

$$
\begin{equation*}
d s^{2}=d x^{2}+\left\{\rho^{\prime}(x)\right\}^{2} d y^{2} \tag{1.9}
\end{equation*}
$$

where y is the arc-length of a circle. We shall show that S is diffeomorphic to a 2 -sphere, because ρ has the period $2 L$ and $\rho^{\prime}(x)$ vanishes at $x=0$ and $x=L$. Let O and O^{\prime} be the points corresponding to $x=0$ and $x=L$ respectively.

The complementary modulus k^{\prime} of k is defined by

$$
k^{\prime 2}=1-k^{2}=\frac{\beta-\gamma}{\alpha-\gamma}
$$

We define a parameter $\theta(x)$ by

$$
\theta(x)=2 \arctan \left[\operatorname{sn} u /(\operatorname{cn} u)^{k^{\prime 2}}\right]
$$

This parameter θ has the limits

$$
\lim _{x \rightarrow 0} \theta(x)=0, \quad \lim _{x \rightarrow L} \theta(x)=\pi
$$

and varies in the closed interval $[0, \pi]$ as x varies in $[0, L]$. Deriving θ in x, we have

$$
\frac{d \theta}{d x}=\frac{2 \sqrt{C(\alpha-\gamma)} \mathrm{dn}^{3} u}{(\operatorname{cn} u)^{2-k^{2}}+(\mathrm{cn} u)^{k^{2}} \operatorname{sn}^{2} u}
$$

and the relation

$$
\frac{d \theta}{\sin \theta}=\frac{b d x}{\rho^{\prime}(x)}
$$

where we have put $b=2 C(\alpha-\beta)(\beta-\gamma)$. The metric form of S is given by

$$
d s^{2}=\left(\frac{\rho^{\prime}(x)}{b \sin \theta}\right)^{2}\left[d \theta^{2}+b^{2} \sin ^{2} \theta d y^{2}\right]
$$

The expression in the brackets is the polar form of the metric of an ellipsoid of revolution. We can verify that the factor $\rho^{\prime}(x) /(b \sin \theta)$ has the value

$$
\left(\frac{\rho^{\prime}(x)}{b \sin \theta}\right)_{0}=\left(\frac{d x}{d \theta}\right)_{0}=\frac{1}{2 \sqrt{C(\alpha-\gamma)}}
$$

and is differentiable at $x=0$. Therefore the open subset $S-\left\{O^{\prime}\right\}$ of S is conformal to the ellipsoid of revolution excluded with a point and has a differentiable structure.

On the other hand, we put

$$
x^{\prime}=L-x, \quad u^{\prime}=K-u,
$$

the former x^{\prime} is the arc-length of the x-coordinate curves measured from the point O^{\prime}, and the latter u^{\prime} is related to x^{\prime} by $u^{\prime}=\sqrt{C(\alpha-\gamma)} x^{\prime}$. Since

$$
\begin{aligned}
& \operatorname{sn}\left(K-u^{\prime}\right)=\frac{\operatorname{cn} u^{\prime}}{\operatorname{dn} u^{\prime}}, \quad \operatorname{cn}\left(K-u^{\prime}\right)=k^{\prime} \frac{\operatorname{sn} u^{\prime}}{\operatorname{dn} u^{\prime}}, \\
& \operatorname{dn}\left(K-u^{\prime}\right)=\frac{k^{\prime}}{\operatorname{dn} u^{\prime}},
\end{aligned}
$$

the function ρ is expressed as

$$
\rho^{\prime}\left(L-x^{\prime}\right)=\left(\beta \operatorname{dn}^{2} u^{\prime}-\gamma k^{2} \mathrm{cn}^{2} u^{\prime}\right) / k^{\prime 2}
$$

with respect to x^{\prime}. The derivative of ρ in x^{\prime} is equal to

$$
\rho^{\prime}\left(L-x^{\prime}\right)=-2 \sqrt{C(\alpha-\gamma)}(\alpha-\beta) \operatorname{sn} u^{\prime} \operatorname{cn} u^{\prime} \operatorname{dn} u^{\prime} .
$$

We define a parameter $\boldsymbol{\theta}^{\prime}$ by

$$
\theta^{\prime}=2 \arctan \left[\operatorname{sn} u^{\prime}\left(\operatorname{dn} u^{\prime}\right)^{k^{2} / k^{\prime 2}} /\left(\operatorname{cn} u^{\prime}\right)^{1 / k^{\prime 2}}\right] .
$$

Then we have

$$
\frac{d \theta^{\prime}}{d x^{\prime}}=\frac{2 \sqrt{C(\alpha-\gamma)}\left(\operatorname{cn} u^{\prime} \operatorname{dn} u^{\prime}\right)^{k^{2} / k^{\prime 2}}}{\left(\operatorname{cn} u^{\prime}\right)^{2 / k^{\prime 2}}+\operatorname{sn}^{2} u^{\prime}\left(\operatorname{dn} u^{\prime}\right)^{2 k^{2} / k^{\prime 2}}}
$$

and the relation

$$
\frac{d \theta^{\prime}}{\sin \theta^{\prime}}=\frac{a d x^{\prime}}{\rho^{\prime}\left(L-x^{\prime}\right)}
$$

where we have put $a=2 C(\alpha-\beta)(\alpha-\gamma)$. The metric form of S is expressed as

$$
d s^{2}=\left(\frac{\rho^{\prime}\left(L-x^{\prime}\right)}{a \sin \theta^{\prime}}\right)^{2}\left[d \theta^{\prime 2}+a^{2} \sin ^{2} \theta^{\prime} d y^{2}\right]
$$

and we can verify that the factor $\rho^{\prime}\left(L-x^{\prime}\right) /\left(a \sin \theta^{\prime}\right)$ has the value

$$
\left(\frac{\rho^{\prime}\left(L-x^{\prime}\right)}{a \sin \theta^{\prime}}\right)_{0}=\frac{1}{2 \sqrt{C(\alpha-\gamma)}}
$$

and is differentiable at $x^{\prime}=0$. Therefore the open subset $S-\{O\}$ of S has also a differentiable structure. Hence the manifold S with metric form (1.9) is diffeomorphic to a 2 -sphere S^{2}.

The Gaussian curvature of the manifold S is equal to

$$
\begin{equation*}
-\frac{\rho^{\prime \prime \prime}(x)}{\rho^{\prime}(x)}=12 C \rho \tag{1.10}
\end{equation*}
$$

2. Let $\rho_{1}(x)$ and $\rho_{2}(z)$ be elliptic functions satisfying the equations of the same type as (1.1), in which the constants B and C are common, and A may be different ones, say A_{1} and A_{2} for ρ_{1} and ρ_{2} respectively. The constants in (1.2) for ρ_{1} and ρ_{2} will be indicated by suffixing 1 and 2 respectively.

Let M_{1} and M_{2} be 2-dimensional Riemannian manifolds such as S constructed in $\S 1$ with the functions $\rho_{1}(x)$ and $\rho_{2}(z)$ for ρ respectively, and $\left(x^{h}\right)=(x, y)$ and $\left(x^{p}\right)=(z, w)$ their local coordinate systems. We consider the Pythagorean product $M=M_{1} \times M_{2}$, and denote the totality (x^{h}, x^{p}) of the coordinate systems by $\left(x^{\kappa}\right)$. Latin indices run on the ranges

$$
h, i, j, k=1,2 ; \quad p, q, r, s=3,4
$$

and Greek indices run on the range from 1 to 4 .
The metric tensor $g_{\mu \lambda}$, the Christoffel symbol $\left\{\begin{array}{c}\kappa \\ \mu \lambda\end{array}\right\}$, the curvature tensor $K_{\nu \mu \lambda}{ }^{\kappa}$ and the Ricci tensor $K_{\mu \lambda}$ of the product manifold $M=M_{1} \times M_{2}$ have pure components only. The scalar curvature κ of M is defined by

$$
\kappa=\frac{1}{12} K_{\mu \lambda} g^{\mu \lambda}
$$

and related to the scalar curvatures, i.e., the Gaussian curvatures κ_{1} and κ_{2} of M_{1} and M_{2} by the equation

$$
6 \kappa=\kappa_{1}+\kappa_{2} .
$$

Taking account of (1.10) and putting

$$
\begin{equation*}
\sigma=\rho_{1}+\rho_{2} \tag{2.1}
\end{equation*}
$$

we see that the scalar curvature κ of M is expressed as

$$
\kappa=2 C \sigma .
$$

The curvature tensors of the 2-dimensional manifolds M_{1} and M_{2} are given respectively by

$$
\begin{align*}
& K_{k j i}^{h}=12 C \rho_{1}\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}\right), \\
& K_{s r q}^{p}=12 C \rho_{2}\left(\delta_{s}^{p} g_{r q}-\delta_{r}^{p} q_{s q}\right), \tag{2.2}
\end{align*}
$$

which are the pure components of the curvature tensor $K_{\nu \mu \lambda}{ }^{\kappa}$ of M.
We indicate by ∇ covariant differentiation in $M=M_{1} \times M_{2}$. For ρ_{1} in M_{1} and ρ_{2} in M_{2}, (1.1) and (1.2) are rewritten in the tensor equations

$$
\begin{gather*}
\left|\nabla \rho_{1}\right|^{2}=-4 C \rho_{1}^{3}+2 B \rho_{1}-A_{1}, \tag{2.3}\\
\left|\nabla \rho_{2}\right|^{2}=-4 C \rho_{2}^{3}+2 B \rho_{2}-A_{2} \\
\nabla_{j} \nabla_{i} \rho_{1}=\left(-6 C \rho_{1}^{2}+B\right) g_{j i}, \\
\nabla_{q} \nabla_{p} \rho_{2}=\left(-6 C \rho_{2}^{2}+B\right) g_{q p}, \tag{2.4}
\end{gather*}
$$

where $\left|\nabla \rho_{1}\right|^{2}$ is the length of the gradient vector $\nabla_{i} \rho_{1}$. If we put $\sigma_{\lambda}=\nabla_{\lambda} \sigma$, then $\sigma_{i}=\nabla_{i} \rho_{1}$ and $\sigma_{q}=\nabla_{q} \rho_{2}$, and we have

$$
\begin{equation*}
\sigma_{\lambda} \sigma^{\lambda}=\left|\nabla \rho_{1}\right|^{2}+\left|\nabla \rho_{2}\right|^{2} \tag{2.5}
\end{equation*}
$$

For our purpose we construct a 4-dimensional Riemannian manifold M^{*} from the product manifold M by a conformal change of metric

$$
\begin{equation*}
g_{\mu \lambda}^{*}=\frac{1}{\sigma^{2}} g_{\mu \lambda} \tag{2.6}
\end{equation*}
$$

with the associated scalar field σ given by (2.1). The scalar field σ takes the minimum value $\beta_{1}+\beta_{2}$, and we suppose that $\beta_{1}+\beta_{2}>0$ or equivalently

$$
A_{1}+A_{2}>0
$$

in order that σ be always positive.
We denote quantities of M^{*} by asterisking the characters corresponding to those of M. Under the conformal change (2.6), we have the transformation formulas

$$
\begin{gather*}
\left\{\begin{array}{l}
\kappa \\
\mu \lambda
\end{array}\right\}^{*}=\left\{\begin{array}{l}
\kappa \\
\mu \lambda
\end{array}\right\}-\frac{1}{\sigma}\left(\delta_{\mu}^{\kappa} \sigma_{\lambda}+\delta_{\lambda}^{\kappa} \sigma_{\mu}-g_{\mu \lambda} \sigma^{\kappa}\right), \tag{2.7}\\
K_{\nu \mu \lambda}^{*}=K_{\nu \mu \lambda}^{\kappa}+\frac{1}{\sigma}\left(\delta_{\nu}^{\kappa} \nabla_{\mu} \sigma_{\lambda}-\delta_{\mu}^{\kappa} \nabla_{\nu} \sigma_{\lambda}+g_{\mu \lambda} \nabla_{\nu} \sigma^{\kappa}-g_{\nu \lambda} \nabla_{\mu} \sigma^{\kappa}\right) \\
-\frac{1}{\sigma^{2}} \sigma_{\omega} \sigma^{\omega}\left(\delta_{\nu}^{\kappa} g_{\mu \lambda}-\delta_{\mu}^{\kappa} g_{\nu \lambda}\right) . \tag{2.8}
\end{gather*}
$$

Referring the last equation (2.8) to the separate coordinate system (x^{h}, x^{p}), noting (2.5) and using (2.2), (2.3) and (2.4), we obtain the nontrivial components

$$
\begin{align*}
& K_{k j i h}^{*}=\left(A_{1}+A_{2}+4 C \sigma^{3}\right)\left(g_{k h}^{*} g_{j i}^{*}-g_{j h}^{*} g_{k i}^{*}\right) \\
& K_{q j i p}^{*}=\left(A_{1}+A_{2}-2 C \sigma^{3}\right) g_{q p}^{*} g_{j i}^{*} \tag{2.9}\\
& K_{s r q p}^{*}=\left(A_{1}+A_{2}+4 C \sigma^{3}\right)\left(g_{s p}^{*} g_{r q}^{*}-g_{r q}^{*} g_{s p}^{*}\right),
\end{align*}
$$

of the curvature tensor of M^{*} and the other components vanish.
The product structure $F=\left(F_{\lambda}{ }^{\kappa}\right)$ of $M=M_{1} \times M_{2}$ has eigenvalues 1,1 , $-1,-1$, and composes an almost product structure together with the metric tensor $g_{\mu \lambda}^{*}$ of M^{*}, i.e.,

$$
g_{\nu \mu}^{*} F_{\lambda}^{\nu} F_{\kappa}^{\mu}=g_{\lambda \kappa}^{*} .
$$

We put $F_{\mu \lambda}^{*}=F_{\mu}{ }_{\mu} g_{\lambda_{\kappa}}^{*}$, which is a symmetric tensor. Then equations (2.9) turn to the tensor equation

$$
\begin{align*}
K_{\nu \mu \lambda \kappa}^{*}= & \left(A_{1}+A_{2}+C \sigma^{3}\right)\left(g_{\nu \kappa}^{*} g_{\mu \lambda}^{*}-g_{\mu \kappa}^{*} g_{\nu \lambda}^{*}\right) \tag{2.10}\\
& +3 C \sigma^{3}\left(F_{\nu \kappa}^{*} F_{\mu \lambda}^{*}-F_{\mu \kappa}^{*} F_{\nu \lambda}^{*}\right) .
\end{align*}
$$

Since $F_{\lambda}{ }^{\lambda}=0$, transvection of this equation with $g^{* \nu \kappa}$ gives

$$
\begin{equation*}
K_{\mu \lambda}^{*}=3\left(A_{1}+A_{2}\right) g_{\mu \lambda}^{*}, \tag{2.11}
\end{equation*}
$$

that is, the manifold M^{*} is Einsteinian.
Covariantly differentiating the almost product structure $F_{\lambda}{ }^{\kappa}$ with respect to the metric $g_{\mu \lambda}^{*}$ of M^{*}, substituting the formula (2.7), and taking account of the integrability $\nabla_{\mu} F_{\lambda}{ }^{\kappa}=0$ in M, we obtain

$$
\begin{equation*}
\nabla_{\mu}^{*} F_{\lambda \kappa}^{*}=\frac{1}{\sigma}\left(F_{\mu \lambda}^{*} \sigma_{\kappa}+F_{\mu \kappa}^{*} \sigma_{\lambda}-g_{\mu \lambda}^{*} F_{\kappa}^{\omega} \sigma_{\omega}-g_{\mu \kappa}^{*} F_{\lambda}{ }^{\omega} \sigma_{\omega}\right) \tag{2.12}
\end{equation*}
$$

The covariant derivative of the curvature tensor (2.10) of M^{*} is equal to

$$
\begin{align*}
\nabla_{\omega}^{*} K_{\nu \mu \lambda \kappa}^{*}= & 3 C \sigma^{2}\left[\sigma_{\omega}\left(g_{\nu \kappa}^{*} g_{\mu \lambda}^{*}-g_{\mu \kappa}^{*} g_{\nu \lambda}^{*}\right)\right. \\
& +3 \sigma_{\omega}\left(F_{\nu \kappa}^{*} F_{\mu \lambda}^{*}-F_{\mu \kappa}^{*} F_{\nu \lambda}^{*}\right) \tag{2.13}\\
+ & \left.\sigma \nabla_{\omega}^{*}\left(F_{\nu \kappa}^{*} F_{\mu \lambda}^{*}-F_{\mu \kappa}^{*} F_{\nu \lambda}^{*}\right)\right] .
\end{align*}
$$

The covariant tensor ($F_{\mu \lambda}^{*}$) has components

$$
\left(F_{\mu \lambda}^{*}\right)=\left(\begin{array}{cc}
g_{j i}^{*} & 0 \\
0 & -g_{q p}^{*}
\end{array}\right)
$$

with respect to a separate coordinate (x^{h}, x^{p}). By means of (2.12), nontrivial components of $\nabla_{\mu}^{*} F_{\lambda \kappa}^{*}$ are only

$$
\begin{equation*}
\nabla_{j}^{*} F_{i p}^{*}=\frac{2}{\sigma} g_{j i}^{*} \sigma_{p}, \quad \nabla_{q}^{*} F_{i p}^{*}=-\frac{2}{\sigma} g_{q p}^{*} \sigma_{i} \tag{2.14}
\end{equation*}
$$

The covariant derivative of the curvature tensor of M^{*} has for example nontrivial components

$$
\nabla_{\omega}^{*} K_{k j i h}^{*}=12 C \sigma^{2} \sigma_{\omega}\left(g_{k h}^{*} g_{j i}^{*}-g_{j h}^{*} g_{k i}^{*}\right) .
$$

The manifold M^{*} is therefore not symmetric.
Denote by $\kappa^{*}(X, Y)^{*}$ the sectional curvature belonging to tangent vectors X, Y. If both X and Y are tangent to one of the parts M_{1} and M_{2} of M as the underlying manifold of M^{*}, by means of the first and third expressions of (2.9), the sectional curvature $\kappa^{*}(X, Y)$ is equal to

$$
\begin{equation*}
\kappa^{*}(X, Y)=A_{1}+A_{2}+4 C \sigma^{3} \tag{2.15}
\end{equation*}
$$

which is always positive. On the other hand, if X and Y are tangent to M_{1} and M_{2} respectively, then the sectional curvature $\kappa^{*}(X, Y)$ is equal to

$$
\begin{equation*}
\kappa^{*}(X, Y)=A_{1}+A_{2}-2 C \sigma^{3} \tag{2.16}
\end{equation*}
$$

by means of the second of (2.9).
We suppose here $A_{1}=A_{2}$. Then the functions $\rho_{1}(x)$ and $\rho_{2}(z)$ are the same and have the same constants, so we omit the suffices 1 and 2 . The constants A, α and β are positive. By means of (1.3), the minimúm of the sectional curvature (2.16) is equal to

$$
\min \kappa^{*}(X, Y)=2 A-16 C \alpha^{3}=8 C \alpha(2 \alpha+\beta)(\beta-\alpha),
$$

which is negative. Therefore in this case the manifold M^{*} has saddle points.

Bibliography

[1] N. Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geometry 9 (1974) 435-441.
[2] Y. Tashiro, On conformal diffeomorphisms of 4-dimensional Riemannian manifolds, Kōdai Math. Sem. Rep. 27 (1976) 436-444.

Hiroshima University, Japan

