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COMPACT FOUR-DIMENSIONAL EINSTEIN
MANIFOLDS

YOSHIHIRO TASHIRO

There are few known examples of compact four-dimensional Einstein mani-

folds (see N. Hitchin [1]), and all of them are symmetric. The purpose of this

paper is to give a class of Einstein manifolds having the following properties:

They are diffeomorphic to a product S2 X S2 of two 2-spheres, not symmetric,

and their sectional curvatures are not definite. The source is a theorem in [2] on

a conformal diffeomorphism of a product Riemannian manifold to a 4-dimen-

sional manifold with parallel Ricci tensor.

1. We consider a function p of a variable x satisfying the differential

equation

(1.1)

which is rewritten in the form

(1.2) {p'(x)}2 = -4C(p - «)(p - β)(p - γ) (a<β>y),

where A9 B, C are constants, C > 0, and p\x) denotes the ordinary derivative

of p with respect to x. Then the constants α, β and γ satisfy

a + β + γ = o,

(1.3) 2C(aβ + βy + γα) = -B,

4Caβy = -A,

a > 0, γ < 0, and /? and A have the same sign.

The function p is a real periodic elliptic function in the range [/?, a]. By use

of Jacobi's elliptic functions with modulus k — yja — β / jot — γ , the function

p is expressed as

where we have put u = /C(α — y)x for simplicity. We denote by AK the

periodicity modulus of Jacobi's elliptic functions, and put L — K/ ]jc(a — γ ) .
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The function p is of period 2L, and takes the minimum value β at x = 0 and
the maximum value a at x = L. The derivative of p in x is given by

2 / c ( α - j 3 ) ( i 8 - γ ) s n W c n W

(1.5) P ( * ) =
]/a — γ dn3 u

The second derivative p"(x) satisfies the differential equation

(1.6) p"(x) = -6Cp2 + 5,

and takes the values

(1.7) p"(0) = 2 C ( j 8 - γ ) ( α - γ ) > 0 ,

(1.8) p"(L) = 2C(α - γ)(j8 - α) < 0

in consequence of the relations (1.3).
Now let S be a 2-dimensional manifold with metric form

(1.9) ds2 = dx2 + {p'(x)} 2φ 2,

where y is the arc-length of a circle. We shall show that S is diffeomorphic to a
2-sphere, because p has the period 2L and p'(jt) vanishes at x = 0 and x — L.
Let 0 and 0 ' be the points corresponding to x — 0 and x — L respectively.

The complementary modulus A:' of A: is defined by

a - γ

We define a parameter θ(x) by

0(x) = 2 arc tan[sn w/ (en w) J.

This parameter θ has the limits

lim θ(x) = 0, lim θ(x) = 77,

and varies in the closed interval [0,77] as c varies in [0, L]. Deriving θ in x, we
have

dθ _ 2 / c ( α - γ ) d n 3 w

\ cn w) 1 1 en u ) si

and the relation

ί/0 M e

where we have put b = 2C(α — β)(β — γ). The metric form of S is given by
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The expression in the brackets is the polar form of the metric of an ellipsoid of

revolution. We can verify that the factor ρ\x)/(b sin θ) has the value

-) = 1
dθ'° 2]/C(a - y) '

and is differentiable at x = 0. Therefore the open subset S — {O'} of S is

conformal to the ellipsoid of revolution excluded with a point and has a

differentiable structure.

On the other hand, we put

xf — L — x, u' — K — u,

the former xf is the arc-length of the jc-coordinate curves measured from the

point O', and the latter u' is related to x' by uf — Jc(a — y)x'. Since

( Λ cn i/ ( Λ , sn u'
sniK- u) = 7, c n ί ^ : - u') - k-7, cn(^Γ uΊ - k 7 ,

dn uf v } dn u

the function p is expressed as

p'{L - x') = ()8dn2 K' - γ ^ 2 c n 2 w

with respect to x'. The derivative of p in c' is equal to

ρ'{L- x') = -2]/C(a - γ ) ( α - β)snu'cnu'dnu'.

We define a parameter θ' by

θ' = 2arctan[snιι/(dnιι/)Λ 2 / Λ '2/(c n M0 I /H

Then we have

d0> 2i/C(α-γ)(cn w'dn MfV/c'2

Λx' ί r\2/k'2 i ? rί Λ ,\2k2/k'2

u* (cn M ) + sn u (dn w )

and the relation

dθ' _ adx'

s i n 0 ' ~ p'(L- x')y

where we have put a - 2C(a - β)(a - γ). The metric form of S is expressed

as
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and we can verify that the factor p\L — x')/(a sin θ') has the value

P'(L - x') \ 1

asinθ' Jo 2\/C(α - γ) '

and is differentiable at xf — 0. Therefore the open subset S — {0} of S has

also a differentiable structure. Hence the manifold S with metric form (1.9) is

diffeomorphic to a 2-sphere S2.

The Gaussian curvature of the manifold S is equal to

(...0) - £3£> . ,2CP.

2. Let px(x) and p2(z) ^ e elliptic functions satisfying the equations of the

same type as (1.1), in which the constants B and C are common, and A may be

different ones, say Ax and A2 for ρx and p2 respectively. The constants in (1.2)

for ρx and p2 will be indicated by suffixing 1 and 2 respectively.

Let Mx and M2 be 2-dimensional Riemannian manifolds such as S con-

structed in §1 with the functions px{x) and p2(z) for p respectively, and

(xh) — (x, y) and (xp) = (z, w) their local coordinate systems. We consider

the Pythagorean product M — Mx X M 2, and denote the totality (xh, xp) of

the coordinate systems by (xκ). Latin indices run on the ranges

Λ,/, j,k= 1,2; p,q,r,s = 3,4,

and Greek indices run on the range from 1 to 4.

The metric tensor gμ λ, the Christoffel symbol {*λ}, the curvature tensor

K λ

κ and the Ricci tensor Kμλ of the product manifold M = M, X M2 have

pure components only. The scalar curvature K of M is defined by

and related to the scalar curvatures, i.e., the Gaussian curvatures κ} and κ2 of

Mx and M 2 by the equation

6κ — κχ-\- κ2.

Taking account of (1.10) and putting

(2.1) σ = P l + p 2 )

we see that the scalar curvature K of M is expressed as

K = 2Cσ.
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The curvature tensors of the 2-dimensional manifolds Mx and M2 are given

respectively by

( 2 2 )

which are the pure components of the curvature tensor Kv λ " of M.

We indicate by V covariant differentiation in M = M, X M2. For p, in M,

and p 2 in M2, (1.1) and (1.2) are rewritten in the tensor equations

( 2 4 )

where | Vpλ | 2 is the length of the gradient vector VzPi If we put σλ =

then σz = Vipι and σq = V^p2, and we have

(2.5) σ λ σ λ = | V P Ϊ | 2 + | Vp 2 | 2 .

For our purpose we construct a 4-dimensional Riemannian manifold M*

from the product manifold M by a conformal change of metric

(2.6) g*λ = —gμλ

σ

with the associated scalar field σ given by (2.1). The scalar field σ takes the

minimum value β, + β2, and we suppose that β} + β2 > 0 or equivalently

in order that σ be always positive.

We denote quantities of M* by asterisking the characters corresponding to

those of M. Under the conformal change (2.6), we have the transformation

formulas

(2-8)
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Referring the last equation (2.8) to the separate coordinate system (xh, xp\
noting (2.5) and using (2.2), (2.3) and (2.4), we obtain the nontrivial compo-
nents

Kljik = ( A + A2 + 4Cσ3)(g*,g*. - g^gl),

(2.9) K*Jip = (Ax +A2- 2Cσ3)g*/7g<<,

*,%„ = (Ax +A2 + 4Cσ*)(gΐpg*q - g%gtp),

of the curvature tensor of M* and the other components vanish.
The product structure F= (Fλ

κ) of M — MXX M2 has eigenvalues 1,1,
-1,-1, and composes an almost product structure together with the metric
tensor g*λ of Af *, i.e.,

We put F*λ = Fμ

κg%κ, which is a symmetric tensor. Then equations (2.9) turn to
the tensor equation

(2 10) K:μλκ (Aχ + A l

+ 3Cσ\Fv*κFμ\-Fμ*κFv\).

Since F λ

λ = 0, transvection of this equation with g*vκ gives

that is, the manifold M* is Einsteinian.
Covariantly differentiating the almost product structure Fλ

κ with respect to
the metric g*λ of M*, substituting the formula (2.7), and taking account of the
integrability VμFλ

κ = 0 in M, we obtain

(2.12) vμ*FZκ = ± μ ; μ

The covariant derivative of the curvature tensor (2.10) of M* is equal to

V ^ . = 3Cσ2[σω(g*κg;λ - g ^ )

(2-13)

The covariant tensor (F*λ) has components
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with respect to a separate coordinate (xh, xp). By means of (2.12), nontrivial

components of V*F£K are only

(2.14) V//£ = f*ji«V, v lfc = -£*•/»,.

The covariant derivative of the curvature tensor of M* has for example

nontrivial components

v:K*βh = 12Cσ2σω(g,*Ag*. - g*hg*ki).

The manifold M* is therefore not symmetric.

Denote by κ*(X, Y) the sectional curvature belonging to tangent vectors

X, Y. If both X and Y are tangent to one of the parts M, and M2 of M as the

underlying manifold of M*9 by means of the first and third expressions of

(2.9), the sectional curvature /c*( X, Y) is equal to

(2.15) κ*(X9 Y) = Aλ + A2 + 4Cσ3,

which is always positive. On the other hand, if X and Y are tangent to Mλ and

M2 respectively, then the sectional curvature κ*( X, Y) is equal to

(2.16) κ*(X9 Y)=Aι+A2- 2Cσ 3

by means of the second of (2.9).

We suppose here Ax = A2. Then the functions p,(jc) and p2(z) are the same

and have the same constants, so we omit the suffices 1 and 2. The constants A,

a and β are positive. By means of (1.3), the minimum of the sectional curvature

(2.16) is equal to

min κ*(X, Y) = 2A- 16Cα3 = 8Cα(2α + β)(β - a)9

which is negative. Therefore hi this case the manifold M* has saddle points.
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