CR SUBMANIFOLDS OF A COMPLEX PROJECTIVE SPACE

KENTARO YANO & MASAHIRO KON

Dedicated to Professor Shoshichi Kobayashi on his 50th birthday

Introduction

CR submanifolds of a Kaehlerian manifold have been defined by A. Bejancu [1] in 1978 and are now being studied by various authors. See [1], [2], [4], [5], [9], [10], [11] and [12]. The purpose of the present paper is to study CR submanifolds of a complex projective space.

In §1 we first state generalities on submanifolds of Kaehlerian manifolds. We then define CR submanifolds and prove Theorem 1.1 which gives a necessary and sufficient condition for a submanifold of a Kaehlerian manifold to be a CR submanifold.

§2 is devoted to the study of a CR submanifold of a complex projective space with semi-flat normal connection.

In §3 we prove an integral formula which has been essentially given in [7], and in §4 we treat with the cases of CR submanifolds with parallel mean curvature vector.

Finally in §5 we consider CR submanifolds of a complex projective space with flat normal connection and parallel mean curvature vector.

1. Submanifolds of Kaehlerian manifolds

Let \overline{M} be a complex *m*-dimensional (real 2m-dimensional) Kaehlerian manifold with almost complex structure J. We denote by g the Hermitian metric tensor field of \overline{M} . Let M be a real n-dimensional Riemannian manifold isometrically immersed in \overline{M} . We denote by the same g the Riemannian metric tensor field induced on M from that of \overline{M} . The operator of covariant differentiation with respect to the Levi-Civita connection in \overline{M} (resp. M) will

Communicated January 5, 1981.

be denoted by $\overline{\nabla}$ (resp. ∇). Then the Gauss and Weingarten formulas are given respectively by

$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y), \quad \overline{\nabla}_X V = -A_V X + D_X V$$

for any vector fields X, Y tangent to M and any vector field V normal to M, where D denotes the operator of covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp}$ of M from that of \overline{M} . A and B are both called the second fundamental tensors of M and they are related by

$$g(B(X,Y),V)=g(A_{V}X,Y).$$

For the second fundamental tensor A we define its covariant derivative $\nabla_X A$ along X by

$$(\nabla_X A)_V Y = \nabla_X (A_V Y) - A_{D_V V} Y - A_V \nabla_X Y.$$

The mean curvature vector μ of M is defined to be $\mu = (\operatorname{Tr} B)/n$, where $\operatorname{Tr} B$ is the trace of B. If B=0 (or A=0) identically, then M is said to be totally geodesic, and if $\mu=0$, then M is said to be minimal. A normal vector field V on M is said to be parallel if $D_XV=0$ for any vector field X tangent to M.

For any vector field X tangent to M we put

$$(1.1) JX = PX + FX,$$

where PX is the tangential part, and FX the normal part of JX. Then P is an endomorphism on the tangent bundle T(M), and F is a normal bundle valued 1-form on the tangent bundle T(M). Similarly, for any vector field V normal to M, we put

$$(1.2) JV = tV + fV,$$

where tV is the tangential part, and fV the normal part of JV. For any vector field Y tangent to M, from (1.1) we have g(JX, Y) = g(PX, Y) which shows that g(PX, Y) is skew symmetric. Similarly, for any vector field U normal to M, from (1.2) we have g(JV, U) = g(fV, U) which shows that g(fV, U) is skew symmetric. We also have, from (1.1) and (1.2),

(1.3)
$$g(FX, V) + g(X, tV) = 0,$$

which gives the relation between F and t.

Now applying J to (1.1) and using (1.1), (1.2), we find

(1.4)
$$P^2 = -I - tF, FP + fF = 0.$$

Applying J to (1.2) and using (1.1), (1.2) give

(1.5)
$$Pt + tf = 0, \quad f^2 = -I - Ft.$$

Definition. A submanifold M of a Kaehlerian manifold \overline{M} is called a CR submanifold of \overline{M} if there exists a differentiable distribution $\mathfrak{D}: x \to \mathfrak{D}_x \subset T_x(M)$ on M satisfying the following conditions:

- (i) \mathfrak{D} is holomorphic, i.e., $J\mathfrak{D}_x = \mathfrak{D}_x$ for each $x \in M$, and
- (ii) the complementary orthogonal distribution $\mathfrak{D}^{\perp}: x \to \mathfrak{D}_{x}^{\perp} \subset T_{x}(M)$ is anti-invariant, i.e., $J\mathfrak{D}_{x}^{\perp} \subset T_{x}(M)^{\perp}$ for each $x \in M$.

If dim $\mathfrak{D}_x^{\perp} = 0$ (resp. dim $\mathfrak{D}_x = 0$), then the CR submanifold is a holomorphic submanifold (resp. anti-invariant submanifold) of \overline{M} . If in a CR submanifold dim $\mathfrak{D}_x^{\perp} = \text{codimension } M$, then the CR submanifold is what we call a generic submanifold of \overline{M} (see [9], [10]).

Suppose that M is a CR submanifold of \overline{M} , and denote by l, l^{\perp} the projection operators on \mathfrak{D}_{ν} , $\mathfrak{D}_{\nu}^{\perp}$ respectively. Then we have

$$l + l^{\perp} = I$$
, $l^2 = l$, $l^{\perp 2} = l^{\perp}$, $ll^{\perp} = l^{\perp} l = 0$.

From (1.1) we have

$$l^{\perp} Pl = 0$$
, $Fl = 0$, $Pl = P$,

which together with the second equation of (1.4) implies

$$(1.6) FP = 0.$$

Thus we have

$$(1.7) fF = 0.$$

From (1.3) and (1.7) we obtain

$$(1.8) tf = 0,$$

and, in consequence of the first equation of (1.5),

$$(1.9) Pt = 0.$$

Thus from the first equation of (1.4) it follows that

$$(1.10) P^3 + P = 0,$$

which shows that P is an f-structure on M. Similarly, from the second equation of (1.5) we have

$$(1.11) f^3 + f = 0,$$

which shows that f is an f-structure in the normal bundle $T(M)^{\perp}$ (see [8]).

Conversely, for a submanifold M of a Kaehlerian manifold \overline{M} , assume that we have (1.6), i.e., FP = 0, then we have (1.7), (1.8), (1.9), (1.10) and (1.11). We now put

$$(1.12) l = -P^2, l^{\perp} = I - l.$$

Then we can easily verify that

$$l + l^{\perp} = I$$
, $l^2 = l$, $l^{\perp 2} = l^{\perp}$, $ll^{\perp} = l^{\perp} l = 0$,

which mean that l and l^{\perp} are complementary projection operators and consequently define complementry orthogonal distributions \mathfrak{D} and \mathfrak{D}^{\perp} respectively. From the first equation of (1.12) we have

$$Pl = P$$
.

This equation can be written as

$$Pl^{\perp}=0$$
.

But g(PX, Y) is skew-symmetric, and $g(l^{\perp}X, Y)$ is symmetric, and consequently the above equation gives

$$l^{\perp}P=0$$
,

and hence

$$l^{\perp} Pl = 0$$
.

From the first equation of (1.12) we have

$$Fl=0.$$

The above equations show that the distribution \mathfrak{D} is invariant, and distribution \mathfrak{D}^{\perp} is anti-invariant. Thus we have

Theorem 1.1. In order for a submanifold M of a Kaehlerian manifold \overline{M} to be a CR submanifold, it is necessary and sufficient that FP = 0.

Theorem 1.2. Let M be a CR submanifold of a Kaehlerian manifold \overline{M} . Then P is an f-structure in M, and f is an f-structure in the normal bundle of M.

We next study the properties of the second fundamental tensor of a CR submanifold M of a Kaehlerian manifold \overline{M} .

From the Gauss and Weingarten formulas we have

$$tB(X,Y) + fB(X,Y) = (\nabla_X P)Y - A_{FY}X + B(X,PY) + (\nabla_X F)Y,$$

where we have put

$$(\nabla_X P)Y = \nabla_X (PY) - P\nabla_X Y, \quad (\nabla_X F)Y = D_X (FY) - F\nabla_X Y.$$

Comparing the tangential and normal parts of the both sides of this equation, we obtain

$$(1.13) \qquad (\nabla_X P)Y = A_{FY}X + tB(X,Y),$$

$$(1.14) \qquad (\nabla_X F)Y = -B(X, PY) + fB(X, Y).$$

Similarly, we have

$$(1.15) \qquad (\nabla_X t)V = A_{tV}X - PA_VX,$$

$$(1.16) \qquad (\nabla_X f)V = -FA_V X - B(X, tV),$$

where we have put

$$(\nabla_X t)V = \nabla_X (tV) - tD_X V, \quad (\nabla_X f)V = D_X (fV) - fD_X V.$$

Moreover, the second fundamental tensor A of a CR submanifold M satisfies

(1.17)
$$A_{FX}Y = A_{FY}X \text{ for any } X, Y \in \mathfrak{D}_X^{\perp}.$$

In the sequel, we assume that M is a CR submanifold of a complex projective space $\mathbb{C}P^m$ of complex dimension m and with constant holomorphic sectional curvature 4. Then we have respectively the equations of Gauss and Codazzi as follows:

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(PY,Z)PX - g(PX,Z)PY$$

$$(1.18) + 2g(X,PY)PZ + A_{B(Y,Z)}X - A_{B(X,Z)}Y,$$

$$(\nabla_X A)_V Y - (\nabla_Y A)_V X$$

$$= g(FX,V)PY - g(FY,V)PX - 2g(X,PY)tV,$$

where R denotes the Riemannian curvature tensor of M.

We now define the curvature tensor R^{\perp} of the normal bundle of M by

$$R^{\perp}(X,Y)V = D_X D_Y V - D_Y D_X V - D_{[X,Y]} V.$$

Then we have the equation of Ricci:

$$g(R^{\perp}(X,Y)U,V) + g([A_{V}, A_{U}]X,Y)$$
(1.20)
$$= g(FY,U)g(FX,V) - g(FX,U)g(FY,V) + 2g(X,PY)g(fU,V),$$

where $[A_V, A_U] = A_V A_U - A_U A_V$. If R^{\perp} vanishes identically, then the normal connection of M is said to be *flat*.

For a CR submanifold M we have the following decomposition of the tangent space $T_x(M)$ at each point $x \in M$;

$$T_x(M) = \mathfrak{D}_x \oplus \mathfrak{D}_x^{\perp}$$
.

Similarly, we have

$$T_{x}(M)^{\perp} = F\mathfrak{N}_{x}^{\perp} + \mathfrak{N}_{x},$$

where \mathfrak{N}_x is the orthogonal complement of $F\mathfrak{N}_x^{\perp}$ in $T_x(M)^{\perp}$. Then $J\mathfrak{N}_x = f\mathfrak{N}_x = \mathfrak{N}_x$.

We take an orthonormal frame $\{e_1, \dots, e_{2m}\}$ of \overline{M} such that, restricted to M, e_1, \dots, e_n are tangent to M. Then e_1, \dots, e_n form an orthonormal frame of M. We can take e_1, \dots, e_n in such a way that e_1, \dots, e_{n-p} form an orthonormal frame of \mathfrak{D}_x , and e_{n-p+1}, \dots, e_n form an orthonormal frame of \mathfrak{D}_x^{\perp} , where $p = \dim \mathfrak{D}_x^{\perp}$, and $n-p = \dim \mathfrak{D}_x$. Moreover, we take $\{e_{n+1}, \dots, e_{2m}\}$ in such a way that e_{n+1}, \dots, e_{n+p} form an orthonormal frame of $F\mathfrak{D}_x^{\perp}$, and

 e_{n+p+1}, \dots, e_{2m} form an orthonormal frame of \mathfrak{N}_x . Unless otherwise stated, we shall use the conventions that the ranges of indices are respectively:

$$i, j, k = 1, \dots, n; \quad r, s, t = 1, \dots, n - p;$$

 $a, b, c = n - p + 1, \dots, n; \quad x, y, z = n + 1, \dots, n + p;$
 $\lambda, \mu, \nu = n + p + 1, \dots, 2m.$

2. Semi-flat normal connection

Let M be a real n-dimensional CR submanifold of a complex projective space $\mathbb{C}P^m$. If the curvature tensor R of the normal bundle of M satisfies

$$(2.1) R^{\perp}(X,Y)V = 2g(X,PY)fV$$

for any vector fields X, Y tangent to M and any vector field V normal to M, then the normal connection of M is said to be *semi-flat* (see [11]). If $\nabla f = 0$, then the f-structure f is said to be *parallel*.

Lemma 2.1. Let M be a CR submanifold of CP^m with semi-flat normal connection. If the f-structure f is parallel, then

$$(2.2) A_{\ell V} = 0$$

for any vector field V normal to M, that is, $A_{\lambda} = 0$ where $A_{\lambda} = A_{e_{\lambda}}$. Proof. Since the f-structure f is parallel, (1.16) gives

$$(2.3) A_V t U = A_U t V$$

for any vector fields U, V normal to M. On the other hand, the Ricci equation and (2.1) imply that

(2.4)
$$g([A_V, A_U]X, Y) = g(FY, U)g(FX, V) - g(FX, U)g(FY, U).$$

Using (1.14) we obtain

$$0 = g((\nabla_X f) f V, F Y) = -g(f^2 V, (\nabla_X F) Y)$$

= $g(A_{f^2 V} X, P Y) + g(A_{f V} X, Y),$

from which it follows that

(2.5)
$$g(A_{fV}X, A_{fV}X) = -g(A_{f^2V}X, PA_{fV}X).$$

Moreover, from (2.4) we have

$$(2.6) A_{fV}A_{f^2V} = A_{f^2V}A_{fV}.$$

From (2.5) and (2.6) we see that Tr $A_{fV}^2 = 0$ and hence $A_{fV} = 0$ for any vector field V normal to M.

Lemma 2.2. Let M be a CR submanifold of CP^m with semi-flat normal connection and parallel f-structure f. If $PA_V = A_V P$ for any vecor field V normal to M, then

$$g(A_UX, A_VY) = g(X, Y)g(tU, tV) - g(FX, U)g(FY, V)$$

$$-\sum_i g(A_UtV, e_i)g(A_{Fe_i}X, Y).$$
(2.7)

Proof. From the assumption we have $g(A_U PX, tV) = 0$, which implies

$$g((\nabla_Y A)_U PX, tV) + g(A_U(\nabla_Y P)X, tV) + g(A_U PX, (\nabla_Y t)V) = 0.$$

Thus from (1.13), (1.15) and (2.2) we find

$$g((\nabla_{PX}A)_{U}PX, tV) + g(A_{U}tB(PY, X), tV) - g(PA_{U}X, P^{2}A_{V}Y) = 0,$$

from which it follows that

$$g((\nabla_{PY}A)_{U}PX,tV) - \sum_{i} g(A_{U}tV,e_{i})g(A_{Fe_{i}}X,PY) + g(PA_{U}X,A_{V}Y) = 0.$$

From this and the Codazzi equation we have

$$g(PX, PY)g(tU, tV) - \sum_{i} g(A_{U}tV, e_{i})g(A_{Fe_{i}}PX, PY)$$
$$+g(P^{2}A_{U}X, A_{V}Y) = 0.$$

On the other hand, we obtain

$$g(PX, PY)g(tU, tV) = g(X, Y)g(tU, tV) - g(FX, FY)g(tU, tV),$$

$$-\sum_{i} g(A_{U}tV, e_{i})g(A_{Fe_{i}}PX, PY)$$

$$= -\sum_{i} g(A_{U}tV, e_{i})g(A_{Fe_{i}}X, Y) + g(A_{U}tV, A_{FY}X),$$

$$g(P^2A_UX, A_VY) = -g(A_UX, A_VY) - g(A_UX, A_{FY}tV).$$

Moreover, from (2.4) we see that

$$g(A_UtV, A_{FY}X) - g(A_UX, A_{FY}tV) = g(tU, tV)g(FX, FY)$$
$$-g(FX, U)g(FY, V).$$

From these equations we have

$$g(X,Y)g(tU,tV) - g(FX,U)g(FY,V)$$

$$-\sum_{i} g(A_{U}tV,e_{i})g(A_{Fe_{i}}X,Y) - g(A_{U}X,A_{V}Y) = 0,$$

which proves (2.7).

A parallel section U of the normal bundle of M is called an *isoperimetric* section if $\operatorname{Tr} A_U = \operatorname{constant} \neq 0$, and a minimal section if $\operatorname{Tr} A_U = 0$.

Lemma 2.3. Let M be a CR submanifold of CP^m . For any isoperimetric or minimal section U of the normal bundle of M, we have

(2.8)
$$\sum_{i} \left(\nabla_{e_{i}} A \right)_{U} e_{j} = 0.$$

Proof. For any vector field X tangent to M, we have

$$\sum_{j} g((\nabla_{e_{j}}A)_{U}e_{j}, X) = \sum_{j} [g((\nabla_{X}A)_{U}e_{j}, e_{j}) + g(Fe_{j}, U)g(PX, e_{j})$$
$$-g(FX, U)g(Pe_{j}, e_{j}) - 2g(e_{j}, PX)g(tU, e_{j})]$$
$$= 0.$$

because of the Codazzi equation.

Lemma 2.4. Let M be a CR submanifold of CP^m with semi-flat normal connection and parallel f-structure f. If the mean curvature vector of M is parallel, and $PA_V = A_V P$ for any vector field V normal to M, then the square of the length of the second fundamental tensor is constant.

Proof. Due to (2.2) and (2.7) the square of the length of the second fundamental tensor is given by

$$\sum_{x} \operatorname{Tr} A_{x}^{2} = (n-1)p + \sum_{x,y} g(A_{x}te_{x}, te_{y}) \operatorname{Tr} A_{y},$$

where $A_x = A_{e_x}$. On the other hand, for any vector field $V \in F\mathfrak{D}^{\perp}$, we have $D_X V \in F\mathfrak{D}^{\perp}$ because of $\nabla f = 0$. From (1.14) we also have, for any $V \in \mathfrak{N}$, $D_X V \in \mathfrak{N}$. Therefore, since $R^{\perp}(X,Y)V = 0$ for any $V \in F\mathfrak{D}^{\perp}$, we can take an orthonormal frame $\{e_x\}$ of $F\mathfrak{D}^{\perp}$ such that $De_x = 0$ for each x (see [3, p. 99]). Then we see that $\nabla_X (te_x) = -PA_x X$. Since the mean curvature vector of M is parallel and $PA_V = A_V P$, from the Codazzi equation and (2.3) we find

$$\nabla_X \left(\sum_x \operatorname{Tr} A_x^2 \right) = \sum_{x, y} g((\nabla_{te_x} A)_y te_x, X) \operatorname{Tr} A_y.$$

On the other hand, using $PA_V = A_V P$ and (1.13) we have

$$\sum_{i} g((\nabla_{Pe_{i}} A)_{x} Pe_{i}, tV) = 0, \quad \sum_{i} g((\nabla_{Pe_{i}} A)_{x} Pe_{i}, PX) = 0$$

for any vector field V normal to M and any vector field X tangent to M. Consequently, we obtain

$$\sum_{s} (\nabla_{e_s} A)_x e_s = \sum_{i} (\nabla_{Pe_i} A)_x Pe_i = 0$$

for each x. Since the mean curvature vector of M is parallel, (2.8) implies

$$0 = \sum_{i} (\nabla_{e_i} A)_x e_i = \sum_{s} (\nabla_{e_s} A)_x e_s + \sum_{a} (\nabla_{e_a} A)_x e_a$$
$$= \sum_{a} (\nabla_{e_a} A)_x e_a = \sum_{v} (\nabla_{te_v} A)_x te_v$$

for each x, and hence $\sum_{x} \operatorname{Tr} A_{x}^{2} = \text{constant}$.

3. Integral formulas

For any vector field X of a Riemannian manifold M, we generally have (see [7])

$$\operatorname{div}(\nabla_X X) - \operatorname{div}((\operatorname{div} X)X)$$

$$= S(X, X) + \frac{1}{2} |L(X)g|^2 - |\nabla X|^2 - (\operatorname{div} X)^2,$$

where S denotes the Ricci tensor of M, L(X)g the Lie derivative of g with respect to X, and |Y| the length with respect to g of Y on M.

Let M be an n-dimensional CR submanifold of CP^m with semi-flat normal connection and parallel f-structure f. Suppose that U is a parallel section of the normal bundle of M. Then from equation of Ricci and (2.2) we have fU=0 and hence $U \in F \mathfrak{D}^{\perp}$. We also have $\nabla_X tU=-PA_UX$, and hence

$$\operatorname{div} tU = \sum_{i} g(\nabla_{e_i} tU, e_i) = -\operatorname{Tr} PA_U = 0,$$

since P is skew-symmetric, and A_U is symmetric. Then we have, from (3.1),

(3.2)
$$\operatorname{div}(\nabla_{tU}tU) = S(tU, tU) + \frac{1}{2}|L(tU)g|^2 - |\nabla tU|^2.$$

On the other hand, due to (1.18) and (2.2), the Ricci tensor S of M is given by

$$S(tU, tU) = (n-1)g(tU, tU) + \sum_{x} \operatorname{Tr} A_{x} g(A_{x} tU, tU)$$

$$- \sum_{x} g(A_{x}^{2} tU, tU).$$
(3.3)

Moreover, we have

(3.4)
$$|\nabla t U|^2 = \operatorname{Tr} A_U^2 - \sum_x g(A_x^2 t U, t U).$$

From (3.2), (3.3) and (3.4) it follows that

(3.5)
$$\operatorname{div}(\nabla_{tU} tU) = (n-1)g(tU, tU) + \sum_{x} \operatorname{Tr} A_{x} g(A_{x} tU, tU) - \operatorname{Tr} A_{U}^{2} + \frac{1}{2} |L(tU)g|^{2}.$$

We now take an orthonormal frame $\{e_x\}$ such that $De_x = 0$ for each x. Then (3.5) implies

(3.6)
$$\operatorname{div}\left(\sum_{x} \nabla_{te_{x}} t e_{x}\right) = (n-1)p + \sum_{x,y} \operatorname{Tr} A_{x} g(A_{x} t e_{y}, t e_{y}) - \sum_{x} \operatorname{Tr} A_{x}^{2} + \frac{1}{2} \sum_{x} |L(te_{x})g|^{2}.$$

By (2.2) it is easy to show that the right-hand side of (3.6) is independent of the choice of an orthonormal frame of $T_x(M)^{\perp}$. We notice that $|L(tU)g|^2 = |[P, A_U]|^2$.

Theorem 3.1. Let M be a compact orientable n-dimensional CR submanifold of CP^m with semi-flat normal connection and parallel f-structure f. Then

(3.7)
$$\int_{M} \left[(n-1)p - \sum_{x} \operatorname{Tr} A_{x}^{2} + \sum_{x,y} \operatorname{Tr} A_{x} g(A_{x} t e_{y}, t e_{y}) \right] * 1$$
$$= -\frac{1}{2} \int_{M} \sum_{x} |[P, A_{x}]|^{2} * 1.$$

Theorem 3.2. Let M be a compact orientable n-dimensional minimal CR submanifold of CP^m with semi-flat normal connection and parallel f-structure f. Then

(3.8)
$$\int_{M} \left[(n-1)p - \sum_{x} \operatorname{Tr} A_{x}^{2} \right]^{*} 1 = -\frac{1}{2} \int_{M} \sum_{x} |[P, A_{x}]|^{2*} 1.$$

4. Parallel mean curvature vector

Let M be an n-dimensional CR submanifold of $\mathbb{C}P^m$ with semi-flat normal connection and parallel f-structure f, and suppose that the mean curvature vector of M is parallel. In the following we compute the Laplacian of the second fundamental tensor of M (see [6], [11]).

Using (2.2) and (2.8), by a straightforward computation we obtain $g(\nabla^2 A, A) = \sum_{x,i,j} g(\nabla_{e_i} \nabla_{e_i} A)_x e_j, A_x e_j$

$$= (n-3) \sum_{x} \operatorname{Tr} A_{x}^{2} - \sum_{x} (\operatorname{Tr} A_{x})^{2} + 6 \sum_{x} \left[\operatorname{Tr} (A_{x} P)^{2} - \operatorname{Tr} A_{x}^{2} P^{2} \right]$$

$$+ 3 \sum_{x,y} \left[g(A_{x} t e_{y}, A_{x} t e_{y}) - g(A_{x} t e_{x}, A_{y} t e_{y}) \right]$$

$$- \frac{1}{2} \sum_{x,y,i} g(\left[A_{x}, A_{y} \right] e_{i}, \left[A_{x}, A_{y} \right] e_{i})$$

$$+ \sum_{x,y} \left[3g(A_{x} t e_{x}, t e_{y}) \operatorname{Tr} A_{y} - (\operatorname{Tr} A_{x} A_{y})^{2} + (\operatorname{Tr} A_{y}) (\operatorname{Tr} A_{x}^{2} A_{y}) \right],$$

where we have taken $\{e_x\}$ such that $De_x = 0$ for each x, and used the fact that $(\nabla_X A)_V Y = 0$ for any $V \in \mathfrak{N}_x$. On the other hand, from (2.4) we have

(4.2)
$$\sum_{x,y,i} g([A_x, A_y]e_i, [A_x, A_y]e_i) = 2p(p-1),$$

$$(4.3) \qquad \sum_{x,y} \left[g(A_x t e_y, A_x t e_y) - g(A_x t e_x, A_y t e_y) \right] = p(p-1).$$

From (4.1), (4.2) and (4.3) it follows that

$$g(\nabla^2 A, A) = (n-3) \sum_x \text{Tr } A_x^2 - \sum_x (\text{Tr } A_x)^2 + 3 \sum_x |[P, A_x]|^2 + 2p(p-1)$$

$$(4.4) \qquad + \sum_{x,y} \left[3g(A_x t e_x, t e_y) \operatorname{Tr} A_y - (\operatorname{Tr} A_x A_y)^2 + (\operatorname{Tr} A_y) (\operatorname{Tr} A_x^2 A_y) \right].$$

Thus by (3.6) and (4.4) we obtain

$$-g(\nabla^{2}A, A) - 2(n-p)p + \frac{3}{2} \sum_{x} |[P, A_{x}]|^{2} + 3 \operatorname{div}\left(\sum_{x} \nabla_{te_{x}} te_{x}\right)$$

$$= \sum_{x,y} (\operatorname{Tr} A_{x} A_{y})^{2} - n \sum_{x} \operatorname{Tr} A_{x}^{2} + \sum_{x} (\operatorname{Tr} A_{x})^{2}$$

$$- \sum_{x,y} (\operatorname{Tr} A_{x}) \left(\operatorname{Tr} A_{y}^{2} A_{x}\right) + (n-1)p.$$

We now assume that $PA_V = A_V P$. Then $\nabla_{te_x} te_x = -PA_x te_x = 0$. Moreover, from Lemma 2.4 we see that $g(\nabla A, \nabla A) = -g(\nabla^2 A, A)$. Thus (4.5) reduces to

$$g(\nabla A, \nabla A) - 2(n-p)p = \sum_{x,y} (\operatorname{Tr} A_x A_y)^2 - n \sum_x \operatorname{Tr} A_x^2 + \sum_x (\operatorname{Tr} A_x)^2 - \sum_{x,y} (\operatorname{Tr} A_x) (\operatorname{Tr} A_y^2 A_x) + (n-1)p.$$

Now using (2.7) we have

$$\begin{split} \sum_{x,y} \left(\operatorname{Tr} A_x A_y \right)^2 &= (n-1) \sum_x \operatorname{Tr} A_x^2 + \sum_{x,y,z} \left(\operatorname{Tr} A_z \right) \left(\operatorname{Tr} A_x A_y \right) g \left(A_x t e_y, t e_z \right), \\ &- \sum_{x,y} \left(\operatorname{Tr} A_x \right) \left(\operatorname{Tr} A_y^2 A_x \right) = - \sum_x \left(\operatorname{Tr} A_x \right)^2 + \sum_{x,y} \operatorname{Tr} A_x g \left(A_x t e_y, t e_y \right). \end{split}$$

Substituting these equations into (4.6) we find

$$(4.7) g(\nabla A, \nabla A) - 2(n-p)p$$

$$= -\sum_{x} \operatorname{Tr} A_{x}^{2} + \sum_{x,y} \operatorname{Tr} A_{x} g(A_{x} t e_{y}, t e_{y}) + (n-1)p.$$

Again from (2.7) we see that the right-hand side of (4.7) vanishes, and consequently we obtain

Lemma 4.1. Let M be an n-dimensional CR submanifold of CP^m with semi-flat normal connection, parallel f-structure f and parallel mean curvature vector. If $PA_V = A_V P$ for any vector field V normal to M, then we have $g(\nabla A, \nabla A) = 2(n-p)p$.

Example. Let $S^m(r)$ denote an m-dimensional sphere with radius r. We consider a Riemannian fibre bundle $\pi \colon S^{n+k}(1) \to CP^{(n+k-1)/2}$. Then we can see that $\pi(S^{m_1}(r_1) \times \cdots \times S^{m_k}(r_k))$ is a generic submanifold of $CP^{(n+k-1)/2}$ with parallel mean curvature vector, where $\sum_{i=1}^k r_i^2 = 1$, $\sum_{i=1}^k m_i = n+1$ and m_1, \dots, m_k are odd numbers. Moreover, if $r_i = (m_i/(n+1))^{1/2}$ $(i=1,\dots,k)$, then $\pi(S^{m_1}(r_1) \times \cdots \times S^{m_k}(r_k))$ is minimal (see [10]).

We need the following

Theorem A [11]. Let M be a complete n-dimensional CR submanifold of CP^m with semi-flat normal connection and $n-p \ge 4$. If the f-structure f is parallel, and $g(\nabla A, \nabla A) = 2(n-p)p$, then M is a totally geodesic holomorphic submanifold $CP^{n/2}$ of CP^m , or M is a generic submanifold of $CP^{(n+p)/2}$ in CP^m and is

$$\pi(S^{m_1}(r_1) \times \cdots \times S^{m_k}(r_k)), \quad \sum_{i=1}^k m_i = n+1,$$

 $\sum_{i=1}^k r_i^2 = 1, \quad 2 \le k \le n-3,$

where m_1, \dots, m_k are odd numbers, and p = k - 1.

Remark. In Theorem A, if $PA_V = A_V P$, then we can prove the result without the assumption $n - p \ge 4$ (see Lemma 2.2 of [11]).

From Lemma 4.1 and Theorem A we have

Theorem 4.1. Let M be a complete n-dimensional CR submanifold of CP^m with semi-flat normal connection, parallel f-structure f and parallel mean curvature vector. If $PA_V = A_V P$ for any vector field V normal to M, then M is a totally geodesic holomorphic submanifold $CP^{n/2}$ of CP^m , or M is a generic submanifold of $CP^{(n+p)/2}$ in CP^m and is

$$\pi(S^{m_1}(r_1) \times \cdots \times S^{m_k}(r_k)), \quad \sum_{i=1}^k m_i = n+1, \quad \sum_{i=1}^k r_i^2 = 1,$$

where m_1, \dots, m_k are odd numbers and p = k - 1.

Theorem 4.2. Let M be a compact orientable n-dimensional minimal CR submanifold of CP^m with semi-flat normal connection and parallel f-structure f. If the square of the length of the second fundamental tensor of M is (n-1)p, then

M is a generic submanifold of $CP^{(n+p)/2}$ in CP^m and is

$$\pi(S^{m_1}(r_1) \times \cdots \times S^{m_k}(r_k)),$$

$$\sum_{i=1}^k m_i = n+1, \quad r_i = (m_i/(n+1))^{1/2} \quad (i=1,\dots,k),$$

where m_1, \dots, m_k are odd numbers and p = k - 1.

Proof. Since $\sum_{x} \operatorname{Tr} A_{x}^{2} = (n-1)p$, (3.8) implies that $PA_{V} = A_{V}P$ for any vector field V normal to M. On the other hand, by the assumption, M is not totally geodesic. Thus our assertion follows from Theorem 4.1.

Since the scalar curvature r of M is given by

$$r = (n^2 + 2n - 3p) - \sum_{x} \operatorname{Tr} A_x^2,$$

we have

Theorem 4.3. Let M be a compact orientable n-dimensional minimal CR submanifold of CP^m with semi-flat normal connection and parallel f-structure f. If r = (n+2)(n-p), then M is a generic submanifold of $CP^{(n+p)/2}$ in CP^m and is

$$\pi(S^{m_1}(r_1) \times \cdots \times S^{m_k}(r_k)), \quad \sum_{i=1}^k m_i = n+1,$$
 $r_i = (m_i/(n+1))^{1/2} \quad (i=1,\cdots,k),$

where m_1, \dots, m_k are odd numbers, and p = k - 1.

5. Flat normal connection

In this section we assume that M is an n-dimensional CR submanifold of \mathbb{CP}^m with flat normal connection. Then the Ricci equation implies

$$(5.1) g([A_{fU}, A_U]PX, X) = 2g(PX, PX)g(fU, fU)$$

for any vector field X tangent to M and any vector field U normal to M. Thus we have

(5.2)
$$\operatorname{Tr} A_{fU} A_{U} P - \operatorname{Tr} A_{U} A_{fU} P = 2(n-p)g(fU, fU).$$

If $PA_V = A_V P$ for any vector field V normal to M, then we have $\operatorname{Tr} A_{fU} A_U P$ = $\operatorname{Tr} A_U A_{fU} P$, and hence (5.2) implies that n = p, that is, P = 0, and M is an

anti-invariant submanifold of CP^m , or f = 0, that is, M is a generic submanifold of CP^m . Therefore from Theorem 3 of [12] and Theorem 4.1 we have

Theorem 5.1. Let M be a compact orientable n-dimensional CR submanifold of CP^m with flat normal connection and parallel mean curvature vector. If $PA_V = A_V P$ for any vector field V normal to M, then M is

$$\pi(S^1(r_1) \times \cdots \times S^1(r_{n+1})), \quad \sum_{i=1}^{n+1} r_i^2 = 1$$

in $\mathbb{C}P^n$ in $\mathbb{C}P^m$, or M is

$$\pi(S^{m_1}(r_1) \times \cdots \times S^{m_k}(r_k)), \quad \sum_{i=1}^k m_i = n+1, \quad \sum_{i=1}^k r_i^2 = 1,$$

where m_1, \dots, m_k are odd numbers, and p = k - 1, 2m = n + p.

Bibliography

- [1] A. Bejancu, CR submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69 (1978) 135-142.
- [2] _____, CR submanifolds of a Kaehler manifold. II, Trans. Amer. Math. Soc. 250 (1979) 333-345.
- [3] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
- [4] _____, On CR-submanifolds of a Kaehler manifold, to appear.
- [5] U-Hang Ki, J. S. Pak & Y. H. Kim, Generic submanifolds of complex projective spaces with parallel mean curvature vector, to appear.
- [6] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968) 62-105.
- [7] K. Yano, On harmonic and Killing vector fields, Ann. of Math. 55 (1952) 38-45.
- [8] _____, On a structure defined by a tensor field f of type (1, 1) satisfying $f^3 + f = 0$, Tensor N. S. 14 (1963) 99–109.
- [9] K. Yano & M. Kon, Anti-invariant submanifolds, Marcel Dekker, New York, 1976.
- [10] _____, Generic submanifolds, Ann. Mat. Pura Appl. 123 (1980) 59-92.
- [11] _____, Differential geometry of CR-submanifolds, Geometriae Dedicata, 10 (1981) 369–391.
- [12] K. Yano, M. Kon & I. Ishihara, Anti-invariant submanifolds with flat normal connection, J. Differential Geometry 13 (1978) 577-588.

TOKYO INSTITUTE OF TECHNOLOGY HIROSAKI UNIVERSITY