FOLIATIONS ON A SURFACE OF CONSTANT CURVATURE AND THE MODIFIED KORTEWEG-DE VRIES EQUATIONS

SHIING-SHEN CHERN \& KETI TENENBLAT

Dedicated to Professor Buchin Su on his 80th birthday

Abstract

The modified $K d V$ equations are characterized as relations between local invariants of certain foliations on a surface of constant Gaussian curvature.

Consider a surface M, endowed with a C^{∞}-Riemannian metric of constant Gaussian curvature K. Locally let e_{1}, e_{2} be an orthonormal frame field and ω_{1}, ω_{2} be its dual coframe field. Then the latter satisfy the structure equations

$$
\begin{equation*}
d \omega_{1}=\omega_{12} \wedge \omega_{2}, \quad d \omega_{2}=\omega_{1} \wedge \omega_{12}, \quad d \omega_{12}=-K \omega_{1} \wedge \omega_{2} \tag{1}
\end{equation*}
$$

where ω_{12} is the connection form (relative to the frame field). We write

$$
\begin{equation*}
\omega_{12}=p \omega_{1}+q \omega_{2} \tag{2}
\end{equation*}
$$

p, q being functions on M.
Given on M a foliation by curves. Suppose that both M and the foliation are oriented. At a point $x \in M$ we take e_{1} to be tangent to the curve (or leaf) of the foliation through x. Since M is oriented, this determines e_{2}. The local invariants of the foliation are functions of p, q and their successive covariant derivatives. If the foliation is unoriented, then the local invariants are those which remain invariant under the change $e_{1} \rightarrow-e_{1}$.

Under this choice of the frame field the foliation is defined by

$$
\begin{equation*}
\omega_{2}=0, \tag{3}
\end{equation*}
$$

and ω_{1} is the element of arc on the leaves. It follows that p is the geodesic curvature of the leaves.

We coordinatize M by the coordinates x, t, such that

$$
\begin{equation*}
\omega_{2}=B d t, \quad \omega_{1}=\eta d x+A d t, \quad \omega_{12}=u d x+C d t \tag{4}
\end{equation*}
$$

Received September 22, 1981. The first author is supported partially by NSF Grant MCS8023356.
where A, B, C, u are functions of x, t, and $\eta(\neq 0)$ is a constant. Thus the leaves are given by $t=$ const, and ηx and u / η are respectiviely the arc length and the geodesic curvature of the leaves. Substituting (4) into (1), we get

$$
\begin{equation*}
A_{x}=u B, \quad B_{x}=\eta C-u A, \quad C_{x}-u_{t}=-K \eta B . \tag{5}
\end{equation*}
$$

Elimination of B and C gives

$$
\begin{equation*}
u_{t}=\left(\frac{A_{x}^{\prime}}{u}\right)_{x x}+\left(u A^{\prime}\right)_{x}+\eta^{2} K \frac{A_{x}^{\prime}}{u}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{\prime}=A / \eta \tag{7}
\end{equation*}
$$

By choosing

$$
\begin{equation*}
A^{\prime}=-K \eta^{2}+\frac{1}{2} u^{2} \tag{8}
\end{equation*}
$$

we get

$$
\begin{equation*}
u_{t}=u_{x x x}+\frac{3}{2} u^{2} u_{x} \tag{9}
\end{equation*}
$$

which is the modified Korteweg-de Vries ($=M K d V$) equation.
Condition (8) on the foliation can be expressed in terms of the invariants p, q as follows: By (2) and (4) we have

$$
\begin{equation*}
u=\eta p, \quad C=A p+B q \tag{10}
\end{equation*}
$$

If we eliminate B, C in the second equation by using (5), it can be written

$$
\begin{equation*}
\eta q=\left(\log \frac{A_{x}^{\prime}}{u}\right)_{x}=\left(\log p_{x}\right)_{x} \tag{11}
\end{equation*}
$$

Introducing the covariant derivatives of p by

$$
\begin{equation*}
d p=p_{1} \omega_{1}+p_{2} \omega_{2}, \quad d p_{1}=p_{11} \omega_{1}+p_{12} \omega_{2}, \tag{12}
\end{equation*}
$$

we have

$$
\begin{equation*}
p_{x}=p_{1} \eta, \quad p_{x x}=p_{11} \eta^{2} \tag{13}
\end{equation*}
$$

Hence condition (11) can be written

$$
\begin{equation*}
q=\left(\log p_{1}\right)_{1} \tag{14}
\end{equation*}
$$

A foliation will be called a K-foliation, if (14) is satisfied. We state our result in
Theorem. The geodesic curvature of the leaves of a K-foliation satisfies, relative to the coordinates x, t described above, an MKdV equation.

The above argument can be generalized to $M K d V$ equations of higher order. The corresponding foliations are characterized by expressing q as a function of $p, p_{1}, p_{11}, p_{111}, \cdots$.

Is there a similar geometrical interpretation of the $K d V$-equation itself, which is

$$
\begin{equation*}
u_{t}=u_{x x x}+u u_{x} ? \tag{15}
\end{equation*}
$$

We do not have a simple answer to this question. Unlike the $M K d V$-equation, the sign of the last term is immaterial, because it reverses when u is replaced by $-u$. It is therefore of interest to know that by a different foliation and a different coordinate system one can be led to a $M K d V$-equation (9) where the last term has a negative sign.

For this purpose we put

$$
\begin{equation*}
\omega_{2}=B d t, \quad \omega_{1}=v d x+E d t, \quad \omega_{12}=\lambda d x+F d t \tag{16}
\end{equation*}
$$

where λ is a parameter. Substitution into (1) gives

$$
\begin{equation*}
F_{x}=-K v B, \quad B_{x}=-\lambda E+v F, \quad E_{x}-v_{t}=\lambda B \tag{17}
\end{equation*}
$$

Suppose $K \neq 0$, we get, by eliminating B, E,

$$
\begin{equation*}
v_{t}=\left(\frac{F_{x}^{\prime}}{K v}\right)_{x x}+\left(v F^{\prime}\right)_{x}+\frac{\lambda^{2}}{K v} F_{x}^{\prime}, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
F=F^{\prime} \lambda \tag{19}
\end{equation*}
$$

The choice

$$
\begin{equation*}
F^{\prime}=\frac{K}{2} v^{2}-\lambda^{2} \tag{20}
\end{equation*}
$$

reduces (18) into

$$
\begin{equation*}
v_{t}=v_{x x x}+\frac{3}{2} K v^{2} v_{x} \tag{21}
\end{equation*}
$$

Here the sign of the second term depends on the sign of K.
It can be proved that the choice (20) corresponds to a foliation which is characterized by

$$
\begin{equation*}
q=\frac{p_{11}}{p_{1}}-3 \frac{p_{1}}{p}=\left(\log \frac{p_{1}}{p^{3}}\right)_{1} \tag{22}
\end{equation*}
$$

References

[1] S. S. Chern \& C. K. Peng, Lie groups and KdV equations, Manuscripta Math. 28 (1979) 207-217.

