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SUBMERSIONS FROM ANΠ-DE SΠTER SPACE
WITH TOTALLY GEODESIC FIBERS

MARTIN A. MAGID

Introduction

In [5] O'Neill introduced the notion of a Riemannian submersion.
Escobales [1], [2] classified Riemannian submersions from a sphere Sn and
from a complex projective space CPn with totally geodesic fibers.

This paper investigates such submersions for an indefinite space form:
anti-de Sitter space. It is shown that there is essentially only one submersion
from Hfn+ι onto a Riemannian manifold with totally geodesic fibers, and
this is the standard one onto a complex hyperbolic space CHn.

1. Let M, B be C 0 0 indefinite Riemannian manifolds. An indefinite
Riemannian submersion *π\ M -^ B is an onto, C °° mapping such that

(1) IT is of maximal rank,
(2) TΓ̂  preserves the lengths of horizontal vectors, i.e., vectors orthogonal to

the fibers π~\x), x G B,
(3) the restriction of the metric to the vertical vectors is nondegenerate.
Consider the following example, [4, p. 282, Example 10.7] p: H?n+ι-*

CHn, where H?n+ι is a (2n + l)-dimensional anti-de Sitter space with con-
stant sectional curvature -1 and signature (1, 2n), and CHn, defined below, is
a complex hyperbolic space. On Cn+1 let

n

(z, w) = -zowΌ + 2 zkwk9

k=\

n

<z, >v> = Re(zy w) = -xouo - yovo + 2 xkuk
k=\

where

z = (z0, , zn) = (x0 + iy0, •••,*„ + iyn\

w = (w0, , wn) = {u0 + iv0, • — ,«„ + ivn),

H?n+l - {z G C Λ + 1 : (z, z) = -1 = <z, z>}
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The tangent space to Hfn+1 at ?, T- is

7> = {W e C Λ + 1 : <z, W} = 0}.

_Let 7J = {U G C + 1 : <£/, z> = 0 = <ί/, /z>}, and setting if/ = {λ E C:
λλ = 1} we have an if/ action on Hfn+ι, z\->λz.

At each point of //f71"1"1 the vector field ϊz is tangent to the flow of the
action, and </?, /F) = - 1 . Note that the orbit is ;cf = (cos t + / sin f)F and
dxjdt = /*,. The orbit lies in the negative definite plane spanned by {?, ΐz).
The identification space of this action is called CHΛ, and the projection is
denoted by/?. It is easy to see that Tp^(CHn) can be identified with 7j. This
construction mimics that of CPn. CHn has negative constant holomorphic
sectional curvature, p: H?n+ι -+CHn is an indefinite Riemannian submer-
sion.

The main result of this paper is
Theorem 1. If π: Hf -> Bj is an indefinite Riemannian submersion from

anti-de Sitter space to a Riemannian manifold with totally geodesic fibers, then

k = 2n 4- 1,7 = 2n, and B2n is holomorphically isometric to CHn

9 where BJ is

equipped with an integrable almost complex structure induced from the submer-

sion. (See [I], [2].)

2. This section deals with the algebraic preliminaries.
Given TΓ: M^>B, an indefinite Riemannian submersion, let V and H

denote the vertical and horizontal projections.

TX{M)=VX®HX

i V
O'Neill [5] defines two fundamental tensors on (Λf, V, < , )):

AEF = V(VHEHF) 4- H(VHEVF), TEF = H(VVEVF) + V(VVEHF)9

for vector fields E, F on M. These two tensors have the following properties:
0) AHE = AE; TVE — TE.

(ϋ) AE and TE are skew-symmetric with respect to < , ).
(iϋ) AE and TE take vertical vectors to horizontal vectors and vice-versa,
(iv) If V and W are vertical and X and Y are horizontal, then

TVW= TWV, AYX = -AXY.

Definition. A vector field X on M is said to be basic if it is the unique
horizontal lift of a vector field X+ on B, so that πJJX) = X+.
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Lemma 1 [59p. 460]. IfX and Y are basic vector fields on M, then

(2) H[X, Y] is the basic vector field corresponding to [X+, y j ,

(3) H(VXY) is the basic vector field corresponding to Vx Y+ where V* is the

connection on B.

Lemma 2 [5,p. 461]. If V is the connection on M, and V the connection on a

fiber, then for X, Y horizontal vector fields and V, W vertical vector fields we

have

(1) VVW= TVW + VVW,

(2) VyX = H(VyX) + TyX,

(3)VXV=AXV+ V(VXV),

(4) VXY = H(VXY) + AXY,

(5) ifX is basic, then H(VVX) = AXV.

We will assume that the fibers are totally geodesic, so that by (1) TVW = 0,

which gives

(2)'VV

XV=H(VVX).
O'Neill also proves [5, p. 465] the following relations between the sectional

curvatures K of M and K^ of B when the fibers are totally geodesic:

where X and Y are horizontal vector fields, V is a vertical vector field, and

KEΛF (respectively, K+E AF ) denotes the sectional curvature in M (respec-

tively B) of the plane spanned by E and F (E+ and FJ.

In the Riemannian case, (θθ) says that sectional curvatures are increased

by submersions. Since we will be dealing with submersions from H™+k, let us

first look at the case of submersion from a Lorentrian manifold with negative

sectional curvature to a Riemannian manifold.

Proposition 1. If m\ M™+k -^ Bm is an indefinite Riemannian submersion

with totally geodesic fibers, where M is Lorentzian and has negative sectional

curvature and B is Riemannian, then k = 1.

Proof. By (θ) we have

(Axv,Axvy
υ > A w - (χyχy(v, Vs)'

Since AXV and X are horizontal, (AXV, AXV} > 0 and {X, X} > 0. Thus

< V, V} < 0, i.e., V is timelike, and AXVΦ§ for all horizontal X φ 0, and all
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vertical V φ 0. Since M is Lorentzian, the timelike vectors are essentially
one-dimensional and so the vertical vectors are one-dimensional, q.e.d.

Thus if 7r: H™+1 -> Bm is a submersion with totally geodesic fibers, then by
(θθ) we have

3<AxY,AxYy

and because AXY is vertical, (AXY, AXY} < 0. This shows that A^ < -1 so
that curvature is nonincreasing in a submersion of this type.

Proposition 2. If π: H™+1 - » B m is a submersion with totally geodesic

fibers, then iTj{Bm) = 0J = 1, 2, 3, .

Hint of proof We must only show that in the fibration

Hm+1

that i induces a homotopy equivalence. This is clear, since every geodesic in

H^+l is a circle in R™+2 of the form (cos t)x0 + ( s i n O*o w i t h <xo> xo} = °
Theorem 2. Ifπ: H™+1 -> Bm is an indefinite Riemannian submersion with

totally geodesic fibers, then m = 2n,for some n > 0.
Proof. H™+1 is not only equipped with the fundamental tensor A but also

with a foliation by timelike geodesies. Thus there is a smooth vector field V
tangent to these geodesies with {V, K) = - 1 . Let X and Y be horizontal
vector fields on H™+1. We know that Ax V is horizontal. Therefore

o = γ(x, vy = <yγx, vy + (x, vγvy = (AYX, vy + <i,^yF).
Interchanging X and 7 we have

Since AXY + ΛyA" = 0, adding these two equations yields

so that A_V: Hx-> Hx is skew-symmetric. If the horizontal space Hx were
odd dimensional, then A_V would have 0 as an eigenvalue. On the other
hand, (θ) gives

<AXV,AXV)_

But <F, V} = - 1 , so <Λ;rK, Λ* *O = <X, Λ') which means ̂ 4_F is an isome-
try. Thus Hx must be even dimensional, and m = 2n. q.e.d.
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In fact a skew-symmetric isometry is an almost complex structure, since a
basis can be found with respect to which the mapping is of the form

0 1
-1 0

0 1
-1 0^

Thus we know that any indefinite Riemannian submersion from H* with
totally geodesic fibers onto a Riemannian manifold is of the form π: H2n+λ

-» B2n, and B2" is simply connected.
3. This part of the paper will show that B2n is holomorphically isometric to

Dn, the disc in Cn with the Bergman metric [4, Ex. 10.7].
First we shall show that the submersion induces an almost complex

structure on B2n and a Hermitian metric on B2n. Then it will be seen that with
these induced structures B2n is a Kahler manifold.

One could also show that H2n+ι is an indefinite regular Sasakian manifold
with the structure induced from the submersion and so [6, p. 150] B2n is a real
2n-dimensional Kahler manifold. The proofs are similar.

Let V be as in the proof of Theorem 2. Since V is a geodesic vector field,
VVV = 0. Let φ(E) = AEVfoτ all vector fields E on H2n+\ and let η be the
one-form dual to V, so that η( V) = - 1 . Then we have

Lemma 3. (\)φ(V) = 09

0,

E, F} + η(E)η(F)9

(5) η(E) - <£, F>,
for all vector fields E, F on H2n+ι.

Proof. (1), (2), (5) are clear.
(3) Let E = X + λ F where X is horizontal. Then

φ\E) = AAMVV-AAXVV, *ndAAχVV - -

since for all horizontal 7
7> - -(V,AAχVY) = <V,AγAx

Thus

<i»2(X + λF) = -X = - (A- + XV) - η(X + \V)V = -E - η(E)V.

(4) Let E = X + XV, F = Y + μV where X and Y are horizontal. Then

(φE, φF) = (AEV, AFV} = (AXV, AYV)

= (X, Y} = (X + XV, Y + μV} + η(X + XV)η(Y + μV).
q.e.d.
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Since the basic vector fields on H2n+λ correspond to vector fields on B2n,
we focus our attention on these vector fields. In particular, in order to have φ
induce an almost complex structure on B2n, if X is basic, then Ax V must be
basic.

Theorem 3. If X is a basic vector field on H2n+ι

9 then AXV is a basic
vector field.

Proof Lemma 1.2 [1, p. 254]: Let Bt be a basic vector field on Hfn+ι

corresponding to B^ on B2n, and let X be horizontal. If (X9 Bs}p = (X, B^,
for all such Bt and any/?, pf in π~\b), b E B2n, then X is basic.

This means that for all B, basic, we must show that V<SAX V, B) = 0. Since

V(AXV, B} = <yv{AxV\ B} + (AXV, VVB}

we must show that for X basic Vy(AxV) = -X. On Hfn+ι

R(KX)V=VVVXV- VXVVV - V[XiV]V =

since H2n+ι has constant curvature - 1 .
R(V,X)V = VVVXV-V[XV]V since V K F = 0, and because [V, X] is

vertical V[Λ, V]V= pVvV = 0 yielding R(V, X)V=VVVXV.
On the other hand

vyv-(v, vyx) = -x

so VVVXV = -X. But

VV(VXV) =VV(AXV + V(VXV)) =VV(AXV)

since (VXV, V) = \X(V, V) = 0. q.e.d.

Thus φ induces an almost complex structure on B2n.
Theorem 4. This almost complex structure on B2n is integrable.
Proof We must show that N^X^, Y+) = 0 where X+ and Y+ are vector

fields on B2n, and Nφ is the Nijenhuis tensor of <j>:

The basic vector field corresponding to Nφ(X+, YJ is H[φX, φY] - H[X, Y]
— φ[X, φY]- φ[φX, Y] where X and Y are the basic vector fields associated
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with X+ and Y+. This is equivalent to

- H(VXY)

(") (*) (c) (rf)

V ^ ^ F ) ) - H{V{AγV){AxV)) - H(yxY) + H(VYX)

(«) (/) («) (Λ)

In order to prove Nφ(X^, YJ — 0 it is sufficient to prove
Lemma 4. If X and Y are horizontal vector fields on Hf"+1, then

(t) H(VX(AYV)) = A^rY)V.

If (f) holds, then

AVχ(λγV)V = ^ ( V x ( ^ y K F ) ) = -H(VXY),

and so (a) = (g), (b) = (f), (e) = -(c) and (h) = -(d). Thus the sum is zero.
Proof of Lemma 4. (f ) is equivalent to

(f) <yx

Aγ V, Zy = (AVχYV,Zy for all horizontal Z.

From [5, p. 464 {3}]

<Λ(y, z)x, vy - -<(v^)yZ, κ>,

so

, z)v, xy = <(v^)yZ, vy.

Since Λ(7, Z)F = -{Y Λ Z)K = 0, we have <(V^) yZ, F> = 0, which ex-

pands to

o = <VX(AYZ), vy - <A?χYz, vy - <AY(VXZ), vy.

Substituting

AYZ = -{AYZ, vyv = (AYV, zyv
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in the above equation gives

o = <yx(AYv, zyv,vy- <A?xYz, vy - <AY(VXZ), vy

= (Aγv, zy<yxv, vy + (X(AYV, zyv, vy

-<AVχYz, vy - <AY(WXZ), vy

- -<yx(Aγv\ z> - (AYV, vxzy - (AVχYz, vy - <AY(VXZ), vy

= <yx{Aγv\ z> + (AYV, ixzy - <z,AVχYvy + <AY(VXZ), vy

= <yx(Aγv),zy-(AVχYv,zy

because (AYV, V^Z> + (AY(VXZ), F> = 0. q.e.d.

Note that the metric induced on B2" is Hermitian since (&X, φYy =

{X, Yy for X, Y basic on Hf"+'. Thus in order to show that B2" is Kahlerian

we must only show that

Since the basic vector field corresponding to V^ Y+ is H(VX Y) and the basic

vector field corresponding to V£ φY^ is H(VχφY), we must show that

for X, Y basic on Hf"+ι. But this is just (f).

Thus B2n is a Kahler manifold, πx(B2n) = 0 and to finish the proof of

Theorem 1 it is only necessary to show that B2n has constant holomorphic

sectional curvature [4, p. 170, Theorem 7.9].

By (θθ) we obtain

*,Λ#*. XΛΦX < Λ^ xy(φx, φxy - (x, <j,xy2

/A A V A A V\
= -1 + 3 ^ x , .

N o t e ^ ^ F = - ( ^ ^ F , F>F = (AXV, AxVyV = < ,̂ Λr>F, so that

_ <*,;Q2<F, F)
*X.ΛΦX. <X,X>2

This completes the proof of Theorem 1.

Just as Escobales does in [1] we can show that any two such maps are

equivalent.
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