
J. DIFFERENTIAL GEOMETRY
16 (1981) 305-322

CΛ-SUBMANIFOLDS OF A KAEHLER
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BANG-YEN CHEN

1. Introduction

Let M be a Kaehler manifold with complex structure /, N a Riemannian
manifold isometrically immersed in M, and 6ΰx the maximal holomorphic
subspace of the tangent space TXN of N. If the dimension of βύx is the same
for all x in N, 6ί)x gives a holomorphic distribution D̂ on N.

Recently, A. Bejancu [1] introduced the notion of a CR-submanifold of M
as follows. A submanifold N in a Kaehler manifold M is called a CΛ-sub-
manifold if there exists o n i V a differentiable holomorphic distribution ty
such that its orthogonal complement 6ί}1 is a totally real distribution, i.e.,

In this series of papers, we shall obtain some fundamental properties of
CΛ-submanifolds in Kaehler manifolds.

2. Preliminaries

Let M be a complex w-dimensional Kaehler manifold with complex
structure /, and N a real n-dimensional Riemannian manifold isometrically
immersed in M. We denote by < , ) the metric tensor of M as well as that
induced on N. Let V and V be the covariant differentiations on N and M,
respectively. Then the Gauss and Weingarten formulas for N are given
respectively by

(2.1) v^y=v^y+σ(^,y),

(2.2) Vxξ = -AζX+Dxt

for any vector fields Xy Y tangent to N and any vector field ξ normal to N9

where σ denotes the second fundamental form, and D the linear connection,

called the normal connection, induced in the normal bundle T±N. The

second fundamental tensor A± is related to σ by

(2.3) (AtX, 7> = <σ(*. Y), «>.
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For any vector field X tangent to N, we put

(2.4) JX = PX + FX,

where PX and FX are the tangential and normal components of JX, respec-
tively. Then P is an endomorphism of the tangent bundle TN, and F is a
normal-bundle-valued 1-form on TN.

For any vector field £ normal to N, we put

(2.5) / € - / € + /&
where ίξ and/£ are the tangential and normal components of /£, respectively.
Then/is an endomorphism of the normal bundle T±N, and / is a tangent-
bundle-valued 1-form on T±N.

A Kaehler manifold N is called a complex-space-form if it is of constant
holomorphic sectional curvature. We denote by M(c) (or Mm(c)) a complex
m-dimensional complex-space-form of constant holomorphic sectional curva-
ture c. Then the curvature tensor R of M(c) is given by

R(X, γ)z = ̂ {<y, zyx - (x, zyγ + (JY, zyjx

-(JX, Z)JY + 2(X, JY}JZ)

for any vector fields X, Y and Z tangent to M(c). We denote the curvature
tensors associated with V and D by R and R ± respectively.

For the second fundamental form σ, we define the covariant differentiation
V with respect to the connection in (TN) θ (T±N) by

(2.7) (V^σ)( Γ, Z) = Dx(o( Y, Z)) - σ(Vx Y, Z) - σ( Y, VXZ)

for any vector fields X, Y and Z tangent to N.
The equations of Gauss, Codazzi, and Ricci are then given respectively by

[4]

R(X9 Y; Z, tfO = R(X, Y; Z, W)
1 ' J ~<σ(ΛΓ,Z),σ(r,

(2.9) (Λ(JΓ, n z ) " 1 = (V^σ)(y, Z) - (Vyσ)(X, Z),

(2.10) i(J^, Y; {, η) = Λ ^(Jf, 7; fc η) - <[Aξ, Aη]X, Y),

where R(X, Y; Z, W) = <R(X, Y)Z, W\ , etc., X, Y, Z, ^ are tan-
gent to N, ξ and η are normal to N, and ± in (2.9) denotes the normal
component.

Definition 2.1. A submanifold iV of Kaehler manifold M is called a
CR-submanifold if there is a differentiate distribution βύ:x-^Θύx C 7 ^ on
N satisfying the following conditions:

(a) Φ is holomorphic, i.e., J6ύx = 6ϋx for each x G N, and
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(b) the complementary orthogonal distribution ^D"1: x —> <*DX C TXN is

totally real, i.e., J^x c T^N for each x 6 i V .

If dim tyjj- = 0 (respectively, dim <φχ = 0), then the CΉ-submanifold JV" is

a holomorphic submanifold [11] (respectively, totally real subrmnifold [8]). If

dim ^ = dim Tj~N, then the CΛ-submanifold is an anti-holomorphic sub-

manifold [3] (or generic submanifold [12]). A CΛ-submanifold is called a

proper CR-submanifold if it is neither holomorphic nor totally real.

We shall always denote by h the complex dimension of βύx and hyp the real

dimension of <>DX, i.e., h = dim c

 βi)x and/? = dimR <>DX.

We denote by v the complementary orthogonal subbundle of J6ϋ± in

T±N. Hence we have

(2.11) T^N

3. Some basic lemmas

In this section we shall give some basic lemmas for later use.

Let M be a Kaehler manifold. Then we have V/ = 0. If iV is a CΛ-sub-

manifold of M, then (2.1) and (2.2) give

(3.1) JVσZ + Jσ(U, Z) = -AJZU + DσJZ

for U tangent to N and Z in βϋ±.

Lemma 3.1. Le/ N be a CR-submanifold of a Kaehler manifold M. Then we

have

(3.2) <V t / Z,^>=</^ y z ί/,^>,

(3.3) Λ, Z ^ = ^ Z ,

(3.4) AnX = - ^ ί ^ ,

/or U tangent to N, X in ty, Z and W in <ΦX, andξ in v.

Proof. (3.2) and (3.3) follow immediately from (3.1).

(3.4) follows from the fact that <σ(JX, Y), {> = (VYJX, ξ) =

</σ(X, Y), O

Lemma 3.2. Lei N be a CR-submanifold of a Kaehler manifold M. Then for

any Z, W in 6ϋ± we have

(3.5) DWJZ - DZJW GJ<%•*-.

Proof. For any ξ in v and Z, W in ^D"1, we have

< ^ z , p̂ > = -<vz/ξ, wy = (Dzξ,jw> = - α Dzjwy.

Thus we obtain

<{, DWJZ - DZJW) = < ^ Z , W) - (AJξW, Z> = 0.

Since this is true for all ξ in v, (3.5) holds.
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From Lemma 3.1 it follows that we have J[Z, W] = J(VZW - VWZ) =

DZJW - DWJZ. Thus by Lemma 3.2 we obtain

Lemma 3.3. The totally real distribution βύ± of a CR-submanifold in a

Kaehler manifold is integrable.

This theorem has been generalized to CR-submanifolds in a locally confor-

mal almost Kaehler manifolds in [3],

For the holomorphic distribution ^ we have, [1], [3],

Lemma 3.4. Let N be a CRsubmanifold of a Kaehler manifold M. Then <Φ

is integrable if and only if

(σ(X, JY\ JZ} = (σ(JX, Y), JZ>

for any vectors X, Y in fy, and Z in ^ .

From (3.2) we obtain, [2],

Lemma 3.5. For a CR-submanifold N in a Kaehler manifold M, the leaf

N ± of 6ΐ)± is totally geodesic in N if and only if

(3.6) (σ^,^),/^-1-) = 0.

The following lemma can be obtained easily from Lemma 3.4.

Lemma 3.6. If (3.6) holds and Θ is integrable, then for any X in D̂ and ξ in

/ φ - 1 , we have

(3.7) AζJX = -JAζX.

Let P, F, t and/be the endomorphisms and vector-valued 1-foπns defined

by (2.4) and (2.5). Put

(3.8) (yuP)V

(3.9) {yvF) V = Dσ(FV) -

(3.10) ( ^

(3.H)

for £/, V tangent to N, and ξ normal to N. Then the endomorphism P

(respectively, endomorphism /, 1-forms F or t) is parallel if VP = 0 (respec-

tively, V/ = 0, VF = 0, or Vt = 0).

From (2.1), (2.2) and (2.4) we obtain

(3.12) (yup)v= tσ(U, V) + A^U.

4. CR-products in Kaehler manifolds

According to Lemma 3.3, every CR-submanifold N of a Kaehler manifold

is foliated by totally real submanifolds. In §4-§7 we shall study the problem
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when a CΛ-submanifold N is a Riemannian product of a holomorphic

submanif old and a totally real submanifold?

Definition 4.1. A CΛ-submanifold N of a Kaehler manifold M is called a

CR-product if it is locally a Riemannian product of a holomorphic submani-

fold Nτ and a totally real submanif old N x of M.

First we give the following characterization of CΛ-products.

Theorem 4.1. A CR-submanif old of a Kaehler manifold M is a CR-product

if and only if P is parallel, i.e., VP = 0.

Proof. If P is parallel, (3.12) gives

(4.1) tσ(U, V) = -AFVU

for any vectors U, V tangent to N. In particular, if X G βύ, then FX = 0.

Hence (4.1) implies tσ(U, X) = 0, i.e.,

(4.2) AJZX = 0,

for any Z in ̂ D-1, and A" in <ΐ>. Thus by Lemmas 3.4 and 3.5 we know that Φ

is integrable and the leaf N1- of ^ is totally geodesic in N. Let Nτ be a leaf

of Φ. For any X, y in <ΐ>, and Z in ̂ "S (4.2) and Lemma 3.1 give

o = <AJzγ,xy = </^7Zy,/x> = (vγz,jχy = -<z, vy/x>.
From this we may conclude that Nτ is totally geodesic in ΛΓ, and Λ̂  is a

Ci?-product in M.

Conversely, if AT is a CΛ-product, then V^y G Φ for any y in D̂ and [/

tangent to N. Thus by (2.1) and (2.2), we may obtain Jσ(U, Y) = σ(t/, /y) .

From this, together with (2.1) and (3.8), we may prove that ( V ^ y = 0.

Similarly, from VVZ G ̂ D"1 for any Z in ^ and C/ tangent to N9 we may

also prove that (V t /P)Z = 0.

From the proof of Theorem 4.1 we have the following.

Lemma 4.2. A CR-submanifold N in a Kaehler manifold M is a CR-product

if and only if A j^6!) = 0 .

Remark 4.1. In [2] Bejancu-Kon-Yano proved that if N is an anti-holo-

morphic submanif old and VP = 0, then iV is a CΛ-product.

Lemma 43. Let N be a CR-product of a Kaehler manifold M. Then for any

unit vectors X in ̂ ύ and Z in 6ϋ± we have

HB(X, Z) = 2\\σ(X, Z)\\\

where HB(X, Z) = R(X, JX; JZ, Z) is the holomorphic bisectional curvature of

X f\Z.

Proof. Let TV be a CR-product in M. Then we have (4.2) for any Z in 6ϋ±

and X in Φ. Thus by equation (2.9) of Codazzi we obtain

(4.3) R(X, JX; Z, JZ) = (Dxσ(JX, Z) - DJxσ(X, Z), /Z>,
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where we have used the fact that Nτ is totally geodesic in N. Since

<σ(*D, ^ X J^1- > = 0, (4.2) and (4.3) imply

R(X, JX; Z, JZ) = (σ(X, Z ) , />/Λr/Z> - <σ(/X, Z) , Z ^ / Z )

(4.4) = <σ(Jf, Z), / V ^ Z ) - <σ(/*, Z), /V^Z>

= <σ(X, Z ) , Jσ(JX, Z)> - <σ(/*, Z ) , /σ(X, Z)>.

Thus by (4.2) and Lemma 3.6 we obtain the lemma.

Theorem 4.4. Let M be a Kaehler manifold with negative holomorphic

bisectional curvature. Then every CR-product in M is either a holomorphic

submanifold or a totally real submanifold. In particular, there exists no proper

CR-product in any complex hyperbolic space Mm(c) (c < 0).

Corollary 4.5. Let Mm be a Kaehler manifold with HB > 0, and N a proper

CR-product in M. Then (1) N is not an anti-holomorphic submanifold^ and (2)

σ(<Φ, 6ϋ±) Φ 0; hence N is not totally geodesic in M.

Theorem 4.4 and Corollary 4.5 follow immediately from Lemma 4.3.

Theorem 4.6. Every CR-product N in Cm is the Riemannian product of a

holomorphic submanifold in a linear complex subspace CN and a totally real

submanifold of a Cm~N locally, i.e.,

N = Nτ X N-1 cCN X Cn~N = Cm .

Proof. Since N is a CR-product in C"1, Lemma 4.3 implies

(4.5) o(<$, 6J)±) = 0.

Thus by applying a lemma of Moore [10] we see that N = Nτ X N± is a

product submanifolds in RΓ X R2 m~Γ. Since Nτ is a holomorphic submani-

fold of Cm, we may choose R r to be a complex linear subspace of C".

5. Standard CR-products

In this section we shall derive the smallest codimension of CR -product in

complex projective spaces and classify CΛ-product in complex projective

spaces with smallest codimension.

First we shall give examples of CR-products in CPm. Let CPm denote the

complex m-dimensional complex projective space with constant holomorphic

sectional curvature 4. We define a mapping

Stpi CPh X CPp -> CPh+p+hp

by

(z0, , zh; η0, - , ηp) -> (zoηo, , Z(x\p , zhηp),

where (z0, , zh) (respectively, (η0, , ηp)) are the homogeneous coordi-

nates of CPh (respectively, QPP). It is easy to see that Shφ is a Kaehler



CR-SUBMANIFOLDS 311

imbedding of the Riemannian product CPh X CPP into CPh+p+hp. Let N±

be a /7-dimensional totally real submanifold of CPP. Then CPh X N1-
induced a natural C#-product in CPH+p+hp via Shj>, in which Nτ = CPΛ is a
totally geodesic submanifold, and TV"1 is a totally real submanifold of
£i p h +p + hp

Definition 5.1. A CR-product N = Nτ X N x in CPm is called a standard
CR-product if

(1) m = h + p + hp and
(2) TVΓ is a totally geodesic holomorphic submanifold of CP m , where

Λ = din^ ^ and/? = dimR <φ̂ -.
We shall prove that m = h + p + hp is in fact the smallest dimension of

CPm for admitting a Ciί-product. First we shall prove the following lemma.
Lemma 5.1. Let N be a CR-product in CPm. Then

{ σ ( X i 9 Z a ) } i = l , - , 2 Λ , α = l , ,p

are orthonormal vectors in v {T^Ή = Jtf)1- Θ v\ where Xv , X2h and
Z1 ? , Zp are orthonormal bases for 6i)x and fy^ respectively.

Proof. Since CPm is of constant holomorphic sectional curvature 4 and iV
is a CR -product, Lemma 4.2 gives

(5.2) ||σ(X, Z)\\ = 1,

for any unit vector X in Φ and Z in 6D±. Hence we may obtain by linearity
that

(5.3) <σ(*i, Z), σ(Xj9 Z)> = 0, i Φj.

Moreover, by Lemma 4.2 we see that σ(X, Z) is a normal vector in v.
Hence, if dimR ^ = 1, the lemma is proved.

If dimR ^ = p > 2, then from (5.3) it follows that

(5.4) <σ(*i, Zα), σ ( ^ , Z^)> + <σ(^, Z^), σ(Xy, Zβ)> - 0

for i τ^7, α
On the other hand, because N = Nτ X N *- is a CΛ-product, we have

(5.5) R(Xi9Xj;Za,Zβ)-0.

Moreover, by Theorem 6.1 of [3] we obtain

(5.6) R(Xi9Xj 9Za9Zβ)-0.

Therefore by (2.8), (5.5) and (5.6) we get

(5.7) (a(Xi9 Zα), a{Xj9 Zβ)} = <σ(^, Zβ), o(XJ9 Zα)>.

Combining (5.4) with (5.7) gives the lemma.
As immediate consequence of Lemma 5.1 we obtain the following.
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Theorem 5.2. Let N be a CR-product in CPm. Then

(5.8) m>h+ p + hp.

Remark 5.1. Since the standard CΛ-products in CPm satisfies the equality
sign of (5.8). The estimate of m given in (5.8) is best possible.

The following result seem to be remarkable.
Theorem 5 3 . Every CR-product N in CPm with m = h+ρ + hpisa

standard CR-product.

Proof. Let N be a CR-product in CPm with m = h + p + hp. Then for
any X, Y, Z in Φ and W in ^ we have, from (2.8),

(5.9) 0 = R(X, Y; Z, W) + <σ(*, W\ σ(Y, Z)>-<σ(JT, Z), σ(Y,

On the other hand, by (2.6) we obtain

R(X, Y; Z, W) = 0.

Thus (5.9) gives

(5.10) <σ(X, W\ a(Y, Z)> = (σ(X, Z), σ(7, W)>.

In particular, if Y = JX, then Lemmas 3.1, 3.6, 4.2, and (5.10) imply

<σ(Jf, Z), σ(/*, W)) = (σ(JX, Z), σ(^, W)}

(5.11) = </σ(X, Z), σ(X, W)}

from which we get

(5.12) <σ(X, Z), σ(JX, W)> = 0.

Combining (5.11) with (5.12) yields

<σ(X, Z), σ(X, ΪΓ)> = 0

for any X, Z in ^ and JF in ^ ^ . Thus by linearity we have

<σ(*, Z), σ(7, PF)> + <σ(7, Z), σ(X, fF)> = 0.

Combining this with (5.10), we obtain, for any X, Y, Z in ^ and Win 6D"L,

(5.13) <σ(X,Z),σ(7, ^ ) > = 0.

Now since m = h + p + hp, Lemma 5.1 and (5.13) show that σ(X9 Z) lies in
Jfy-t- for any X, Z in <3). On the other hand, Lemma 4.2 shows that a(Jf, Z)
must lie in v. Consequently, we have σ ^ , όD) = 0. Therefore by the fact that
N is a Ci?-ρroduct, Nτ must be totally geodesic in N. Thus iV is totally
geodesic in CPm.

As an immediate consequence of Theorem 5.3 we have the following.
Theorem 5.4. Let M = Mι X M2 be the Riemannian product of two

Kaehler manifolds with d i π ^ Mx = h and d i π ^ M2 = p. Then Mx X M2 ad-

mits a Kaehler immersion in CPh+p+hp if and only if both Mx and M2 are
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complex-space-forms of constant holomorphic sectional curvature 4. Moreover
h + p + hp is the smallest dimension of CPm which admits such Kaehler
immersions, and Mλ and M2 are both totally geodesic in CP m , and any such
immersion is obtained by the Segre imbedding.

6. Length of second fundamental form

The main purpose of this section is to prove the following.
Theorem 6.1. Let N be a CR-product in CPm. Then we have

(6.1) ||σ||2 > Λhp,

where h = diπ^ 6Ϊ)X and p = dimR fy^ . If the equality sign of (6.1) holds, then
Nτ and N1- are both totally geodesic in CPm. Moreover, the immersion is rigid.
In this case Nτ is a complex-space-form of constant holomorphic sectional
curvature 4, and N± is a real-space-form of constant sectional curvature 1.

Proof. Since CPm is of constant holomorphic sectional curvature 4 and N
is a CR-product, Lemma 4.3 gives

(6.2) |H*, Z)|| = 1

for any unit vectors X in D̂ and Z in ̂ ± . Thus we have

2h P

(6.3) ||σ||2 = 4λ/>+ 2 \\o{XA,XB)\\2 + 2 \\σ(Za, Zβ)\\2,
Λ,B=ί α,β=l

where [Xx, , Xlh) (respectively, {Zl5 , Zp}) is an orthonormal basis
of <>D (respectively, &). From (6.3) we obtain (6.1).

If the equality sign of (6.1) holds, (6.3) implies

(6.4) A ( ^ , ^ ) = 0 and A(^ x , ^ ) = 0.

Since Nτ and iVx are both totally geodesic in N, (6.4) implies that Nτ and
iVx are both totally geodesic in CPm. Consequently, equation (2.8) of Gauss
shows that Nτ is a complex-space-form of constant holomorphic sectional
curvature 4, and N ± is a real-space-form of constant sectional curvature 1.

Now we shall prove that the immersion is rigid if ||σ||2 = 4hp.
Since N = Nτ X N1- is a Riemannian product of Nτ and # x , we may

assume that {Xl9 , Xh,JXί9 ,JXh} is an orthonormal basis of Φ
such that * ! , - • - , ^ Λ , /ΛΊ, , JXh are parallel along 6ϋ±, and
{Z1? , Zp) is an orthonormal basis of ^D"1, which are parallel along 6ϋ.
Thus we have

VxZa = 0, VZXA = 0 ,

A B C = l 2 h ; a β y = \ - p



314 BANG-YEN CHEN

where Xh+i = JXt, i = 1, , h. If we put

(6.6) €<„.«) = σ(XA, Zα),

then Lemma 5.1 implies that

(6.7) JZa, ξ(Ayβ), α, β = 1, ,p;A = 1, , 2A,

are orthonormal vectors in T±N. Let

μ = Span{ζ{Ata)\A = 1, , 2h; a = 1, ,/?}.

Then JU ,̂ Λ: E iV, is a 2/^-dimensional linear subspace of vx.

Denote by μj- the complementary orthogonal subspace of μx in vx. Then

where /^D"1-, ft and μ-1 are mutually orthogonal.

From Lemma 4.2, (6.4) and (6.6) it follows that

(6.8) Im σ = μ,

and TN Θ / Θ ^ Θ / j t i s a complex vector bundle over N.

We prove the following lemmas.

Lemma 6.2. J ^ ® μ is a parallel normal subbundle, i.e., Dvξ

ί/ in TN and any £ in J ^ θ /A.

/. Let U be any vector in TN, Z in D̂ and η in μ±. Then (6.8) implies

0 = <σ(t/, Z), η> = (V^/Z, Λ|>. = (D^/Z, /η>.

Hence

(6.9) DyiJ^) Qjty1- ® μ,

for any U tangent to N.

From (2.6), (2.9), (6.6) and (6.8) we have

0 = R(XA, Za; Zfi9 η) = -(DzJ(Aφ), η>,

0 = R(XA9 Za; XB9 η) = <DxJ(B,a)i η).

Consequently, we have Dvμ Q Jty1- θ/i , which together with (6.9) gives the

lemma.

Combining (6.8) with Lemma 6.2 we may conclude that N is in fact lies in a

totally geodesic CPh+p+hp of CPm.

Now we put

(6.10) VXXB = Σ TC

ABXC, *zZβ - Σ Γ^Zγ.

Then from (2.9), (6.4), (6.5), (6.6) and (6.8) we have that
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which implies that

_ Similarly, by considering £(Zα, Λ^; Xβ9 ξ(Cy8)), R(XA, Za; Zβ, JZy), and
Λ(Zα, Λ^ XB, /Z^), respectively, we obtain

(6.12) <£>*, W €(C/i)> - ΓS* V

(6.13) < 2 ) z J ( ^ ) , / Z γ > = 0 ,

(6.14) < ^ W ^ > = <*,, J^>δ α / 8 .

Moreover, from (6.8) it follows that

(6.15) DυJZa = JVvZa = JluZa + Jσ(U, Zα).

Since N = Nτ X N1^ is a Ciϊ-product of a complex-space-form Nτ of

constant holomorphic sectional curvature 4 and a real-space-form iVx of

constant sectional curvature 1, the Riemannian structure of N is completely

determined. From (6.4), (6.6), and (6.8), the second fundamental form of N in

CPm is also determined completely. Moreover, from (6.11)—(6.15) and

Lemma 6.2, we see that the normal connection D on T±N is also completely

determined. Hence the immersion is rigid.

Remark 6.1. Let RPP be a totally geodesic, totally real submanifold of

CPP. Then the composition of the immersions

CPh X RPp->CPh X CPp XcPh+p^tψ-^CPm

gives a CR-product in CPm with | |σ | | 2 = 4hp. Theorem 6.1 tells us that it is in

fact the only CΛ-product in CPm with | |σ| | 2 = 4hp.

As a consequence of Theorem 6.1, we have

Corollary 6.2. // N is a minimal CR-product in C P m , then the scalar

curvature p of N satisfies

(6.16) p < 4h2 + 4Λ + p2 - p,

where the equality sign holds if and only if | |σ | | 2 = 4Λp.

Proof. Since TV is a minimal CΛ-product, the Ricci tensor S of N satisfies

s(x,x) = (2h+P + 2)\\x\\2 - ΣiμVΠI2> x e *D,

which imply that

(6.17) p = 4Λ2 + Ah + /72 - /> - | |σ | | 2 + Ahp.

Combining (6.1) with (6.17) we obtain (6.16). It is clear that the equality sign

of (6.16) holds if and only if | |σ| | = Ahp.
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7. CR-products in Hermitian symmetric spaces

First we give the following.

Lemma 7.1. Let Mm be a norφositiυely curved Kaehler manifold, and N a

CR-product in Mm. If N is anti-holomorphic, then

(1) the Ricci tensors of M and Nτ satisfy

(7.1) S(X, Y) = ST(X, Y)

for any vectors X, Y tangent to Nτ, and

(2) Nτ is totally geodesic in Mm.

Proof. Since N is a CR-pτoduct and M is nonpositively curved, Lemma

4.3 implies

(7.2) K(X, Z) = K(X, JZ) = σ(X, Z) = 0

for any X in <>D and Z in ^ . On the other hand, since N is anti-holomor-

phic, Lemma 4.2 gives

(7.3) σ(6D,όD) = 0.

Thus Nτ is a totally geodesic submanifold of M. Consequently, we have

(7.4) K(X, Y) = KT(X, Y).

for any orthonormal vectors X, Y tangent to Nτ, where Kτ denotes the

sectional curvature of Nτ. Combining (7.2) with (7.4), we obtain (7.1).

Theorem 7.2. Let Mm be a Hermitian symmetric space of noncompact type,

and N a complete CR-product in Mm. IfN is anti-holomorphic, then

(1) Nτ is also a Hermitian symmetric space of noncompact type.

(2) there exists another Hermitian symmetric space M^ of noncompact type

such that

(2a) M is the Riemannianproduct of Nτ and M ±, and

(2b) Nτ is a totally real submanifold oj'M "L.

Proof. Since Mm is a Hermitian symmetric space of noncompact type,

Mm is nonpositively curved [9]. By Lemma 7.1, we have (7.1) and Nτ is

totally geodesic in Mm. Hence from equation (2.8) of Gauss we have

(7.5) ST(X, X) = S{X, X) - 2 {R(Za, X; X, Za) + R(JZa, X; X, JZa)}
ot = \

for any orthonormal basis Zx, , Zp, JZλ, - ,JZp of T:LNT in Mm.

Since (7.1) holds and M is nonpositively curved, (7.5) implies

(7.6) K(X, Z) = K(X, JZ) = 0,

for any X in TNT and Z in T±NT. From these we may obtain the theorem

by using the same argument as we gave in the last part of the proof of

Theorem 1 of [5].
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As an immediate consequence of Theorem 7.2 we have the following.

Theorem 73. Let Mm be an irreducible Hermitian symmetric space of

noncompact type. If Mm admits a proper CR-product N, then N is not

anti-holomorphic.

Remark 7.1. Although the complex hyperbolic space admits no proper

CR-product (Theorem 4.3), other irreducible Hermitian symmetric spaces

of noncompact type admit Clί-products in general (see, Chen-Nagano

[7]). For example, the rank 2 irreducible Hermitian symmetric space

SU(2, m)/S(U2 X Um), admits a proper Ciί-product N for any h = din^ fy

satisfying 0 <h < m.

8. CR-submanifolds with VF = 0

Let N be a CΛ-submanifold in a Kaehler manifold M. Then it associates a

canonical normal-bundle-valued 1-form F on TN and a tangent-bundle-val-

ued 1-form / on T±N. In this section we shall classify CΛ-submanifolds with

parallel F (or t).

Lemma 8.1. For any vectors U, V tangent to N and £ normal to N, we have

(8.1) (Vvή^AjzU-PAsU,

(8.2) (Vj)ξ = -FAzU-σ(U, /{),

(8.3) (V VF) V = /σ( C/, V) - σ( U, PV).

Proof * From (2.1) and (2.2), we have

Vutξ + σ(£/, tξ) - AMU

Comparing the tangential and normal components of both sides of (8.4)

yields

(8.5) Vσ(tξ) - tDσξ = AfξU- PA^U,

(8.6) DJξ - fDyξ = -FAξU-σ(U, tζ).

Since the left-hand sides of (8.5) and (8.6) are nothing but (V^)f and

respectively, we have (8.1) and (8.2).

Similarly, for any U, V tangent to N, (2.1) and (2.2) give

VUJV=VUPV + σ(ί/, PV) - AFVU + DυFV

= PVσV+ F V ί / F + tσ(U9 V)+JΌ(U, V).
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Thus

DVFV - F(VσV) = fσ(U, V) - σ(U, PV),

which is nothing but (8.3).

Proposition 8.2. Let N be a CR-submanifold of a Kaehler manifold M.

Then V F = 0 if and only ifVt = 0.

Proof From Lemma 8.1, we see that Vt = 0 if and only if, for any U, V

tangent to N, ξ normal to N,

i.e.,

which is equivalent to

σ(U, PV) = /σ(£/, V), i. e., VF = 0.

Lemma 83. Let N be a CR-submanifold in a Kaehler manifold. Then

VF= Oif and only if

(1) N is a CR-product, and

(2)Apty
±=0.

Proof By Lemma 8.1, VF = 0 if and only if

(8.7) σ(U,PV)=fo(U,V).

Thus for any Z in 6ϋ± we have fσ(U, Z) = 0, which is equivalent to (2).

Moreover, for any X in Φ, (8.7) gives

σ(U, JX) = fσ(U, X) G v.

Thus Aj^ty = 0. Consequently by Lemma 4.2, N is a CΛ-product. Con-

versely, if Aj^ty = 0 and Aβ)^ = 0, then (8.7) holds by Lemma 3.6.

Lemma 8.4. Let N be a CR-submanifold in a Kaehler manifold. IfVF = 0,

then

(8.8) ^(^),^) = 0,

(8.9) σ( ί5D, ί5D±)=O.

Proof (8.9) follows from Lemmas 4.2 and 8.3, and (8.8) from Lemmas 4.3

and (8.9).

From Theorem 4.6 and Lemma 8.4 we obtain the following.

Theorem 8.5. Let N be a proper CR-submanifold in a complete simply-

connected complex-space-form Mm(c). If VF = 0, then c = 0, i.e., Mm(c) =

Cm. Moreover, N is the Riemannian product of a holomorphic submanifold Nτ

of a Cm~p and a totally real submanifold N1- of a Cp locally, where p =

dimRN±.
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Proof, From Lemma 8.4 it follows that Mm(c) is Cm. Thus by Theorem
4.6 we see that N is the Riemannian product of a holomorphic submanifold
Nτ in a C* and a totally real submanifold in a Cw~" locally.

Using Lemma 8.3 and the fact that N ± is totally geodesic in N, we obtain
from Theorem 2 of [6] that Nx is in fact lies in a complex /^-dimensional
linear complex subspace Cp of Cm as a totally real submanifold.

Remark 8.1. Let Nτ be a holomorphic submanifold of a Kaehler mani-
fold Mτ, and iV"1 a totally real submanifold of a Kaehler manifold M^.
Then it is easy to verify that N = Nτ X N1- is a CR-submanifold in
M = M Γ X Λfx with IF = 0. From this we may conclude that the rank-
2 irreducible Hermitian symmetric spaces SU(2, m)/S(U2 X C/m) and
SU(2 + m)/S(U2 X t/m) both admit proper CΛ-submanifolds with VF = 0.

Remark 8.2. From (8.2) it is easy to see that a proper CR-submanifold iV
satisfies V/ = 0 if and only if J^1- is parallel (or A ^ = 0).

9. Mixed foliate CR-submanifolds
Definition 9.1. A CΛ-submanifold Λf in a Kaehler manifold is said to be

mixed foliate if
(1) Φ is integrable and
(2)σ(6D,6D"L) = 0.
Lemma 9.1. Le/ N be a mixed foliate CR-submanifold in a Kaehler

manifold M, Then for any unit vectors X in <Φ and Z in 6D± we λm e

(9.1) HB(X,Z) = -2\\AJZX\\2.

Proof If JV is mixed foliate CΛ-submanifold, then

(9.2) σ(<3), <ΦX) = 0, [ <3), ^ ] C Φ, σ(^r, /Y) = σ(J^, 7)

for any X, Y in βϋ. Thus for any X in φ and Z in 6D±, the equation of

Codazzi gives

HB(X, Z) = <σ(JX, VXZ), JZ}- <σ(X, VJXZ), JZ}.

= (AJZJX, VXZ} - <AJZX, VJXZ>.

Hence by Lemma 3.1 we have

HB(X, Z) = (AJZJX, JAJZX} - (AJZX, JAJZJX}

= -2\\AJZX\\2.

Theorem 9.2. Let M be a Kaehler manifold with HB > 0. Then M admits
no mixed foliate proper CR-submanifolds.

This theorem follows immediately from Lemma 9.1.
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Corollary 93 (Bejancu-Kon-Yano [2]). A complex-space-form Mm(c) with
c > 0 admits no mixed foliate proper CR-submanifolds.

Remark 9.1. Geodesic spheres of CPm are real hypersurfaces with

σ(6j)>6j)-L) = 0.

Theorem 93. Let N be a CR-submanifold in C 1 . Then N is mixed foliate if
and only if N is a CR-product.

Proof Let N be a CΛ-submanifold in C . If Λf is mixed foliate, Lemma

9.1 implies

(9.3) Λj^ = 0.

So by Lemma 4.2, JV is a Ci?-product.
Conversely, if JV is a CR-product, then (9.3) holds. Thus by Lemma 4.2 and

4.3, we get σ ^ , 6i)-L) = 0. Hence N is mixed foliate.
Remark 9.2. For an anti-holomorphic submanifold N, Theorem 9.3 is due

to Bejancu-Kon-Yano [2].

10. CR-submanifolds in Hermitian symmetric spaces of compact type

Using Lemma 9.1 we obtain
Theorem 10.1. Let M be a compact (type) Hermitian symmetric space and

N a mixed foliate CR-submanifold in M, Then
(1) N is CR-product,

ty^ = 0, K(q>, J^) = 0,
= 0 .

Proof If TV is a mixed foliate CR-submanifold in a compact Hermitian
symmetric space M, then M is nonnegatively curved [9], and hence by
Lemma 9.1 we have

HB(X, Z) = K(X, Z) + K(X, JZ) = 0, AJZX = 0,

which imply (2) and (3). Statement (1) follows from (3) and Lemma 4.2.
Remark 10.1. Although CPm admits no mixed foliate proper CR-

submanifolds (Corollary 9.3), other irreducible compact Hermitian sym-
metric spaces admit mixed foliate proper CΛ-submanifolds in general.
For example the rank-2 irreducible compact Hermitian symmetric space
SU(2 + m)/S(U2 X Um) admit such submanifolds iV for any h = din^ Φ
satisfying 0 < h < m.

In view of Remark 10.1 it seems to be interesting to give the following.
Theorem 10.2. Let N be a complete mixed foliate CR-submanifold in a

compact type Hermitian symmetric space Mm. If N is anti-holomorphic, then
(1) N is a CR-product Nτ X N^,
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(2) Nτ is also a compact type Hermitian symmetric space,

(3) there is another compact type Hermitian symmetric space M x such that

(3.1) M is the Riemannianproduct Nτ X M-1,

(3.2) N± is a totally real submanifold ofM±.

Proof. (1) follows from Theorem 10.1. Let Nτ be a leaf of the holomor-

phic distribution βΰ. Then, since Nτ is totally geodesic in N, Theorem 10.1

implies that Nτ is a totally geodesic holomorphic submanifold of M m . Thus

Nτ is also a compact type Hermitian symmetric space, and (2) is proved.

Using (2) of Theorem 10.1, the equation of Gauss, and the fact that Nτ is a.

totally geodesic submanifold of Mm, we obtain that

(10.1) ST(X, Y) = S(X, Y)

for any vectors X, Y tangent to Nτ. Thus by applying Theorem 2 of [5] we

arrive at (3).

The following is an immediate consequence of Theorem 10.2.

Corollary 103. Every irreducible compact type Hermitian symmetric space

admits no mixed foliate proper anti-holomorphic submanifolds.

Remark 10.2. Although Theorem 10.1 shows that every mixed foliate

CΛ-submanifold in a compact Hermitian symmetric space is a CΛ-product,

and Theorem 9.3 shows that a mixed foliate CR-submanifold in Cm is nothing

but a CΛ-product, CΛ-products in compact Hermitian symmetric spaces are

not mixed foliate in general. For example, the standard CTί-products in CPm

are not mixed foliate.

11. Remarks

11.1. The classification of mixed foliate CΛ-submanifolds in complex

hyperbolic spaces and the classification of CΛ-submanifolds with semi-flat

normal connection together with other results on CΛ-submanifolds will be

given in the second part of this series.

11.2. A portion of this paper was done while the author was a visiting

professor at the University of Granada, Spain. The author would like to

express his hearty thanks to his colleagues there for their hospitality. More-

over, he would like to express his thanks for the valuable discussions with

Professors Barros and Urbano on this subject.

Added in Proof. Recently A. Bejancu informed me that he also obtained

Theorem 4.1.
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