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CONVEXITY IN GRAPHS

FRANK HARARY & JUHANI NIEMINEN

The convex hull of a set S of points of a graph G is the smallest set T
containing S such that all the points in a geodesic joining two points of T lie
in T. The convex hull T can also be formed by taking all geodesics joining
two points of S, and iterating that operation. The number of times this is
done to S to get T is gin(S), the geodetic iteration number of S. Then gin(G)
is defined as the maximum of gin(S) over all sets S of points of G. The
smallest number of points in a graph G such that gin(G) = n is determined
and the extremal graphs are constructed.

Let G be a graph with point set ¥ = V(G) and let S C V. An S-geodesic is
a shortest path in G joining two points of S. We denote by (S) ='S the set of
all points on some S-geodesic. Iterating, let 2§ = (!S) = ((S)) and ‘*!S =
(‘S). The geodetic iteration number of S, written gin(S), is the minimum n
such that "*!S ="S. Then the convex hull of S, denoted by [S], is the point
set "S. Thus the convex hull of S is the smallest 7 5 S such that the points of
every T-geodesic are in 7.

Trivially [V]= V, [v] = v for all v € V, and for each line uvo of G,
[u, v] = {u, v}. For other graphical terminology and notation, we follow the
book [1];vin particular p(G) is the number of points in G. However, we use E
for the set of lines of G. We define the geodetic iteration number of a graph G
by gin(G) = max{gin(S): S C V}. Our object is to determine the minimum
number p of points in a graph G such that gin(G) has a given value n. Also,
the structure of such extremal graphs is specified.

A graph G is smaller than graph H if it has fewer points.

Theorem 1. Let H, be any smallest graph with geodetic iteration number n.
Then the number of points of H, is given by p(Hy) = 1, p(H,) = 3, and when
n>2p(H)=n+3.

Proof. The case n = 0 is trivial and the unique Hj, is the trivial graph K.

By inspection one sees at once that the extremal graphs H, and H, are the
graphs of Fig. 1 and are unique. We take S = {u, v} in both H, and H, and
find that in H,, (S) = V so that p(H,) = 3, and in H,, |(S)| =4 and S = V
sowe havep(Hy) =5=n+ 3.
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Now we consider n > 3. By definition there is a nested sequence of
point-sets S =% c'S c2§ c - - - c”"S ="*I§ C V such that ‘*'S contains

‘S properly when 0 < i < n — 1. Thus a graph G with gin(G) = n has the
minimum number of points if ‘*'S — ‘S contains only one point for i =
l,---,n—1,and if S =° and 'S are of minimum size. If S contains only
one point, then as mentioned above [S] = § and thus S must contain at least
two points. By the same reasoning 'S — S contains at least two points. On the
other hand, the graph G of Fig. 2 has gin(G) = n, S = {ug, 4}, 'S — S =
{uy, .} and “*'S — S = {4} fori=1,- - -, n — 1. Thus there exists a
graph satisfying all the minimum constraints found above, whencep = n + 3
in a smallest graph with gin(G) = n when n > 2.

FiG.2
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Theorem 2. Let G be a graph with gin(G) = n > 2, with a minimum
number of points and with point labels S =°S = {ug, ug}, 'S — S = {u,, u;.}
and "*'S — 'S = {w;,,} fori=1,- - -, n — 1. Then the lines of G satisfy the
following requirements:

(1) uguy, ugtye, Ugetty, Ugeltye, U Uy, UyelUy € E.

() w4, ;. € E for each i > 2 and for at least one value of k among
k=0,0%1,1%2,3,4,---,i—2.

) If u\u; € E where i > 3 and j <i — 2, then wu;,, € E or u U, &
E,s=2,3,---,i—j— 1. Further, ifj = 0, 1, then j # 0*, 1*,

Proof. The existence of the lines given in (1) follows from the hypothesis
that gin(G) > 2.

Because u;,, € ‘*'S — S, there is a geodesic between u; and another point
of S in G containing . ,, and as u,, is the only point in ‘*'S — 'S, u,, is
joined by a line to two points of ‘S. If u,, ,u; & E, then u,u;,,, 4,4, € E,
where ¢, r < i and thus 4, 4, € ‘~'S. When u,, u, € ‘IS, u;,, €S which is a
contradiction, so every two points of ‘S adjacent to ,,, in G are joined by a
line and thus «,,, & ‘*'S which is also a contradiction. Hence (2) is valid.

Asi>3,u,,€'Sifj=0,0%and ., €25 if j = 1, 1*. Thus the latter
statement of (3) holds. By the hypothesis of (3), %, 1%, 44 %4, € E, so any
geodesic between u; and ;. is at most of length two. If it has length two,
then u,,, €/***'S 'S which is a contradiction. Thus the length must be
one, whence wu;, ; € E, proving the first part of (3). q.e.d.

In the two next theorems we describe the graphs with gin(G) = 0, 1.

Theorem 3. A connected graph G has gin(G) =0 if and only if G is a
complete graph.

Proof. Let gin(G) = 0, whence S = [S] for each S C V. In particular,
S = [S] when S contains two points only, and in this case, as G is connected,
S = [S] only if the points are adjacent. Hence any two points of G are joined
by a line and G is complete. The converse is obvious.

Theorem 4. Let G be a connected graph. If gin(G) < 1, then there is a cycle
basis B = {Z,,- - -, Z;} of G such that Z; and Z; have at most one common
line for each pairi and j,i #jandi,j =1, - - - , k.

Proof. If such a cycle basis does not exist, we can choose two cycles Z,
and Z; of G having minimum number of lines and at least two common lines.
By the minimality, if u and v are on the cycles Z; and Z, then all the lines of
at least one {u, v}-geodesic belong to Z; and Z;. But then it is easy to choose
from the points on Z; and Z; a set S such that S C'S S =S, where the
points of 2§ — 'S are among the points of the common lines of Z; and Z,.
Thus gin(G) > 2, which is a contradiction. q.e.d.
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The converse of the theorem does not hold as the graph G of Fig. 3 shows:
gin(G) = 2 although there is a cycle basis B satisfying the conditions of
Theorem 4.

G

B = {(xl,xz,x4,x5),

(X2,X3,X7) ’

(x3,x4,x6)} .

F1G. 3

Finally we look for a criterion for a connected graph G to have gin(G) =
n. Some concepts are needed first. Let "H = {G: gin(G) = nand p = n + 3}
whenn > 2.

Also let 'H consist only of the graph H, of Fig. 2 and let °H = {K,}. The
fact that both 'H and °H are singletons was already mentioned above. We
shall see that "H is a singleton only forn = 0, 1, 2, 3, 4.

The graphs G with gin(G) = n will be characterized by means of graph
homomorphisms and the graphs in the families "H forn =0, 1,2, - - - .

Let G = (V, E) be a graph and let C = {S,, - - -, S,} be a partition of V.
A graph H = (Vy, Ey) is a homomorphic image of G under a homomor-
phism f, denoted as f(G) = H, if there is a one-to-one correspondence
between the elements S; in C and the points % in Vy, and if yu, € Ey
whenever there is a line in G joining S; and S;, i ;. We then say that f is
generated by C. The homomorphism f: G — H is said to be geodesic compat-
ible if and only if for each v — w geodesic in G, v € S, and w € §; and i #j,
ranging over §; = S;, S;,- - -, S, = S, there exists a y; — u; geodesic in H
ranging over the points ¥, = u;, %, - - - , %, = u; and vice versa.

Theorem S. For a connected graph G, gin(G) = n if and only if (1) and (2)
both hold:

(1) There are an induced subgraph G’ of G and a geodesic compatible
homomorphism f such that f(G’) € "H.

(2) There is no induced subgraph G’ and no f as defined in (1) such that
NG E™H, m > n.

Proof. If G satisfies (1), the geodesic compatibility of f implies that
gin(G) > n, and according to (2), gin(G) = n.
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We prove the converse by induction on #n. When n = 0 or 1, the theorem is
obviously valid. We assume that the theorem holds for n < k, and let G be a
connected graph with gin(G) = k + 1.

As gin(G) = k + 1, there is a set S’ such that S’ =%’ c!s’ c%s’
C -+ c*§’ c**1s’ =[S"], and as G is connected, [S’] obviously induces a
connected subgraph of G. According to the properties of a convex hull, XS’
also induces a connected subgraph “G’ of G. From **!S’ =[S’] and the
induction assumption it follows that by removing points from °S’ and

i*lg/ —i§’,i=0,1,- - -,k — 1, we obtain an induced subgraph “G of *G’
(and of G) such that
(@) gin(*G) = k;

(i1) there is a geodesic compatible homomorphism f' with the property
f(G) €*H;

(iii) there are in G at least two points joined by a geodesic of G going over
the points ¥*1S’ — XS in G. As gin(*G) = k, there is a sequence S =°S C'S

C - - cks =[S], and as the points of the geodesic of (iii) are from
k+1g’ — kS, one of the points of [S] joined by this geodesic is from S —
k=1§. We denote this point by v, and let v, w,,- - - ,w,, v be a shortest

geodesic beginning with v and defined in (iii); thus v and v’ are points of “G,
and w,, - - - ,w, € ¥*1§" — kg’ On the other hand, let f’ be generated by
C’ = {Sq Sows Sis Syes Sy, S, =+, S;), where °S = Sy U S, 'S = %5 = S,
U Sy, and §;=/S —/7'S, j=2,- - -, k. A new homomorphism derived
from f’ is generated by the family C = C’' U {S,,}, where S, , =
{wy, + - -, w}. Clearly C is a partition of the points of an induced subgraph
k+1G of G. We need only show that f is a geodesic compatible homomor-
phism of ¥*!G onto a graph in ¥*!H. According to the properties of f’, it is
sufficient to concentrate on the set S, , and its image u, , , in f**'G).

As v, wy, - - -, W, v is a shortest geodesic beginning with v and defined in
(iii), then only w, can be adjacent to two or more points of “G; in the other
case there would be a shorter geodesic beginning with v, which is a contradic-
tion. Let v’ € §;. If there is a line % in f'(*G), then by removing suitable
points from “S — ¥~!S, we obtain a new graph “G in which there are no lines
joining two points, one from *S — *~1S and one from /S — /~!S. This new G
is connected and satisfies (i) and (iii) as “S — 'S consists of the points of
the least iteration in ¥G. As f’ is a homomorphism defined in (ii), then a
fortiori f’ is a geodesic compatible homomorphism mapping the new kG onto
a graph in *H. If w; is joined by a line to points from other sets S; than S}, and
u,y; is a line in f/(*G), then by reducing kG as above, we obtain a new
connected graph G satisfying (i), (i) and (iii) but in which f'(*G) does not
contain the line u ;. But then the mapping f of k+1G is geodesic compatible,
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and f(**'G) contains just those lines which are allowed to belong to a
minimum graph with gin(G) = k + 1 in Theorem 2.

If (2) is not valid, then by the first part of the proof, gin(G) > k + 1, which
is a contradiction.
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