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FOLIATIONS BY MANIFOLDS WΠΉ BOUNDARY

J. L. NOAKES

Introduction

We define a class of foliations admitting certain sorts of singularities. These
foliations may be thought of as generalized Alexander decompositions and
can also be used to construct examples of ordinary foliations. Our main result
generalizes Bott's vanishing theorem [2] to our class of foliations. Another
generalization of Bott's theorem to analytic foliations is given in [1] by Baum
and Bott. However it appears from a remark in [3] that smooth foliations with
singularities are less well understood.

A (smooth) p-dimensional foliation of a smooth m-manifold M by manifolds
with boundary is defined to be a set {La: a EL A) of smoothly immersed
submanif olds of M such that

( 1 ) 5 = U A dLa is a closed (p — l)-dimensional submanif old of A/.
(2) {La — S : α G A} is an ordinary smooth foliation of m — S.

We call La a leaf and S the singular manifold of the foliation {La : a £ A}.
The integer m — p is the codimension of the foliation.

Example 1. Let (λα : a E A } be the set of orbits other than the orbit {0}
of a nondegenerate linear vector field P on the open unit (m — p + l)-ball

em-p+\ L e t N b e a c i o s e < j s m ooth (p - l)-manifold. Then the path-compo-
nents of the N X (λα U {0}) give us a foliation of N X em~p+ι by manifolds
with boundary. The singular manifold is N X {0} and the foliation is said to
be trivial.

N x {0}
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The illustration shows parts of two trivial foliations of Sι X e2 by 2-mani-
folds with boundary.

A foliation by manifolds with boundary is said to be locally trivial when the
singular manifold S has an open neighborhood U such that {La Π U : a G
A } corresponds under a diffeomorphism to a trivial foliation. In this case S
must have a trivial normal bundle.

Example 2. Let M be compact. Then the orbits of a smooth vector field
on M with nondegenerate zeros make up a locally trivial foliation of M by
1-manifolds with boundary.

Example 3. An Alexander decomposition [4, p. 379] gives rise to a locally
trivial codimension-1 foliation of M by manifolds with boundary. Compact
3-manifolds admit Alexander decompositions, and we refer to [7] for more
general results.

Example 4. Let Dm~ι be the closed unit (m - l)-ball. Then for m > 3 the
construction of Reeb [4, p. 378] gives an ordinary smooth codimension-1
foliation of Dm~λ X Sι where d(Dm~ι X Sι) = Sm~2 X S 1 is one of the
leaves. Now a spiral vector field on D2

gives us a locally trivial codimension-1 foliation of Sm 2 X D2 by manifolds
with boundary where d(Sm~2 X D2) = Sm~2 X Sι is again one of the leaves.
Identifying and smoothing the two foliations along Sm~2 X Sι we obtain a
locally trivial codimension-1 foliation of Sm by manifolds with boundary.
This foliation does not come from an Alexander decomposition because its
leaves are not all diffeomorphic. Also when m is even Sm does not have a
nonsingular (m - l)-plane field, and so Sm does not have an ordinary
foliation of codimension 1.

Let V, W be connected closed smooth manifolds of dimensions r + 1,
s + 1 respectively. We remove small open discs er+\ es+ι from F, W to
obtain manifolds Vl9 Wx with boundaries Sr, Ss respectively. We then
identify and smooth Vx X S\ Sr X Wx along their common boundary Sr X
Ss to obtain a smooth (r + s + l)-manifold V- W. For instance Sr+ι - Ss+ι
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Proposition 1. Let s be odd. Then V- W has a locally trivial codimension-s

foliation by manifolds with boundary.

The construction is given in §1.

Example 5. A sphere has locally trivial foliations of all odd codimensions.

Proposition 2. Suppose that M has a locally trivial foliation of codimension

q, and let N be a smooth n-manifold admitting a never-zero vector field. Then

M X N has an ordinary smooth foliation of codimension n + q.

The construction is given in §2.

Example 6. Let TV be as in Proposition 2. There is an (m + l)-frame field

on Sm X N, and it follows from theorems of Thurston [5], [6] that Sm X N

has ordinary smooth foliations of all codimensions < m + 1. We add to this

picture in the following way. It follows from Proposition 2 and Example 5

that Sm X N has ordinary smooth foliations of all codimensions n + q where

0 < q < m is odd. Examining our constructions, we find that ( F W) X N

has an ordinary smooth foliation of codimension s + n. Consequently Sm X

N actually has ordinary smooth foliations of all codimensions > n — 1. This

is done in §3.

We next define the notion of tangency for locally trivial foliations

{La : a E A} by manifolds with boundary. Let εR be the trivial real line

bundle and let/ : (0, 1] -> R1 be a smooth map satisfying

(1) f(t) = 0 for 1/2 < / < 1,

(2) lim | / r ) ( ί ) | = oo f o r r > 0 .

f ( t )

(1/2,0) (1,0)

Let Ex C T(M - S) be the tangent bundle of the ordinary foliation

{La - S : a E A] of M - S and, identifying U with S X em~p+\ let E2 be

the bundle TS X εR-+ S X em~p+ι over U. Again let P denote a linear

vector field on e

m~p+ι giving rise to the trivial foliation on S X em~p+ι.

We define a smooth vector bundle E over M to be the bundle Eι U E2/~

where - identifies (0, (Pv) cos θ) E T(S X em-p+\Xyυ) with the positive
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vector of length | |c| | in ({0} X e R ) ( j C u ) for (x, v) G S X {em~p+l - {0}).
Here tan θ = dfM(l) with ττ/2 < θ < π. We say that E is tangent to
{Lα : a G v4}. To justify this terminology we define a map p : £-> ΓM of
smooth vector bundles over M by the following two conditions:

(1) Over m - S p is the inclusion of Ex in TM\M - S.
(2) Over S, p is projection to the first factor E2\S = (TS) θ εR-> TS

followed by inclusion in TM\S.
Then p(Ex) is (TLa)x or (TdLa)x according as x G Int La or x G 9Lα.

Now we change our point of view. Let is be any smooth /?-ρlane bundle
over Λf.

Theorem. Suppose that E is tangent to a locally trivial foliation of M by

manifolds with boundary. Then the real Pontrjagin ring of the stable difference

TM/E is trivial in dimensions greater than 2(m — p).

Taking S to be empty we recover Bott's result [2] for ordinary smooth
foliations. Our proof is along the same lines as Bott's, but care is needed near
the singular manifold S. A weaker result can be obtained by applying Bott's
result together with Proposition 2.

Example 7. Let M be (CPn) X (Sι X S1), and H the Hopf complex line
bundle over CPn. Then (n + \)H ^(TCPn) θ ε c where ε c is the trivial
complex line bundle. For 1 < r < n let E be the bundle over M induced from
rH by projection onto CPn. Then E is a smooth sub-bundle of TM and Bott's
theorem asserts that for \(n + 3) < r < n, E is not tangent to an ordinary
smooth foliation-nor is any bundle stably equivalent to E. Our theorem
asserts for the same values of r that E is not tangent to a locally trivial
foliation by manifolds with boundary.

If E is not a sub-bundle of TM, then there is often no map p : E -» TM of
smooth vector bundles and no closed (p — l)-dimensional submanifold S of
M satisfying

(1) dim ρ(Ex) = p orp - 1 according as x G M - S or x e S,
(2) E is tangent to a trivial foliation in some neighborhood of 5.

The obstructions could be the subject of a future note, but these vanish in
Example 7.

The author wishes to thank Professor J. R. Vanstone and the referee for
helpful and encouraging comments, and also Professor S. Halperin for
improving Proposition 2.

1. Proof of Proposition 1

Here we are guided by Example 4. When s = 1 we apply the Reeb
construction [4, p. 378] to obtain an ordinary smooth codimension-.y foliation
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of Vx X Ss. This is possible because the Hopf bundle is orientable. Note that
on d(Vx X Ss) = Sr X Ss a leaf of this foliation is either the whole of
Sr X Ss when s = 1 or the product of Sr with a fibre of the Hopf bundle
when s > 3.

Let Y be the gradient vector field of a Morse function / : W-^Rι. We
obtain Wλ by removing a small open disc containing a relative minimum of/
and no other critical points.

If s = 1, let X be a never-zero vector field on S*. If 5 = 2n + 1 > 3, an
orientation of the Hopf bundle Ss -» CPn defines a never-zero vector field X
on Ss whose orbits are the fibres. Changing Y to X through a collar on Ss

SS x {π/2}

Ss x {0}

SS x {0}

and smoothing, we obtain a smooth vector field Z on Wx which is X on
djyx = ss and whose zeroes are the same as those of Y. As in Example 4,
where W = S2, Z gives us a locally trivial codimension-,? foliation of Sr X
Wv This foliation agrees on Θ(S" X W )̂ = S r X Ss with the foliation de-
fined on Vx X S\ Identifying and smoothing these foliations along Sr X Ss

we obtain a locally trivial codimension-^ foliation oiV W.
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2. Proof of Proposition 2

Let Y be the negative of the identity map on em~p+ι, regarded as a vector
field, and let X be a smooth never-zero vector field on TV. Let e' be the open
ball of radius \, and let Z be a never-zero vector field on em~p+ι X N which
agrees with X near {0} X N, and with Y on (em~p+1 - e') X N. Then the
orbits of Z give an ordinary smooth 1-dimensional foliation of em~p+ι X N,
and from this we obtain an ordinary smooth /^-dimensional foliation of
S X em~p+ι X N = U X N. Let U' = S X e'. Then on (U - U') X N the
leaves of this foliation are those of the product with N of the restriction of the
singular foliation to M — U'. Identifying these foliations over (U — U') X N
we obtain an ordinary smooth /?-dimensioϋal foliation of M X N.

3. Example 6

We put ourselves in the situation of §1, except that s need no longer be
odd, let I be a never-zero vector field on N and note that the Reeb
construction applies to Vx X N (all that is really needed in § 1 is the existence
of a never-zero vector field on Ss). So we obtain an ordinary smooth
codimension-Λ foliation of Vx X N whose leaves on d(Vx X N) = Sr X N
axe the products of Sr with the orbits of X. We multiply by Ss to obtain a
codimension-(Λ + s) foliation of Vx X Ss X N.

Let M>(1), , H>(A:) be the critical points of/in Wv Then changing Y to X
within small neighborhoods of the {w^} X Λf, as well as through a collar on
Ss X N, we obtain a never-zero vector field Z on Wx X N whose orbits on
d(Wι X N) = Ss X N are the orbits of X. Multiplying by Ss we obtain an
ordinary smooth foliation of Sr X Wx X N which agrees on d(Sr X Wx X
N) = Sr X Ss X N with the foliation defined above on Vx X Ss X N. Iden-
tifying and smoothing these foliations along Sr X Ss X N we obtain an
ordinary smooth codimension-(»s + ri) foliation of (V- W) X N.

Of course it is trivial that (V- W) X N admits ordinary smooth foliations
of codimensions n, n — 1.

4. The main result
To prove our theorem we first define an inclusion t : E -+{TM) θ εR of

smooth vector bundles over M by the following three conditions:
(1) Over M - U, c is the inclusion of EX\M - U in TM\M - U followed

by the inclusion in (TM) θ εR\M - U.
(2) Over U - S, t is given by ι(w, (Pv) cos θ) = (H>, (PV) COS θ, \\υ\\ sin θ)

for O, (Pv) cos θ) G (Ex\XtΌy Again tan θ = 4fM(ΐ) with ττ/2 < θ < π.
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(3) Over S, i is the inclusion E2\S = {TS) Θ εR -» {TM) θ εR |S. Then the
bundle map p of the Introduction is i followed by projection onto the first
factor.

We choose a Riemannian metric on TS and take the usual Riemannian
metric on Tem~p+\ εR. Since we are identifying U with S X em~p+ι this
gives us a Riemannian metric on TV which, by contracting U if necessary, we
extend to the whole of TM. Adding in the Riemannian metric on εR we
obtain one on {TM) θ εR.

Let F be the orthogonal complement of ι{E) in {TM) θ εR. From the
construction of the metric and from the definition of i we see that F\ U is
S X F2-*S X em~p + ι where F2 is an {m - p + l)-plane bundle over

em-p+\ L e t ^ c ^ - ^ i b e t h e c l o s e d b a l l o f r a d i u s ! / 2 ) and let V c U by

S X er. Let F2 be the normal bundle of the ordinary 1-dimensional foliation

of em~p+ι — ef by the orbits of the linear vector field P. Then we also see

that F2\em~p+ι - e' = F2 θ εR.

We choose a basic connection [2] V2 and take the direct sum with the trivial

flat connection Ve on εR to obtain a connection on F2\em~p+ι — e'. We

extend this to a connection V2 on the whole of F2. Now we define a

connection V on F\ U (which is S X F2 -+ S X em~p+ι) in the following way.

Let Z be a cross-section of F\ U. Then if X is a cross-section of {0} X

Tem-P+ι W e define VxZ\{x] X e

m~p^ ^.{^χ)x{Z\{x} X em~p+ι). If * is a

cross-section of ΓS X (0), we define X, Z to be the vector fields on U X R1

given by

χ{χ, v, t) = (ΛΓ(x, v), 0) E Γ(S X em'p+ι X R1),

Z(x, ϋ, t) = Z(JC, ϋ) E {F\ [ / ) x R ' c ((Γί/) θ C R ) X R1 = Γ(ί/ X R1).

Now we define V^Z = πF[X, Z] where 77F is the orthogonal projection from

T{U X R1)!^/ X {0} = {TU) θ εR onto F, and the Lie bracket is taken on

U XR1.

Let Fx be the normal bundle of the ordinary foliation {La n {M — S) : a

G A} of M - S. Then we see that over U - £/', V is the direct sum Vι θ Ve

where ^ is a basic connection on Fλ\U - U'. We extend Vλ to a basic

connection Vj on i^jM - ί/'. Now F|M - Uf = (FJM - C/') θ εR, and we

extend V to a connection on the whole of F by defining V\M — U' to be

V,ΘV e .

Let Z be a cross-section of F. Then if ΛΓ, Y are cross-sections of

T{M - (/') tangent to the La, we argue as in [2] that the curvature K{X, Y)Z

with respect to V is zero. Similarly, if Xy Y are cross-sections of TU9 which

are zero in the em~p+ι directions, then K{X, Y)Z = 0. We also wish to prove

that K(X9 Y)Z = 0 when X is a cross-section of TU, which is zero in the



136 J. L. NOAKES

em-p+ι directions, and Y is a cross-section of TU, which is zero in the S

directions. For this we go into more detail.

Since K is a tensor, we may compute K(X, Y)Z at any point under the

assumption that X(x, v) does not depend on v and that Y(x, v), Z(x, v) do

not depend on c. It follows that the Lie bracket [X, Y] on U is zero so that

K(X, Y)Z =VXVYZ - VYVXZ =VXVYZ since the Lie bracket [X, Z] on

U X R1 is also zero. But VyZ|{jc) X em~p+l is (VJγ(Z\{x] X em~p+ι) and

so V YZ does not depend on x, since neither Y nor Z do. Therefore

This shows that for each y E M there is a subspace Hy of TMy of
dimension >p such that ^(A", Y)Z = 0 for Xy Y G //>, and z G F r Our
theorem now follows from the Chern-Weil construction of the Pontrjagin
ring.
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