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0. Introduction

The purpose of this paper is to study the space of isometric minimal
immersions of a compact irreducible homogeneous Riemannian manifold Mm

into a standard sphere Sn. By a theorem of Takahashi [6], any compact
irreducible homogeneous Riemannian manifold can be isometrically minim-
ally immersed into some Sn(r) using its spaces of eigenfunctions satisfying the
equation

(0.1) Δφ = -λφ

for some constant λ. The set λ such that (0.1) has nontrivial solution is called
the spectrum of the Laplace operator Δ on M, denoted by Sρec(Λf). It is also
known that [4] the coordinate functions of any isometric minimal immersions
of M into Sn C R Λ + 1 are eigenf unctions of the Laplacian. In 1971, do Carmo
and Wallach [2] consider the case when M is also a standard sphere.
However, some of their results also hold when M is a compact irreducible
homogeneous Riemannian manifold.

The main result which we have obtained in the paper is a classification
theorem of all isometric minimal immersions. In fact, we show that if
Φ: M ̂ > Sn(r) is an isometric minimal immersion, then Φ(M) = N is also a
compact irreducible homogeneous Riemannian manifold which is embedded
in Sn(r). The map Φ: M -> N is in fact a covering map, and N inherits the
homogeneous structure of M.

As an application of the above theorem, we show that if N is a compact
Riemannian manifold which is isometrically covered by M. Then N can be
isometrically minimally immersed into some Sn(r) iff N has the induced
homogeneous structure of M. We also give necessary and sufficient condi-
tions for an eigenspace Eλ of M to be invariant under the group of deck
transformations T(N) with respect to the covering map π: M -» N. An
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interesting corollary of this is that if TV is a lens space which is fc-fold covered
by S2m~ι, then N cannot be isometrically minimally immersed into any
standard spheres unless k = 1 or 2.

In the last section, we consider the question whether a compact irreducible
homogeneous Riemannian manifold can always be isometrically minimally
embedded into some Sn. Using the Weyl formula, we show that if M =
G/H, where G acts effectively on M, and if the center Z(G) of G is a cyclic
group, then there exists infinitely many eigenspaces of M which give isometric
minimal embeddings of M into Sn(r).

We will adopt the convention that any isometric minimal immersioin
Φ: M -» Sn(r) is full, i.e., Φ(M) is not contained in any totally geodesic Sp(r)
of Sn(r) with/? < r.

The author would like to acknowledge his gratitude to R. Niles for pointing
out the group theoretic observation in Proposition 11, and also thanks C.
Croke for many helpful discussions during the preparation of the last section
of this paper.

1. Spaces of isometric minimal immersions

Definition. A homogeneous manifold Mm = G/H is said to be irreduci-
ble if its isometry group G is compact and its isotropy subgroup H acts
irreducibly on the tangent space at eH E M, where e is the identity element
of G. In addition, we also assume that G acts effectively on Λ/.

For the sake of completeness, we will outline the proof of do Carmo and
Wallach for general compact irreducible homogeneous Riemannian mani-
folds.

Proposition 1. Let Φ: Mm -^ Sn(r) be an isometric minimal immersion of
M into Sn(r). Then r2 = m/λfor some λ G Spec(Af). Moreover, for a fixed λ,
the set of such isometric minimal immersions can be parametrized by a compact
convex body in a finite dimensional vector space.

Proof. If we consider Sn(r) C RΛ+1, then it is known that [4] the coordi-
nate functions of Φ: M m ^ R π + 1 are eigenfunctions with eigenvalue m/r2.
Up to orthogonal transformation, we may assume that Φ = AΨ, where A is a
semi-positive symmetric matrix and Ψ denotes the standard immersion given
by Ψ = (aφl9 , aψk+i) with {φ}^/ being an orthonormal basis of Eλ =
{/ |Δ/=-λ/} ,λ=m/r 2 .

Let us denote Vλ = dΨ(TxM) C Tψ(x)S
k(r) and S\Vλ) = {symmetric

squares of Vx). Also let Wo = {G S^F^^-linear span of the orbit of
S\VX) in S2(Eλ) where Eλ is identified to Tψ(x)R

k+ι.
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One can identify the symmetric square S2(Eλ) with the space of symmetric
linear maps of Eλ, where the linear map is defined by

(1.1) uv(t) = ̂ ((u, t>v + (v9 t}u)

for / E Eχ and uv E S2(Eλ). One obtains an induced inner product on
S2(Eλ) given by (A, B) = tτ(AB), for all A, B E S2(Eλ), and the induced
action of g E G on S2(Eλ) is given by g A = gΛg"1. Clearly (Au, Av} =
(Λ, uv). We define W = {u £ S\Ex)\(u9 Wo) = 0}.

Now we claim that Φ = AΨ is an isometric immersion iff A2 — I E L,
where L = { c 6 JF|C + / > 0}. In fact, 4̂Ψ is an isometric immersion iff

(1.2) (AgX*9AgX*} = 1

for all g G G, X E S^M, X* = </*(*). However, this is equivalent to

(1.3) 0 4 2 - / , g . ( X * ) 2 ) = O,

which means A2 — I G W, hence ̂ 42 — / G L since A > 0 and is symmetric.
The converse follows similarly. Of course, by Takahashi's theorem, if Φ is an
isometric immersion then Φ is minimal.

Therefore the equivalent classes of isometric minimal immersions can be
parametrized by the set L c W. Clearly L is a convex set with boundary.
Moreover since tr A2 = dim £ λ for A2 — I G L, we conclude that if c E L,
then tr c = 0. This implies that the eigenvalues of the elements in L are
bounded, hence L is compact. In fact, the boundary points of L correspond
to A being singular, i.e., n < dim Eλ — 1.

2. A classification theorem
Definition. A function f0 E Eλ is said to be the normalized zonal function

a t x 0 G M with respect to Eλ if it satisfies the following properties:
(i) / 0 is constant on the orbit of Ho = isotropy subgroup of G which fixes

(ϋ) /0 is perpendicular (in the L2 sense) to the set of functions in Eλ which
vanish at x0,

(iv) H/0II2 - l
Proposition 2. In each eigenspace Eλ of M and for a fixed x0 E M, there

exists a unique normalized zonal function at x0 with respect to Eλ.
Proof. The proof of this proposition is contained in [3] and [5]. However,

we will sketch the proof here.
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Let us consider the space E = {/ E Eλ\(f, g} = 0 for all g such that

g(x0) = 0). It is easy to see that E is a 1-dimensional subspace of Eλ.

Consider / 0 G E such that | | / 0 | | 2 = 1, and fo(xo) Φ 0. Since E is invariant

under the action of H0,f0 satisfies conditions (i), (ii) and (iv).

On the other hand, if we define the function

(2.1) F(x) = 2 <P?(x)> fovx G M,

where {<#}*« / is an orthonormal basis of Eλ, by the homogeneity assumption

and the fact that F(x) is well defined under an orthogonal change of basis of

Eλ9 F(x) = constant. In particular,

(2.2) F(x0) - F(x).

If we pick an orthonormal basis such that/0 = φl9 then

(2.3)

Hence

k + \

(2-4) Σ < P K ^ ) = / O W

Integrating both sides yields

(2.5) k + 1 - F./O

2(*o),

where F = F(M) is the volume of M. But

implies that

(2.6)

In particular,

olloo ^ y ~~ fθ\Xθh

which proves the proposition.

Lemma 3. Let Φ: M—» S"l(r) έe α« isometric minimal immersion. Suppose

Φ corresponds to an interior point of L as discussed in Proposition 1. If N

denotes the image of Φ in Sn(r), then N is an isometrically minimally embedded

submanifold of Sn(r). Moreover Φ: M —» N is a covering map.

Proof. Clearly, we need only to show that the preimage set of each point

z G N consists of exactly q points. By scaling, we may assume that

(2.7) dim Eλ = V(M).



HOMOGENEOUS RIEMANNIAN MANIFOLDS 109

By an orthonormal change of basis, if necessary, we may assume N

contains p = north pole of Sn(r). We claim that if Φ(x^ = p then the

preimage Φ~λ(p) of p consists of points in M which take on the maximum

value of the normalized zonal function f0 at * 0 .

Indeed, if Φ(x) = (φ^x), , φn+ι(x)), then Φ(x0) = p implies φ^xj = r

and φαO 0) = 0 for a Φ 1. This means that <pa G Eo = {/ E Ex\f(xJ = 0}.

Since by assumption n + \ = dim Eλ = k + 1, we conclude that <<pα>«t2 =

Eo. Hence φ! = α/0 + bg for some α, b G R and g e Eo. However, by r =

Φi(*o) " Λ/o( ̂ o)5 (
2 5 ) a n d (2.7) we have

(2.8) r = afo(xQ) = α.

Hence

(2.9) Φ l = r/0 + bg.

If Λ: G (maximal points of/0}, then/0(;c) = 1. From (2.6) we conclude that

(2.10) g W = 0 , f o r g e £ 0 ,

which means Eo = Ex = {/ e Eλ\f(x) = 0} because dim Eo= n = dim Ex.

Therefore

<Pi(x) = rfo(x) = r

and

φα(x) = 0, α ^ l ,

which implies Φ(x) = p.

Conversely, if Φ(x) = p, then φ^x) = r and <pa(x) = 0 for a ^ 1. Thus

Φ β e / ? , - { / e ^ λ | / ( χ ) = 0},

and JEΊ = .EΌ. It follows that

(2.11) r - Φ l ( χ ) - r/0(x) + 6g(x) = rfo(x).

However fo(x) = 1 implies that x takes on the maximum value of /0. The

lemma then follows directly.

Theorem 4. Let Φ: M —» S"1^) Z>e an isometric minimal immersion of M

into Sn(r). Then the image N of Φ is a compact homogeneous space which is

isometrically minimally embedded in Sn(r). Moreover, the homogeneous struc-

ture of N is the one induced from M, i.e., the group of deck transformations

T(N) with respect to the covering map Φ: M-> N is contained in the center

Z(G)ofG.

Proof. We will first prove the theorem for those Φ which correspond to

the interior points of L. We claim that for any g G G , g commutes with the

element of Γ(ΛΓ).
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Observe that g preserves fibers over N. Indeed if x, y G N, then Φ~ι(x) and
Φ~\y) coincide with the sets {x G M\fx(x) = HΛIL} and {x G M\f2(x) =
IIΛII00} respectively, where fx and f2 are normalized zonal functions at
preimage points of x and y. However if g G G and g(xx) = yx with xx G
Φ'^Jc) and J Ί G Φ~ι(y), then g -/2 = f2 ° g is a zonal function at j ^ . Hence by
uniqueness/j = g -/2. This shows Φ"1^*) = Φ-1(>0.

Since G is a Lie group, in order to show the claim, it suffices to show that g
commutes with T(N) for those g which send x to nearby points. Let U be a
sufficiently small neighborhood of x G N such that U is evenly covered by
disjoint neighborhoods {Ui}

q

i=x of {x^Ui = Φ~!(*)> with xt G lζ. for all
1 < / < q. We would like to show that g commutes with T(N) if g(xx) G Uv

Let y = Φ(g(xι)) and {y^Ui = Φ"!(>0 s u c h t h a t Λ G /̂ Clearly we need
only to show that g(xt) = y^ By picking U sufficiently small and using the
fact that g is an isometry, we have g(jcf) G Uj. However g preserving fibers
implies that^ = g(xt) because { U^ are disjoint. This proves the theorem for
those Φ which are the interior points of L. For the boundary points we can
utilize a continuation argument. In fact, if we take a path through the interior
of L to a boundary point Φ, then it is clear that by continuity the theorem
also holds for the boundary points.

Remark. Any set of eigenfunctions from an eigenspace Ex gives an
isometric minimal immersion of M into Sn(r) with r2 = m/λ iff they satisfy
the algebraic criterion described in §1.

3. Applications

In case when M is also a standard sphere 5"" of radius 1, Theorem 4 yields
the following.

Theorem 5. If Φ: 5"M^5 / 1(r) is an isometric minimal immersion, then

r

2 = m/χ for some λ G SpecίS""). Moreover Φ(Sm) is either an embedded
sphere or an embeddedprojectiυe space. In fact, ifSpec(Sm) = {0 = XQ < λx <
λ2 } (multiplicity not included), then Φ corresponds to embeddings of Sm if
r2 = w/λ2l + 1 for 0 < i < 00, and it corresponds to embedding of RP"1 if
r2 = m/λ2ifor 1 < i < 00.

Proof. By Theorem 4, Φ(Sm) is an embedded homogeneous space covered
by Sm with the induced homogeneous structure. This implies that the set of
preimages of a point z G Φ(Sm) is contained in the fixed point set of the
isotropy subgroup of x0 G Φ^O). Since the isotropy subgroup Ho of x0 G Sm

has orbits homeomorphic to 5 m " ! with the exception of x0 and its antipodal
point, this means that Φ: Sm -» Φ(Sm) is at most a 2-fold covering. Hence
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Φ(Sm) is either Sm or RP"1. However, it is known [1] that the eigenfunctions
of Sm with eigenvalue \ are spanned by the harmonic homogeneous poly-
nomials on R w + 1 of degree i. Hence -f(x) = f(-x) for/ E Eλii+ι for 0 < / <
oo, and/(x) = f(-x) for/ E Eλ for 1 < / < oo. This proves the theorem.

Corollary 6. Suppose N is a lens space which is isometrically k-fold covered

by S2m~ι. Then N cannot be isometrically minimally immersed into any

standard spheres if k > 2.

Proof. Suppose on the contrary that Φ: N -^ Sn(r) is an isometric
minimal immersion. Let m\ S2m~ι —» N be the covering map. Consider the
composition Φ ° π: S2m~ι -> Sn(r) which is clearly an isometric minimal
immersion of S2m~ι. Moreover, the image Φ ° ττ(S2m~x) = Φ(N) is at least
λ>fold covered by S2m~ι. But this contradicts Theorem 5 if k > 2.

Remark. In fact, the proof of Corollary 6 shows that if π: M -> TV is a
covering map, then N can be isometrically immersed into some Sn(r) iff N
has the induced homogeneous structure of M.

In the general setting of an isometric covering m\ M —»N, where M and N
are only compact Riemannian manifolds, it is obvious that the eigenfunctions
of N can be lifted to be eigenfunctions of M. If λ E Spec(Λf), we denote the
eigenspaces of N and M with eigenvalue λ by Eλ and 2sλ respectively. Let
π*(Eλ) be the pulled back of Eλ to Af, then π*(Eλ) C isλ. It is natural to ask
the following question: When does 7r*(£λ) = EλΊ For the case where M is an
irreducible homogeneous space, this question can be completely answered.

Theorem 7. Let m\ M —» N be an isometric covering map. Then π*(Eλ) =

Eλ for all λ E Spec(iV) iff N inherits the homogeneous structure from Λf, i.e.,

T(N) c Z(G).

Proof. First we show that if there exists λ E Spec(iV) such that π*(£λ) =
Eλ, then Γ(W) C Z(G). Let Φ: M-+ Sn(r) be the standard immersion by an
orthonormal basis of Eλ. However Eλ = ττ*(Eλ) means that the eigenfunc-
tions are invariant under Γ(iV). Theorem 4 then implies that there exists N
which is covered by M and Γ(iV) C Z(G). Moreover N is the embedded
image of Φ. On the other hand, since Φ is invariant under T(N) we have the
following diagram

with θ o π = ΊT and T(N) D T(N). However T(N) C Z(G), hence T(N) C
Z(G).

Conversely, suppose Z(G) D T(N). Then N is also an irreducible homoge-
neous manifold. Therefore for any λ E Sρec(iV), Eλ gives an isometric
minimal immersion Φ: N -> Sn(r) where r2 = m/λ. This means that



112 PETER LI

φ o π: Λf-> Sn(r) is an isometric minimal immersion of Λf into Sn(r). By
Theorem 4, we have

N

where T(N) C Z(G). However the proof of Theorem 4 implies that the image
of the standard isometric minimal immersion of M into Sk(r) by an orthonor-
mal basis of Eλ is isometric to N. This implies that the eigenfunctions in Eλ

are f-invariant, hence also Γ-invariant. This completes the proof of Theorem
7.

Remark. Theorem 7 actually shows that if Eλ = π*(Eλ) for some λ E
Spec(Λ0 then Eλ = π*(Eλ) for all λ E Spec(#).

When M - S2m~ι and TV a lens space λ>fold covered by M. Then Eλ φ
τr*(Eλ) for all λ E Spec(iV) iff k > 2.

4. Embeddings

The above discussion gave us a rather clear picture of isometric minimal
immersions of a compact irreducible homogeneous Riemannian manifold
into a standard sphere. It is natural to ask if such a manifold M can always
be isometrically minimally embedded into a standard sphere. By Theorem 4,
this is equivalent to asking if there exists an eigenfunction on M which is not
invariant under any subgroup of Z(G). The next theorem gives conditions
which guarantee the existence of infinitely such eigenfunctions

Theorem 8. If Z(G) is a cyclic group, then there exist infinitely many
eigenfunctions which are not invariant under any subgroup of Z(G).

Since each eigenspace Eλ of M are of finite dimensions, we conclude
Corollary 9. If Z{G) is a cyclic group, then there exist infinitely many

eigenspaces Eλ of M which give isometric minimal embeddings of M into Sn(r).
Before we prove Theorem 8, let us point out some elementary properties of

Z(G).
Lemma 10. Z(G) is a finite group, and Z(G) Π H = {e}.
Proof. Let x0 be any point in M, and denote the orbit of x0 under Z(G)

by Z(x0). Clearly Z(x0) is contained in the fixed point set of Ho. Indeed, if
h E Ho and z E Z(G\ then

(4.1) hz(x0) = zh(x0) = z(x0).

Hence if Z(G) is not finite, by compactness there exist z, zf E Z(G) which
are sufficiently close to each other. Let x0 E M be the point which represents
the coset zH. Then z'(x0) will be sufficiently close to x0. If γ is the unique
minimizing geodesic joining x0 and z'(x0), then γ is invariant under if0, since
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x0 and z'(x0) are invariant and γ is unique. However this implies the vector
tangent to γ at Λ:0 is invariant under Ho, which contradicts the irreducibility
assumption of H.

To prove that Z(G) Π H = {e}, it suffices to show that if z G Z(G) where
z φ e, then z has no fixed point. Assume x G M is a fixed point of z. By the
effectiveness of G, there exist points J Ί and^ 2 ώ ^ such that Z(J>J) = y2. Let
g G G b e theisometry which sendsy2 tox. Now consider

(4.2) *~Wi) = z-ι

g{yi) = *-\χ) - *.

On the other hand, since z G Z(G),

(4.3) z - W . ) = g(>Ί).

which implies g{y^) = x. However g(^2) = x a n d 7i ^=^2' which is a con-
tradiction. Thus the proof is complete.

In general, let Z be a finite abelian group, and S = {Ka}
q

a_ιbe the set of
proper subgroups of Z. We denote Kaχ... a to be the subgroup generated by

Proposition 11. The equation

w equivalent to the statement

\Z\ = order of \J Ka.
a

Proof. Let Z* be the dual group of Z, i.e., Z* = Endz(Z, C*). It is

well-known that Z* « Z. Consider # a G S, and define ^ = (φ E

Z lr tJQ = 1}. Clearly (Z/KJ* » A^ Then

(4.4) g |
If η: Z* -+ Z is an isomorphism, then for Ka £ S let Ka = ^(A^k). Hence

Also for A"αi, Kai E S we have

(4.6) /ζ, l β 2 = ^ α i Π

since
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Hence the sum is

(4.7) Σ\κa\ - Σ \K, n κai\ + I U K\
a «i<α2 «

as claimed.
Proof of Theorem 8. Assume the contrary that all but finitely many

eigenfunctions are invariant under some nontrivial subgroup of Z(G). Let
S = {Ka}

q

a=ι be the set of proper subgroups of Z(G). This is a finite set
because of Lemma 10. To each \ G Spec(M), we associate an eigenf unction
φ, with eigenvalue \ such that the set {φf}°Li form an orthonormal basis for
L2(M), where the \ are ordered as follows 0 < λj < λ2 < λ3 < (in-
cluding multiplicities). We denote nλ to be the number of eigenfunctions in
{φ,.} with eigenvalues less than or equal to λ, and n* (respectively, ΠQ) be the
number of such eigenfunctions which are (respectively, are not invariant
under the group Ka. A simple counting argument shows)

(4.8) *λ - «o

λ = Σ nλ

a - Σ < „ , + Σ < α 2 θ 3 ±nxn...q,
a αj<α2 α!<α2<«3

where ««,... «p = number of eigenfunctions in {φj with eigenvalues less than
or equal to λ and are invariant under the subgroup Kaχ.. of Z(G)
generated by Uf= ι K^. Let Maχ... = M/Kaχ... be the manifold which is
covered by M with K as its group of deck transformations. The
eigenfunctions on Maχm. are the iζ^. -invariant ones on M. Dividing
(4.8) by \m/1 yields

Taking the limit as λ -» oo, the Weyl formula gives

cmvaιa2+ ±cmvn...q,a aι <α 2

where V = volume of M, Vaχ... ̂  = volume of Maχ... , and Cm = constant
depending only on m. Here we have used the fact that l i m ^ ^ ΠQ is finite.
Since M -> Ma ... ̂  is a covering map with the number of sheets equal to

Therefore (4.10) becomes

(4.12) i = Σ η ^ - Σ
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Multiplying both sides by \Z\ = |Z(G)|, we have

(4-13) \Z\ = ̂ ψ-- 2 ΰπ+ ilF^-ί
α l A α l « i<α 2 I ^ I O J I I A 12 Î

By Proposition 11, this is equivalent to the fact that the order of Z(G) is
equal to the order of the union of all its proper subgroups. But this is true iff
Z(G) is not cyclic. Hence this contradicts the assumption.

Remark. In fact, we have shown that

order of U a Ka
α α

\z\
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