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Given a connected Riemannian manifold M and a closed connected
subgroup G of the Lie group of isometries of Λf, we look for necessary and
sufficient conditions that we can write M as the Riemannian product of an
orbit and some other Riemannian manifold. More precisely, we ask: do there
exist a Riemannian manifold P with a transitive action of G, a Riemannian
manifold N and a G-equivariant isometry f:P X N -» M, where N has the
trivial G-action and P X N the diagonal action. We call this a global
equivariant splitting.

Of course the corresponding local condition (Definition 2.3.) is necessary,
but in general it is not sufficient. The obstruction is a homomorphism from
the fundamental group of M to the group of G-isometries of an orbit. The
main result is that M has a global equivariant splitting iff it has a local one
and the obstruction vanishes (Theorem 2.9). The obstruction vanishes if M is
simply connected, trivially, or if H ι(M; R) = 0 and G is simply connected
solvable (Corollary 1.16). We show that every homomorphism qualifying for
being an obstruction is in fact an obstruction (Lemma 2.10). Note that the
Riemannian manifolds under consideration need not be complete, and also
that we need no assumptions about holonomy.

The local condition is not easy to check. So we give three conditions
(IGCy NI9 KC) whose conjunction is equivalent to the local condition. These
three conditions should be easier to check, since two of them (NI, KC) are
differential conditions and then it remains to check chat the number of
connected components of isotropy groups is constant.

This paper contains two sections. In §1 we discuss the consequences of IGC
and NI (or equivalently, of the existence of local orthogonal cross sections),
and in §2 we apply this to our problem and discuss the existence of local
equivariant splittings.
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supported by an Alexander von Humboldt-Stiftung-Forschungsstipendium.
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This paper has a twofold motivation. In the differentiable category we have
the following result, which is a special case of the main result in [1] Suppose
G is a closed connected subgroup of the Lie group of isometries of the
Riemannian manifold M, and all isotropy groups of G are maximal compact
subgroups of G. Then there is a G-equivariant diffeomorphism G/K X
S^M, where AT is a maximal compact subgroup of G, and S is some
differentiable manifold with trivial G-action. (E.g., if G is homeomorphic to
some euclidean space, or equivalently, if G is simply connected solvable, then
every compact subgroup of G is trivial. For G = R see [5]). In this paper we
ask the corresponding question in the category of Riemannian manifolds.

In [6] the existence of a Riemannian R-factor of a Riemannian manifold M
was discussed, provided that R acts properly and isometrically on M, and a
local Riemannian splitting of M exists, compatible with the action. This
special case of our question was a second motivation for our paper.

Having the global equivariant splitting one can apply it to other situations
by looking at the covering transformation groups. This will be done in a
forthcoming paper by the second author.

1. Local orthogonal cross sections

1.1. We make the following hypotheses throughout this paper: Let M be a
connected Riemannian manifold. The group of isometries of M endowed with
the compact-open topology is a Lie group. Let G be a closed connected
subgroup thereof. Stated differently, we assume that we have a proper
effective differentiable action of the connected Lie group G on M by
isometries, [4], [3]. We ask for conditions that a {global) equivariant splitting
exist, i.e., that there be a Riemannian manifold P with a transitive G-action, a
Riemannian manifold N, and a G-equivariant isometry /: P X N —> M,
where N has the trivial G-action, and P X N the diagonal action. The
following conditions are obviously necessary.

1.2. (IGC) Any two isotropy groups are conjugate.
In more detail: If x is a point of Λf, let Gx = {g E G; gx = x} be the

isotropy group of x. We require that the isotropy groups Gx and Gy of any
two points x and y of M are conjugate in G. Every G-orbit Gx is a closed
submanifold of M, G-diffeomorphic with G/Gχ9 [4]. For x G M let TxGx be
the tangent space at x of the orbit of x, and Nx be its orthogonal complement
in Aίχ9 the tangent space of M at x.
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13. (NI) 91 = {Nx; x 6 M} is an integrable distribution on M.

This condition is equivalent to the following two conditions: (1) the

dimension of Nx (or Gx or Gx) is independent of x (which follows from IGC)

and (2) there is a (local) integral manifold of 91 through every point of M. By

a theorem of Frobenius, (2) is equivalent to 91 being involutive. IGC and NI

are obviously necessary conditions for our existence problem. In this section

we explore the consequences of IGC and NI. These two conditions do not

suffice to give a positive answer for our problem. There are both local and

global obstructions.

1.4. NI implies that for every x E M there is a local integral manifold S

of 91 through x. As G acts properly on M we can apply a lemma of Palais

([4, 2.2 and 2.1.7]; cf. [2]) to conclude that we may assume that S is a slice at

x for the G-action, i.e., there is a differentiable G-retraction /: GS —» Gx of

the neighborhood GS of the orbit Gx to Gx such that f~\x) = S. In

particular the isotropy group of every point y E S is a subgroup of Gx,

whence the isotropy group of every point y of the neighborhood GS of x is

conjugate to a subgroup of Gx. As the compact Lie groups Gx and Gy have the

same dimension by NI, we have

1.5. Corollary. Suppose NI holds and the number of connected components

oj isotropy groups is constant. Then IGC holds.

Now let N(z) be the maximal integral manifold of 91 containing z E M.

Let x E N(z). Then N(z) contains an open subset S which is a slice at x,

hence Gy C Gx for/ E S. If a closed subgroup Hx of a compact Lie group H2

is isomorphic to Hv then Hι = H2. Hence

1.6. Lemma. If NI and IGC hold, then all points of a maximal integral

manifold of 91 have the same isotropy group.

1.7. Definition. A local orthogonal cross section is a local submanifold S of

M such that

(a) the tangent space of S at every one of its points y is the orthogonal

complement of the tangent space of the orbit through/, and

(b) every orbit intersects S in at most one point.

1.8. Lemma. The following conditions are equivalent.

(1) Every point of M is contained in a local orthogonal cross section.

(2) IGC and NI.

Proof. (1)=>(2). The existence of local orthogonal cross sections (even

without Definition 1.7(b)) implies NI. So for every x E M there is a local

orthogonal cross section which is a slice at x. Then for y E S we have

#{Gy n S) = #GX/Gy = 1 by property 1.7(b). So the isotropy groups of all

points of the neighborhood GS of x are conjugate to Gx, which easily implies

IGC.
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(2) => (1). Let S be a connected slice at x, with TyS = (TyGy)^ for >> E 5.

Let /: GS -> Gx: be the G-retraction with f~\x) = S. We have gS Π S Φ0

iff g E Gx, since / is a G-map. This implies #Oy Π S = # G^ 0 5 =

#GX/Gy = 1 for ̂  E 5 by Lemma 1.6, whence property 1.7(b).

1.9. For every point z G M let StabG(Λf(z)) be the group of elements

g E G such that gJV(z) = JV(z) or equivalently gN(z) n ΛV(z) ̂  0 . This

group acts on N(z) with ineffective kernel Gz by Lemma 1.6. The group

H(z) = StabG(W(z))/ Gz acts freely on N(z). We consider H(z) as a discrete

group. Note that //(z) = H(x) if x E iV(z).

1.10. Lemma. Suppose IGC and NI hold. Let p: M -* G^M be the natural

map to the orbit space. Then p\N(z): N(z) -^ G^M is a regular covering map

with group of deck transformations H(z)for every point z E M.

Note that M need not be a complete Riemannian manifold.

Proof. We drop z from the notation. Let x *E N, and let S be a connected

open submanifold of TV which is a slice at x. We prove that the inverse image

TV π GS of the neighborhood p(S) of p(x) for p\N is //-homeomorphic to

H X S vmφ: H X S -> N n GS, φ(A, .s) = /w. This implies the lemma. The

map φ is an injective //-map. It is open because S is open in N, and it is

surjective by the definition of H = StabG(N(z))/G2.

In particular, p\N(z) —» G\Λf is surjective for every z; in other words, we

have

1.11. Corollary. Every maximal integral manifold of 91 intersects every
orbit.

1.12. Let NG(H) be the normalizer in G of a subgroup H of G. Then we

have a group isomorphism of NG(GZ)/GZ with the group of G-homeomor-

phisms of G/Gz given by h- Gz^> {g Gz^> g h Gz). Since StabG(W(z)) c

NG(GZ) by Lemma 1.6, H{z) acts effectively on G/Gz. The diagonal action of

H(z) on G/ Gz X N{z) is free, properly discontinuous and differentiable. The

map G/Gz X N(z) -* M,(g Gz, «) H» gn, induces a diffeomorphism

1.13. G/GzXH(z)N(z)^M.

The surjectivity of this map follows from Corollary 1.11, and everything else

is clear. More explicitely, we have

1.14. Lemma. Suppose IGC and NI hold. Then p.M^G^M is the

{locally trivial) fibre bundle with fibre G/Gz, structure group H(z) and asso-

ciated principal fibre bundlep\N(z): N(z) -^ G^M.

If we have a global equivariant splitting/: P X Λ ^ M a s i n §1.1, then/

induces isometries P^>G/GZ, N^N(z) for some (every) point z E M, hence

H(z) = 1 by comparing with Lemma 1.10. So a necessary condition for our

existence problem is //(z) = {1} for one (every) z E M.
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Let us give a different description of H(z). Let c be a path in M starting at
z 6 Λf. By Lemma 1.10 there is a unique path c' in N(z) starting at z such
that/?(c') = p(c). We call c' the projection of c normal to the orbits.

1.15. Lemma. H(z) is the image of the following homomorphism
φ2: πx(M, z) -» NG(G2)/G2 = {G-homeomorphisms of Gz}, φz([c]) = n Gz if
n z is the endpoint of the projection cf of c normal to the orbits.

Proof. The image of φ2 is contained in H(z). Conversely, for every
n- G2 E H(z) there is a path cι in N(z) from z to nz and a path c2 from nz to
z in Gz. Let c be the composite loop based at z. Obviously c' = q hence
φz([c]) = Λ Gz.

It is easy to see how φz depends on z: For g G G w e have φgz = / ° φz,
where /g is the isomorphism NG(GZ)/GZ -> NG(Gg2)/Gg2 induced by the inner
automorphism with g.lϊγ E iV(z), let d be a path in ΛΓ(z) connecting z and>>.
Then ψy([d~ ° c ° d]) = φz([c]) for [c] G ̂ (M, z). In particular, for any two
points y and z in M the groups //(» and H(z) are isomorphic. An example of
an application of Lemma 1.15 is

1.16. Corollary. If G is RΛ or more generally a simply connected solvable
Lie group, and Hι(M; R) = 0, then φ2 is trivial, i.e., H(z) = {1} for every
z E M.

Proof. Any compact subgroup of G is trivial, hence G2 = {1}. Since
H\M; R) = HomίTΓ^Λf; z); R) = 0, by induction on the length of the de-
rived series, every homomorphism φ of πx(M, z) to G is trivial.

1.17. The necessary condition H(z) = {l}-or equivalently φz trivial-is
not sufficient for a positive answer to our existence problem stated in §1.1.
E.g., let M be the Poincare model of the hyperbolic plane, the upper half
plane in C. The additive group R acts isometrically on Λf by R X Λf -> Λf,
(r, z) -+ er - z. The orbits are the rays in Λf starting at 0. There are global
orthogonal cross sections N(z) through every point z G M, namely those
parts of circles with center 0, which lie in Λf. Now G X N(z) —> Λf, (r, y) —»
er -y, is a global diffeomorphism. Comparing with Lemma 1.10 yields H(z) =
{1}, which also follows (quicker but less instructively) from Corollary 1.16.
But Λf is not isometric to the product of N(z) and a transitive R-manifold,
because otherwise its curvature would be zero.

2. Local equivariant splitting

2.1. After the discussion of the preceding section it is clear that we need,
for the existence of a global equivariant splitting, a local equivariant splitting
which follows if we know that the G-retraction of §1.4 induces an isometry
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Gz -> Gx for every z E S. This latter condition can be translated into a
differential condition (Definition 2.5). The differential conditions of our final
theorem should be easier to check than the existence statements. Our hy-
potheses from §1.1 are still in force.

2.2. Existence. A local splitting at x E M is an open subset V of Gx, a
Riemannian manifold S and an isometry / of V X S onto an open neighbor-
hood U of x in M such that/(F X {s}) is the intersection of one G-orbit with
U for every s E S.

23. Definition. A local equiυariant splitting at x E M is a G-neighborhood
U of x, a Riemannian submanifold S oϊ M containing x, and a G-equivariant
isometry /: Gx X S -> t/ such that /(JC, J) = ί for 5 G S, where G acts
trivially on S and diagonally on Gx X S.

This is the local version of the global equivariant splitting of §1.1. The
apparently weaker Definition 2.2 is in fact equivalent to Definition 2.3.

2.4. Lemma. There is a local splitting at x E M iff there is a local

equiυariant splitting at x E M.

Proof. Let U, V, S and / be as in the definition of a local splitting. We
first show that/({t>} X S) is a local orthogonal cross section for every v E V.
The tangent space of this submanifold of U at any one of its points,
y = f(v, s) say, is the orthogonal complement of the tangent space of the
orbit Gy π U = f(V X {s}). Every orbit intersects/({υ} X S) in at most one
point, because suppose an orbit intersects/({ϋ} X S) iny = f(v, s), then the
intersection of this orbit with/({>} X S) is Gy n f({v] X S ) = / ( F X {>})
Π/({t>} X £)=>>.

So we can apply the results of §1 to GU, assuming without loss of
generality that V and S are connected. Secondly, we show that we may
assume that x E F c M, x G S G M, S is a connected slice, and/(x, t/) = v
and/(;c, s) = s foτυ E: V,s E; S. Let x = /(w, ί) for some w E V,t E S, and
define Kr =/(K X {/}) = Gx n £/, S" =/({w} X S). As in §1.4 we may
assume that 5" is a connected slice at x. Let us define the isometries
fχ.V^> V\ Mv) = f(v, t) and f2: S -> 5', /2(j) = /(w, 5). Then / ' :-/<> (/,
X Λ)"1: F' X S" -> C/has the required properties.

Thirdly, we show that every / with these properties is a G-map, as far as
this notion makes sense, i.e., f(gv, s) = gf(v, s) if v and gv are in V. Let us
fix v and look at the two maps fx(s) := f(gυ, s) and/2(.s) := gf(v, s) from S
to U. For ^ = x we have/^x) = gt> = f2(x)- The images are local orthogonal
cross sections by the first step of our proof, hence both are contained in
N(gv), the maximal integral manifold in GU of the distribution % of normal
spaces of the orbits. Now/! and/2 both fit into the commutative diagram
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and have the same value at x, so they are equal since p\N(gv) is a covering
map by Lemma 1.10.

Finally, it follows from the third step that there is a unique G-equivariant
extension/: Gx X S -> GU off. Since G acts isometrically on both sides and
/ is an isometry, / is an isometry. So / is the desired local equivariant splitting
at x E M.

It does not seem easy to check the existence of local (equivariant) splittings.
So we give an equivalent differential condition which should be easier to
check.

The Lie group G acts on the Riemannian manifold M, differentiably and
by isometries. Let φ be the corresponding homomorphism of G into the group
of isometries of M. For every element X of the Lie algebra g of G the Killing
vector field ψ(X) is by definition the infinitesimal generator of the one-
parameter-group I B 9 0 exp tX of isometries of M, where t -»exp tX is
the one-parameter-subgroup of G with tangent vector X at t = 0. A vector
field of the form φ(X), X E g, is simply called a Killing vector field for the
action. For the tangent space TxGx of the orbit through x we have TxGx =
{φ(X)(x); X E g}. Its orthogonal complement in Mx is again denoted by Nx

and called the normal space of the orbit at x.

2.5. Definition (Killing vector fields constant in normal direction of the
orbit). We say (KC) holds if for every X E g and every Y E Λ^ we have

Y\\φ(X)\\2 = 0,

where ||<P(X)||(Λ;) is the length of the vector φ(X)(x) E Mx with respect to the
Riemannian metric. So we can apply any tangent vector Y EL Mx to the
differentiable function ||φ(X)||2, the square of the length of the Killing vector
field φ(X).

2.6. Remark. If NI holds, KC is equivalent to the following: The length of

every Killing vector field of the action is constant on every connected integral

manifold of 91.

2.7. Proposition. Under our hypotheses (see §1.1) the following conditions

are equivalent:
(1) There is a local equivariant splitting at every point of M.
(2) IGC, NI and KC hold.
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Proof. (1) =» (2). Since the existence of local equivariant splittings implies
the existence of local orthogonal cross sections, IGC and NI follow from
Lemma 1.8. To prove KC we use the notation of Definition 2.3. Let P = Gx.
Let φ(X)(x) be a tangent vector of P at x, and ψ(X) the Killing vector field
on P X S corresponding to X Gg. Then χp(X)(x, s) is the image of φ(X)(x)
under the obvious isometry P^P X {s}, s E: S. So ||ψ(Ar)(.κ, s)\\ does not
depend on s, which implies KC after applying/.

(2) => (1). Let S b e a connected local orthogonal cross section which is a
slice at x. Then/: Gx X S-» GS, /(gx, s) = gs, is a G-diffeomorphism, [4].
We endow Gx with the Riemannian metric induced from M. We prove that/
is an isometry. Since G acts isometrically on both sides it is enough to show
that the differential df^x 5 ) of / at (x, s) is a linear isometry for every 5 6 S .
Obviously, the restriction of df^x s) to the tangent space of S at (x, s) is an
isometry. For X G Q let ψ(A") be the corresponding Killing vector field on
Gx X S for the action of G on Gx X S. We have df(xs)\p(X)(x, s) = φ(X)(s),
since /is a G-map. So <//(JCf 5): Γ ( J C J ) G(X, 5) = {ψ(X)(x, *); * e 0} -* 7;GJ =
{φ(^00); l e g } , which are both the orthogonal complement of the tangent
space of S in their respective tangent spaces. So it remains to prove that
df(XSy. T(X>5)G(x, s)-+ TsGs is a linear isometry. For X G Q the lengths of
ψ(X)(x, s) and φ(X)(s) = df(XtSγf/(X)(x, s) are independent of 5; the first
claim is obvious, and the second claim follows from KC. For s = x we have
||ψ(Λr)(x, x)|| = Hφ^Xx)!! by the definition of the Riemannian metric on
Gx, which proves our claim.

2.8. Proposition. If there is a local equivariant splitting at every point of M,

the homomorphism φz of Lemma 1.15 takes its values in the group I(z) of

G'isometries of the orbit of z:

The image of mx{Gz, z) -^ πx(M, z) is contained in the kernel of φ2, hence ψz

induces a homomorphism 7Tl(Gs^M,p(z)) -^ I(z).

Proof Let c be a path in G^M starting at p(x) and ending at p(y). For
any point x' G Gx there is a unique path c' in N(x') with p(c') = c starting at
x'. Let its endpoint be y'. We thus obtain a G-map l(c): Gx -» Gy. We may
regard / as a functor from the fundamental groupoid of G\M to the category
of G-spaces and G-maps. We claim that l(c) is an isometry. This is true for
paths in sufficiently small open subsets of G\M because of the existence of
local equivariant splittings. The general statement follows by breaking c up
into small enough pieces. Now if [c] is the homotopy class of a closed path
based at z, then ψz[c] = / ° p(c).



HOMOGENEOUS FACTORS 91

2.9. Theorem. M has a global equiυariant splitting iff it has a local splitting

at every point, and φ2 is trivial for one (every) point z of M. More generally, if a

local (equivariant) splitting exists at every point of M, the diffeomorphism 1.13

is an isometry Gz X^^Nζz)^ M.

One cannot improve Proposition 2.8, because every homomorphism

φ z : πx(M, z) —»/(z), whose kernel contains the image of mx(Gz,z)-±

πx(M, z), occurs as in Proposition 2.8. More precisely, we have

2.10. Lemma. Given a connected Lie group G, a connected Riemannian

manifold P with a transitive dίfferentiable isometric action of G, a connected

Riemannian manifold AT, and a homomorphism φ: πx(M', z')-> I = (G-

isometries of P). Then there are a Riemannian manifold M with an isometric

action of G with orbits isometric to P, local equivariant splittings at every point

of M, and an isometry ψ of the orbit space G\M with M' such that φz =

M* ° Ψ ° Ψ* ° P*> where μ: P —> Gz is a G-isometry, p: M -^G^M is the

natural map, and ψ ° p(z) = zf.

Proof. Let π: N —»Mr be the covering space of Mf corresponding to

ker φ. Pick a basepoint n G iV over z'. There is a unique Riemannian tensor

on iV such that π is a local isometry. The group G acts isometrically on the

Riemannian manifold P X N, trivially on N. The group H = im φ acts

G-equivariantly, isometrically and properly discontinuously on P X N,

namely on P as subgroup of / and on TV by deck transformations. Define

M = H\P X N and check.
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