
J. DIFFERENTIAL GEOMETRY
15 (1980) 513-529

INTEGRAL FORMULAS FOR SUBMANIFOLDS
AND THEIR APPLICATIONS

D. J. SHETTY & KRISHNA AMUR

Introduction

Integral formulas of Minkowski type have been studied and applied in
characterizing umbilical submanifolds by Chen [3], Katsurada [5], [6], [7],
Kόjyό [6], Nagai [7], Okumara [10], Tani [11] and Yano [3], [8], [9], [10], [11].
These authors assumed that the normal vector field e with respect to which
the integral formulas were obtained was parallel in the normal bundle1. The
purpose of this paper is to extend the study of the above authors. We obtain
the most general integral formulas for a submanifold of a Riemannian space
of constant sectional curvature without putting any restriction on the unit
normal vector field e, and under conditions which are weaker than the
condition that e be parallel in the normal bundle we obtain integral formulas
of Minkowski type and apply them to the study of umbilical submanifolds.
We give concrete illustrations to substantiate our generalisations.

1. Preliminaries

Let M be an orientable differentiable manifold of dimension n imbedded in
an orientable w-dimensional Riemannian manifold N of constant sectional
curvature. Let ua = ua(xh) denote the local expression of the submanifold M
in N. Here and in the sequel a, b, c, run over the range 1, 2, , m,
and A, i,j, over the range 1, 2, , m unless otherwise specified. We
shall identify vector fields of M with their images under the differential
mapping. Thus if X is a vector field of M and has local expression X = Xhdh,
then it has local expression X = XhB£da in TV where 3Λ = d/dxh, da = d/dua,
B£ = dua/dxh, and Einstein's summation convention is followed for repeated

Received June 19, 1978. The work of the first author was partially supported by the Kaπiatak
University Grant for support for research Project No. K. PLG/DEV/577, and that of the second
author by DAE Project No. BRNS/MATHS/11/74.

1 For a generalization of the results of these authors see C. C. Hsiung, J. D. Liu and S. S.
Mittra, Integral formulas for closed submanifolds of a Riemannian manifold, J. Differential
Geometry 12 (1977) 133-151, which was published after the present paper had been written.
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indices. If G denotes the Riemannian metric of N and Gab its components, the

components gu of the induced Riemannian metric g of M are given by

Sij = GabB°Bjb. Let V and V denote the Riemannian connections of M and N

respectively; they are related by the Gauss formula:

(1.1) VXY=VXY+H(X, Y),

where X, Y are vector fields of M, and H is the second fundamental form of

M.

Let e be the unit normal vector field on M. The Weingarten formula for M

is given by

(1.2) Vxe = -Λ.{X) + Vfr,

where the Weingarten map Ae is related to the second fundamental form H

by

(1.3) g(Ae(X), Y) = G(H(X, Y), e)

for all vector fields X, Y of M. Let ev , em_n form an orthonormal basis

in the normal bundle of M, and hx be the second fundamental form

corresponding to ex so that

(1.4) H(X, Y) = h'(X, Y)ex,

where and in the sequel x9y run over the range 1, 2, , m — n. The local

expression for the equation of Codazzi is

(i.5) vkh/ - v,v = w - vy,
where

(i.6) τfe - ijyX with y = - y .

Let e be a unit normal vector field on M. We set e — ex and choose the

other normals e2, - , em_n in such a way that

det(θ1? ,dH,el9 ,.*„_„)« 1."

Set A1 = Λ, v4ei = v4 and liy

x = /̂  for convenience. Denote the principal

curvatures of M with respect to e by kl9 , fcΛ. Define 50, j | , , sn;

Po>Pv' ' ' ̂ Λ b y

(1.7) s0 = 1, Si = 2 *i! * * ' ki,>

0.8) Λ - l ,

and the /th mean curvature M7 by

(1.9) M 0 = l ,
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where Q) are binomial coefficients and / = 1, 2, , n. It is easy to see that

(1.10) Λ = VV ' V

The/?/s and the s/s are related by Newton's formulas:

(1.11) Pι - sιPι_λ + + ( - I ) ' " V i/>i + (-!)'&/ - 0,

where / = 1, 2, , n. st can be solved in terms oipXJ •••,/*„, and we have

/_ iy i+' 2 + +*#+/

<L 1 2> *' = Σ / i / xr* ΪΓ' i" Λ*
/1+2/2+. - +Λ#-/(ίi)! * * (O!2'2 * /''

0<tt

2. Integral formulas

Let Y be a vector field of iV defined along M. We may write Y = Z + /?^,
where Z is a vector field tangential to Λf and /J 7 = G( 7, e^). We call py the
support function with respect to ey. We have

(2.1) V, F = (V,Z> - ^V)8y + ( Z V + /»V

We denote the tangential component of V, Y by tan Vf Y so that

(2.2) Vf.Z> = /7 V + g(tan V, F, 3Λ)g^.

Consequently

(2.3) V,Z' - W l + i \ ' + g(tan V,.F, dk)gu,

where we have set/?1 = p and allowed z to run over the range 2, , m — n.
Also the normal component of Vl Y is given by

(2.4) G(V, F, ex) = Z\* + Vj,*+ p%\

Define hw\ Z(/)

y for / = 0, 1, , n by

W = «Λ *(/)/ = W • • • V-.

Z ( 0 / = Z ' , Z ( , / - V / Z '

Using (1.5), (1.10) and (2.5) we obtain

V,Z(/)' = (V^,)^/-!)' + T(V^2)Z(/_2)' +
(2.6) 2

( n Vyy, 3,) + p
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w h e r e w e h a v e set

(2.7) Z ( / _ , > / = « * ' Z ( / _ , / + KZ(l_2)

j +••• + A ( / _ i ) * ' z y .

(2.8) Du

k = l^hj* - Ifihp.

Let t be a real number. To obtain the main integral formula we compute
the following, using (1.12) and (2.6):

V,(/>'Z(/)<) = tp'-\V,p)Z{0' +p'[

(2.9.1) + iiVpjZv-v1 +••• + η^iPύZ' + pPι_x

n%Ϋ, 3,) +p

(2.9.2)
) + +

V,F, 3,.) +p* hjiz) + Z

(2.9.3) + I ^ " ^ { (V^>)Z('-3)' + 2

V,F, 9,)

(2.9./ + 1)

Suppose the submanifold M of N has closed regular boundary Bn_x.
Integrating (2.9.1)-(2.9.2) + +(-1/(2.9./ + 1) over M and making use
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of (1.9), (1.11) and Stoke's theorem we get

/ />'Σ(-i)'"W{z<#>' - *iz</-υ + + (-I

dxι Λ Λώ'"" ιΛώ / + ιΛ /\dxn

(2.10)

+ JV{ V ~ *Λ/V + * * ' + (-l)fyι"}g(tan V,F, θ,)

{i ^ ^'} dV,

where |g| denotes the determinant of the matrix ((g0)), dV denotes the
volume element of M, and

(2.11) H,(e) = pWz{hoυi - *,*(,_!* + + y)

(2.12) C,(e) - {Z(,_1)Jkθ - 5,Z ( /_ 2 )^ + + ( - l ) ' - 1 ^ . ^ δi)Dυ

k,

/ = 1 , 2, ••-,« — 1, and for convenience we define C0(e) = 0.
Lemma 2.1. 7%e invariant C7(e) defined by (2.12) w zero /or α// /

1, 2, , n - 1, //

(2.13) G(VXY, V£e) = G(VZ

for all vector fields X, Y, Z of M. In particular, Q(e) = 0 if e is parallel in the
normal bundle.

Proof. Suppose (2.13) holds. Setting X = dJ9 Y = dk, Z = 3f and using
(1.1) we have

G(VXY, V^e) = G^yeχ9 - Y ^ ) = " W

Hence (2.13) implies that /),/ = /^A^ - ^A,^ = 0, which in view of (2.12)
implies that C7(e) = 0. q.e.d.

Thus the condition that Ct{e) = 0 for some /, 1 < / < n — 1, is weaker than
the condition that e is parallel in the normal bundle. However, when m — n
= 2 the condition (2.13) is equivalent to the condition that e is parallel in the
normal bundle provided at least two principal curvatures with respect to e2

never vanish on M.
Lemma 2.2. The invariant Ht(e) defined by (2.11) can be expressed in the

form

(2.14) //,(«) = t£- Σ/>%AVΛ'
where the summation is taken over all the distinct indices j , /,, • • , i,.
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Proof. Since Hj(e) is an invariant we can use the frame of principal
vectors vv v2, * * , vn of M with respect to e to evaluate it. Thus since
hgyJ = (kj)1 δiJ (no summation with respect toy), from (2.11) we have

( 2 . 1 5 ) H,{e) = Σ P%;W ~ sW~λ + ••• + H

But (see [1, L e m m a 1.1])

(*,) ' - S ι ( k , ) ' - 1 + + (-1)% = ( - 1 ) ' Σ K •••**•

'Ί, * , UΦJ

So substituting in (2.15) we obtain (2.14).

Remark 2.1. (2.10) is the most general integral formula for a submanifold
M of a Riemannian manifold TV of constant sectional curvature. If M is a
hypersurface of N, then /?z = 0, z = 2, 3, , m - n, liy = 0, and (2.10)
together with the formula (2.4) for Vj) reduces to the integral formula
obtained earlier by Amur and Hegde [2].

We shall discuss other special cases in §3.

3. Applications of the integral formulas:

characterizations of umbilical submanifolds

We consider applications of the integral formulas (2.10) in obtaining
various characterizations of umbilical submanif olds under the hypothesis that
Y is some special vector field such as a concurrent vector field, a conformal
Killing vector field etc., and that there is a unit normal vector field e on M
satisfying the conditions H^e) = C7(e) = 0 for some /, 0 < / < n — 1, where
Ht{e) and C7(e) are invariants given by (2.11) and (2.12) respectively.

Throughout the following discussion we shall assume that M is a closed
submanifold of a Riemannian manifold TV of constant sectional curvature
and that the real number t = 0.

3.1. The case where Y is a concurrent vector field.

In the first instance we obtain integral formulas of Minkowski type from
(2.10), and then use them to characterize umbilical submanif olds.

Since we have assumed that the vector field Y of N defined along M is a
concurrent vector field, we have

(3.1) V,F + Θ, = O.
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Hence

{V y - *A/-D/y + + (-l)V7}g(tan vyF, 9,.)

(3.2) ~~{Pι- *iA-i + + (-l)'ι»,}

by virtue of (1.9) and (1.11). Observing that M is closed and t = 0 and

substituting (3.2) in (2.10) we have _

Proposition 3.1. Let N admit a concurrent vector field Y along M, and let e

be a unit normal vector field on M. Then

(-l)'(' + 1)( / 1 i ) ( (Af/ - pMι+ι)dV = f {#,(*) + C,(e)} dV,
(33) v ' + i / J M J M

I = 0, 1, - , π - 1,

M7 w ίΛe ///* m^α« curvature with respect to e, H^e) and Q(e) are

invariants given by (2.11) and (2.12) respectively, and p is the support junction

with respect to e.

As immediate consequences of the above proposition we have the following

theorems.

Theorem 3.2. Let N admit a concurrent vector field Y along M. If e is a

unit normal vector field on M such that H^e) = C7(e) = 0 for some /, 0 < / <

n — 1, then

(3.4) f (Λf, - PMι+ι)dV = 0.

Theorem 3 3 . Let N admit a concurrent vector field Y along M. If pzA€z —

0, and e is unit normal field on M such that C7(e) = Ofor some /, 0 < / < n —

1, then

(3.5) f (M, - PMl+ι)dV - 0.

Proof. The condition pzAe^ = 0 implies that pzhijz = 0 for all i,j, so that

from (2.11) we have Ht(e) = 0 for all /. The result then follows from Theorem

3.2.

Theorem 3.4. Let N admit a concurrent vector field Y along M. For the unit

normal field e on M if H^e) = 0, V^e = 0, where Z is the component of Y

tangential to M, and if M is umbilical with respect to each of the normals

*2>' ' ' > em-m t h e n cι(e) = 0 and

(3.6) Γ (Mx - PM2)dV = 0.
JM
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Proof. Since M is umbilical with respect to each of the normals

**• * * ,*„,-„, we have

(3.7) * / = kzgβ, z = 2, , m - n,

where kz are real valued functions on M. Now using (3.7) in (2.12) we get

^(1) Z(2) ^(/-l) '

= (n - l)k2G(V£e, ez).

Thus if V^e = 0, then C,(e) = 0, and from Theorem 3.1 we get (3.6). q.e.d.
In the above theorem, if we replace the condition V^e = 0 by

where

then with computations analogous to those in Theorem 3.4 it can be shown
that Cj(e) = 0,7 = 1, 2, , /. Thus we have

Theorem 3.5. Let N admit a concurrent vector field Y along Λf, and let e be

a unit normal vector field on M. If there is an integer /, 0 < / < n, such that

(ii) V£e = 0, V±oe = 0, J = 1, 2, , / - 1,
where Z is the component of Y tangential to M, and

(iii) M is umbilical with respect to each of the normal e2, * , em-n,

then Ck(e) = 0, k = 1, 2, , /, and

f (M, - PMι+ι)dV = 0.
JM

Remarks 3.1. (a) If M is a hypersurface of N, then clearly Ht{e) = C7(e)
= 0 for all /, and (3.3) yields Minkowski-Hsiung formulas for M, [4].

(b) Suppose N = Em, and X is the position vector field of M in Em with
respect to the origin of Em. Since we can identify V A" with 3,., it is clear that
we can set Y = -X. Let Xn be the normal part of X. Set e = el9 and choose
the other normals e2, * , em_n in such a way that e2 is in the direction of
Xn - (Xn eλ)ev Then clearly the support functions p3, ,pm~n are all
zero and/?1 = -(X e^,/?2 = - ( ^ e^ Thus from (2.14) we have
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where the summation is taken over all distinct indices j , /, it =
1, 2, , n. Set

(3-8) F,+ x{e) = ^f

Further let e be parallel in the normal bundle. By Lemma 2.1 it follows that
Cj(e) = 0 for all /. The formula (3.3) then becomes

(3.9) f {M,+ (X e)Mι+ι + Fι+ι(e)}dV = 0, / = 0, 1, , n - 1.

This formula was obtained by Chen and Yano [3] by a different procedure
which involves the use of vector forms. We have not only generalized the
above equations suitably, but also explicitly shown how the results of Chen
and Yano are related to ours.

(c) With the assumptions as in (b), Theorems 3.2 and 3.3 reduce to those
obtained by Chen and Yano [3].

(d) In Theorems 3.4 and 3.5 we find concrete illustrations of the fact that a
condition weaker than the condition that e be parallel in the normal bundle
can be used to make C,(e) = 0 for some /, 0 < I < n — 1. For, the condition
Vze = 0 in Theorem 3.4 or the condition V£e =V£ e = = V£ e = 0
in Theorem 3.5 are clearly weaker than the condition that e be parallel in the
normal bundle.

We need the following well-known lemmas for proving results on umbilic-
ity of M.

Lemma 3.6. Let Ml91 = 0, 1, , n, be as in (1.9). Then

and further equality in (3.7) implies that M is umbilical with respect to the unit

normal vector field e.

Lemma 3.7. For integers I, s such that 0 < / < s < n, if Ml9 M / + 1 , , Ms

are positive, then

—— < — — < < ,
Ml+\ M l + 2 Ms

and equality at any stage implies that M is umbilical with respect to e.

Lemma 3.8 (Chen and Yano [3]). For integers /, s such that 1 < / < s < n,

if Mλ, - - , Ms are positive and there are constants Cj(l < j < s — 1) such that

Ms = ΣjZ) CjMj, then

5 - 1

K-\ - Σ CjMj_λ > 0,

where the equality holds only if M is umbilical with respect to e.
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The following theorems which give characterization of the umbilicity of M

are extension of those proved by Chen and Yano [3]. We sketch the proofs

briefly and for details we refer to [3].

Theorem 3.9. If there are a unit normal vector field e on M and an integer /,

1 < / < i, such that

(ii)/? > MjM^λ (orp
(iii) H/e) = 0, Cj(e) = 0, j = I - 1, /,

then M is umbilical with respect to e.

Proof. By (ii) and Theorem 3.2 we have

M
P = ηrr1- and / (M/_1 - pM^dV = 0,

Ml+\ JMl+\ JM

2which together with (i) imply Mι+xMι_x - M,2 = 0. Thus by Lemma 3.6 M is

umbilical with respect to e.

Theorem 3.10. If there are a unit normal vector field e on M and an integer,

/, 1 < / < /i, such that

(ϊ)Mι_l9Mι,Mι+ι >0,
(ii)/? <Mι_ι/Mh

(iii) Ht(e) = 0, q(e) = 0,
then M is umbilical with respect to e.

Proof. By Theorem 3.2 and (iii) we have fM(Mι - pMj+x)dV = 0 and by

(ii) and Lemma 3.7 it follows that/? < Mι_ι/Mι < Mι/Mι+ι. These results

together imply/? < Mι_ι/Mι < Mι/Mι+ι = p. So by Lemma 3.6, M is um-

bilical with respect to e.

Theorem 3.11. If there are a unit normal vector field e on M and integers /,

s, 1 < / < s < n, such that

(i) Mj, Mί+V , Ms are positive,

(ii) Ms = Σy~J CjMjfor some constants Cj > 0, / < j < s,

(iii) H/e) = 0, C/e) = 0, j = / - 1, , s - 2,
then M is umbilical with respect to e.

Proof Proof follows from Theorem 3.2 and Lemma 3.8.

Theorem 3.12. If there are a unit normal vector field e on M such that

(i)Mn,Mn_x>0,

(ii) the sum Σ" = i I/A:,- of principal radii of curvatures of M with respect to e

is constant,

(iii) H/e) = 0, C/e) = 0, j = n - 2, n - 1,
then M is umbilical with respect to e.

Proof. Follows from Theorem 3.11 and the fact that Σ?_i 1/A:, =

n Mn_λ/Mn = constant.
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Theorem 3.13. If there are a unit normal vector field e on M and an integer
1,1 < I <n, such that

(i) Mt, Mι+X are constants,
(ϋ) Hj(e) = 0, C/e) = 0, j = / - 1, /,

then M is umbilical with respect to e.
Proof. By (i) and Theorem 3.2 we have

f pdV = - ^ - f dV = ±- f M,_, dV,

which implies lM(Mι+xMι_x — M^)dV - 0, and hence from Lemma 3.6 it
follows that M is umbilical with respect to e.

Theorem 3.14. If there is a unit normal vector field e on M such that
(i) Mx = constant,

(ϋ) H0(e) = p'hjj = 0, Hx(e) = 0, Cx(e) = 0,
(iii) p keeps the same sign on M,

then M is umbilical with respect to e.
Proof. By (i) and Theorem 3.2 we have

ί dV = Mx f p dV = - ϊ - f p M2dV,
JM JM M\ JM

which implies JMp(Mx

2 - M2) dV = 0. If p keeps the same sign on M, then
Mx - M2 = 0 which by Lemma 3.6 implies that M is umbilical with respect
toe.

Theorem 3.15. If there is a unit normal vector field e on M such that

n

(ii) V%e = 0 where Z is the tangential part of Y,
(iii) M is umbilical with respect to orthonormal vector fields e2, , em_

where e, e2, , em_nform an orthonormal basis of the normal bundle,
(iv) Mx = constant,
(v) p keeps the same sign on M,

then M is a totally umbilical submanifold of N.
Proof. The result follows from Theorems 3.4 and 3.14.
Remark 3.2. If the mean curvature vector of the submanifold M of a

Euclidean space Em (resp. a sphere Sm in Em+ι) is assumed to be parallel in
the normal bundle of M in Em(Sm), it can be shown that Mx is constant [9].
Further if the mean curvature vector is assumed to be in the direction of the
first normal e and pzhjiz = 0 for all i,j, then H0(e) = 0, Hx(e) = 0 and
Cx(e) = 0. Hence Theorem 3.14 generalizes the following theorems due to
Yano [9].

Theorem A. Suppose that the mean curvature vector of a compact orientable
submanifold M of a Euclidean space Em does not vanish, and we take the first
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unit normal ex to M in the direction of the mean curvature vector. If the mean

curvature vector is parallel with respect to the connection induced in the normal

bundle of M in Em,pzhjiz = 0 and p has a fixed sign, then the submanifold lies

on a sphere Sm~1'

Theorem B. Suppose that the mean curvature vector of a compact orientable

submanifold M of a sphere Sm~ι does not vanish, and we take the first unit

normal ex to M in the direction of the mean curvature vector. If the mean

curvature vector is parallel with respect to the connection induced in the normal

bundle of M in Sm~ι, pzhjiz = 0 andp has a fixed sign, then the submanifold

lies on a sphere Sm~2.

3.2. The case where Y is a conformal Killing vector field.

Since

where Ϋa = GabΫ
b we have,

(3.10)

V,F,

where LψGba is the Lie derivative of the metric tensor G^ with respect to Y.

Throughout this part we assume that Y is a conformal Killing vector field so

that

(3.H) LΫGab=2pG
ab,

where p is a function. Substituting from (3.10) and (3.11) in (2.10) and

observing that M is closed and compact and that t = 0 we get

(3.12) ( " 1 ) ( / + 1}( / + l )/M

( p M / + p M ^ d v = fjHM + CM} dv,
I = 0, 1, . . , n - 1.

As immediate consequences of this integral formula we have

Theorem 3.16. Let N admit a conformal Killing vector field Y along M

satisfying (3.11). If there are a unit normal vector field e on M and an integer I,

0 < / <n9 such that Ht{e) = 0, Q(e) = 0, then

(3.13) f (pM, + pMι+ι) dV = 0.

Theorem 3.17. Let N admit a conformal Killing vector field Y along M

satisfying (3.11). If there is a unit normal vector field e on M such that the
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normal component of Y is parallel to e and C^e) = Ofor some I, 0 < / < n, then

Hj(e) = 0 and

(3.14) f (pM +pM^dV-O.

Theorem 3.18. Let N admit a conformal Killing vector field Y along M

satisfying (3.11). If there is a unit normal field e such that H^e) = 0 and

Vze = 0, where Z is the component of Y tangential to M, and if M is umbilical

with respect to each of normal fields, e2, - , em_n, where e, e2, , em_n is

an orthonormal frame in the normal bundle, then Cx(e) = 0 and

ί (pMx + pM2) dV = 0.
JM

From Theorems 3.16, 3.17 and 3.18 we have the following results on the

umbilicity of M.

Theorem 3.19. If e is a unit normal vector field on M such that

(i) Mj = constant,

(ϋ) C,(e) = 0, H0(e) = Hx(e) = 0,

(iii) p keeps the same sign on M,

then M is umbilical with respect to e.

Proof. By Theorem 3.16 and (ϋ) we have

f (p + pMx) dV = 0, f (pMx + pM2) dV = 0,
JM JM

which together with (i) yield

f p(Mx

2 - M2)dV=0.

From (iii) and Lemma 3.7 it follows that Mx — M2 = 0, and hence M is

umbilical with respect to e.

Theorem 3.20. If e is a unit normal vector field on M, and there is an

integer /, 0 < / <n, such that

(i) Mι = constant,

(ii) Mx, , Mι+X are positive,

(iii) H{e) = 0, C7(e) = 0, H0(e) = 0,

(iv) p keeps the same sign on M,

then M is umbilical with respect to e.

Proof. By (i) and Theorem 3.16 we have

f {pM, + PMxM^dV = 0, f (pMι + pMi+x)dV = 0,

which yield

M
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From (iv) and Lemma 3.7 it follows that MxMt - M / + 1 = 0, and hence M is

umbilical with respect to e.

Theorem 3.21. If e is a unit normal vector field on M such that

(i) p 4- pMx > 0 {or p 4- pMx < 0),

(ii) Cx(e) = 0, H0(e) = 0, Hx(e) = 0,

(iii) p keeps the same sign on M,

then M is umbilical with respect to e.

Proof. By Theorem 3.16, (i) and (ii) we have p + pMλ = 0 and

JM(pMι + pM^dV = 0. Hence

ί p(Mx

2 - M2)dV = 0.

Consequently by (iii) and Lemma 3.6 we get the desired result.

Theorem 3.22. If e is a unit normal vector field on M, and there is an

integer /, 0 < / <n, such that

(i) M, > 0,

(iϊ)p > - M^/M^orp < -M^/Mg),

(iii) Hj(e) = 0, C/e) = 0, j = I - 1, /,

(iv) p keeps the same sign on M,

then M is umbilical with respect to e.

Proof. By (ii), (iii) and Theorem 3.16 we get

Hence from Lemma 3.6 and (iv) it follows that M is umbilical with respect

to e.

Theorem 3.23. If e is a unit vector field on M, and there is an integer

1,0 <l <n, such that

(ϊ)Mι_ι,Mι,Mi+x > 0 ,

(ii)/? > -pMι_x/Mh

(iii)//,(*) = 0,^(^ = 0,

(iv) p is positive on M,

then M is umbilical with respect to e.

Proof. The result follows from Theorem 3.16 and Lemma 3.7.

Theorem 3.24. If e is a unit normal field on M such that

(i) Mx is constant,

(ii) H0{e) = 0, Hx(e) = 0,

(iii) Vze = 0, where Z is the tangential part of Y,

(iv)/? keeps the same sign on M,

(v) M is umbilical with respect to each of normal fields e2, , em_n, where

e, e2, - , em_nform an orthonormal frame in the normal bundle,

then M is totally umbilical submanifold of N.
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Proof, It is a consequence of Theorems 3.18 and 3.19.

Theorem 3.25. If e is a unit normal vector field on M such that

(i) p + pM > 0,

(iii) V%e = 0, where Z is the tangential part of Y,

(iv)/7 keeps the same sign on M,

(v) M is umbilical with respect to each of normal fields e2, * , em_n, where

e, e2, , em-n form an orthonormal basis in the normal bundle,

then M is totally umbilical submanifold of N.

Proof. The result follows from Theorems 3.16 and 3.21.

Remark 33. Suppose e is a unit vector field in the direction of mean

curvature vector of M, and the conformal Killing vector field Y is such that

its normal part is parallel to e. Further suppose that e is parallel in the normal

bundle. Then Ct(e) = 0, Ht(e) = 0 for all /. With this setup theorems analo-

gous to Theorems 3.19 to 3.21 were obtained by Katsurada and Kojyo [6],

Katsurada and Nagai [7].

33 . The case where Y is a concircular vector field.

Throughout this part Y is assumed to be a concircular vector field, that is,

Y satisfies

(3.15) Vj^pG^ + X^

where p is a function, and Xa are the components of a 1-form associated with

a gradient vector field X of N defined along M. We have

(3.16) LyG,,. = 2 P < ^ + XbΫa + XaΫb.

Setting BjbXb = Xj and substituting (3.16) and (3.10) and using (1.10), (1.11)

and (1.9) we get

(3.17)

( V - ί.Vυ* + + (-l)V}s(tan V,F,

Substituting from (3.17) in (2.10) and observing that M is closed and compact

and that t = 0 we get

( / + ι ) f , + pMl+ι)dV
(3.18) M

= f {H,{e) + C,(e) + K,{e))dV,
•>M
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where

(3.19) K,(e) = {Z(/)< - sxZ{l_λj + + (-l^Z'}*,-.

In view of (3.18) we have

Theorem 3.26. Let N admit a concircular vector field Y along M satisfying

(3.15). If there are a unit normal vector field e on M and an integer /, 0 < / <

n, such that Ht{e) = 0, Q(e) = 0 and Kt(e) = 0, then

(3.20) f (PMι+pMι+x)dV = 0.

The proofs of the following theorems each of which gives a characterization

of an umbilical submanifold are similar to those of §3.2. Hence we simply

state the theorems.

Theorem 3.27. If e is a unit normal vector field on M such that

(i) Mj = constant,

(ii) Hj(e) = Cj(e) = Kj(e) = 0, j = 0, 1,

(iii) p keeps the same sign on M,

then M is umbilical with respect to e.

Theorem 3.28. If e is a unit normal vector field on M, and there is an

integer I, 0 < I < n, such that

(i) Mj is constant,

(ii) Mv - - , Mι+ι are positive,

, (iii) Hfie) = Kfie) = Qie) = 0, H0(e) = 0,

(iv) p keeps the same sign on M,

then M is umbilical with respect to e.

Theorem 3.29. If e is a unit normal vector field on M such that

(i) p + pMx > 0 (or p + pMx < 0),

(ii) q(e) = H^e) = Kfc) = 0, / = 0, 1,
(iii) p keeps the same sign on M,

then M is umbilical with respect to e.

Theorem 330. If e is a unit normal vector field on M, and there is an

integer 1,0 < I < n, such that

(ii)/? > J

(iv) p is positive on M,

then M is umbilical with respect to e.

Remark 3.4. If the ambient space is Euclidean m-space Em, and M is

imbedded into a hypersphere of Em centered at C, then M is said to be a

spherical submanifold or simply spherical, X — C is called the radius vector
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field where X is the position vector field of M in Em with respect to the origin

of Em. Chen and Yano [3] proved the following theorem.

Theorem C. If M is imbedded in Em, then there exists a normal vector field

e ^ O over M such that

(1) e is parallel in the normal bundle, and

(2) M is umbilical with respect to e,

when and only when M is spherical, and e is parallel to the radius vector field.

By taking N = Em and assuming that the unit normal vector field e is

parallel in the normal bundle, the conclusion in each of the theorems, in §3,

on umbilicity of M with respect to e can be replaced by "Λf is spherical, and

e is parallel to the radius vector field".
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