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SINGULARITIES
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Introduction

To study singularities is in a sense to study the classification of germs of
varieties. It is therefore important to give a method of classification. The
purpose of this paper is to show the classification of a class of germs of
varieties, which will be called expansive singularities in this paper, is included
in that of Lie algebras of formal vector fields. As a matter of course, the
classification of the latter does not seem easy. However, note that such a Lie
algebra is given by an inverse limit of finite dimensional Lie algebras of
polynomial vector fields truncated at the order k, k > 0. Therefore such Lie
algebras can be understood by step by step method in the order k.

Let C1 be the Cartesian product of n copies of complex numbers C with
natural coordinate system (xl9 , xn). By Θ we mean the ring of all
convergent power series in xl9 - , xn centered at the origin 0. Let V be a
germ of variety in C1 at 0, and ί(V) the ideal of Vin Θ (cf. [2, pp. 86-87] for
the definitions). Two germs V, V are said to be bi-holomorphically equivalent
if there is a germ of holomorphic diffeomorphism φ such that φ(0) = 0 and
ψ(V)= V.

Let 3E be the Lie algebra of all germs of holomorphic vector fields at 0, and
3£( V) the subalgebra defined by

3ί(V) is then an 0-module. If there are vl9 , vs linearly independent at 0,
then Corollary 3,4 of [9] shows that V is bi-holomorphically equivalent to the
direct product C5 X W9 where W c Cn~s. Thus for the structure of singulari-
ties we have only to consider the germ W. Taking this fact into account, we
may restrict our concern to the varieties such that all u G 36(K) vanish at 0.
Throughout this paper we shall assume this, i.e., 3£(K)(0) = (0).
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u E £(K)(w(0) = 0) is called a semi-simple expansive vector field, if after a
suitable bi-holomorphic change of variables at 0, u can be written in the form

(1) u = Σ ίW-3/θy,,
1 = 1

where /21? , β^ lie in the same open half-plane in C about the origin. (See
also §2.A for a justification of this definition.) The origin 0 is called an
expansive singularity, if £(F) contains a semi-simple expansive vector field. If
V is given by the locus of zeros of a weighted homogeneous polynomial, then
V has an expansive singularity at 0. The advantage of existence of such a
vector field u is that one can extend through exp tu a germ V to a subvariety
V in C . In this paper we restrict our concern to the germs of varieties with
expansive singularities at the origin. For such 3£(K), we set %k(V) = {u G
X(V);jku = 0}, where A is the k-th jet at 0. Since X(K) = 3E0(F), Xk(V) is a
finite codimensional ideal of £(K) such that [3E*(K), */(F)] c3EΛ + 1(F) and
fl 3E*(K) = {0}. We denote by g(K) the inverse limit of {X(V)/3ίk(V)}k>0

with the inverse limit topology. Since £( V)/3ίk( V) is finite dimensional, g(F)
is a Frechet space such that the Lie bracket product [ , ] : 8 ( H X 8 ( ^ ) K

g( K) is continuous, namely, g( F) is a Frechet-Lie algebra. It is obvious that
g( V) is a Lie algebra of formal vector fields, where a formal vector field u is a
vector field u = Σ? = 1 ufi/dxg such that each M,. is a formal power series in
xl9 , xn without constant terms. The statement to be proved in this paper
is as follows.

Theorem I. Let V, V be germs of varieties with expansive singularities at
the origins of C1, C1 respectively, and use the same notation and assumptions as
above. Then V and V are bi-holomorphically equivalent if and only if g(F) and
g( V) are isomorphic as topological Lie algebras.

By the above result, we see especially that any isomorphism Φ of g( V) onto
g(F') preserves orders, that is, ΦgA:(K) = Qk(V) for every k. Hence to
classify g(F) is to classify the inverse system {£(V)/%k(V)}k>0 Note that
X(V)/3ίk(V) is an extension of 3ί(V)/dίk_ι(V) with an abelian kernel
3EA:_1(K)/3EA:(F). Such extensions can be classified by representations and
second cohomologies (cf. [6]).

The proof of the above theorem is divided into several steps as follows.
Step 1. We define the concept of Cartan subalgebras and prove the

conjugacy of Cartan subalgebras.
Step 2. Using the assumption that V (resp. V) has an expansive singular-

ity at 0, we prove that there is a Cartan subalgebra t) of g(K) such that
ί) C £( V) (resp. ί)r c £( V')). By a suitable bi-holomorphic change of varia-
bles, every element of t) (resp. ί)') can be changed simultaneously into a
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normal form, which is a polynomial vector field. Moreover, every eigenvector
with respect to ad(£)) is a polynomial vector field.

Step 3. Now suppose there is an isomorphism Φ of g(K) onto ς(F'). Then
by definition Φ(ί)) is a Cartan subalgebra of g(F'). Hence by Steps 1, 2 we
may assume that Φ(ί)) c 3£( V). Thus considering the eigenspace decomposi-
tion of Q(V), Q(V) with respect to ad(£)) ad(ί)') respectively we see that Φ
induces an isomorphism of p onto p\ where p (resp. p') is the totality of
«Gg(K) (resp. g( F')) which can be expressed as a polynomial vector field
with respect to the local coordinate system normalizing f) (resp. ί)').

Step 4. From isomorphism Φ: p —> p', we conclude by the same procedure
as in [5] that there is a bi-holomorphic diffeomorphism φ of C1 onto C1 such
that φ(0) = 0 and dφp = p'. The main idea of making such φ is roughly in the
fact that every maximal subalgebra of p corresponds to a point. However,
since £(0) = {0}, the situation is much more difficult than that of [1].
Existence of expansive vector field plays an important role at this step as well
as in the above steps.

Step 5. Recapturing V from the Lie algebra p, we can conclude φ(F) =
V.

The theorem is proved by this way. Note that the converse is trivial.

1. Conjugacy of Cartan subalgebras

We denote a formal power series / in a form / = ^
aa G C, a = (α1? , <O> M = «i + * " * +<** and xa = xpx? • x+.
We denote by g the Lie algebra of all formal vector fields, and <Sk the
subalgebra

ι - l | α | > *

g is then regarded as the inverse limit of the system {g/g*;/**} where
Pk: δ / δ t+i •-* S/SA: i s Λe natural projection. We denote by/>Λ the projection
of g onto g/g Λ . pk and / Λ are sometimes called forgetful mappings. Since
g/g Λ is a finite dimensional vector space over C, g is a Frechet space, and
the Lie bracket product is continuous.

Let a be a closed Lie subalgebra of g, and 9* = S* Π β The closedness of
8 implies that β is the inverse limit of the system {Q/QΛ; A } * > 0

 I n t h i s P a P e r '
we restrict our concern to a closed subalgebra Q of g0. For any subalgebra 3
of g, we denote by n(8) the normalizer of δ, i.e., n(δ) = {u G Q; [«, 3] c ̂ },
and by g(0)(£) the 0-eigensρace of ad(§), i.e., g(0)(§) is the totality of v G β
satisfying that there are nonnegative integers mk, k > 0, (depending on υ)
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such that ad(s)mkv G Qk for all s G 3 and all k > 0, where ad(w)u = [w, €>]. If
3 is nilpotent, then g(0)(£) D n(β). Therefore, if g(0)(§) = δ, then n(8) = 8. The
converse is also true if dim g(0)(&) < oo (cf. [6]).

A subalgebra ί) of g is called a Cartan subalgebra of g, if the following
conditions are satisfied:

(ί), 1) ί) is a closed subalgebra of g such that/^ί) is a nilpotent subalgebra
of Q/(ΪA: for every k > 0.

Note that if dim g < oo above ί) is a usual Cartan subalgebra. The
statement to be proved in this section is as follows.

Proposition A. Let g be a closed subalgebra of g0. Then there exists a
Cartan subalgebra ί) of g, and for Cartan subalgebras ί), $ of g /λere w α
automorphism A of § such that Aϊ) = ί).

I.A. Automorphisms of g

Let g be a closed Lie subalgebra of g0, and g^ = g Π 3* For every u G g
the adjoint action ad(w) leaves each Qk invariant, hence ad(i/) induces a linear
mapping ak{ύ) of g/gΛ into itself. ad(w) is then regarded as the inverse limit
of the system {ak(u)}k>0. Define a linear mapping e''ad(M): gH»g by the
inverse limit of {etakiu)}k>0. Since ad(w) is a derivation of g, e'ad(M) is a
one-parameter family of automorphisms of g. The group α(g) generated by

âd(M). w ^ g | i s called the group of inner automophisms of g. The purpose of
this section is to investigate the structure of α(g).

Let Θ be the ring of all formal power series Σ | α | > 0 #«*"> and &k the ideal
given by Θk = {Σ ) α |> A : + 1 aax

a). &/βk is then a finite dimensional algebra
over C. We denote by πk, πk the projections 6 H> β'/θ*, &/®k+i ^ ®/®A:
respectively. Every w G g 0 acts naturally on 0 as a derivation such that
uΘk c Θk for every k. Conversely, « G g 0 can be characterized by the above
property. Every u G g 0 induces therefore a derivation w(/c) of the algebra
©/©*, and w(Λ) is canonically identified with ^ M . Conversely, for every
derivation δ of θ/Θ^ such that 8Θ0/Θk c &0/®k t ' i e r e ^s a n element u G g 0

such that δ = /^w.
Since a derivation u: © H» © can be regarded as an inverse limit of

derivations {^w: 0/6* *-» 0/©A:}> w e define an automoφhism exp w of 0 by
an inverse limit of {e^*M}. We denote by G' the group generated by {exp u\ u
e g } .

Define an automoφhism Ad(exp u) of f$ by

(2) (Ad(exp u)v)f = (exp w)ϋ(exp - u)f, / ε f i .
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Since (d/dt)t=0(exp tύ)f = uf, we see easily that

(3) — Ad(exρ tu)υ = [ w, Ad(exp ίu)v].

On the other hand e'*ad(M) satisfies the same differential equation. Thus by

uniqueness we obtain

(4) Ad(exp u) = e a d ( t t ).

Especially, if g is a closed Lie subalgebra of g 0, then Ad(exρ w)g = g for

every wGg. Since

ead(M)ead(t>) = A d ( e χ p u . e χ p ή9

we have that α(g) = {Ad(g); g E G'}.

Let G ( / : ) be the group generated by {eβkU; wGg) . Since Θ/Θk is finite

dimensional, G{k) is a Lie group with Lie algebra g/g* For every integer /

such that I < k, the group G ( / c ) leaves gj/g*. invariant. Hence {G ( Λ ) }^ > 0

forms an inverse system. We denote by G the inverse limit. Obviously, Gr is a

subgroup of G. However, note that if a sequence (w0, w1? , MΛ, )

satisfies ut E g7 for every / > 0, then exp w0 exp w, exp wΛ is an

element of G. Since G{k) is a Lie group, G is a topological group under the

inverse limit topology. The purpose of the remainder of this section is to show

G = G' and that G is a regular Frechet-Lie group with Lie algebra g, cf. [9].

Let G[k), k > 1, be the group generated by {e*kU\ u G g j , and Gx the

inverse limit of { G ̂  } k >,.

1.1. Lemma, exp is a bijectiυe mapping of §λ onto Gv

Proof. Let expk be the exponential mapping of g^g* into G[k\ i.e.,

expfc u = e?kU. Since exp: $λ \-+ Gx is defined by the inverse limit of {exp^.},

we have only to show that exp^: gi/g^ |-^ G$k) is bijective. Since Q}/Qk = PχQι

is a nilpotent Lie algebra, we see that exp^ is regular and surjective (cf. [3, p.

229]). However, the derivation pku: Θ/βk ι-> β/Θk is expressed by a triangu-

lar matrix with zeros in the diagonal. Therefore one can define log(l + N) by

Σ * - i ( - l ) π ~ 1 ^ Λ / / ι , which gives the inverse of exp^. Thus cxpk is bijective.

1.2. Corollary. G' = G.

Proof. We have only to show Gf D G. Since G ( 1 ) = G / Gx is generated

by {pxu; u E g}, every g G G can be written in the form g = exp uλ

exp M2 * exp ww Λ, where w1? , um E g and h E G Γ Thus the above

lemma shows G c C

We next prove that G is a Frechet-Lie group. Although such a structure of

G has no direct relevance to our present purpose, there is an advantage of

making analogies easy from the theory of finite dimensional Lie groups.

Let σ: pxQ H> g be a linear mapping such that/jσw = u for u E pλQ. It is not

hard to see that £(w) = exp opλu exp(w - oβλu) gives a homeomorphism of
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an open neighborhood U of 0 of Q onto an open neighborhood U of the
identity e of G. Since G is a topological group, there is an open neighborhood
V of 0 of Q such that ζ{Vyι = £(F), ξ(V)2 c £(ί/). We set η(w, ϋ) =
ξ~ι(ξ(u)ξ(v)) and i(w) = ^"^(w)"1) for u, v E V. Next we have to prove the
differentiability of η and /. However, the differentiability is defined by inverse
limits of differentiable mappings, hence that of η and i is trivial in our case.
Thus we get the following.

13. Lemma. G is a regular Frechet-Lie group with Lie algebra g.

l.B. Simultaneous normalization and eigenspace decomposition

For any u E g0, the linear mapping u{k): Θ/Θ* H> ®/&k splits uniquely
into a sum of semi-simple part uf^ and nilpotent part ujp such that [u$k\ uffi]
= 0. Using eigenspace decomposition of 6/6Λ, we see that u$k) is also a
derivation of Θ/Θk, and hence so is u%\ For i/(A:+1), we have that
[Pkusk+l\PkuN + l)] = ®>PkuN+l) ί s nilpotent, and tha.tpku^k+l) is semi-simple
by considering eigenspace decomposition of Θ/ΘΛ+1. Therefore pku^k+λ^ =
ι/5

(A:) and/^ifj^+1) = w^. Hence taking inverse limit we get formal vector fields
t^, uN which will be called the semi-simple part and the nilpotent part of u
respectively. A formal vector field is said to be semi-simple if it has no
nilpotent part.

Let %k be a nilpotent subalgebra of SO/SA: f°Γ a n arbitrarily fixed k. Set
$k = {u$k); u(k) G £*}, and denote by />/ the forgetful projection of So/S*
onto δo/3/> that is,/?/ = ^ / + 1 pk_x. Sincep£&k is a nilpotent subalge-
bra of So/Si, there is a basis (/f!), ,/π

(1)) of ΘQ/0! such that every
i/(1) E /?^Λ is represented by an upper triangular matrix. Let
(μλ(u(l)), , ft,(w(1))) be the diagonal part. μy is then a linear mapping of
pl%k into C for every j , which one may regard as a linear mapping of 8k into
C. Since w,(1) is the semi-simple part of w(1), it must satisfy

(5) tfψ = φV>)ff\
By a simple linear algebra, we see that there are/fΛ), ,/Λ

(Ar) E &0/&k such
that

(6)

for every u{k) E §>k, where mι

k is the forgetful projection of &0/Θk onto Θo/©/>
that is, 7rk = τr/7r/+1 Wfc-i

Since^^ E &0/®k,ff
k^ is expressed in the form

\'J Jj ΔJ Uj,aΛ m
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Set yj = Σ 0 < H < * aMxa. Since f?\ ,/rt

(1) are linearly independent, these

give a formal change of variables and every u$k) can be written in the form

(8) «ik) = Σ Φ^yβ/zy,

Since [3*, Zk] = 0, for §>k is nilpotent, every u(k) G 3* should be written in the
form

(9) "<*>=£ Σ
/ = 1 <α,μ> = μ,

0<|α|<λ:

where <α, μ ) = α 1 μ 1 + + «„]">,. It should be noted that the semi-simple

part u^k) of u(k) has been changed into a linear diagonal vector field such as

(8).

Let %k+ι be another nilpotent subalgebra of 3o/S*+i such t h a t / ? Λ ^ + 1 c

3*, and let 3* + 1 = {wf+1); w (*+ 1 ) G §* + 1 ) . S ince/^ + 1 3* + 1 Cflja*, the equal-

ity (5) holds also for every w(1) G z^+13*"1"1, and the equality (6) does for every

pk%
k+ϊ. By a simple linear algebra, we see that there are/f*"1"0, ,/ Λ

( Λ + 1 ) G

®o/®*+i such that

(10) W f + 1 > ^ + 1 > = μ , ( ^ + 1 > )

Note that^ ( A : + 1 ) = ^ ( / c ) + Σ , β | i . Λ + 1 α,.αxα. Hence by putting

(11) yj= Σ ^ * e

0 | | < A l

instead of (7), we get the same equations as (8) and (9) with respect to §>k.

Moreover we have

(12) »<*+ 1 ) = Σ μ,(^

(13)
/-I

for every w(/c+1) G § f c + 1 . Especially we obtain the following.

1.4. Lemma. Notations and assumptions being as above, the forgetful projec-

tion pk\ %k+ι ι-» §>k is infective.

Let {%k}k>ι be a series of nilpotent subalgebras S* of S o / S ^ s u c r i Λat

pk%
k+ι C ^ for every A: > 1. We denote by & the inverse limit, and set

%s = {u^ u G @}. Note that dim %k < n for every A: > 1. Thus there is an

integer k0 such t h a t ^ : %k+ι ι-> δj is bijective for every fc > A:o. By a method

of inverse limit, we see that there is a formal change of variables

(14) yj =fj(xl9 •• ,xn)9Kj< njj G 6
0
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such that (8) and (9) hold for every u(k) E %\k > 1), and

(15) us = Σ Φ)yfl/9yι,
i-l

(16) u = Σ Σ W'Vty

for every u E §>.

Now let Q be a closed subalgebra of g 0, and suppose the above £*'s are

subalgebras of Q/$k respectively. Hence the inverse limit £ is a closed

subalgebra of Q. We next consider the eigenspace decomposition of Q with

respect to ad(£). Since ad(w): g 0 H> g 0 leaves g invariant for every u E £, and

[ad(t/), ad(Wy)] = 0, we see that ad(«5): g 0 H> g 0 is the semi-simple part of

ad(w) and hence adίwjg c Q. Therefore we have only to consider the eigen-

space decomposition with respect to ad(^).

For a linear mapping λ of p^s into C, i.e., λ E (Pι§>s)*, we denote by δ\ Λ e

subspace

f e δ o ; « - Σ Σ ^^
/ = 1 <α,μ>-ju,=λ

Note that g λ = {0} for almost all λ E ( / ^ 5 ) * except countably many λ's. By

π(g) we denote the set of all λ E ( / Λ ) * such that S λ =̂  {0}. If p{§>s = {0},

then we set π(§>) = 0, because all μ '̂s are zeros.

1.5. Lemma. Ifpx8s = 0, then g(0)(^) = Q.

Proc?/. By (16), every w E §> can be written in the form u = uλ + u2 such

that

n — \ n n

u\ = Σ Σ Φβ/9yi9 u2 = Σ Σ <h*yas/tyι
i=\ j=i + \ i=\ \a\>2

The reason for the shape of uλ is that the linear part of u is an upper

triangular matrix. Therefore for every k > \ there is an integer mk such that

ad(w)m*g0 c δ * for every u E £. This means Q = g(0)(§) by definition.

Now we set g(λ)(§) = g n δ λ for every λ E π(§).

1.6. Lemma. .Et erv w E g cαw 6e rearranged in the form

w = Σ u\, "λ ^ δλ
λeττ(§)

Moreover, every uλ is contained in ς^\%).

Proof. Since the first assertion is trivial, we have only to show the second

one. Since τr(£) is a countable set, there is v0 E §>s such that λ(v^) ¥= λ'(v^)

for any λ, λr E ττ(^) satisfying λ 7̂  λr. For every k, let M(Λ) be the truncation

of u E g at the order k. uSk) is canonically identified with pku9 and can be
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rearranged in the form w(/c) = Σ λ e 7 r ( § ) u%°\ where each u^ is the truncation of

uλ at the order k. Since 9/9* is finite dimensional, only finite number of wj^'s

do not vanish. Applying a d ί t ^ ) 7 to uSk) we have, since ad(35)g c g,

ad(cW)V*>= Σ λ K ) ' ^ ) e Q/Qk.
λeπ(§)

Hence considering Vandermonde's matrix we get wj^ G Q/qk. Thus taking

inverse limit we get M λ Eg; hence the desired result.

1.7. Corollary. βkQ^(β) is the zero-eigenspace of&d(pk%): Q/Qk 1-* 9/9^-

Proo/. It is trivial that βkQ
φX%) is contained in the zero-eigenspace of

2id(βk%), for [§y, g(0)(£)] = {0}. Thus we have only to show the converse. The

zero-eigenspace of &d(pk%) is equal to that of &d(pk%s), that is, the space of all

v(k) G 9/9* such that [βk&s, v
(k)] = {0}. Thus v(k) should be written in the

form (9). Let v G 9 be an element such that/^t) = v(k\ and let v = Σχ^H&) vλ

be the decomposition in accordance with the above lemma. Then it is clear

that pkυ0 = υ(k\ Since v0 e 9(O)(3), we get the desired result.

l.C. Existence and conjugacy of Cartan subalgebras

Let 9 be a closed subalgebra of δo If G/GI = {0}, then 9/9^ is nilpotent

for every k > 1, for [g^, g;] c 9^+/. Therefore by Lemma 1.5 we see that 9

itself is the only Cartan subalgebra of 9, and the conjugacy is hence trivial in

this case.

Now suppose 9/9! φ {0}, and let ί)1 be a Cartan subalgebra of 9/9^

1.8. Lemma. Let ί)1, , ί)* be a series of Cartan subalgebras of

9/9u ' * ' J 9/9fc respectively such that pt_$ = ί) 7 " 1 for 2 < / < k. Then there

is a Cartan subalgebra ί)k+ι ofq/Qk+ι such thatpki)
k+ι = ί)*.

Proof. Let ί)' be a Cartan subalgebra of 9/9^+1- We prove at first that/^ί)'

is a Cartan subalgebra of 9/9*. Since ί)' is nilpotent, so is pkfy. Let \)'s =

{My(*+1); w(*+1) G ί)'}, and let t>(Ac) be an element of the zero-eigenspace of pkί}\

Then [v(k\pkfys] = {0}, and hence t>(A:) can be written in the form (9). Let

v(k+i) b e a n e i e m e n t of Q / Q Λ + 1 such that pkv
(k+l) = υ{k). Using the eigen-

space decomposition of 9/9^+1 with respect to ad(ί)^), we see that t / * + 1 ) =

Σλeττ(ί)') v^*1^. Note that this decomposition is given by only rearranging of

the terms of v(k+l) (cf. Lemma 1.6). Hence it is clear that pkvtf+ι) = v(k\

where vff+l) is an element of the zero-eigenspace of %. However, since £)' is a

Cartan subalgebra of Q/Qk+\, we get v^k+l) G ί)'. Thus u(A:) G ̂ f) ' , and/^ί)' is

a Cartan subalgebra of 9/9^-

By the well-known conjugacy of Cartan subalgebras of 9/9*, there is an

inner automorphism A such that A(pkty) = fyk. Since there is a natural
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projectioin of G ( * + 1 ) onto G(A:) (cf. §1.A), there is an inner automorphism A'

of Q/$k+ι which induces naturally A. Thus, by setting A'ϊj = ί)*+ 1, ϊ)*+ 1 is a

Cartan subalgebra of 9/9*+! such that/^ί)*"1"1 = ί)*.

By the above lemma, we have a series {ΐ)k}k>\ of Cartan subalgebras of

g/g^ such that/^ϊ)**1 = §*. Let ή be the inverse limit of ί)*.

1.9. Lemma. With the same notations and assumptions as above, ί) is a

Cartan subalgebra of g.

Proof. Since βkfy = ϊ)k, βki) is a nilpotent subalgebra of g/g*. for every

k > 1. By Corollary 1.7, Afl^O)) is the zero-eigenspace of ad(/7 ί̂)). Since

Λί) = ΐ>* is a Cartan subalgebra, we have/^g^f)) = ί)k and hence g(0)(ϊ)) = £).

Thus ί) is a Cartan subalgebra of g.

We next consider the converse of the above lemma.

1.10. Lemma. Let ί) be a Cartan subalgebra of g. Then, βkt) is a Cartan

subalgebra of g/g* for every k > 1.

Proof. By Corollary 1.7, the zero-eigenspace of a d ^ ί ) ) is equal to

Aβ(0)(ί)) Since ί) is a Cartan subalgebra of g, we seepkg^(ί)) = pkt) Thuspkt)

is a Cartan subalgebra of g/g*.

As in §1.A, we denote by G(fc) the Lie group generated by {e?kU; u E g}.

Let πk: G(k+ι)*-> G(k) be the natural projection. We shall next prove the

conjugacy of Cartan subalgebras, which completes the proof of Proposition

A. Let ί), % be Cartan subalgebras of g. By the argument in the first part of

this section, we may assume Q/QX Φ {0}. Since p$, px% are Cartan subalge-

bras of g/g,, there is gλ G G ( 1 ) such that Aά(g^(px\)) =/?1ί). Therefore one

may assume without loss of generality that pxt) = p$. Let G^ be the Lie

group generated by {e?kU; u G g7} for any /, / < k.

1.11. Lemma. Let ί), % be Cartan subalgebras of g such that ρkί) = pk%.

Then there is gk+ι G Gf + 1 ) such that Ad(&+1)(A+if>) = A+i§

Proof. Sincepkt) = pkh,βk+ι§ a n d ^ + 1 S are Cartan subalgebras of pk

ιpkί)

= PlXPk% Let Pk

xpk^ = pk+ιί) θ Σ λ ^o &, pk)>kh = Λ+iS θ Σ λ^o Qx be the

eigenspace decompositions with respect to ad(/Λ + 1ή) and ad(/A:+1S) respec-

tively. Since pjl^fi = pJk+ά = Pifi, we see that Σ g^ c g * / g * + 1 and

Σ g^ C Qk/&k+ι- It is well-known (cf. [6, pp. 59-66]) that there are

vl9 , vm E Σ λ ^o fix, HΊ, , w, E Σ λ^o si' such that

Ad(exp ϋO Ad(exp t;m)Ad(exp H^) Ad(exp w^β^fi = Λ + i i

Since exp υi9 exp vvy E Gk

(k+1\ there is g Λ + 1 E Gfc

(A:+1) such that

A d ί X ή ) fc
Let G^ be the subgroup of G generated by {̂ " wEg^}. For Cartan

subalgebras ί), $ of g, the above lemma shows that there are elements

gλ9 , gk9 - such that gΛ E G* and

Ad(g,) Ad(gΛ)$ = ί), mod
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Noting that &•••&••• GG and putting g = gλ gk , we see

Ad(g)ί) = ί). This shows the conjugacy of Cartan subalgebras, and Proposi-

tion A is thereby proved.

2. Cartan subalgebras at expansive singularities

2.A. Semi-simple expansive vector fields

In this section, the notation is the same as in the introduction. A germ of

holomorphic vector field u E 36( V) is said to be expansive, if the eigenvalues

of the linear term of u at 0 lie in the same open half-plane in C about the

origin, u is said to be semi-simple expansive if u is expansive and semi-simple

as a formal vector field. The purpose of this section is to show the following.

2.1. Lemma. Let u G£(V) be a semi-simple expansive vector field. Then

there is a germ yj = fj(xϊ9 , xn), 1 < j < n, of biholomorphic change of

variables such that u can be written in the form

u = Σ fityfi

Proof By a suitable change of variables yy = Σ 0 <| α |<* aj,a

χ<x s u c ^ a s * n

(7), u can be written in the form

« = Σ /w>/9y, + w, H>ex fc(F)
ί = l

for sufficiently large k. For the proof that u is linearizable, it is enough to

show that there are holomorphic functions fv - * ,/π i n ^ , ,yn such that

ufj = fijfj (1 <j < ή) and f} = yj + higher order terms. Set fj = yy + gp and

consider the equation u{y} + gj) = /2y (>^ 4- g,). Then we get

(17) (u - μj)gj = -wyj.

Since k is sufficiently large, we have

(18) l ime- '( M - '*W y = 0,

and

(19) -C e<u-^)wy:dt

exists as a germ of holomorphic functions (cf. [5]). Set gy =

-/? e-^-towyj dt. Then
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2.B. Lie algebras containing semi-simple expansive vector fields

Let Q be a closed subalgebra of g 0 such that g contains a semi-simple

expansive vector field X.

2.2. Lemma. Let X be a semi-simple expansive vector field in g. Then there

is a Cartan subalgebra f) 0/ g containing X.

Proof. By the same proof as in the above lemma, we see that X can be

linearizable by a suitable formal change of variables, and hence we may

assume that X can be written in the form X = Σ"«i fay^/dy^ Re β. > 0. Let

Q(0\X) = { ι / £ g ; [ I , M ] = 0}. Since every u E §Φ\X) can be written in the

form

(20) i i - Σ Σ wa*/*yι>
i~ι <«,ί>-λ

we see that Q(0)(Ar) is a finite dimensional Lie subalgebra of g. Since

aά(X): Q^°\X) ι-> Q^°\X) is of diagonal type, there is a Cartan subalgebra ί) of

Q(0)(X) containing X. We shall show that ί) is a Cartan subalgebra of g. For

that purpose we have only to show g(0)(ϊ)) = ϊ). Since X E ί), we see g(0)(ί)) C

g(0)(A"), and hence g(0)(ί)) is the zero-eigenspace of ad(ί)) in <£\X). However,

since £) is a Cartan subalgebra of g^°\X), we have ί) = Q(0)(ί)).

2 3 . Corollary. If Q has a semi-simple expansive vector field, then every

Cartan subalgebra ί) of g is finite dimensional, and g^(ί)) is finite dimensional

for every λ E π(ί)).

Proof. By the above lemma, there is a finite dimensional Cartan subalge-

bra of g. However from Proposition A it follows that all Cartan subalgebras

are finite dimensional, and every Cartan subalgebra contains a semi-simple

expansive vector field. Note that

( u E So; u = Σ Σ aiyay«dβy\.

Since ί) contains an expansive vector field, we see that dim g λ < oo and

hence dim Q^\ί)) < oo.

2.4. Corollary. With the same notation as in the introduction, if 3E(F)

contains a semi-simple expansive vector field X, then there is a Cartan subalge-

bra £) of Q(V) such that ί) c £(V). Moreover, for that £), g(λ)(ί)) is contained in

X(V) for every λ E τr(£)).

Proof. Since X E ϊ ( K ) , Lemma 2.1 shows that A" can be written in the

form X = Σ7=i /w9/9y, by a suitable biholomorphic change of variables.

Therefore every u E Q^Qj) is contained in 3£(F), as u is a polynomial vector

field iny x , - •.,>>„.
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2.C. Isomorphisms of g(V) onto g(V')

Let V, V be germs of varieties in Cn, Cn respectively. Supose there is a
bicontinuous isomorphism Φ of g( F) onto g( F').

2.5. Lemma. Let ϊ) be a Cartan subalgebra of g(F). Then so is Φ(£)) of

Set ί)' = Φ(£)). Since Φ: g(F)H>g(F') is continuous, for every k!
there is an integer k = k(k') such that Φ(g(F)) C Qk'(V). Thus /?Λ,ί)' is a
nilpotent subalgebra of Q(V')/Qk,(V), and g(0)(ϊ)') D Φ(g(0)(ί))). Replacing Φ
by Φ"1 we hence get the desired result.

Now suppose that V and V have expansive singularities at the origins
respectively. By Corollary 2.4, £(F) and 3E(F') contain Cartan subalgebras of
g(F) and g(F') respectively.

2.6. Corollary. Lfoder /Λe same assumptions as above, let ί) be a Cartan
subalgebra of g(F) contained in X(F), and suppose there is a bicontinuous
isomorphism Φ of g( V) onto g( V). Then there is a bicontinuous isomorphism Ψ
of$(V) onto g(K') such that Ψ(ί)) c 3£(K'), that is, Ψ(£)) is a Cartan subalgebra
of fl( V) contained in X( V).

Proof. By the above lemma, Φ(ί)) is a Cartan subalgebra of g(K'). By
Corollary 2.4, there is a Cartan subalgebra ί)' of g( F') contained in 3E( F'). By
Proposition A, there is g G G such that Ad(g)Φ(ί)) = ί)'. Noting that
Ad(g): g( V) H> g( K') is a bicontinuous isomorphism, we thus obtain the
desired Ψ = Ad(g)Φ.

In the remainder of this section we assume that there is a bicontinuous
isomorphism Φ: g(F)ι-^g(F') such that Φ(fy) = ί)' where ί), ί)' are Cartan
subalgebras of g(F), g(F') respectively such that ί) E 3E(F) and ί)r c X(F').
By Corollaries 2.3 and 2.4, there is a local coordinate system (yv ,>>„)
related biholomorphically to the original one such that every Q^\t}) is a finite
dimensional space of polynomial vector fields in^j, ,yn. We choose such
a local coordinate system (zl9 , zn,) for g(Fr). Let p(V; yx, ,>>„) (resp.
£(F'; zj, , zπ,)) be the totality of M E g(F) (resp. g(F')) such that u can
be expressed as a polynomial vector field in>>1, ,yn (resp. zϊ9 , zrt,).
K ^ ^i, ,Λ.) and ̂ (K'; z,, , zn) are Lie subalgebras of £(F), X(F')
respectively. Since g(λ)(ί)) C t)(F;^ l 5 ,yn) for every λ E ττ(ί)), we get the
following.

2.7. Corollary. W//A /Λe same notation and assumptions as above, the above
isomorphism Φ: g(F)H»g(F') induces an isomorphism of $(V\yλ, ,yn)
ontop(V; zλ,-- , zn).

Proof. Note that Φ(g(λ)(I))) = g(λW)> because g^ί)) is an eigenspace of
ad(£)). Every u E p(V; yλ, ,^π) can be written in the form u = Σ λ e π ( ^ t/λ,
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but the summation in this case is a finite sum. Since Φ(w) = ^ )

a n d Φ(wλ) G g(λ)(ϊ)')> we see that Φ(w) G p(V; z v - - - , zn). Replacing Φ by

Φ " 1 gives the desired result.

Let C[γl9 9yn] be the ring of all polynomials in yl9- - ,yn. Then,

since g ( F ) is an Θ-module, ρ(V;yl9 ,yn) is a C [ > Ί , , j>J-module.

3. Theorem of Pursell-Shanks9 type

In this section we consider two Lie algebras P(V;yv ,>>„) and
p(V; Zj, , zπ/) of polynomial vector fields such that they are
Q.y\> ' ' ' >yn]

 a n c * Q^i, # , zrt,]-module respectively and that there is an
isomorphism Φ of p(V;yl9 ,yn) onto ρ(V; z l5 , zn). The goal is as
follows.

Theorem II. With the same notation and assumptions as above, there is a
biholomorphic mapping φ of Cn onto C1 such that dφp(V;yx, - ,yn) =
t>(V; zv , zn).. Moreover, φ(V) = V as germs of varieties.

Note at first that Theorem II implies Theorem I in the introduction, for
Corollaries 2.6 and 2.7 show that an isomorphism between Q(V) and g(F')
induces an isomorphism between p(V;yx, - ,yn) and p(V; zl9 , zn).

3.A. Characterization of maximal subalgebras

Let ί) be a subalgebra of p(V;yv - ,> n̂), and denote by ί)(oo) the ideal
consisting of all u G £) such that a d ^ ) ad(ι^)w G ή for every A: > 0
and any vv , vk G ̂ (F ^ j , ,>>„). Let F̂ , be the set of all points
q E C such that p(V;yl9 - ,^n) does not span Λ-dimensional vector
space at q, that is, dim )p(V;yl9 9yn)(q) < n. For a point/? G C1, let ^
be the isotropy subalgebra of \>{V\yl9 - - ,yn) at p, i.e., pp = {u G

3.1. Lemma. For a point p ε C - F^, ̂ p ώ α maximal finite codimensional
subalgebra such that ^ o o ) = {0}.

Proof. Sincep E: Cn — Vp9 there are ul9 , wπ G p(F; > ,̂ ,>>„) such
that Uj(p) = d/tyj\p for 1 < j < n. Consider

(ad(M l)
Λ *d{unfv){p) = 0

for any lv , /„, and we get easily that tff* = {0}.

We next prove the maximality of pp. Let ί) be a subalgebra of

'>y\9 ' ' ' >yn)
 s u c h ώat ί) D Pp There is then an element v G ή such that
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v(p) φ 0. By a suitable linear change of variables, we may assume that v is
written in the form

(21) v = g± + £ λ,-^, g(/>) * 0, λ,(/>) = 0.

Let (pl9 , /?„) be the coordinate of/?. Then (>Ί - px)uj G J^ for 1 < j <
Λ, and therefore [v, (yx - px)uj\ = υ{yλ)uj + O Ί - pλ)[υ, w,] G ί). Since
<y\)(p) = #(/>) ̂  0, we have &(/>) = K K ; ^ , ,Λ)(^) and hence ί) =

K ^ ^i, ,Λ,)

Let 2Bj, be the set of all points q such that $q is a maximal subalgebra and

4°0 ) = {°) B>" t h e a b o v e l e m m a > 3B* contains C1 - F^. The goal of this
section is as follows.

3.2. Proposition. Let Q be a maximal, finite codimensional subalgebra of

W\y\> ' ' >yn)
 s u c h that 9(oc) = {°) τhen there is a unique point p G 3&p

such that Q = pp.
Let g be a subalgebra of P(V; yv , yn)9 and let / = {/ G

* ' " 9yn]» fip(V'>y» * * * »Λ) C α}. Obviously, 7 is an ideal of
,yn],ϊorp(V;yv ,yn) is aC[>^, , jj-module.

33. Lemma. Let Q be a subalgebra of p(V;yl9' ,yn) such that

>yn]G = K ^ ^i* >yn)
 τhen Jp(V'>y\> - - >yn)

is an ίdeal °f
\>' ' ' ,yn) contained in g.

Proof. By definition Jp(V; yv ,yn) c g. Since (w/)t> = [M,/t»] -
/[w, ϋ], we have QJ C /, and hence (C[yx, ,^ Λ ]Q)/ C /. By the assump-
tion, we get p(V; yl9 ,>>„)./ c /, so that Jp(V; yl9 ,>>„) is an ideal of

By the above lemma, we see also that J\)(V; yx, ,yn) c g(oo). The next
lemma is due to Amamiya [1]. Although the proof can be seen in [5], we
repeat it here for the sake of selfcontainedness.

3.4. Lemma. Let Q be a finite codimensional subalgebra of

Proof Set g(1) = {u G g; [w, p(V; yl9 ,yn)] c δ} Since codim g < oo
and ad(w) for every u G g induces a linear mapping of t>(K; >>„ * * * >Λ,)/G
into itself, we see that codim g(1) < oo and hence in particular g(1) -φ {0}.

Let v be a nontrivial element in g(1), and / a polynomial such that vf φ 0.
Consider a sequence fv, f2v, /3ϋ, . Since codim g(1) < oo, there is a
polynomial P(t) in t such that P(/)t; G g(1).

We next prove that if v and gv are contained in g(1), then (vg)2 G /. For
this puφose, let w be an arbitrary element of p(V';yl9 ,yn). Then we
have

[v, gw] = (ϋg)w + g[w, v] G g,

[ gv, w] = - (wg)v + g[ w, ϋ] G g.
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Hence

(22) (vg)w + (wg)v G g

for every w Gp(V;yv - - ,yn). In (22) replacing w by (wg)v and (ϋg)w in

turn, we have (vg)(wg)v G g and

Hence (vgfw G g, which implies that (υg)2 G /. Set g = P(J). Then t>, gt> G

g(1) and vg φ 0 because of t>/ ̂  0. Thus we get / φ {0}.

3.5. Corollary. Le/ g be a maximal finite codimensional subalgebra of

P(V; yl9 ,>>„) JWCΛ / t o g(oo) = {0}. 7%^ g is a C[yv ,>J-module.

Proof. We have only to show that C[yv ,7Λ]g £ tKK;^, 9yn)9

because if so, the maximality of g shows that C[yv ,yn]Q = g. Thus we

can assume that C[yl9 ,j>Jg = p(V;yx, ,>>„). Then by the above

lemma, we get that g(oo) D /t)(F; > ,̂ 9yn) Φ 0, contradicting the assump-

tion.

Now we have only to consider a maximal finite codimensional subalgebra g

of p(V;yv ,yn) such that g(oo) = {0} and g is a C[yx, ,j>J-module.

Let Mp = {/ e q^,, - - , ^ ] ; /(/;) - 0}.

3.6. Lemma. For α Q ^ ^ ,yn]-submodule Qθfp(V;yl9 - 9yn)9 if

g + Mpp(V;yx, - ,>>„) = K ^ ^i, ' ,yn)

for every p e CΛ, /Λeπ g = p(V; yl9 ,^n).

Proo/. By Nakayama's lemma, we see that for each p GC1 there is

fp G Q ^ , - ,yn] such that j^(/7) φ 0 and /^K^J^i, " J » ) c g . Since

the ideal ί generated by {fp;p G Cn} has no common zero, we see that

,>>„] and hence there are fPιJP2, 9fp9 gl9 g2, , gi G

,yn]
 s u c h t h a t ! = Σy=! g ^ Therefore

3.7. Corollary. Le/ g k Λ maximal finite codimensional subalgebra of

p(V;yv ,yn) such that g(oo) = {0}. Then there exists uniquely a point

p G 2S^ such that g = t y

Proof. By Corollary 3.5, g is a C[j>!, , .yj-module, and hence there is

a point p G C such that g + Mp\)(V;yl9 ,>>„) ̂  t)(K;^, ,>>„).

Thus g D Mpp(V;yl9 ,^rt) by the maximality of g. It is easy to see that

such a point is unique, because Mp + Mq = C[yv ,yn] ifp Φ q.

If ϊ(V;yl9 ^ X / 0 = {0}, then Mpp(V;yv - ,>>„) is an ideal of

•Kf .yp ' >yn)- T^1118 ^ m u s t t>e contained in g(oo), and hence must

be {0} by the assumption, contradicting the assumption. Therefore
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ι, ' ' ,yn)(P) * {0} Now there are u E p(V;yl9 - - ,yn) and / <Ξ
C[>Ί> ' >>>J s u ch that w(/0 ^ 0, /(/?) = 0 and (uf)(p) ^ 0 . For every
t> G £(F; >>!, ,^Λ),/f is an element of g. Therefore if u were contained in
g, then [ujv] E g. Thus (uf)v E g. It follows that (uf)(p)v E (w/ - (uf)(p))v
+ g C g. Since (w/)O) ^ 0, we get v E g, hence g = *>(K; yl9 ,>>„), con-
tradicting the assumption.

From the above argument it follows that g c pp9 so that g = ip by the
maximality of g. Since g(oo) = {0}, we see/? e 3Sp by definition.

This completes the proof of Proposition 3.2. (See also added in proof.)

3.B. A diffeomorphism induced from Φ

Let p(V; zl9 , zn) be another Lie algebra of polynomial vector fields
on Cn'. Subsets V#9 SB̂  are defined in the same way as in p(V;yv ,yn).
Suppose there is an isomorphism Φ of p(V; yv , yn) onto
p(V; zv , zπ,). For a point/? e 2δp,, ̂  is a maximal finite codimensional
subalgebra such that t^00) = 0. Then Φ(^) has the same property. Hence
there is a point ψ(p) E 23^ such that Φ ^ ) = P'^Py where p^p) is defined in
the same manner as in p(V; yx, ,>>„). φ: 2Bp ι-> 3B̂ , is a bijective mapping.
The goal of this section is as follows.

3.8. Proposition. With the same notation and assumptions as above, assume
further that p(V;yv - - - ,yn) (resp. p(V; zl9 , zn)) contains a vector field
X {resp. X') such that X = Σ]-ι fyfi/ty {resp. X' = Σ ; = 1 ftzfi/dzj). Then φ
can be extended to a holomorphic diffeomorphism of Cn onto Cn such that

Note that the existence of X and X' are obtained by Lemma 2.1.
Let Φp be the totality of C-valued functions / on 953̂, such that fu can be

extended to an element of p(V; yv ,yn) for every MEt)(K;)Ί, ,yn).
Remark that the existence of fu is unique, because 3Sp is dense in C1. Ψp is a
ring, and p(V;yl9 ,yn) is an %-module. For p(V; zl9 , zπ,), we
define Ψp, in the same manner as above.

3.9. Lemma. With the same notation and assumptions as above, φ induces an
isomorphism of Φp> onto Ψp.

Proof Let/ E Ψp,, and/? be an arbitrary point in $3̂ ,. By definition, fΦ(u)
can be extended to an element of p(V; zv , zn), which will be denoted
by the same notation. fΦ(ύ) - f(φ(p))Φ(u) E ^ ( / 7 ) hence φ-\fΦ(u) -
f(ψ(p)Mu)) E pp, that is, Φ'\fΦ(u) - f(ψ(p))Φ(u))(p) = 0. Therefore
Φ~\fΦ(u))(p) = f(ψ(p))u, that is, Φ~\fΦ(u)) = (φ*/)w. Since the left-hand
member is contained in p(V; yl9 ,yn)9 we have φ*/ E Φp. It is easy to see
that φ*: Φp> H^ Ψ^ is an isomorphism.
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3.10. Lemma. Under the same assumption as in the statement of Proposition
3.8, we have Ψp = C[yl9 ,yn], and hence φ is a bi-holomorphic diffeomor-
phism of Cn onto Cn\

Proof Obviously Ψp D C[yχy ,yn]. For any/ G Ψp9 fX is an element
of \)(V;yl9 9yn). Thus jyl9 ,/yn G C[yv ,yn], and it is not hard
to s e e / e q ^ , , j j .

3.11. Lemma. φ(Cn - Vp) = CΛ - V#.
Proof By the above lemma we have n = ri. Let/? be a point of Cn — Vp.

Then codim pp = AZ, and therefore codim ^ p ) = n, because p'^ = ΦQpp).
Hence we see <p(C" - Vp) = Cn - Vp,.

This completes the proof of Proposition 3.8.

3.C. Recapture of the germ

Recall that V is a germ of variety with 0 as an expansive singularity. Hence
there is X = Σ"=ι fty, 3/9V/ Ξ 3£(K) such that Re ft > 0 for 1 < i < /ι. Since
X is a linear vector field, exp tX is a bi-holomorphic diffeomorphism of C1

onto itself. Remark that (exp tX)V = V as germs of varieties for A'i(K) C
5 ( K) where ί (K) is the ideal of K in Θ. Let F = (J, GR(exp /JQ ̂  Though V
is a germ of variety at 0, the expansive property of X yields that V is a closed
subset of C1 such that (exp tX) V = V. Obviously, V = V as germs of
varieties.

In this section we shall prove that Vp = V, so that Vp = F as germs of
varieties. Let ί(K) be the closure of ί(K) in 0. Note that g(F) is also
the closure of £(F) in g0. Hence g(F)§(F) c §(K). Recall that
•P(̂ >Ί> ' >>Ίi) i s given by using the eigenspace decomposition of Q(V)
with respect to adίΛ"), that is, every «6g(K) can be rearranged in the form
u = Σ wλ as in Lemma 1.6, and K ^ Vu * ' ' >>«) i s generated by the t/λ's.
Similarly, we decompose ί ( F ) into eigenspaces of X. Let/ be an element of
ί ( V). Then/ can be rearranged in the form

(23) /=ΣΛ, Λ - Σ ^ α

Thus/,, is a polynomial such that AX = ^ . By the same proof as in Lemma
1.6 we see that /„ 6 ί ( K ) . We denote by Ip the ideal of C[yl9 - - ,yn]
generated by aliχ,s with/ Gί(K).

3.11. Lemma. / ^ c ί ( K ) .
Proof Let / G ί (F). / can be rearranged in the form / = ΣJli/^, /,,. =

2<α,ί>=κ ^α^"- We may assume 0 <vx < - - vk < - - . First of all, we
shall shόw/r/ <Ξ $(V). Note that er«'(exp - ^ ) / = Σ e^-^X. G ί ( F ) for
/ > 0. Suppose / is defined on a neighborhood N of 0 in C1. Then (exp -
tX)f is defined on (exp tX)N. Note that (J ί > 0 ( e x P tX)N = C" a n d
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U ,>0(exρ tX)(N n V) = V. Since e" '(exp - tX)f = 0 on (exp tX)(N n F),
taking l im^^ we see that/^ = 0 on F. Since V = V as germs of varieties, we
have/^ ε J ( F ) . Applying the same procedure t o / - / ^ , we getX2 G 5(F),
and so on. Hence/,, 6 ί ( K ) .

Let/ G ί (F) . Then there is a sequence {/(w)} in 5(F) such that lim/ ( m ) =
/ i n the topology of formal power series. For any eigenvalue v of X: © i—> Θ,
we see f£m) G ί ( F ) , and limm^o0f^

m) = fv as polynomials, because the de-
grees of f}m\ fv are bounded from above by a number related only to
βl9 , /i* and p. Since χ(m) | F = 0, we have fv\V = 0, hence /„ 6 ί ( K ) .
Recalling that the//s generate 7̂ ,, we thus see Ip c 5(F).

3.12. Lemma. With the same notations and assumptions as above, a poly-

nomial vector field u with w(0) = 0 is contained in p(V;yv ,yn) if and only

Proof For u G Q(V) and / G §(F), let w = Σ λ « λ and / = Σpf9 be the
decompositions of eigenvectors with respect to a d ^ ) , X respectively. Then
uλ G p(V;yv - , Λ ) , /r G /,. Since JΓii^ = [X, uλ]fv + wλΛχ = (λ +
p)uχfp, Uχfv is also an eigenvector of Λ". Since M/ G ί(F), the w^'s appear in
the eigenspace decomposition of uf, and hence UyJv G Ip. Thus we have

Conversely, if ulp c Ip for a polynomial vector field u with w(0) = 0, then
wί(K) c ί ( F ) by taking the closure in the formal power series. Note that
«ί(K) c 6 Π ί (F) . We next prove that ί ( F ) = Θ n ί ( F ) . For that pur-
pose, we have only to show $(V) Ώ Q n $(V), because the converse is
trivial. Let/ G 0 n ί (F), and letf =Σvfv be the eigenvector decomposition
of/with respect to X. Then by Lemma 3.11 we have (/„ G 1^ c ί (F)). Thus
X = 0 on F, hence / = 0 on F. This means / G 5(F). Thus w/<, c Ip yields
w G X(F) c g(F). However u is a polynomial vector field in yl9 ,>>„,
hence « Et)(K;^, ,>>„)•

3.13. Lemma. Vp = F 7 , /Ae /ocŵ  of zeros of 1^.
Proof, Let/? be a point in C1 - Vp. By definition there are uv , wπ G

t)(F;>Ί, ,j>Λ) such that w^/?), , un(p) are linearly independent. As-
sume for a while that/7 G K7 . Since M,/̂  C Ip, we have

("ί1 uι

ni){P) = 0
for every / G Ip and any /l5 , /„. Thus / = 0, contradicting the fact
Ip φ {0}. Therefore Vp D VIp.

Conversely, let/? G C1 - F/p. There is then g 6 / p such that g(p) φ 0. By
Lemma 3.12, gd/dyl9 , g3/9yΛ e K^5>Ί> * ' ' >yn\

 w h i c h a r e linearly
independent at/?. Hence/? E C - Vp. Thus F7 D F̂ ,.
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3.14. Lemma. K7 = V as germs of varieties.

Proof. By Lemma 3.11 we have Θlp C HV), which implies that VIp D V.
Assume for a while that VIp J V. Then there is/ G ί ( F ) such that/ k 0 on
V. Let/ = Σ,,/, be the eigenvector decomposition of/. Then/, E 7̂ , so that

/„ = 0 on V. Hence / = 0 on F contradicting the assumption. Thus we get

Vj = V as germs of varieties, and hence F7 = V.

From the above result it follows that φ: C -*C* maps V onto K' and
φ(V) = j / ' as germs. This implies that φ*ί(F') = ί ( F ) so that rfφX(K) =
£( K'). Hence the proof of Theorem I in the introduction is complete.

Added in proof. The proof of Corollary 3.7 and also Lemma 2.15 in [5]
contains a slight gap, for it is not trivial that g + Mpp is a subalgebra, where
p = p(V; yv ,y n ). This is proved as follows.

Since p/$ is a finite dimensional C[yλ, , j>π]-module, there is / such that
Mp^λ(p/o) = MpQp/q). By Nakayama's lemma, there is a polynomial Q such
that Q(p) = 1 and QλfJ(p/Q) = {0}. As QMι

p = Mp\ we have Mfr C 9,
hence / D Λ/p7. Therefore codim J < oo. Now assume for a while that g(/>) 7̂
{0}. By a suitable linear change of coordinate g contains u = ^JΘ/ΘJCJ +
ΣJ β 2 hfiβxj such that g^/?) = 1, A, G Mp. As codim 7 < 00, there is a
polynomial P O ^ of one variable such that P G /. We get easily (ukP)(p) Φ
0 for some k. Since g/ c /, it follows J(p) Φ {0}. This implies / 3 1 for
/ D Mι

p. Hence g = ^, contradicting the assumption.

Therefore g c ^ . If $ = $p, then g + Mpp is a subalgebra of p. Thus
g D A/pp because of the maximality. But since Mpp is an ideal of p, we get
Mp\> c g(00) = {0}. Therefore we have p Φ pp. Since g c ρp9 we get ρp = g D
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