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A METHOD OF CLASSIFYING EXPANSIVE
SINGULARITIES

HIDEKI OMORI

Introduction

To study singularities is in a sense to study the classification of germs of
varieties. It is therefore important to give a method of classification. The
purpose of this paper is to show the classification of a class of germs of
varieties, which will be called expansive singularities in this paper, is included
in that of Lie algebras of formal vector fields. As a matter of course, the
classification of the latter does not seem easy. However, note that such a Lie
algebra is given by an inverse limit of finite dimensional Lie algebras of
polynomial vector fields truncated at the order k, k > 0. Therefore such Lie
algebras can be understood by step by step method in the order k.

Let C" be the Cartesian product of n copies of complex numbers C with
natural coordinate system (x,,: - -, x,). By O we mean the ring of all
convergent power series in x,, - - - , x,, centered at the origin 0. Let V' be a
germ of variety in C” at 0, and 9(¥’) the ideal of ¥V in O (cf. [2, pp. 86-87] for
the definitions). Two germs V, V' are said to be bi-holomorphically equivalent
if there is a germ of holomorphic diffeomorphism ¢ such that ¢(0) = 0 and
(V)= V"

Let X be the Lie algebra of all germs of holomorphic vector fields at 0, and
X(V) the subalgebra defined by

(V) = {u € % u8(V) c $(V)).

X(V) is then an O -module. If there are v,, - - - , v, linearly independent at O,
then Corollary 3,4 of [9] shows that V is bi-holomorphically equivalent to the
direct product C° X W, where W C C"~°. Thus for the structure of singulari-
ties we have only to consider the germ W. Taking this fact into account, we
may restrict our concern to the varieties such that all ¥ € (V) vanish at 0.
Throughout this paper we shall assume this, i.e., X(¥)(0) = {0}.
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u € X(V)(u(0) = 0) is called a semi-simple expansive vector field, if after a
suitable bi-holomorphic change of variables at 0, # can be written in the form

n
(1) w=3 Wd/V,
i=

where {i;, - - - , fi, lie in the same open half-plane in C about the origin. (See
also §2.A for a justification of this definition.) The origin 0 is called an
expansive singularity, if X(V') contains a semi-simple expansive vector field. If
V is given by the locus of zeros of a weighted homogeneous polynomial, then
V has an expansive singularity at 0. The advantage of existence of such a
vector field u is that one can extend through exp tfu a germ V to a subvariety
¥ in C". In this paper we restrict our concern to the germs of varieties with
expansive singularities at the origin. For such X(V), we set X, (V) = {u €
X(V); j*u = 0), where j*u is the k-th jet at 0. Since X(V) = X(V), X, (V) isa
finite codimensional ideal of X(¥) such that [X,.(V), X(V)] C X, (V) and
N %,(V) = {0}. We denote by g(¥) the inverse limit of {X(V)/X(V)}s50
with the inverse limit topology. Since X(V')/X, (V) is finite dimensional, g(})
is a Frechét space such that the Lie bracket product [, ]: a(V) X g(V)
a(¥) is continuous, namely, g(¥) is a Frechét-Lie algebra. It is obvious that
g(¥) is a Lie algebra of formal vector fields, where a formal vector field u is a
vector field u = 37_, 4,0/9x; such that each u; is a formal power series in
X3+, X, without constant terms. The statement to be proved in this paper
is as follows.

Theorem 1. Let V, V' be germs of varieties with expansive singularities at
the origins of C", C” respectively, and use the same notation and assumptions as
above. Then V and V' are bi-holomorphically equivalent if and only if (V') and
g( V") are isomorphic as topological Lie algebras.

By the above result, we see especially that any isomorphism ® of g(¥) onto
g(V’) preserves orders, that is, &g, (V) = g,(V’) for every k. Hence to
classify g(V) is to classify the inverse system {X(V)/%,(V)} 5o Note that
X(V)/%.(V) is an extension of X(V)/X,_,(V) with an abelian kernel
X,_(V)/X,(V). Such extensions can be classified by representations and
second cohomologies (cf. [6]).

The proof of the above theorem is divided into several steps as follows.

Step 1. We define the concept of Cartan subalgebras and prove the
conjugacy of Cartan subalgebras.

Step 2. Using the assumption that ¥ (resp. V) has an expansive singular-
ity at 0, we prove that there is a Cartan subalgebra § of g(¥) such that
h C X(V) (resp. b’ C X(V”)). By a suitable bi-holomorphic change of varia-
bles, every element of ) (resp. ') can be changed simultaneously into a
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normal form, which is a polynomial vector field. Moreover, every eigenvector
with respect to ad(}) is a polynomial vector field.

Step 3. Now suppose there is an isomorphism ® of g(¥) onto g(¥*). Then
by definition ®(h) is a Cartan subalgebra of g(¥”’). Hence by Steps 1, 2 we
may assume that ®(h) C X(V"). Thus considering the eigenspace decomposi-
tion of g(¥), g(V’) with respect to ad(f) ad(h’) respectively we see that ®
induces an isomorphism of p onto p’, where p (resp. p’) is the totality of
u € g(V) (resp. g(V’)) which can be expressed as a polynomial vector field
with respect to the local coordinate system normalizing § (resp. by').

Step 4. From isomorphism ®: p — p’, we conclude by the same procedure
as in [5] that there is a bi-holomorphic diffeomorphism ¢ of C" onto C* such
that @(0) = 0 and dpp = p’. The main idea of making such ¢ is roughly in the
fact that every maximal subalgebra of p corresponds to a point. However,
since p(0) = {0}, the situation is much more difficult than that of [1].
Existence of expansive vector field plays an important role at this step as well
as in the above steps.

Step 5. Recapturing V from the Lie algebra p, we can conclude (V) =
V.

The theorem is proved by this way. Note that the converse is trivial.

1. Conjugacy of Cartan subalgebras
We denote a formal power series f in a form f= 3,50 a,x% where
a, €C, a=(ap " ",a,), || =a, + -+ +a, and x* = x"x32- - - X"
We denote by & the Lie algebra of all formal vector fields, and %, the
subalgebra

{u EFu=2 a,.,ax"‘a/ax,.}.
i=1|a|>k

& is then regarded as the inverse limit of the system {&/%,; pi} where
Di: B/ Brs1 > &/ Ty is the natural projection. We denote by p, the projection
of ¥ onto F/F,. pr and j, are sometimes called forgetful mappings. Since
&/ is a finite dimensional vector space over C, & is a Fréchet space, and
the Lie bracket product is continuous.

Let g be a closed Lie subalgebra of &, and g, = &, N g. The closedness of
g implies that g is the inverse limit of the system {a/g; Px} x>0 In this paper,
we restrict our concern to a closed subalgebra g of &, For any subalgebra 3
of g, we denote by n(38) the normalizer of 8, i.e., n(8) = {u € g; [u, 8] C 8},
and by g©(8) the O-eigenspace of ad(3), i.e., g@(3) is the totality of v € g
satisfying that there are nonnegative integers m,, k > 0, (depending on v)
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such that ad(s)™v € g, for all s € 8 and all k¥ > 0, where ad(u)v = [u, v]. If
8 is nilpotent, then a@(8) O n(8). Therefore, if a®(8) = 8, then n(38) = 3. The
converse is also true if dim g©@(8) < oo (cf. [6]).

A subalgebra ) of g is called a Cartan subalgebra of g, if the following
conditions are satisfied:

(b, 1) bis a closed subalgebra of g such that .} is a nilpotent subalgebra
of g/g, for every k > 0.

,2) b= gO®).

Note that if dim g < co above h is a usual Cartan subalgebra. The
statement to be proved in this section is as follows.

Proposition A. Let g be a closed subalgebra of %, Then there exists a
Cartan subalgebra b of g, and for Cartan subalgebras b, Yy of g there is an inner
automorphism A of g such that A% = b.

1.A. Automorphisms of g

Let g be a closed Lie subalgebra of ¥, and g, = g N &,. Foreveryu € g
the adjoint action ad(u) leaves each g, invariant, hence ad(u) induces a linear
mapping a,(u) of g/g, into itself. ad(u) is then regarded as the inverse limit
of the system {a,(4)};so Define a linear mapping e“*¥®: gi>g by the
inverse limit of {e"*®},,. Since ad(u) is a derivation of g, ¢4 js a
one-parameter family of automorphisms of g. The group a(g) generated by
{e*®; y € g} is called the group of inner automophisms of g. The purpose of
this section is to investigate the structure of a(g).

Let O be the ring of all formal power series 2,50 a,x°, and O, the ideal
given by 0, = {2,a|>k+, a,x*}. 0/0, is then a finite dlmensmnal algebra
over C. We denote by #,, m, the projections 0 — 0/8,, €/8,,,~0/0,
respectlyely Every u € &, acts naturally on © as a derivation such that
u@k c O, for every k. Conversely, u € &, can be characterized by the above
property. Every u € &, induces therefore a derivation u® of the algebra
6/0,, and u® is canonically identified with f,u. Conversely, for every
derivation 8 of O /0, such that 88,/ (‘) C (90 /8, there is an element u € F,
such that § = pu.

Since a derivation u: O+ 0 can be regarded as an inverse limit of
derivations { g, u: 0 / (‘)k >0 /0 « }» we define an automorphism exp u of 0 by
an inverse limit of {e”"“} We denote by G’ the group generated by {exp u; u
€ g}.

Define an automorphism Ad(exp u) of & by

) (Ad(exp u)v)f = (exp u)v(exp — u)f, fe 0.
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Since (d/ dt),_o(exp tu)f = uf, we see easily that
d
3) EAd(exp tu)o =[u, Ad(exp tu)v].

On the other hand "™ satisfies the same differential equation. Thus by
uniqueness we obtain

4 Ad(exp u) = €@,
Especially, if g is a closed Lie subalgebra of %, then Ad(exp u)g = g for
every u € g. Since

e24¢2d(") = Ad(exp u - exp v),

we have that a(g) = {Ad(g); g € G'}.

Let G® be the group generated by {e”*; u € g}. Since 0/0, is finite
dimensional, G® is a Lie group with Lie algebra g/g,. For every integer /
such that / < k, the group G leaves g,/g, invariant. Hence {G®},.,
forms an inverse system. We denote by G the inverse limit. Obviously, G’ is a
subgroup of G. However, note that if a sequence (ug, uy, - -, 4, )
satisfies u, € g, for every / > 0, then expu,-expu,---expu,---is an
element of G. Since G® is a Lie group, G is a topological group under the
inverse limit topology. The purpose of the remainder of this section is to show
G = G’ and that G is a regular Frechét-Lie group with Lie algebra g, cf. [9].

Let G®, k > 1, be the group generated by {e”*; u € g,}, and G, the
inverse limit of {G{®}, .

1.1. Lemma. exp is a bijective mapping of g, onto G,.

Proof. Let exp, be the exponential mapping of g,/g, into G, ie.,
exp, u = eP*, Since exp: g, ~ G, is defined by the inverse limit of {exp,},
we have only to show that exp,: g,/a, - G¥ is bijective. Since g,/8, = 58,
is a nilpotent Lie algebra, we see that €Xpy is regular and surjective (cf. [3, p.
229)). However, the derivation g, u: 0/6, 0 / (‘)k is expressed by a triangu-
lar matrix with zeros in the diagonal. Therefore one can define log(1 + N) by

=®_,(-1)""'N"/n, which gives the inverse of exp,. Thus exp, is bijective.

1.2. Corollary. G’ = G.

Proof. We have only to show G’ O G. Since G = G/G, is generated
by {p,u; u €Eg}, every g € G can be written in the form g =exp u,-
exp u, - - - exp u,, - h, where u,,- - - ,u, € g and h € G,. Thus the above
lemma shows G C G'.

We next prove that G is a Frechét-Lie group. Although such a structure of
G has no direct relevance to our present purpose, there is an advantage of
making analogies easy from the theory of finite dimensional Lie groups.

Let o: j,g - g be a linear mapping such that 5,0i = i for & € p\g. It is not
hard to see that £(u) = exp op,u - exp(u — op,u) gives a homeomorphism of



498 HIDEKI OMORI

an open neighborhood U of 0 of g onto an open neighborhood U of the
identity e of G. Since G is a topological group, there is an open neighborhood
V of 0 of g such that &¥)' = &V¥), &V)* Cc &U). We set n(u, v) =
£ 1(&w)é(v)) and i(u) = £7'(&(w)™) for u, v € V. Next we have to prove the
differentiability of n and i. However, the differentiability is defined by inverse
limits of differentiable mappings, hence that of n and i is trivial in our case.
Thus we get the following.
13. Lemma. G is a regular Frechet-Lie group with Lie algebra g.

1.B. Simultaneous normalization and eigenspace decomposition

For any u € J,, the linear mapping u®: 0 /0, > 8 /0, splits uniquely
into a sum of semi-simple part «® and nilpotent part u§? such that [4®, u]
= 0. Using eigenspace decomposition of 0/0,, we see that u® is also a
derivation of 0/0,, and hence so is u®. For u**D, we have that
(2t * D, pulf* D] = 0, pulk*V is nilpotent, and that p,u®*" is semi-simple
by considering eigenspace decomposmon of 0 / ®k+1 Therefore p,u**? =
u® and p,ulf*D = uP. Hence taking inverse limit we get formal vector fields
u,, uy which will be called the semi-simple part and the nilpotent part of u
respectively. A formal vector field is said to be semi-simple if it has no
nilpotent part.

Let 3* be a nilpotent subalgebra of /%, for an arbitrarily fixed k. Set
gk = (u®; 4® € gk}, and denote by p; the forgetful projection of Fo/F,
onto o/ that is, p/ = pp,,q - * - Pr_y- Since pk§" is a nilpotent subalge-

bra of o/, there is a basis (f¥, - - -, fD) of 0,/0, such that every
u® € plsk is represented by an upper triangular matrix. Let
(D), - - -, p,(uM)) be the diagonal part. p, is then a linear mapping of

pigk into C for every j, which one may regard as a linear mapping of 3* into
C. Since uV is the semi-simple part of (", it must satisfy

% U0 = p(u®)fV.

By a simple linear algebra, we see that there are f®, - - -, f® & 0,/8, such
that

(6) U0 = g (u®) P, P =" (1<j<n)

for every u® € 8%, where / is the forgetful projection of &,/0, onto 6,/0,,
that is, 77']: = 7T[7AT[+]A' Mg
Since f® € 0,/0,, f* is expressed in the form

) =3 g

0<|a|<k
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Set y; = Zojaj<k Gax® Since f{V, - - -, fO are linearly independent, these
give a formal change of variables and every «{¥) can be written in the form

n
(8) uf = 2 m(u®)yd/8y,.

i=1
Since [8%, 8¥] = 0, for &* is nilpotent, every u® & * should be written in the
form

n
) u =3 X a9/,
i=1<a,pd>=p;
0<|a| <k
where {a, p) = a;p; + - - - +a,p,. It should be noted that the semi-simple

- part u® of 4® has been changed into a linear diagonal vector field such as
().

Let 8*! be another nilpotent subalgebra of &,/ such that p,85*! c
gk, and let g¥*1 = (u*+D; y**+D e g5+1} Since pi, ,8**! C pis*, the equal-
ity (5) holds also for every u'V € p}, ;8**!, and the equality (6) does for every
p8°*1. By a simple linear algebra, we see that there are fk*1,. . . | fk*D g
00/ Ok such that
(10) u§k+1)j}k+]) — 'uj(u(k+l))j](k+l)’ ij}k+l) =j}k).

Note that f**D = f® + 3, _,,, a ,x* Hence by putting
(1 p= S g
0<|a|<k+1

instead of (7), we get the same equations as (8) and (9) with respect to 8.
Moreover we have

(12) ufth = 3 (O,
(13) wkD =3 X a3/,
i=1 Lapy=p
0<|a|<k+1

for every u**D € gk*+1 Especially we obtain the following.

1.4. Lemma. Notations and assumptions being as above, the forgetful projec-
tion p,: 851> 8% is injective.

Let {8*},5, be a series of nilpotent subalgebras 8% of Fy/T, such that
P8t c 8 for every k > 1. We denote by 8 the inverse limit, and set
3, = {u; u € ©). Note that dim 8% < n for every k > 1. Thus there is an
integer k, such that p,: ¥+ > g* is bijective for every k > k,. By a method
of inverse limit, we see that there is a formal change of variables

(14) 9«'/-=]j~(x1,--- x,,),1<j<n,j;e©0



500 HIDEKI OMORI

such that (8) and (9) hold for every u® € 8¥(k > 1), and

(15) U, = 21 ”"i(u)yia/ayi,
(16) u= 2 X a9/,
i=1 <a’”‘>=y’l

for every u € 8.

Now let g be a closed subalgebra of &, and suppose the above 3*’s are
subalgebras of g/g, respectively. Hence the inverse limit 8 is a closed
subalgebra of g. We next consider the eigenspace decomposition of g with
respect to ad(8). Since ad(u): &, &, leaves g invariant for every ¥ € 8, and
[ad(u), ad(u,)] = 0, we see that ad(w,): FoH> T is the semi-simple part of
ad(u) and hence ad(y,)g C g. Therefore we have only to consider the eigen-
space decomposition with respect to ad(,).

For a linear mapping A of 5,8, into C, i.e., A € (5,3,)*, we denote by &, the
subspace

n
{“Ego§“= 2 2 ai,ayaa/ayi}‘
i=1la,p)>—p=A

Note that ¥, = {0} for almost all A € (5,8,)* except countably many A’s. By
m(8) we denote the set of all A € (5,3,)* such that &, + {0}. If 5,3, = {0},
then we set 7(3) = 0, because all y’s are zeros.

1.5. Lemma. Ifj,3, = 0, then g©(8) = g.

Proof. By (16), every u € 8 can be written in the form u = u; + u, such
that

n—1 n n
u = 2 2 ajﬁ"ja/a)’i’ u, = 2 2 ai,ayaa/ayi'
i=1 j=i+1 i=1|a|>2
The reason for the shape of u, is that the linear part of u is an upper
triangular matrix. Therefore for every k > 1 there is an integer m, such that
ad(u)™F, C T for every u € 8. This means g = g©(3) by definition.
Now we set gV(8) = g N ,, for every A € 7(3).
1.6. Lemma. FEvery u € g can be rearranged in the form
u= 3 u, U EFh
AET(3)
Moreover, every u, is contained in a®(3).

Proof. Since the first assertion is trivial, we have only to show the second
one. Since 7(8) is a countable set, there is v, € 3, such that A(v{?) 5= A'(v{P)
for any A, X’ € 7(3) satisfying A # X’. For every k, let u® be the truncation
of u € g at the order k. u® is canonically identified with 5,u, and can be
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rearranged in the form u® = 5, o u{?, where each u{¥ is the truncation of
u, at the order k. Since g/g, is finite dimensional, only finite number of u§"‘)’s
do not vanish. Applying ad(v$®)’ to u® we have, since ad(3,)g C g,
ad(o®)u® = S Aog)ul € o/g,.
AE7(3)

Hence considering Vandermonde’s matrix we get u\? € g/g,. Thus taking
inverse limit we get u, € g; hence the desired result.

1.7. Corollary. 5,6 %(3) is the zero-eigenspace of ad(p;8): 8/8x > 6/8-

Proof. 1t is trivial that p,g®(3) is contained in the zero-eigenspace of
ad(p,8), for [3,, gd(8)] = {0}. Thus we have only to show the converse. The
zero-eigenspace of ad(p,8) is equal to that of ad(5,8,), that is, the space of all
v® € g/q, such that [5,3,, v®] = {0}. Thus v® should be written in the
form (9). Let v € g be an element such that o = v®, and let v = 5 ¢, 1
be the decomposition in accordance with the above lemma. Then it is clear
that p, v, = v™®. Since v, € g°(8), we get the desired result.

1.C. Existence and conjugacy of Cartan subalgebras

Let g be a closed subalgebra of &,. If g/g, = {0}, then g/g, is nilpotent
for every k > 1, for [a,, §;] C @4, Therefore by Lemma 1.5 we see that g
itself is the only Cartan subalgebra of g, and the conjugacy is hence trivial in
this case.

Now suppose g/g, = {0}, and let b be a Cartan subalgebra of g/g,.

1.8. Lemma. Let Y',---,b* be a series of Cartan subalgebras of
a/@y -+ > a/8y respectively such that p,_ % = 4~ for 2 < I < k. Then there
is a Cartan subalgebra %+ of /g, ., such that ph**' = pt.

Proof. Let Yy be a Cartan subalgebra of g/g, . ,. We prove at first that p, by
is a Cartan subalgebra of g/g,. Since Yy is nilpotent, so is p,h’. Let §, =
{u*D; y®+D € '}, and let v* be an element of the zero-eigenspace of p,by'.
Then [v®, p,b.] = {0}, and hence v*® can be written in the form (9). Let
v**D be an element of g/g, ., such that p,o**D = v®. Using the eigen-
space decomposition of g/g, ., with respect to ad(},), we see that v**+V =
Srenm) 08 TP, Note that this decomposition is given by only rearranging of
the terms of v**" (cf. Lemma 1.6). Hence it is clear that po{*? = v®,
where v§*" is an element of the zero-eigenspace of ;. However, since by’ is a
Cartan subalgebra of g/g,. |, we get o§*D € §y. Thus o® € p,¥’, and p, b is
a Cartan subalgebra of g/g,.

By the well-known conjugacy of Cartan subalgebras of g/g,, there is an
inner automorphism A4 such that A(p.b’) = b*. Since there is a natural
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projectioin of G**P onto G® (cf. §1.A), there is an inner automorphism 4’
of /84, which induces naturally A. Thus, by setting 4’y = bp**!, p**'isa
Cartan subalgebra of g/g, ., such that p, b**! = p*,

By the above lemma, we have a series {§*},, of Cartan subalgebras of
a/a, such that p,h**! = B*. Let §) be the inverse limit of b¥.

19. Lemma. With the same notations and assumptions as above, Y) is a
Cartan subalgebra of g.

Proof. Since p,bh = b*, 5,b is a nilpotent subalgebra of g/g, for every
k > 1. By Corollary 1.7, 5,6 ?(9) is the zero-eigenspace of ad(p,h). Since
b = b¥ is a Cartan subalgebra, we have 5,3®(h) = b* and hence g@(h) = ).
Thus ) is a Cartan subalgebra of g.

We next consider the converse of the above lemma.

1.10. Lemma. Let b be a Cartan subalgebra of g. Then, p,Y) is a Cartan
subalgebra of g/ g, for every k > 1.

Proof. By Corollary 1.7, the zero-eigenspace of ad(p.h) is equal to
58©(b). Since b is a Cartan subalgebra of g, we see 5,a”(h) = j,b. Thus j,b
is a Cartan subalgebra of g/g,.

As in §1.A, we denote by G® the Lie group generated by {e#*; u € g}.
Let m,: G**Di> G® be the natural projection. We shall next prove the
conjugacy of Cartan subalgebras, which completes the proof of Proposition
A. Let b, ) be Cartan subalgebras of g. By the argument in the first part of
this section, we may assume g/g; # {0}. Since f,b, ;b are Cartan subalge-
bras of g/g;, there is g, € GV such that Ad(g,)(5,b) = 5,b. Therefore one
may assume without loss of generality that 5, = plf) Let G/® be the Lie
group generated by {e”*; u € g,} for any /, I < k.

1.11. Lemma. Let b, f) be Cartan subalgebras of g such that p,h = ﬁkf).
Then there is g, ., € G**V such that Ad(g 4 ) Prs1h) = = Besib

Proof.  Since i h = BB, Bryyb and ) HI) are Cartan subalgebras of p'B.bh
= pi'icb- Let pAb = Fieiid @ Shso 81 PEPAD = Frarh @ Shso g\ be the
eigenspace decompositions with respect to ad(p, b)) and ad(p, +l[)) respec-
tively. Since puhys,D = PubrsiD = pib, we see that = g} Cg,/8x4; and
265 C8x/8ksr- It is well-known (cf. [6, pp. 59-66]) that there are
vl,--',vaZ,\#gg,w,,~-~,w,€2>\#,g;\’suchthat R

Ad(exp ;) - -+ Ad(exp v,)Ad(Exp wy) -+ + Ad(EXP WPy 1D = Frsib.
Since exp v, exp w; € G**Y, there is g.,, € G¥*D such that
Ad(ge+ ) Pr+1h) = Pk+1f)

Let G, be the subgroup of G generated by {e“; u € g,}. For Cartan
subalgebras b, f) of g, the above lemma shows that there are elements
gb° " " 8 suchthatg, € G, and

Ad(gl) T Ad(gk)f) =bh, mod g,
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Noting that g, ---g,--- €EG and putting g=g,--- g+, we see
Ad(g)h = bh. This shows the conjugacy of Cartan subalgebras, and Proposi-
tion A is thereby proved.

2. Cartan subalgebras at expansive singularities
2.A. Semi-simple expansive vector fields

In this section, the notation is the same as in the introduction. A germ of
holomorphic vector field u € X(V) is said to be expansive, if the eigenvalues
of the linear term of » at O lie in the same open half-plane in C about the
origin. u is said to be semi-simple expansive if u is expansive and semi-simple
as a formal vector field. The purpose of this section is to show the following.

21. Lemma. Let u € X(V) be a semi-simple expansive vector field. Then

there is a germ y; = f(x,* -+, x,), 1 < j <n, of biholomorphic change of
variables such that u can be written in the form
n
u=2 [/,

i=1

Proof. By a suitable change of variables y; = 2o <k @0 x* such as in
(7), u can be written in the form

u= 2 [0/ +w, weX(V)
i=1

for sufficiently large k. For the proof that u is linearizable, it is enough to
show that there are holomorphic functions f,, - - - , f, iny,, - - -, y, such that
uf; = if; (1 <j < n) and f; = y; + higher order terms. Set f, =y, + g and
consider the equation u(y; + g) = (»; + g;). Then we get

(17) (u = fi)g = -wy;.

Since k is sufficiently large, we have

; —t(u— i) =
9 fim ey =0
and
(19) _j; e (“=B)w y. dt

exists as a germ of holomorphic functions (cf. [5]). Set g =
—[ e*“~#y y. dt. Then
. ©d _u-—p
(u - pj)gj=f0 7€ ( W)wyjdt

—_r o
= [e t(u l‘;)wyj]o = _wyj.



504 HIDEKI OMORI

2.B. Lie algebras containing semi-simple expansive vector fields

Let g be a closed subalgebra of &, such that g contains a semi-simple
expansive vector field X.

2.2. Lemma. Let X be a semi-simple expansive vector field in g. Then there
is a Cartan subalgebra ) of g containing X.

Proof. By the same proof as in the above lemma, we see that X can be
linearizable by a suitable formal change of variables, and hence we may
assume that X can be written in the form X = 27_, &,y,0/9y;, Re ji; > 0. Let
a@(X) = {u € g; [X, u] = 0}. Since every u € g®(X) can be written in the
form

(20) u=3 3 a9/,

=1 iy =

we see that g©@(X) is a finite dimensional Lie subalgebra of g. Since
ad(X): g@(X) P gO(X) is of diagonal type, there is a Cartan subalgebra b of
a@(X) containing X. We shall show that ) is a Cartan subalgebra of g. For
that purpose we have only to show g@(h) = 5. Since X € b, we see g@(p)
g@(X), and hence g®(p) is the zero-eigenspace of ad(h) in g@(X). However,
since } is a Cartan subalgebra of g@(X), we have §) = g@(p).

2.3. Corollary. If g has a semi-simple expansive vector field, then every
Cartan subalgebra Yy of g is finite dimensional, and g™(b) is finite dimensional
for every A € u(b).

Proof. By the above lemma, there is a finite dimensional Cartan subalge-
bra of g. However from Proposition A it follows that all Cartan subalgebras
are finite dimensional, and every Cartan subalgebra contains a semi-simple
expansive vector field. Note that

&= {“E%o;“= 2 2 ai,ayaa/ayi}'
i=1 {a,p)—p=A
Since § contains an expansive vector field, we see that dim &, < oo and
hence dim g®(h) < oo.

24. Corollary. With the same notation as in the introduction, if X(V)
contains a semi-simple expansive vector field X, then there is a Cartan subalge-
bra Y of g(V) such that h C X(V). Moreover, for that ¥, g™(b) is contained in
X(V) for every A € w(}).

Proof. Since X € X(V), Lemma 2.1 shows that X can be written in the
form X = 37_, 4,7,0/3y; by a suitable biholomorphic change of variables.
Therefore every u € g®(b) is contained in %(¥), as u is a polynomial vector
field in y,, - - -, y,.
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2.C. Isomorphisms of g(V) onto g(V’)

Let ¥, V’ be germs of varieties in C", C" respectively. Supose there is a
bicontinuous isomorphism ® of g(¥") onto g(¥").

25. Lemma. Let b be a Cartan subalgebra of g(V). Then so is ®(h) of
a(v’).

Proof. Set by = ®(b). Since ®: g(V) g(V’) is continuous, for every k’
there is an integer k = k(k’) such that ®(g(V)) C g, (V’). Thus j b’ is a
nilpotent subalgebra of g(¥")/g,(V"), and g@%) > (g ?(h)). Replacing @
by @' we hence get the desired result.

Now suppose that ¥ and V'’ have expansive singularities at the origins
respectively. By Corollary 2.4, X(¥') and X(V") contain Cartan subalgebras of
g(¥) and g(V"’) respectively.

2.6. Corollary. Under the same assumptions as above, let ) be a Cartan
subalgebra of g(V) contained in X(V'), and suppose there is a bicontinuous
isomorphism ® of g(V') onto g(V"). Then there is a bicontinuous isomorphism ¥
of g(V') onto g(V’) such that ¥(Y)) C X(V"), that is, ¥Y(9) is a Cartan subalgebra
of a(V") contained in X(V").

Proof. By the above lemma, ®(h) is a Cartan subalgebra of g(¥V’). By
Corollary 2.4, there is a Cartan subalgebra §’ of g(¥’) contained in X(V’). By
Proposition A, there is g € G such that Ad(g)®(h) = Y. Noting that
Ad(g): g(V) > g(V’) is a bicontinuous isomorphism, we thus obtain the
desired ¥ = Ad(g)®.

In the remainder of this section we assume that there is a bicontinuous
isomorphism ®: g(¥) i g(V’) such that ®(h) =Yy where b, ly are Cartan
subalgebras of g(¥), g(V’) respectively such that § € X(V) and i c X(V").
By Corollaries 2.3 and 2.4, there is a local coordinate system (y,, - - - ,»,)
related biholomorphically to the original one such that every g®™(b) is a finite
dimensional space of polynomial vector fields in y,, - - - , y,. We choose such
a local coordinate system (z,, - - -, z,) for g(V’). Let p(V; yy, - * - , ¥,) (resp.
p(V’; zy, - -+, z,)) be the totality of u € g(¥) (resp. g(¥")) such that u can
be expressed as a polynomial vector field in y,, - - - ,y, (resp. zy, - * + , z,).
p(Viypy, - -,y and p(V'; zy, - - -, z,,) are Lie subalgebras of X(V), X(V")
respectively. Since g®(h) C b(V; y,, -+ -, »,) for every A € m(h), we get the
following.

2.7. Corollary. With the same notation and assumptions as above, the above
isomorphism ®: g(V) > q(V") induces an isomorphism of d(V;yy, - - ¥,
onto p(V'; 2y, + + , z,).

Proof. Note that ®(g™(h)) = g®("), because g®(h) is an eigenspace of
ad(h). Every u € p(V; y;, - - - , y,) can be written in the form u = 2, c ;) %,
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but the summation in this case is a finite sum. Since ®(u) = 2, ¢ (1)
and ®(u,) € g™(b’), we see that ®(u) € p(V’; z, - - - , z,). Replacing ® by
@' gives the desired result.

Let C[y;,- - - ,y,] be the ring of all polynomials in y,, - - -, y,. Then,
since g(V) is an 0-module, p(Viyp---,y)isaCly,- - - ,y,]-module.

3. Theorem of Pursell-Shanks’ type

In this section we consider two Lie algebras p(V;y,---,y,) and
p(V’; 2y, - -+, z,) of polynomial vector fields such that they are
Cly, - ,y,) and C[z,, - - -, z,]-module respectively and that there is an
isomorphism @ of p(V; y, - - - ,y,) onto p(V’; z,, - - -, z,,). The goal is as
follows.

Theorem II. With the same notation and assumptions as above, there is a
biholomorphic mapping ¢ of C" onto C” such that dpp(V;yy, - - - ,y,) =
p(V'; zy, - - -, 2,,). Moreover, (V) = V' as germs of varieties.

Note at first that Theorem II implies Theorem I in the introduction, for
Corollaries 2.6 and 2.7 show that an isomorphism between g(¥V) and g(V”)
induces an isomorphism between p(V; y,, - - - ,y,) and p(V'; z, - - -, z,).

3.A. Characterization of maximal subalgebras

Let b be a subalgebra of p(¥;y,, - - ,»,), and denote by H* the ideal
consisting of all u € h such that ad(v,)- - - ad(v )u €Y for every kK > 0
and any v, -, 0, €Ep(V;yp, - - ,»,). Let V, be the set of all points
g € C" such that p(V;y,,- - -,y,) does not span n-dimensional vector
space at g, that is, dim p(V; y,, - - -, ,)(¢) < n. For a point p € C", let p,
be the isotropy subalgebra of p(V;y,,---,y,) at p, ie, p,={u€
p(V;yp - - o5 va)s u(p) = 0}

3.1. Lemma. For apointp € C" — V,, b,isa maximal finite codimensional
subalgebra such that p{ = {0}.

Proof. Sincep € C* — V,, there areu,, - - -, u, Ep(V; y}, -+ -, y,) such
that u(p) = 9/dy,|, for 1 < j < n. Consider

(ad(w))" - - - ad(u,)"0)(p) =0

forany/, - - -, [,, and we get easily that p{™ = {0}.
We next prove the maximality of p,- Let h be a subalgebra of
P(Viyy -+ -, y,) such that h D p,. There is then an element v € h such that
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v(p) # 0. By a suitable linear change of variables, we may assume that v is
written in the form

(1) o= g5+ Dl 8(0) % 0h(p) = 0.

Let (py, - - -, P,) be the coordinate of p. Then (y; — p))y; Ep, for 1 < j <
n, and therefore [v, (¥, — pPu] = o(yPy; + (¥, — pylv, %] €. Since
o(y)(p) = g(p) # 0, we have h(p) = b(V;y,,- - -, y,(p) and hence § =
p(V;yl’ Tt ’yn)'

Let B, be the set of all points g such that p, is a maximal subalgebra and
p{® = {0}. By the above lemma, 8, contains C* — V,. The goal of this
section is as follows.

3.2. Proposition. Let g be a maximal, finite codimensional subalgebra of

p(V;yp, -+ ¥, such that g = {0). Then there is a unique point p € B,
such that g = b,.

Let g be a subalgebra of p(V;y,---,»,) and let J = {f€
Cly, - sy PVsyy,- - - ,y) Cg). Obviously, J is an ideal of
Clyy, -« sy ford(Viyy, - - -, y,)isaCly,, - - -, y,}-module.

33. Lemma. Let g be a subalgebra of p(V;y, - - -,y,) such that

Cy e s yale=p(Viyy - - - 5 ,). Then Jp(V; yy, - -+, y,) is an ideal of
p(V;yy, -+ + .y, contained in g.

Proof. By definition Jp(V;y,,* * +,y,) C @. Since (uf)v = [u, fo] —
Sflu, v], we have gJ C J, and hence (C[y,, - - - , y,lg)J C J. By the assump-
tion, we get p(V; yy, - - - , ¥, )J C J,sothat Jp(V;y,, - - - ,y,) is an ideal of
PViyes s st 5 V0

By the above lemma, we see also that Jp(V; y,, - - - ,»,) C ¢. The next
lemma is due to Amamiya [1]. Although the proof can be seen in [5], we
repeat it here for the sake of selfcontainedness.

34. Lemma. Let g be a finite codimensional subalgebra of
p(Viyy - -+, y,)- ThenJ # {0}.

Proof. Set g® = {u € g;[u, p(V;yy,- -+ ,»,)] C g}. Since codim g < oo
and ad(u) for every u € g induces a linear mapping of p(V;y,, - - - ,»,)/8
into itself, we see that codim g < co and hence in particular gV 7 {0}.

Let v be a nontrivial element in g, and f a polynomial such that of 3 0.
Consider a sequence fv, f?, f, - - - . Since codim gV < oo, there is a
polynomial P(7) in ¢ such that P(f)v € g.

We next prove that if v and gv are contained in g, then (vg)? € J. For
this purpose, let w be an arbitrary element of p(V’; y,, - - -, y,). Then we
have

[v, gw] = (vg)w + g[w, v] E g,
[ gv, w] = —(wg)v + g[w,v] Eg.
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Hence
(22) (vg)w + (wg)v E g
for every w € p(V; 1, - - - , ¥,)- In (22) replacing w by (wg)v and (vg)w in

turn, we have (vg)(wg)v € g and

(vg)*w + (vg)(wg)v € 6.
Hence (vg)w € g, which implies that (vg)? € J. Set g = P(f). Then v, gv €
g™ and vg # 0 because of vf 0. Thus we get J # {0}.

35. Corollary. Let g be a maximal finite codimensional subalgebra of
p(Viyy, -+, y,) such that ¢ = {0}. Thengisa Cly,, - - - ,y,]-module.

Proof. We have only to show that C[y,,- - - ,»,l6 & p(V;yp - -,y
because if so, the maximality of g shows that C[y,, - - -, y,lg = g. Thus we
can assume that C[y,,- - -,y,la =p(V;y;,- - - ,»,). Then by the above
lemma, we get that ¢ > Jp(V; y,, - - - ,y,) # 0, contradicting the assump-
tion.

Now we have only to consider a maximal finite codimensional subalgebra g
of p(V;yy, - - - ,y,) such that g = {0} and g is a C[y,, - - - , y,]-module.
LetM, = {f €Cly, - - - ,y.); flp) =0}

3.6. Lemma. ForaCly,,- - - ,y,l-submodule g of (Vi yy, - - - ,y,), if

g + Mp‘p(V;yb ctt ,y,,) = ‘p(V’yl’ et ’yn)

for everyp € C*, theng = p(V;yy, - * * 5 V)

Proof. By Nakayama’s lemma, we see that for each p € C” there is
5 €EClyy, - - -, y,] such that f(p) # 0 and f,p(V;y,, - - +,¥,) Cg. Since
the ideal § generated by {f,; p € C"} has no common zero, we see that
9 =Clyy,- -,y and hence there are f,,f, ", f 81 8" & €
Cly, - - - ,y,)such that 1 = 2},1 gjfpj. Therefore

1
P(Viyn s ya) = ( 21 gj)g Ce.
j=
3.7. Corollary. Let g be a maximal finite codimensional subalgebra of
p(Viyy, - -+ ,y,) such that g = {0}. Then there exists uniquely a point
p € B, such that g = p,.
Proof. By Corollary 3.5, g is a C[y,, - - - , y,]-module, and hence there is
a point p €C" such that g+ Mp(V;yy, - 00 & P(Viyp -« -, 0,)-
Thus g D M, p(V; yy, - - - ,y,) by the maximality of g. It is easy to see that
such a point is unique, because M, + M, = Cly,, - - - ,y,]ifp # 4.
If p(Viyp, - -« ,»)(p) ={0}, then Mp(V;y,,- -+ ,»,) is an ideal of
o(V;y, -+ ,»,)- Thus it must be contained in g, and hence must
be {0} by the assumption, contradicting the assumption. Therefore
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p(Viyp, - -+ 5y )(p) # {0}. Now there are u € p(V;y,, - - - ,y,) and f €
Clyy - - -5y, such that u(p) #0, f(p) =0 and (uf)(p) 0. For every
v €EP(V;yp, - -+, y,) fois an element of g. Therefore if ¥ were contained in

g, then [u, fo] € g. Thus (uf)v € g. It follows that (uf)(p)v € (uf — (uf)(p))v
+ g C g. Since (uf)(p) # 0, we get v € g, hence g = p(V; y,, - - - » V), CON-
tradicting the assumption.

From the above argument it follows that g C b,, so that g = b, by the
maximality of g. Since ¢ = {0}, we seep € B, by definition.

This completes the proof of Proposition 3.2. (See also added in proof.)

3.B. A diffeomorphism induced from &

Let p(V’; z,, - - -, z,,) be another Lie algebra of polynomial vector fields
on C”. Subsets V,,, B, are defined in the same way as in p(V;y;, - -+, y,).
Suppose there is an isomorphism @® of p(V;y,,---,y,) onto
p(V’; 2z, -+, z,). Forapointp € B, p,isa maximal finite codimensional
subalgebra such that pl(,“’) = 0. Then ®(p,) has the same property. Hence
there is a point ¢(p) € W,, such that O(p,) = b, ,), where b, is defined in
the same manner as in p(V; y, - -+, y,). ¢: B, > W, is a bijective mapping.
The goal of this section is as follows.

3.8. Proposition. With the same notation and assumptions as above, assume
further that p(V; y,, -+ -, y,) (resp. )(V'; z,, - - -, z,,)) contains a vector field
X (resp. X') such that X = Z7_, [,y,0/0y; (resp. X' = 2;;1 fijz9/9z,). Then ¢
can be extended to a holomorphic diffeomorphism of C* onto C* such that
(P( Vp) = Vp"

Note that the existence of X and X’ are obtained by Lemma 2.1.

Let ¥, be the totality of C-valued functions f on B, such that fu can be

extended to an element of p(V; y,, - - - ,y,) foreveryu € p(V;yy, - - -, »,)-
Remark that the existence of fu is unique, because B, is dense in C". ¥, is a
ring, and p(V;y,, - - - ,y,) is an ¥,-module. For p(V’; z),- - -, z,), we

define ¥,, in the same manner as above.

3.9. Lemma. With the same notation and assumptions as above, ¢ induces an
isomorphism of ¥, onto ¥,

Proof. Letf € ¥, and p be an arbitrary point in I8,. By definition, f®(u)
can be extended to an element of p(V’; z,, - - -, z,), which will be denoted
by the same notation. f®(u) — f(p(p))P(u) € by, hence O (fO(u) —
AP(p)®(u)) € p,, that is, @'(f®(x) — fp(P))P(u))(p) = 0. Therefore
O'(fO(w)(p) = f(p(p))u, that is, @ '(f®(u)) = (p*f)u. Since the left-hand
member is contained in p(V; y,, - - -, »,), we have ¢*f € ¥, It is easy to see
that *: ¥, - ¥, is an isomorphism.
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3.10. Lemma. Under the same assumption as in the statement of Proposition
3.8, we have ¥, = C[y,, * - - , y,], and hence ¢ is a bi-holomorphic diffeomor-
phism of C" onto C".

Proof. Obviously ¥, D C[y,, - * - ,y,]. For any f € ¥,, fX is an element
of p(Viyp -,y Thus ), - - -, fy, €Cly,, - -+, »,) and it is not hard
toseef € Cly,;, - - - ,¥,)

3.11.Lemma. o(C" — V,)=C" - V,,.

Proof. By the above lemma we have n = n'. Let p be a point of C" — V..
Then codim p, = n, and therefore codim p,,, = n, because b, = <I)(p)
Hence we see <p(C" v, = Cc” - Ve

This completes the proof of Proposmon 3.8.

3.C. Recapture of the germ

Recall that V is a germ of variety with 0 as an expansive singularity. Hence
there is X = X7_, ,,0/3y; € X(V) such that Re i, > 0 for 1 < i < n. Since
X is a linear vector field, exp tX is a bi-holomorphic diffeomorphism of C*
onto itself. Remark that (exp tX)V = V as germs of varieties for X $(V) C
9(V) where §(V) is the ideal of Vin 0. Let ¥ = U rer(€xp tX)V. Though ¥V
is a germ of variety at 0, the expanswe property of X ylelds that ¥ is a closed
subset of C" such that (exp tX)V = V. Obviously, V=V as germs of
varieties.

In this section we shall prove that V, = v, so that ¥, = V as germs of
varieties. Let (V) be the closure of Q(V) in 6. Note that g(V) is also
the closure of (V) in &, Hence g(V)3(V) c §(V). Recall that
p(V;yy, -+ - ,Y,) is given by using the eigenspace decomposition of g(V)
with respect to ad(X), that is, every u € g(¥) can be rearranged in the form
u =23 u, as in Lemma 1.6, and p(V;y,, - - - ,y,) is generated by the u,’s.
Similarly, we decompose @(V) into eigenspaces of X. Let f be an element of
@( V). Then f can be rearranged in the form

(23) =25 fi= 2 ay~

’ Cafiy=v
Thus f, is a polynomial such that Xf, = »f,. By the same proof as in Lemma
1.6 we see that f, € ?}(V). We denote by I, the ideal of Cly,, - - - ,y,]
generated by all f,s with f € @( V).

3.11. Lemma. I, C $(V).

Proof. Let f € $(V). f can be rearranged in the form f =272, f,, f, =
Siaps=y Gy" We may assume 0 <p; < -- -9 <---. First of all, we
shall show f, € 9(V). Note that e”(exp — tX)f = = e**"’"‘f,j € $(V) for
t > 0. Suppose f is defined on a neighborhood N of 0 in C". Then (exp —
tX)f is defined on (exp tX)N. Note that U, (exp tX)N = C" and
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U, solexp tX)(N N V) = V. Since e""(exp — tX)f =0on (exp tX)(N N V),
taking lim,,,, we see that f, = 0 on V.Since ¥ = V as germs of varieties, we
have f, € (V). Applying the same procedure to f — f,, we get f, € $(V),
and so on. Hence f, € J(v).

Let f € §(V). Then there is a sequence {f®} in $(V) such that lim S =
fin the topology of formal power series. For any eigenvalue » of X: 0 (‘)
we see f™ € 9(V), and lim,,_, f™ = f, as polynomials, because the de-
grees of f(™, f are bounded from above by a number related only to
fis -+ + » i, and ». Since f"|V =0, we have f|V =0, hence f, € (V).
Recalling that the f,’s generate I,,, we thus see I, C (V).

3.12. Lemma. With the same notations and assumptions as above, a poly-
nomial vector field u with u(0) = 0 is contained in p(V; y,, - + -, y,) if and only
iful, C I,

Proof For u€g(V) and f € §(V), let u = 2\, and f=3X,f be the
decompositions of eigenvectors with respect to ad(X), X respectively. Then
uy EP(Viyy, - -+ 50 S, €1, Since Xuyf, = [X, u\lf, + ,Xf, = A +
v)u,f,, u,f, is also an eigenvector of X. Since uf € 9(V), the u,f,’s appear in
the eigenspace decomposition of uf, and hence u,f, € I,. Thus we have
»(V; Yp© oo ,y,,)I Cc I

Conversely, if ul, C I for a polynomial vector field u with u(0) = 0, then
ug(V) - 9(V) by takmg the closure in the formal power series. Note that
u$(V) c O N §(V). We next prove that s =0n §(¥). For that pur-
pose, we have only to show 9(¥) D O N 9(V), because the converse is
trivial. Let f € O N @(V), and let f = X, f, be the eigenvector decomposition
of f with respect to X. Then by Lemma 3.11 we have (f, € I, C 3(V)). Thus
f,=0o0n ¥V, hence f = 0 on V. This means f € §(¥). Thus ul, C I, yields
u € X(V) c g(V). However u is a polynomial vector field in y,- - -, y,,
henceu € p(V; yy, - -« L p,)-

3.13. Lemma. V, = VI»’ the locus of zeros of I,,.

Proof. Let p be a point in C* — V,. By definition there are u,, - - - , 4, €
p(V;yyc + * » ¥, such that u,(p), - - -, u,(p) are linearly independent. As-
sume for a while thatp € V. Since 1, C I, we have

(uy - - - upf)(p) =0
for every f € I, and any /,,- - -, l,. Thus f=0, contradicting the fact
I, # {0}. Therefore V', D V.
Conversely, let p € C" — V. There is then g € I, such that g(p) # 0. By
Lemma 3.12, gd/dy,,- -+ ,89/3y, €p(V;yy, - - - ,y,), which are linearly
independent at p. Hencep € C" — V. Thus V; D V.
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3.14. Lemma. V; = V as germs of varieties.

Proof. By Lemma 3.11 we have 01, C §(V), which implies that V; O V.
Assume for a while that ¥ 52 V. Then thereis f € §(V) such that f Z 0 on
V. Let f = 3, f, be the eigenvector decomposition of f. Then f, € I,, so that
S, =0on V. Hence f = 0 on V contradicting the assumption. Thus we get
V;, = V as germs of varieties, and hence Vi, =V.

From the above result it follows that ¢: O maps ¥ onto ¥’ and
@(V) = V' as germs. This implies that ¢*3 (V') = (V) so that dopX(V) =
X(V"). Hence the proof of Theorem I in the introduction is complete.

Added in proof. The proof of Corollary 3.7 and also Lemma 2.15 in [5]
contains a slight gap, for it is not trivial that g + M,p is a subalgebra, where
p=p(V;y,- -,y Thisis proved as follows.

Since p/g is a finite dimensional C[y,, - - - , y,]-module, there is / such that
M/*'(p/g) = MJ(p/g). By Nakayama’s lemma, there is a polynomial Q such
that Q(p) =1 and QM,)(v/g) = {0}. As QM, = M), we have M,)p C g,
hence J D Mp’ . Therefore codim J < o0. Now assume for a while that g(p) #
{O} By a suitable linear change of coordinate g contains u = g,0/0x, +

202 hd/0x; such that g\(p) =1, b € M,. As codimJ < oo, there is a
polynomlal P(x,) of one variable such that P € J. We get easily (u*P)(p) #
0 for some k. Since gJ C J, it follows J(p) # {0}. This implies J 3 1 for
JD Mp’. Hence g = p, contradicting the assumption.

Therefore g C b, If p=1p,, then g+ M,p is a subalgebra of p. Thus
g D M,b because of the maximality. But since M,p is an ideal of b, we get
M,p C ¢ = {0}. Therefore we have p # p,. Since g C p,, we get b, = g D
Mp.
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