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RIEMANNIAN MANIFOLDS WΠΉ LARGE
INVARIANTS

CHRISTOPHER B. CROKE

Introduction

In a previous paper [1] we define some riemannian invariants and discuss
their properties. Here we begin the classification of manifolds whose in-
variants are large. In [1] the invariants were related to the group of isometries
of the manifold. In particular, if the group of isometries leaving a point
p E: M fixed has large dimension, then the invariants must be large. Hence
the results of this paper relate to manifolds with large compact groups acting
on them. These manifolds have been studied extensively. See, for example, [3]
in the riemannian setting, and [4] in the differentiable setting. The techniques
in this paper are geometric in nature, and as such provide completely new
proofs as well as generalizations of some of the results in [3] and [4].

This paper follows the notations and conventions of [1]. It also makes
extensive use of definitions and results of [1].

In §1 we prove some results which will be useful in later sections. This
includes classification, up to cohomology ring, of those manifolds such that
dim N£τc = 1 for all one-dimensional S c TpM, and along with §3 classifi-
cation, up to diffeomorphism, of those manifolds such that dim N£τc = 2 for
all two-dimensional S c TpM.

In §2 we discuss the case of ATCp(M) >\(n + 3). The main purpose here,
achieved in Proposition 2.3 and Theorem 2.8, is to find a small dimensional
linear subspace K c TpM such that all sectional curvatures of sections
perpendicular to K are equal.

In §3 we classify, up to diffeomorphism, those manifolds Mn such that
ΛTCp{M) = n for some/? G M. We also study the case ATCp(M) = n - 1.

In §4 we study homogeneous riemannian manifolds such that
ATC (Λf) > \{n + 3). Here we use the subspace K, found in §2, to define an
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(possibly smaller dimensional) invariant distribution D with nice geometric

properties (Theorem 4.1). When M is a normal homogeneous space we show

that D is invariant under holonomy so that the universal covering space M

splits as a product of a large constant curvature space on another space

(Theorem 4.3). We also study, under mild assumptions, what the deck

transformations can be (Corollary 4.3). For general homogeneous spaces M

such that ATCp(M) > \(n + 3) we show that M is the total space of a nice

fibration (Proposition 4.7). Finally we return to the case A TCp{M) = n - 1

in the homogeneous setting (Proposition 4.8).

I would like to thank my advisor, Professor Richard K. Lashof, for his

advice and encouragement. I would also like to thank Dr. Allen Back,

Professor Melvin Rothenberg, and Dr. Jonathan Sacks for many helpful

conversations.

1. Preliminary results

In this section we prove some basic results which will be needed in later

sections.

1.1. Lemma. For every S c TpM we have d ° fcc(S) - d(S) < N - CCp

(resp.TC,ATC,TG).

Proof. Assume for some S we have d ° fcc(S) - d{S) > N - CCp. Let

S" = (fcciS))1^ and S = 5 Θ S'. Then we have d(S) = d(S) + d(S') =

d(S) + N - d o fcc(S) < d(S) + N - N + CCp- d(S) = CCp. Now con-

sider/cς(5). Since S c SJCC(S) c / c c ( 5 ) . Since (/CC(S))X C S, (/Cc(^))X

C fcc(S)- Thus fcc(S) = TpM, but d(S) < CCp, which contradicts the defi-

nition of CCp. The same proof works for TC, ATC, and TG.

We next consider the cases where d ° fcc(S) = 1 for all one-dimensional

S c TpM, and d ° fcc(S) = 2 for all two-dimensional S c TpM.

1.2. Proposition. Let Mn be a complete connected riemannian manifold with

n > 3. If there is a p in M such that for all one-dimensional S dTpM we have

d °/c c(5 r) = 1 (i.e., Expp(5) = NςC), then either the tangent cut locus top is

empty (in which case M is diffeomorphic to W) or:

(a) The tangent cut locus top is a sphere of radius r (for some r).

(b) The sphere of radius 2r consists entirely of tangent conjugate points of

multiplicity n — 1.

(c) / / F £ TpMhas \ V\ = 2r, then Exp, V = p.

(d) There are no tangent conjugate points between the sphere of radius r and

the sphere of radius 2r.

(e) The first tangent conjugate locus is either the sphere of radius r or 2r, and

all points on this sphere have the same multiplicity.
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(f) If the tangent cut locus is not equal to the first tangent conjugate locus

(i.e., the sphere of radius r has not tangent conjugate points), then M is

homeomorphic to RP".

Proof. Since fcc(S) = S for all one-dimensional S c TpM, we see from
Theorem 6.1 of [1] that Λ^ c is isometric to N£,c for all one-dimensional S,
S' c TpM. Since Nξc is one-dimensional, it is just the geodesic γ with
γ'O) E S. Thus we see that if some geodesic through p is closed of length /,
then all geodesies through/? are closed of length /.

c u t

Assume now that the cut locus top is not empty, and let r be the minimum
distance from/? to its cut locus. For ε > 0 let 0e be the set { V E TpM\ \\V\\
<r + \ε and the geodesic Exρp tV cuts at some t0 < 1}. Since 0e is an open
subset of TpM, there is an X E 0e such that Expp X does not lie on the cut
locus top. (This follows since some X E 0e is not a critical point of Exp̂ ,, and
hence there is an open set U with X E U c 0ε such that E x p ^ is a
diffeomorphism onto an open set.) Let σ(t) = Έxpp(tX/\\X\\\ and let τ(t) be
the unique minimizing geodesic from p to Exp^ X. By the definition of 0e, σ
does not minimize so σ φ r. We also know that the length of σ and the length
of r are less than r + \e. Let S be the one-dimensional subspace spanned by
σ'(0). By assumption Λ^ c is one-dimensional. Since Nξc is completely
convex and Expp X E Λ^c, we see that r c N£c. Thus σ and T fit together
to form a closed geodesic γ of length /. By the definition of r and the above
argument we see that 2r < / < 2r + ε.

Thus we have shown that all geodesies through p are closed of length /
where 2r < I < 2r + ε. But since ε was arbitrary, / = 2r. Now since every
geodesic is closed of length 2r, they must cut at a length less than or equal to
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r. Thus by the definition of r all geodesies cut at a length of r. Hence (a) and

(c) follow, while (b) follows directly from (c).

Assume there was a tangent conjugate point V such that r < \\ V\\ < 2r.

Let / be a Jacobi field along the geodesic y(t) = Expp(ίF/||F||), such that

J(0) = J(\\ V\\) = 0. Since γ(2r) = p is a conjugate point of multiplicity n - 1

and /(0) = 0 and </(/), γ'(0> == °> w e have /(2r) = 0. Now consider the

same Jacobi field along τ(t) = γ(2r - /)• We have /(0) = 0 and J(2r - \\ V\\)

= 0. So the point τ(2r - || V\\) is conjugate top along r. But 2r - || V\\ < r

contradicting the definition or /*. Thus (d) follows.

By (d) we see that any tangent conjugate point on the sphere of radius r is

a regular conjugate point. Since the conjugate locus is closed in Tpλf, the

intersection with the sphere of radius r is closed. On the other hand the

regular conjugate locus consists of a disjoint union of (n — l)-dimensional

submanifolds (without boundary) each connected component of which con-

sists of conjugate points of the same multiplicity. (For the above results see

[6].) Thus (e) follows from (d).

Now assume that no point on the tangent cut locus (the sphere of radius r)

is a conjugate point. Let rV be on the tangent cut locus, and let q = Exp^ rV.

Since along any minimizing geodesic p is not conjugate to q and since d(p, q)

minimizes the distance from/? to its cut locus, we see that there are precisely

two minimizing geodesies γ, T from p to q and γ'(#) = -τ'(q) (see [2, p. 95]).

By our previous arguments we see y(t) = Expp tV, τ{t) = Exp^ — tV. In

particular rV and -rV are the only points W on the cut locus with Expp W =

q. Thus we have shown that M is a disk with its boundary identified through

the antipodal map. Thus M is homeomorphic to RP". The proposition is thus

complete.

The following theorem of Warner [7, p. 208] will tell us something about

the topology of the manifolds we have just discussed.

13. Theorem {Warner). Let M be a compact \-connected d-dimensional

riemannian manifold. If there exists a p EΞ M for which the first conjugate locus

in TpM is a sphere of regular conjugate points of multiplicity K, then one of the

following holds:

(a) K = d — 1, and M is homeomorphic to Sd.

(b) K = 1 and d = 2λ, λ = 2, 3, , M has the homotopy type of complex

projective space.

(c) K = 3 and d = 4λ, λ = 2, 3, , M has the integral cohomology ring of

quaternionic projective space.

(d) K = 7 and d = 16, M has the integral cohomology ring of the projective

Cqyley Plane.

1.4. Corollary. Let Mn be a connected complete riemannian manifold with
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n > 3. If there is ap EL M such that for all one-dimensional S C TpM we have
d ° fcc(S) = 1, then one of the following holds:

(a) M is diffeomorphic to Rn.
(b) M is homeomorphic to RP".
(c) One of the cases of Warner's theorem holds.
Proof. If the tangent cut locus to p is empty, then M is diffeomorphic to

RΛ. If not then it is a sphere of radius r, hence M is compact. If no tangent
cut point is a conjugate point, then (Prop. 1.2 (f)) M is homeomorphic to RP".
If some tangent cut point is a conjugate point, then (Prop. 1.2(e)) the first
conjugate locus is the tangent cut locus and consists of conjugate points of
the same multiplicity. Since the tangent cut locus is the first conjugate locus,
M is 1-connected. Thus Warner's Theorem gives the result.

Note. If d°fATC(S) = 1 (resp. TC) for all one-dimensional S c TpM,
then d ° fcc(S) = 1 for all one-dimensional S c TpM. Thus Proposition 1.2,
and Corollary 1.4 hold with CC replaced by ATC (resp. TC).

We now consider the case where d ° fCc(S) = 2 for all two dimensional
S C TpM.

1.5. Proposition. Let Mn be a connected complete riemannian manifold
(n > 3). If there is a p EL M such that all 2-dimensional subspaces S C TpM
satisfy d ° fcc{S) = 2 {resp. d ° fAτσd ° / Γ C ) , then CCp(M) = n (resp.
ATCp, TCp).

Note. The author does not know whether the result holds for TG or not,
but the interesting cases are A TC and CC.

Proof. To show CCp(M) = n we need to show that for every linear
S c TpM, Expp S is a topologically closed completely convex almost totally
geodesic submanifold of M. If S is 1- or 2-dimensional, this is clear. So
assume dim S > 2. (Note that we actually need only prove this for 5"s such
that dim S = n — 1, but the proof is the same for all dimensions.) Let
N = Exp^ S. As in the proof of Proposition 5.2 of [1] it is sufficient to prove
that for every q E N we have:

(1) 3Sq c TqM such that dim Sq = dim S and Exp^S"7) c N,
(2) Vq' E N if γ is a unique minimizing geodesic from q to q* such that q is

not conjugate to q' along γ, then γ c N.
Let T be a geodesic from/? to q such that τ'(0) = F e S . W e first prove (2).

Let σ be a geodesic from/? to q' such that σ'(0) = W E S. Let S" c S be the
subspace generated by V and W. Then dim S" < 2, so Expp S" = Nξ,c. Since
q and qf are in Exp^ S" and Exρp S

f = Ng,c, we have γ c Exp^ 5" c Expp S
= iV, so (2) holds. To show (1) let Sq be the parallel translate of S along r.
Let Y E Sq, and let Ϋ be its parallel translate along T to/?. Let S c 5 be the
subspace generated by V and Ϋ. Then dim S < 2, so Exp^ 5 = Λ^70. In
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particular q G Nξc and Y G TqNξc. Thus Exp^ Y G Nfc = Exp, S C
Exp^ S = N, and the lemma follows for CC. For the convexity conditions
ATC and TC, the argument used to prove (2) will give the result.

We next consider a result which will serve as an aid in studying the
curvature tensor.

1.6. Proposition. Let S be an r-dimensional linear subspace of TpM such
that for every (r + I)-dimensional S' with S C S' we have d ° fCc(S) <
d o fcc(S) + 1. Let q G Nξc andX G TqNgc. Then there exists a number Cx

such that for every Y G (TqN£c)^ c T M we have R(Y, X)X = C / .
Likewise for TG,ATC, and TC.
Proof Let γ be a geodesic from/? to q such that γ c Λ^ c. Let Yf G TpM

be the parallel translate of Y along γ to p. Let S' = 5 + y . Then S" has
dimension r + 1. Since 5 c 5", we have iV^c c iV^c. By assumption, dimen-
sion of Nfc < dimension of N£c + 1. Further since γ c N£c and Y' G

ξc
TpNfc, and A^ c is totally geodesic, we have Y G TqNξ,c. Thus 7 ^ ^ c is
equal to TqNgc θ y, so that R(Y, X)X c ^ ^ c . Further if Z G 7̂ ΛΓfc,
we have (R(Y, X)X, Z> = <Λ(Z, ΛΓ)̂ , Y} = 0 since Λ(Z, * ) * e T JV^
and r G (TqNgC)^. Thus Λ(y, X)X = C/7, which implies that every ele-
ment of (TqNξc)^ is an eigenvector of R(-, X)X, so that they have the same
eigenvalue Cx. Thus R(Y, X)X = CXY, and the proposition follows. The
same argument works for TG, ATC, and TC.

2. Some consequences of A TCp(M) > \{n + 3)

In this section we study some of the local and infinitesimal consequences of
ATCp{M) > \{n + 3). These results will be used extensively in the last two
sections. Although all the results in this section are stated in terms of ATC,
they hold for TC and CC. In fact, with the exception of Lemma 2.7 and
Corollary 2.9 the results also hold for TG.

Definition. Let M be a complete riemannian manifold and/? G M, and let
0 < ε be some number less than or equal to the distance from p to its cut
locus. A linear subspace Q c TpM is said to be ε-geodesic if Expp(β n #e(0))
is totally geodesic.

2.1. Lemma. If Qj^> Q where each Qj is an ε-geodesic r-dimensional

subspace of TpM, then Q is ε-geodesic.

Proof. Since ε is less than or equal to the distance from/? to its cut locus,
we know that Expp|^(0) is a diffeomorphism. Let q G N = Έxpp(Q n £e(0))
and X G TqN. Let ξ G Bε(0) be the point in Bε(0) such that E x p ^ ) = q.
(From now on ~ will be used for this purpose.) Let ξj -^ q, where ξj G Qp and
let Xj^X where Xj G T^Qj c T~qTpM. Let γ, be the geodesic determined by
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Xj, and γ the geodesic determined by X. Since Xj -+ X, yfi) -» γ(/). For small
ty γ/0 e Expp(£e(0)). Thus for small t, γ//) -+ y(t). Now γ/ί) E Qj so γ(0 E
(? Π 5e(0). Thus for small /, γ(/) E N. Hence iV is totally geodesic and the
lemma follows.

2.2. Lemma. If Q has the property that for every 2-dimensional linear
subspace T c Q there is an ε-geodesic S with T c S c Q, then Q is ε-geo-
desic.

Proof Let qEN = Expp(Q n Beφ)) and let X E T̂ iV. Let q and * be
as in the proof of Lemma 2.1. Let T be a 2-dimensional subspace of T M
such that q E T and X E T~T. By assumption there is an ε-geodesic S c
7^M with T c S c Q. Since S is ε-geodesic, Ns = Exp^ίS Π 5e(0)) is
totally geodesic. Since S c Q, Ns c N. Since q E T G S and X E T-T o
TjS, we have ^ G iVs a n d l G Γ îV5. Since N 5 is totally geodesic, the
geodesic γ determined by X lies in Ns for small parameter values. Thus for
small / we have γ(/) E Ns c N. Therefore N is totally geodesic.

Definition. A linear subspace S <z TpM is said to be completely ε-geodesic
if S c Q implies Q is ε-geodesic.

Note. If S is complete ε-geodesic and S c Q, then Q is completely
ε-geodesic.

23. Proposition. If S c TpM is completely ε-geodesic for some ε > 0 /Aew
(i) /or ei*?ry I G S there is a Cx such that R(Y, X)X = CXY for all

Y E S±,
(ii) there is a C such that for every Yv Y2E S±, with <Y, , Yj) « 8ip

R(Yλ,Y2)Y2= CYV

Proof (i) Since S + 7 is ε-geodesic, R(Y, X)X E S + Y. For any Z E 5
we have (R(Y, X)X, Z> = (R(Z, X)X, Y) = 0 since #(Z, Jf)Jf E S and
7 G 5 1 . Thus /?(F, X)X = C/K The same argument which we used in
Proposition 1.6 now gives (i).

(ii) By the note above S + Y2 is completely ε-geodesic. Thus (i) gives
R(Yl9 Y2)Y2 = CγYλ. We need only show that CZχ = CZi for every Z,, Z 2 E
S r±, with |ZJ = |Z 2 | = 1. To show this let s be the section determined by Zx

and Z 2 in 7̂ ,M, and let Zx be the unit vector in s perpendicular to Zv Then
the sectional curvature K(s) = (R(ZV Zλ)Zλ, Zλ} = ^ Z Ί , ZΊ> = CZj.
Similarly K(s) = CZ2, so CZi = Q 2 . Thus (ii) follows.

2.4. Proposition. If Sv S d TpM are completely ε-geodesic, and Sγ + S2

has codimension at least 2 in TpM, then Sγ Π S2 is completely ε-geodesic.
Proof By Lemma 2.2 it is sufficient to show that if Q c TpM satisfies

Sx Π S2 c Q and dim Q < dim(SΊ Π S2) + 2, then Q is ε-geodesic. Since
SΊ + S2 has codimension > 2, Lemma 2.1 allows us to restrict our attention
to those Q9s such that Q n (5Ί + 52) c 5Ί n 5 2 (fi^ °* c o u r s e means
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Q n(Sx + S2) = SΊ n SJ. Let Q be as above. Then Q + SΊ and β + S2 are
ε-geodesic. Thus (Q + SΊ) n ((? + S2) i s e-geodesic. Since β Π (Sj + Sj) c
SΊ Π S2,

 w e h a v e (Q + ^i) Π (Q + S^ = β + (£1 Π S2) = Q is ε-geodesic.
Thus the proposition follows.

Now consider the function gp

ATC: {0, 1, , n) -> {0, 1, , n) by
gp

ΛTC{f) = max{rf o/47-c(S)|S is an r-dimensional subspace of Tp(M)}. We
can similarly define gp

τc, gp

cc, and gp

TG.
2.5. Proposition, Λ.wwme /or some r > \ that gp

ATC(r + 1) = gp

ATC(r) + 1,
Lei 0 = {S c 7^M|dim S ^ r and d * fATC(S) = g/Γ C(r)}. 7%eπ ( f S G β ,
then fATC(S) is completely ε-geodesic, where ε is the distance from p to its cut
locus.

Proof. Let S e 6B, and let A ,̂ , Xr be a basis for S. By Proposition
5.5 of [1] & is open in Gr(M) n π^O)- Tims there is an open set U c TpM
- {0} with Xι e C/ such that if y G £/, then the subspace Sγ =
span{ y, ̂ 2, , Xr} is in Φ. Now let Q be a linear subspace of 7̂ ,M such
t h a t / ^ S ) c β, and let U' = U n β.

We claim that y e t / ' implies fATC(Sγ) C Q. If y e/ y 4rc(5 ') ' t h e n SY C
X so ̂ Γ C ( s y ) c w s ) c ρ. if y <£fΛΊX&s\ then y +/,Γ C(5) c

+ r ) For dimension reasons Y + fATC(S) = /^^(S + y). Now Sγ

C 5 + y, so fATC(Sγ) c Λ Γ C (S + Y) = y + ΛΓ C(S) c β. Thus the claim
follows.

Now let q E iV = Expp(g π ^ 0)), and let γ be the unique minimizing
geodesic from p to q. By the definition of TV, γ c N. Let U'q be the parallel
translate of U' along γ.

We claim that U'q is an open subset of TqN.
For dimension reasons we need only show that U'q c TqN. Let X =

γ'(0) and Y G U'. By the same argument used to prove the previous
claim, fATC(Sγ + X) = /<Γ C(Sy) + * . Thus fATC(Sγ + JQ C β. Since
Exp/^rciSy + ̂ ) ) = X£T+x is totally geodesic and X, Y <ΞfATC(Sγ + X),
we see that the parallel translate of Y along γ is in Tq(Έxpp(fATC(Sγ + X)))
C Γς Exρp(Q) = Γ^N. Thus the claim follows.

In the proof of the above claim we showed that if Yq E Uq is the parallel
translate of Y E U', then Yq E Tq{N*™x) c Γ (̂iV). Since N*™χ j s totally
geodesic, the geodesic yγ determined by Yq lies in N£f+X. Thus for small
parameter values yγ lies in N. Now if SN is the second fundamental form of
N, we see that SN(Yq, Yq) = 0. Since this is true for all Yq E Uq and Uq is
open in 7̂ iV, we see that SN = 0. That is, N is totally geodesic. Thus the
proposition follows.

2.6. Lemma. If for some p E Mwe have ATCp > \{n + 3), then there is an
r satisfying I <r <n - ΛTC + 1 and gfτc(r + 1) = gfτc(r) + 1 < n - 2.
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Proof. Assume for all 1 < r < n - ATPp + 1 that gp

ATC(r + 1) > gp

ATC(f)
+ 1. Then for all r < n - ATPp + 2 we have

(1) 2r - 1 < gp

ATC(r).

By Lemma 1.1 we have

(2) gp

ATC(r) - r < n - ATPp.

Combining (1) and (2) we get

(3) r < n - ATPp + 1.

But (3) must be true for r = n — ΛTPp + 2, a contradiction.

Thus we know that there is an r such that 1 < r < n — ATP + 1 with

g/ r c (r + 1) = g/ r c (r) + 1. We need only show that g/Γ C(r) + 1 < n - 2.

Let r be the smallest such. Then (1) must hold for r, and thus (2) and (3).

From (2) and (3) we get

(4) g/Γ C(r) < n - ATPp + r < In - 2ATPp + 1,

from which together with the hypothesis it follows that gp

τc(r) < 2n - n — 3

+ 1 - n - 2.

Thusg/Γ C(r)+ 1 <n - 2 .

2.7. Lemma. If for some p, ATPp = \{n + 3), then an r exists as in Lemma

7.6 or else

Proof. We need only consider the proof of Lemma 2.6. Everything follows

exactly as before except that in this case we could end up with gp

ATC(r) = n —

2. Tracing back the inequalities we see that this can only happen if gp

τc(s) =

2s - 1 for all 1 < s < r. In particular g/ Γ C (l) = 1. Further since ATPp =

\{n + 3), we know that n is odd. Hence Corollary 1.4 gives the result.

2.8. Theorem. Let M be a complete connected n-dimensional riemannian

manifold. If for some p E M, ATPp(M) > \{n + 3), then there is a subspace

K c TpM such that

(i) K is uniquely determined by the metric,

(iϊ)ExppK=N£τc,
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(iii) K is completely ε-geodesic where ε is the distance from p to its cut locus,
(ι\)ά\mK<n - ATPp.
Proof. By Lemma 2.6 there is an r, 1 < r < ATPp + 1, such that

gp

ATC(r + 1) = gp

ATC(r) + 1 < n - 2. Let r0 be the smallest such r. Let & =
{S C T^MldimS = r0 and </ o / ^ ( S ) = g/ r c(r 0)}, and AΓ= Π 5 e β / i l T C (S r ) .
Properties (i) and (ii) are clear from the definition.

We claim that for every S E & there is a Qs c T^M such that K c Qs G
fATC(S\ S n Qs = {0}, and Qs is completely ε-geodesic.

By Proposition 2.5, fATc(S) *s completely ε-geodesic. Let I E S , and
choose X2, X3, * , A^ E S such that A", ̂ J * * * > ^r0 f

orm a basis of 5.
Choose y near X such that y € fATc(s)> a n d ^ ^ = span{ y, Jf2, , JfΓo} is
in β. This can be done since 6E is open by Proposition 5.5 of [1]. Since
gp

ATC(r0 + 1) = ίτ/ΓC('-o) + 1. /ATC(S) + fATC(SX) C fATC{S + Sx) =
IATC(S)

 + ^' which has dimension gpTC(r) + 1 < n — 2, by Lemma 7.8.
Now by Proposition 2.4, Qf =fATC(S) Π /^rcC^1^) ^s completely ε-geodesic.
Further, K c Qf by the definition of K. Now X £ Q? because X £

/4rc( 5 ' y) ^ ^ fAτc(sY)> f o r i f J t w e r e $ C fATc(sY) a n d t h u s f o Γ dimension
reasons/^ΓC(S) = fAn£Sγ), but y E ^ r c ( 5 r ) and Y £ Λ r c ( 5 ) .

Now let Γ G S n βf, and β 2

s = βf n fATc(sX) w h e r e ^^ i s defined
similarly to 5^. For dimension reasons after a finite number of steps
Q? n S = {0}. Let Qs = β 5 . Then Qs n 5 - {0}, # c β s , and Qs is
completely ε-geodesic. Thus the claim follows.

Property (iv) follows as dim K < dim Qs < dim/4ΓC(S') — dim S < n -
ATPp, by Lemma 1.1.

For property (iii) one need only note that for dimension reasons K can be
achieved as a finite intersection QSι Π QSl Π - ΠQSm. Since dim(QSi +
QSJ) < dim QSi + dim β 5 ' < In - 2ATPp < n - 3, we see by Lemma 2.4
that AT is completely ε-geodesic.

2.9. Corollary. If ATPp(M) =\{n + 3), ίλen α subspace K as in Theorem
2.8

This follows from Lemma 2.7.
Remark. This Theorem is most powerful when combined with Proposition

2.3. We see that all sections perpendicular to K have the same sectional
curvature.
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3. Manifolds with largest invariants

In this section we study manifolds whose invariants are maximal or one less

than maximal (i.e., TGp(M) = n or n - 1 resp. TC,ATC, CC).

From §1 of [1] we have TCp < ATPp < CCp < TGp < n. Thus we have

TCp = n =»ΛTCp = n =» CCp = N => TGn = n. Therefore we first study the

case where TGp = n.

3.1. Theorem. If Mn (n > 3) is a connected complete riemannian manifold

such that at every point p EL M we have TGp(M) = n, then M is a space of

constant curvature.

Proof. First fix p E M. By Lemma 1.1, Exp^ S = N™ for every linear

subspace S c TpM. In particular every S (Z TpM is ε-geodesic where ε is the

distance from/? to its cut locus. Thus the subspace {0} c TpMis completely

ε-geodesic. Now Proposition 2.3 tells us that all sections at p have the same

sectional curvature. Since n > 3, Shur's theorem gives the result.

3.2. Theorem. If M is a connected simply connected complete riemannian

manifold such that TGp(M) = nfor some point p G M, then M is diffeomorphic

to RΛ or Sn.

Proof For n = 2 the result is obvious, so we will assume n > 3. If the first

conjugate locus top is empty, then Exp^: TpM-> M is a covering. Since M is

simply connected, M is diffeomorphic to R". Therefore we assume that the

first conjugate locus is not empty.

We claim that the conjugate locus consists entirely of conjugate points of

multiplicity n — 1.

To show this let γ be a geodesic emanating from p. Consider the Jacobi

equation for Jacobi fields perpendicular to γ, i.e.,

(*) Vp + RiJ, T)T=09 T=y'(t).

By Lemma 1.1 we see that d ° fTG(S) = 1 for all 1-dimensional S c TpM

while d ° fcc(S) = 2 for all 2-dimensional S C TpM. Thus by Proposition 1.6

we see R(J, T)T = c(t)J, where c is a function defined along γ, which

reduces (*) to V\j + c(t)J = 0. Therefore there is a function f(t) with

/(0) = 0 such that all Jacobi fields / along γ such that /(0) = 0 and

</(/), γ'(0> = 0 have the form f(t)X, where I is a parallel field along γ.

Thus if one such Jacobi field vanishes at t0, then/(ί0) = 0 so all such Jacobi

fields vanish at t0. Hence the claim.

We also claim that the conjugate locus in TpM consists of concentric

spheres of constant radius.

Since all conjugate points have the same multiplicity n - 1, the conjugate

locus in Tp M consists entirely of regular conjugate points. Warner [6] shows

that the regular conjugate locus consists of disjoint (n — l)-dimensional
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submanifolds of TpM. Since the conjugate locus is closed, each connected
component is closed. Warner further shows [6] that if V is a regular conjugate
point of multiplicity > 2, then the nullity of the exponential map at V is
contained in the tangent space to the submanifold of conjugate points passing
through V. In our case all conjugate points have multiplicity n - 1 > 2, and
the nullity of the exponential map is precisely the space perpendicular to the
ray from the origin of TpM.

y — ^ n u l l i t y

c o n j u g a t e l o c u s

This forces the conjugate locus to consist of concentric spheres of constant
radius.

Since M is simply connected and the first conjugate locus consists entirely
of conjugate points of order n — 1 > 2, Lemma 2.9 of [1] tells us that the first
conjugate locus is equal to the cut locus. Since the cut locus is a sphere of
conjugate points of multiplicity n — 1, the image under Expp will be a single
point q G M, Since M is a disk with its boundary identified to a point, M is
homeomorphic to Sn.

We now show that M is diffeomorphic to Sn. We have shown above that
there is a number / such that every geodesic from p hits q at a distance of
precisely /. We will explicitly demonstrate a diffeomorphism from the sphere
Sn of constant curvature with diameter / to Λf.

Consider the function φ: TpM -+ TqM defined as follows: for V G TpM let
yv be the geodesic with tangent vector V, and define φ(V) to be -y'v(q). Let
φ(0) = 0. It is clear that φ is a norm-preserving continuous function. We will
show that φ is orthogonal. Since φ is norm-preserving, it is sufficient to show
φ is linear.

Step 1. If <*, Y> = 0 for X, Y G TpM, then (φ(X), φ(Y)> = 0.
Since dim M > 3, we can choose Z G TpM such that <Z, X} = <Z, Y}

= 0. Since TGp(M) = n, Lemma 1.1 tells us that for every linear subspace
S c TpM, Expp S is a topologically closed totally geodesic submanifold. Let
Nxγ, Nxz, Nγz, and N be the submanifolds corresponding to the spans of X
and y, X and Z, y and Z, and X, Y, and Z respectively. We have dim Nχγ

= dim Nxz = dim ΛΓyz = 2 and dim iV = 3. Further iV ŷ, JV^, Nγz c Λf.
Let γ^, yγ, and γ z be the geodesies corresponding to X, Y, and Z respec-
tively.
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Let X, Y, and Z G TqN c TqM be the parallel translates of X, Y, and Z
along yy to q respectively. Since parallel translation preserves the metric,

(0 <x, Y> = <X,Z> = <Y,Z> = O.

By the definition of φ, Ϋ = -ψ(Y) so

(ii) <X,φ(Y)>=0.

Since Nχγ and iVyz are totally geodesic and yy c iV ŷ π N y z , w ^ have
* G Γ ^ y , Z G 7;jVyz, Ϋ G 7 ; ^ n ^ΛΓyz, in particular,

(iii) X G TqNxγ and* G ( 7 ^ ) ^ .

Now let X, Y, and Z be the corresponding parallel translates along γ z to q.
Just as above we get

(iii') i e 7;Λ^Z a n d i G (7yVyz)
X.

Since * , * G TqN oϊ dimensjon 3 and both are perpendicular to TqNYZ of
dimension 2, we have ^ = ± XΛn particular, (iii') tells us that X G T NχZ9

while (iii) gives X G 7 ^ ^ . Therefore X G Γ^JV^ Π TqNχγ = ^(γ^),
which implies that X = ± φ(X). Hence (ii) tells us that (φ(X), φ(Y)} = 0,
and Step 1 is complete.

Step 2. For every X9 Y G TpM, <X, T> = ± <φ(Λr), φ( Γ)>.
As before choose Z G T^M such that <Z, X> = <Z, Γ> = 0. Let X, Ϋ, Z

be the corresponding parallel translates of X, Y9 Z along γ z . Now (X, Ϋy =
<X, 7> and <Z, f > = <Z, f > = 0. Further as before we have Z - -φ(Z),
X G 7;i\^z, and Ϋ G Γ ^ y z . By Step 1, <φ(Z), φ(7)> = <φ(Z), φ(X)> -
0. Since φ(Z), φ(F) G 7^Λ^y we have TqNxγ = φ(Z)-1 n Γ ^ . Since Z = -
φ(Z), we have X G Γ îV ĵ, and f G Γ ^ r T11118 ^ G τ

q

Nχγ Π 7 ^ ^ z =
7^(γ^) and 7 G 7;iVyz n TqNχγ = ^ ( γ y ) , which imply that X = ± φ(X)
and f = ± φ(7). So ±<9(X), φ(y)> = (X, Ϋ} = <X, y>, and Step 2 fol-
lows.

Now we complete the proof that φ is linear. By the definition of φ we have
φ(aX) = aφ(X). Consider ψ(X + Y). Since X + Y is contained in the plane
spanned by X and Y, φ ^ + Y) G TqNxγ. TqNxγ is also the plane spanned
by φ(X) and φ(Y). Now since φ preserves norms and is continuous, Step 2
tells us that φ(X + Y) = φ(JT) + <p( Y).

Now let Sn be the constant curvature sphere of diameter /. Choose
antipodal points/ and q in Sn, and let φ: T~Sn -^ T-Sn be the corresponding
function. Let ψ be an isometry from 7^5Λ to TpM. Define an isometry
ψ': TqS

n -> 7^M by f = φ ° ψ ° φ"1. We have the following commutative
diagram of diffeomorphism:
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T^S" D B{(0) - 5,(0) C

Expw

Y2

M-p

TpMDB,(0) 5,(0) C ΓJί

where

fx = Exp^ o ψ o (Expp-) !, f2 = Exp^ o ψ'

The proof will be complete when we show that/j = f2 on Sn - {β, q). Let
x G Sn - {β, q). There is a unique geodesic γ from/ to q such that x G γ.
Let V be the unit tangent vector to γ at/?. Then (Exp^'^x) = aV for some
constant a, while (Exp-y^jc) = (/ - tf)φ(F). Now /2(x) = Exρ^((/ -
α)ψ'φ(F)) = Exp^((/ - α)φψ(F)) = Expp αψ(F) = Exp^ψίαF)) = fx(x).
Thus the theorem follows, q.e.d.

If we make the stronger assumption that CCp(M) = n for some p G Λf,
then we can drop the simply-connected assumption and get

33. Theorem. Let Mn be a connected complete riemannian manifold such
that CCp(M) = nfor somep G M. Then M is diffeomorphic to R", Sn or RP".

Proof. Since CC^Λf) = n implies TGp(M) = n, Theorem 3.2 gives the
result in the case that M is simply connected. Thus we assume that M is not
simply connected. Let M - ^ M be the universal covering space. Now by
Proposition 3.6 of [1], TGp(M) > TGπ(M)(M) = w.SoM is diffeomorphic to
Sn or RΛ. Now since CCp(M) = n, Lemma 1.1 tells us that for all 1-dimen-
sional S c TpM, d ° fcc(S) = 1. Since M is not simply connected, the cut
locus to p in TpM is not empty and is not equal to the first conjugate locus.
Thus Proposition 1.2 gives that M is homeomorphic to RPΠ. The proof to
Proposition 1.2 also tells us what the map TΓ: M-> M is. Studying this one
sees that there is a function / such that the diagram

Jlf- Sn

f
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commutes, where h is the diffeomorphism constructed in Theorem 3.2. thus/

is a diffeomorhism and the result follows, q.e.d.

Now since ATCp{M) = n implies CCp(M) = n and since TCp(M) = n

implies ATCp{M) = n, we are able to complete the case where the invariants

are/2.

Let M" be a complete connected riemannian manifold. Then the following

hold.

(a) If TGp(M) = n for all/? E Λf, then M has constant curvature.

(b) If TGp(M) = n for some/7 E M and M is 1-connected, then M Λ Γ S"1,

or RΛ.

(c) If CCp(M) = n for some/7 e M, then M^R", S"1, or RP".

(d) If v4ΓC_(M) = AZ for some/7 E M, then A/d^Γ>R/I, Sn, or RP1.
diffeo

(e) If TCp(M) = rt for some/7 E M, then M ^ Rπ.
In terms of the differential invariants defined in [1] we have; for a smooth

connected manif old Λ/,
diffeo

(b') TG(M) = A* and M 1-connected =* M ^ R" or Sn;
(cr) CC(M) = n ^> M ^ R " , S n or RPΛ;

(dθ ATC(M) = n=> M d ^ e o R π , Sn or RP1;

(er) TC(M) = iV ^> Af ^ R " .

In order to see how this relates to isometry groups, we first note that if

n > 4 and SO(ri) acts as isometries leaving/? E Mn fixed, then ^4TC^(M) =

AZ. From the inequality of [1, §1] it follows that ATCp{M) = n or n - 1.

However, since every 2-dimensional subspace S c TpM is left fixed by some

SO{n - 2) c SO(n), we see that d ° ^ ( 5 ) = 2. Thus Proposition 1.5 gives

ATCp(M) = n.
Combining the above results we obtain the classical result:

3.4. Corollary. If the isometry group of a connected complete riemannian

manifold Mn has dimension \n(n + 1), then M is a space of constant curvature

diffeomorphic to RΛ, Sn or RP".

We also get

3.5. Corollary. If SO(ή) acts on a smooth connected manifold Mn as a group

of diffeomorphisms leaving a point p fixed, then M is diffeomorphic to Rrt, Sn or

RP1.

We now consider the (n — l)-case.

3.6. Theorem. Let Mn be a connected complete riemannian manifold (n >

4). IfATCp(M) = n - \for somep E M, then one of the following holds:

(1) For every l-dimensional S C TpM we have d ° fATC(S) = 1, in which

case:
(a) M is diffeomorphic to RΛ,
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(b) M is homeomorphic to Sn, or
(c) M is homeomorphic to RP".
(2) For some 1-dimensional S c TpM, d ° fATc(S) = 2, in which case:
(a) the universal covering space is n — 1 connected, or
(b) there is a 1-dimensional almost totally convex topologically closed totally

geodesic submanifold N through p such that if q, q' E N,then q is conjugate to
q' along some geodesic.

Remark. There are some examples of case 2(b). Consider Sn~ι X R,
Sn~ι X S\ RF1"1 X R, and RP*"1 x Sι where the R (resp. Sι) is the subset
N. We will study this case further in the next section with M is homogeneous.

Proof. By Lemma 1.1 only (1) and (2) can happen. Let us consider (1)
first.

By Corollary 1.4 we see that M is diffeomorphic to RΛ, homeomorphic to
RPΛ, or is one of the spaces in Warner's theorem. We need only show that the
cases (b), (c), and (d) of Warner's theorem cannot hold. By Lemma 1.1 and
Proposition 1.5 there is a 2-dimensional subspace S C TpM such that
d o fATC(S) = 3. Thus by Lemma 1.1 for every 3-dimensional subspace S"
such that S c 5 ' w e have d ° fATC(S') < d ° fATC(S) + 1 = 4 . Therefore by
Proposition 1.6 for every X E Tq(N$τc) there is a number Cx such that
Y e (Tq(N£TC))^ => R(Y9 X)X = CXY. If γ is a geodesic from p lying in
Ngτc, let % be the space of Jacobi fields /(/) along γ such that Jφ) = 0 and
<Λ0> Y'(0> = 0. Then the above shows that % splits as a direct sum ^ θ ^ ,
where %x has dimension n - 3 and consists of those Jacobi fields / such that
J(i) E (Tγ^NsTC)±, and ^ has dimension 2 and consists of those Jacobi
fields / with /(/) E Ty^N£TC. Further, as in the argument of Theorem 3.2,
since R(Y, γ'(/))γ'(0 = Φ)Y ίor all Y E ( Γ γ ( 0 ^ Γ C ) - L , we know that if for
some t0 there is a Jo E ^ such that /0(/0)

 = 0 (and / 0 ^ 0), then for all
/ E ^ , /(/0) = 0. Now if J E % then J = Jx + J2 where ^ E ^ and / 2 E
#2, and if /(/0) = 0 then /^/Q) = Λ(^o) - 0 since /j and J2 are independent
whenever they are not 0. Thus we have shown that the first conjugate point
along γ has multiplicity 1, 2, n — 3, n — 2, or n — 1. This eliminates cases (c)
and (d) of Warner's theorem. Now we consider case (b), that is, we assume
that the first conjugate locus consists entirely of points of multiplicity 1. For
n > 4 the above argument shows that for any geodesic γ c N£τc, γ(0) = p,
the Jacobi fields vanishing at the first conjugate locus come from ^ . Thus the
first conjugate point in M along γ is also the first conjugate point in N£τc

along γ, and therefore NςTC is a compact 3-dimensional riemannian manifold
such that the first conjugate locus to p is spherical and consists of conjugate
points of order 1. Further, since the cut locus is equal to the first conjugate
locus, we know that N^τc is simply connected. But Warner's theorem says
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this cannot happen. Thus we can assume n = 4. By the above argument we

know that there is some geodesic γ c N£τc, γ(0) = p, such that the Jacobi

fields / which vanish at the first conjugate point are precisely those / 's in fyx.

By continuity this must be true along every such γ. Now by Lemma 1.1 and

Proposition 5.5 of [1], ( S c 7^Af|dim S = 2 and d ° fATC(S) = 3} is open.

Let X, Y be an orthogonal basis for S. Choose S in the above set so that X, Ϋ

is an orthonormal basis for S when Ϋ is chosen close to Y but Ϋ £ T N£τc.

Let γ be the geodesic determined by X. Then γ c N§ τ c and γ c N§τc. Let

%l ® %i — % b e th e decomposition of \ with respect to Ngτc. By the above

argument if / E \x, then / vanishes at the first conjugate point along γ. Thus

the space of Jacobi fields vanishing at the first conjugate point along γ

contains both ^ and fx. But these are distinct 1-dimensional subspaces of \

contradicting the assumption that the conjugate point had multiplicity 1.

Thus (1) is completed.

Now we consider (2). Let & = {S c 7^M|dim S = 1 and d ° fATC(S) =

2}. We know by Lemma 1.1 and Proposition 5.5 of [1] that 6E is open in

GX(M). Let S = Π se&fATciS). For dimension reasons S can be seen as a

finite intersection fATC(Sx) n fATc(^2) Π fAτc(^3)- The subspace S is precisely

the subspace K defined in Theorem 2.8, although Theorem 2.8 does not apply

when n = 4. We will use this in the next section.

We claim that S is 1-dimensional, and if Sx, S2 E & such that S2 £ fATCSx

then S = fATC(Sx) Π fATC(S^

To prove the claim let S =JATc(sι) Π fAτc(sτ) f o r s

zv
 S2 E # a n d ^2 £

fATCSx. We will show that S is 1-dimensional, and S cfATC(S) for any

S E # . By Lemma 1.1, rf ° fATc(sι + SJ < 3. Further, since d °fATCSx = 2,

S 2 jz; fATCSx, and 52, fATCSx are contained in fATC(S\ + 5^, we see that

<* ° Λrc(^i + ^2) = 3. Now fATC(Sx) c ΛrcίSi + SJ and Λ ^ ^ c

fATC(Sx + Sj) and they are 2-dimensional. Thus fATC(Sx) Π fAτc(^2) ^s 1-di-

mensional ifAτci^ι) ^IATC^'2) siftcc ^2 ̂  IATC^T) a n d ^2 ̂  fAτc(S\ϊ)' The

above argument shows that for arbitrary S, S' G £ the dimension of fATC(S)

Π fATc(s') i s either 1 or 2. Now choose S 3 G S such that 5 3 £ fATC(Sx +

52). This can be done since 6E is open and the dimension of fATC(Sx + S^) =

3, while the dimension of the manifold is > 4. Now the argument above

shows that fATC(S3) ΠfATC(Sx) is 1-dimensional, and fATC(S3) Π fATC(SJ is

1-dimensional. On the other hand, fATC(S3) Π fATc(S\ + ^2) ̂ s a t m o s t 1-di-

mensional. Since fATC(S\) ^JATC^I + ^2) a nd/4rc(^2) ^/ί7r(^i + ^2)' w e

see tnat JAτc\ 3) ̂  JATC\ i) ^ Xίzcv^s/ ^ JATC\ 1/ = s JATC\ \) '• XIT'CV'̂ Z' = :

5. Thus we have shown that for S E S, 5 £! fATC(
sι + ^ =» i c fATc(s)-

What if S E φ and S c /^rcC^i + 5'2)? I n t h i s c a s e /^rci 5 ) 9

^ + Sj). Thus L Γ c ( 5 3 ) Π LrcC^) C /4Γc(53) Π ΛrcίS! + Sa) = 5.
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Since fATC(S3) n fAτc(s) i s 1-dimensional, fATC{S3) n fATC(
s) = S

C fATc(S)> a n d the claim follows.

Now let N = N§τc. We know that the dimension of N > 1, and that on
the other hand N c N^τc n Λ^2

ΓC which is one-dimensional. Thus N is
1-dimensional, and N is the component of N£τc

 Π N£TC containing/?. Now
case (b) holds if for every q, q' G N, q is conjugate to q' along some geodesic.
So assume that there exists q, q' G N such that q is not conjugate to q' along
any geodesic. Now AT is a one-dimensional connected totally geodesic sub-
manifold. Thus N is a geodesic γ through/?. Since N is almost totally convex
and q is not conjugate to q' along any geodesic, γ is the only geodesic from q
to q'. (By this we mean for example that if γ is a closed geodesic then any
geodesic from q to q' is just some turns around γ.) To complete the theorem
we need only show that the path space Ω ^ has the homotopy type of a C.W.
complex with no cells in dimensions 1 through n — 2. To do this, by the
Morse theory [5], it is sufficient to show that any point of γ conjugate to q
along γ has multiplicity n — 1. By a previous argument it is sufficient to show

R(Y, γ'(O)γ'C) = Φ)Y for all Y e (γ '(0) x c τγit)M.
We claim that for all Y G (/(ί))"1" C Ty{t)M we have R(Y9 γ'(/))γ'(0 =

c(t)Y.
To prove the claim we recall that γ = N£τc

 Π N£TC (actually the con-
nected component). Since Sl9 S2 G & by Proposition 1.6 we have
R(Y, γ'(0)Ύ'(0 = Λt)Y for all y e (Γ γ ( 0 Λ^ Γ C )\ i = 1, 2. Since N ^ has
dimension 3 and the dimension of the manifold is > 4, we see that there is a
Y in {Tyiί)Ni™)± n {Ty{t)N£c)± D {T^^s)\ Thus c^) = c2(0 Let

c(f) = c1^) = c\i). By the linearity of #(-, γ'(0)ϊ/(0 we see that
R(Y, γ'(/))ϊ'(0 = Φ ) r for all y in ( Γ γ ( 0 ^ Γ C ) x + (T^N^^ -
{Ty{t)N^τc Π T^Ngi™)-*- = (γ'(0)X Hence the claim follows, and the proof
of the theorem is complete.

4. Homogeneous spaces

In this section we consider riemannian manifolds Mn whose isometry
groups I(M) are transitive. In particular we are concerned with the cases
ATCp(M) = n - 1 and ATCp(M) > \{n + 3). We begin by extending Theo-
rem 2.8.

4.1. Theorem. Let M be a homogeneous riemannian manifold with {transi-
tive) group of isometries G. If ATCp(M) >\{n + 3) for some p e M {and
hence for all p G M), then there are a G-invariant distribution D and an ε > 0



RIEMANNIAN MANIFOLDS WITH LARGE INVARIANTS 485

such that for allp E M we have

(i) D{p) c K(p) where K(p) is the subspace of Theorem 2.8;

(ii) D(p) is completely ε-geodesic;

(iii) if q E: M such that d(p9 q) < ε and γ is the unique minimal geodesic

from q to p, then D(q) c γ'(#) + Ύ%D(p), where yjj is the parallel translation

fromp to q.

Proof. By Theorem 2.8 the distribution K(p) is G-invariant and com-

pletely /(M)-geodesic where i(M) is the injectivity radius.

Let ex =\i{M\ and fix/7 E M. For each q E Beχ(p) let Kp

q = yβ(K(q)) +

γ'(0), where γ is the unique minimal geodesic from/? to q.

We claim that each Kζ is completely εrgeodesic. Since K(q) is completely

2εrgeodesic, so is K(q) + y'(q). Let Kζ c Q and Q' = γ^Q. Since K(q) +

γ'to) C β', ExPέ7(<2' n ^2 e i(0)) =N2e^QΊ i s t o t a l l y geodesic. Since γ c

N2eχQ\ we have/? e N^Q'). Since Λ ^ β ' is totally geodesic, T^N^Q')) =

g. Now Expp(β π ^e,(0)) C N^Q' and since they have the same dimension,

p(? n ^e,(0)) is totally geodesic. Hence the claim follows.

Now define

Π κAnK(P).

For dimension reasons the intersection can be taken to be finite, i.e.,

/>,(/>) - AΓOO n A» n λ£ n nKί

We also claim that Dλ(p) is completely εj-geodesic. Clearly K(p) is com-

pletely εrgeodesic. The preceding claim gives K^ is completely ε^geodesic.

Now ά\m(K{p)) < n - ΛTC and d i m ( i φ < Λ - ATC + 1, thus dim(AΓ(/?)

+ J φ < 2Λ - 2ATC + 1 < Λ - 2. Therefore by Proposition 2.4 the inter-

section is completely εΓgeodesic.

We can define Dx(q) for all q E M in the same way. Thus we get a

G-invariant distribution Dι such that Dx(p) c #(/?), and D^/?) is completely

εrgeodesic for all/7 G M.

Now let εf =\εi_v and let Z), be constructed from Di_x in the same way

that Dλ was constructed from K. For dimension reasons there is somey > 0

such that Dj(p) = Dj_x(p). Let D = Dj and ε = εy. Properties (i) and (ii) are

immediate. Let p E M and q E B£p). We have D(q) = £>/?) =

But D(q) = Dj(q) = DJ_ι(q), so

Π D(g% I Π
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Thus D(q)c nq,^{q)D(q'yq,. In particular D{q) c D(p)q

p = yp

qD(p) +
y\q). Hence the theorem follows.

Remark. The author strongly suspects that D(p) = K(p), i.e., K{p) satis-
fies (iii) for ε = i(M). We will eventually see that for simply connected
normal homogeneous spaces this is, in fact, true.

4.2. Corollary. If ATCp(M) =\{n + 3), then either such a distribution D
exists or

Proof, This follows from Corollary 2.9 and the proof of Theorem 4.1.
In the following theorem we will assume that M is a normal homogeneous

space. The property of normal homogeneous spaces, which we will use, is
that: Every geodesic in M is an orbit in M of some one-parameter group of
isometries.

43. Theorem. Let Mn be a connected normal homogeneous space. If for
some p G M {hence for all p G M) ATCp(M) > \{n + 3), then M~Mι X
M2, where Mι is a simply connected manifold of constant curvature. Further
ATCβ(M) > dim M 1 > ATCp(M) > \{n + 3).

Proof. Consider the invariant distribution D of Theorem 4.1. We claim
that D is invariant under holonomy.

In order to show D is invariant under holonomy it is sufficient to show that
the form d defining D is parallel. By the invariance (under isometries) of d it
is sufficient to show Vxd = 0 for all X G TpM (some fixed/?). To show this
we need only show it on a basis Xv , Xn of TpM. Choose an orthonormal
basis * ! , - • - , Xr, Xr+V , Xn such that Xl9 , Xr G Dζp)-*- and
Xr+l9- ,XHGD<j>).

Case 1. Let r + 1 < i < /ι, and let γ be the geodesic determined by Xr To
show Vxd = 0, it is sufficient to show that for t < ε (ε of Theorem 4.1)
y?D(p) = D(y(t)). By (ii) of Theorem 4.1, D(p) is completely ε-geodesic.
Thus Nε(D(p)) = Exρp(D(p) n #e(0)) is totally geodesic, and so for t < ε,
γ(/) G Ne(D(p)) and γ°D(/0 - Tγit,Ne(D(p)). By property (iii), Z>(γ(0) C
γ,°Z)(/0 + γ'(0 = Tγ(t)(NeD(p)) = yfD(p). For dimension reasons Z>(γ(0) =
y?D(p). Hence Case 1 is done.

Case 2. 1 < i < r. Let γ be the geodesic determined by Xv Let gt be a
one-parameter group of isometries such that gt(p) = y{t). In particular for
fixed / < ε we have g/J|cγ'(0) = y'(i). Again we will show that for / <
ε, y?{D(p)) = D(y(t)). Now since g/J)t: TpM -> Tγ(t)M is an isometry, and
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&*(£>(/>)) = ^(γ(0), and g,+γ'(O) = γ'(/), and γ'(0) = X% G (Dip))"-, we see
that γ'(0 e Diyit)^. On the other hand, y'(t) e (y?(D(j))))±. Now by
property (in) of Theorem 4.1, £>(γ(0) C y%D(p)) + γ'(0 Thus D(y(t)) =
y?D(p), and the claim follows.

Now let Z) be the induced distribution on M. Since D must also be
invariant under holonomy, the de Rham splitting theorem tells us that
M « M 1 X M2, where M 2 is a totally geodesic submanifold through/? with
TpM

2 = Z>(/?), while M 1 is the totally geodesic submanifold through/? with
TpM

λ = Dip)"-. Since M is simply connected, Λfι must be simply connected.
Now, since D(p) is completely ε-geodesic, Proposition 2.3 tells us that Mλ is a
space of constant curvature. Now by (i) of Theorem 4.1, D(p) c K(p). Thus
by Theorem 2.8, dim D(p) < n - ΛTCp(M\ and therefore dim(Λ/1)>
ATCp(M) >\(n + 3). On the other hand Proposition 3.4 of [1] gives
ATCp(M) > max{ATCpι(Mι), ATCPi(M2)} > dimΛf1. Hence the theorem
follows.

4.4. Corollary. Let Mn be α connected normal homogeneous space. If for
some p G M we have ATCp(M) = | ( n + 3), then the same conclusions follow
or else

Proof Immediate from the proof of the theorem and previous corollaries.
4.5. Corollary. Let G be a Lie group which admits a bi invariant metric, and

H a compact subgroup of G such that G effectively on Mn = G/H. If
dimH > 1/8(Λ + 3)(3n - 5), then M « M 1 X M2 where Mι is diffeomor-
phic to Rq or Sq and q>\(n + 3).

Proof. Put a bi-invariant metric on G. This metric will induce an invariant
metric on M such that the projection G -»M is a riemannian submersion.
With this metric, M is a normal homogeneous space. H acts on M as a group
of isometries which leave the point eH fixed. The dimension assumption on H
along with Theorem 1.6 of [1] gives ATCp(M) >\(n + 3). The result now
follows from Theorem 4.3.

Remark. The result should hold with a slightly less restrictive condition
on the dimension of H. This is true since the inequality of Theorem 1.6 of [1]
can be improved in many cases.

4.6. Corollary. Assume that in Theorem 4.3 we also had fATCΦ(p)) β

D(p). Then the deck transformations of the universal covering M^M are of
the form (/i,/^, where M = M 1 X M2 as in the theorem, andf is an isometry
ofM\
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If Mι has constant nonpositive curvature, then fλ is always the identity, and

M is isometric to Mι X M3 where M2 —» ΛΓ3 is the universal cover.

If Mι has constant positive curvature, then fx is always either the identity or

the antipodal map.

Remark. The assumption fATCΦ(p)) = D(p) holds if K(p) = D(p). The
author suspects that this is always true.

Proof. Since the distribution TpM
2 is the lift of the distribution D(p), it

must be preserved by the deck transformations. Thus if / is a deck transfor-
mation, its differential at a point p must look like the differential of an
isometry (/1?/2) Now since an isometry is determined by its differential at a
point,/=(/ 1 ,/ 2 ).

Let (JC, y) E Mx X M2 and (xl9yx) = f(x, y). The proof will be complete if
we show that x is conjugate to xι along every geodesic in M 1 from x to xλ.

Let γ be a geodesic in Mι from x to xλ. Let τ(t) = (y(t),yι) be the
corresponding geodesic in M from (x,y^ to {xλ,y^ Let σ(t) = π ° τ(/) be
the corresponding geodesic in M from π(x,yx) to φ j j j ) = π(x,y). Since
ATCp(D(p)) = D(p) for allp, we see that N^yύ) = Exp^^^CTrix,^!))
= m ° Exρ(jc ^^Γ^ ^ i } M

2 = π(M2) where M 2 is the copy of M 2 going
through (x,>^). In particular both π(x,y) and π(x,yλ) lie in this ^ίΓC
submanifold while σ(t) does not. Thus σ(0) is conjugate to σ(l) along σ, τ(0) is
conjugate to τ(l) along T, and γ(0) is conjugate to γ(l) along γ. Hence the
corollary follows.

Now consider homogeneous spaces M which are not necessarily normal. If
ATCp(M) > \{n + 3), then the proof of Case 1 of Theorem 4.3 along with the
fact that D(p) is ε-geodesic shows that D is an involutive distribution and
that the leaves of the induced foliation are totally geodesic submanifolds (not
necesarily embedded). Also, since D is I(M) invariant, the leaves are I(M)-
invariant.

Now consider the distribution A(p) = fATc^(P) ( a s before this is likely to
be D(p)). Clearly A(p) c K{p), so the dimension of A(p) is less than or equal
to n — ATCp. It is not hard to see that A(p) is an /(M)-invariant involutive
distribution, and that the leaves of the induced foliation are the embedded
totally geodesic ATC submanif olds Nfζfi. Fix/7 e M, let H c I(M) be the
subgroup leaving p fixed, and let H c I(M) be the (closed) subgroup which
takes p to some point on the leaf Nfζfi through p. We thus see that A(p)
induces a fibration:

H
H
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Further if the fibration is trivial, then A(p) = {0}, and therefore D(p) =

{0}. Hence M is a space of constant curvature, and we have shown

4.7. Proposition. Let M be a connected riemannian homogeneous space such

that ATCp(M) >\(n + 3) at some point. Then M is the total space of a

fibration whose fibres are totally geodesic embedded ATC submanifolds. Further

if the fibration is trivial, then M is a space of constant curvature.

We now wish to consider the case ATCp(M) = n - 1 in the homogeneous

setting. The previous results tell us a lot about this case. However, some more

can be said in the non-normal case.

4.8. Proposition. Let Mn be a connected riemannian homogeneous space

with n > 5. If ATCp(M) = n — 1 for p E M, then the universal covering space

M is (n — 2)-connected.

Proof Consider Theorem 3.6. The above proposition holds in Cases 1 and

2(a). Thus we need only consider Case 2(b). As mentioned in the proof of

Theorem 3.6 the subpsace Sq is precisely the subspace K(q). Thus the

distribution K is one-dimensional. So the distribution D defined in Theorem

4.1 is either equal to K or 0-dimensional. If it is 0-dimensional, then M is a

space of constant curvature, so the result holds. Thus we may assume

D(p) = K(p) = Sp.
Let T c TpM be a two-dimensional subspace. By Proposition 2.3 there are

constants C" and C± such that k(T) = C" if S c T9 and k(T) = C^ if Γis

perpendicular to S, where k is the sectional curvature. Thus for general T we

have k(T) = C}C" + ClC^ where Cf + C2

2 = 1. (T has as orthonormal

basis Zl9 Z2 where ZX<Ξ S± and Z 2 = CιYι + C2Y2 with Yx e S±, Y2 E S.
Now apply Proposition 2.3 to the cross terms.)

We claim that if T is a two-dimensional subspace of TpM such that S c 71,

then Expp(Γ) = Λ^?ΓC which is a two-dimensional space of constant curva-

ture C".

Let Z E T with Z perpendicular to S. Since ^ Γ ς , ( M ) = /i - 1,

rf o fATC(T) < 3. Assume d ° fATC(M) = 3. In case (2b) of Theorem 3.6 we

know that the set of 1-dimensional spaces S with d ° fATC(S) = 2 is open.

Choose such an S such that fATC(T) n S = {0}. Let Γ' = 5 + Z. Then

d °fATC(T') < 3. Now by the definition of S we have S C fATC(S) c

fATC(T% which implies that 5 cfATC(T) and Z E fATC(T'\ so that Γ c

Λ r c ί r ) . Thus fATC(T) c fATC(T'). For dimension reasons fATC(T) =

fAτc(τ') b u t 5 ^ IATC(T) a n d 5 C fAτc(τ')> a contradiction. Thus

^ ° Λ r c ( Ό = 2, Γ = ΛrcίΓ), and Exp, Γ = ̂ Γ C .

To show NγTC has constant curvature C" we need only show that S c

Tq

NτTC f o r a 1 1 ^ G ^ r Γ C ' b u t t h i s follows from Theorem 4.1 (in) since

Sq
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We also claim that in the case we are considering (i.e., Case (2b) of

Theorem 3.6), C" < 0. Assume C" > 0, fix/? G Λf, and let N = Exp^ S. In

our case we know there is a q G N, q close to/? such that q is conjugate top

along some geodesic γ not lying in N. Let T = γ'(0) + S. Then γ is a

geodesic lying not in N but in N^τc, a 2-dimensional space of constant

positive curvature C. But γ is a geodesic from/? to q where q is close to/? and

γ £ N. This cannot happen in a 2-dimensional space of constant positive

curvature.

The theorem will follow from the Morse theory [6] when we show:

We claim that all conjugate points have multiplicity greater than or equal

to n - 2.

Let/? G Λf, and γ be any geodesic from/?. Let T = γ'(0) + S. Then since

Exp^ T is totally geodesic, the space \ of Jacobi fields J along γ such that

j(0) = 0, </(*), γ'(0> = 0> splits as a product %x θ % where / G £, satisfies

7 ( 0 G Ty(t)N*TC, and / G ^ satisfies /(/) G (Tyii/ίfτc)±. Now since C" <

0, no Jacobi field in ^ ever vanishes. We need only show that if J(t) = 0 for

some J G $2, then /(/) = 0 for all / G ^ . To show this, we need only show

that for each / there is a C{t) such that K(s) = C(t) for all sections s with

γ'(/) G ^ and Y G Λ for some y G ( Γ γ ω ^ Γ C ) x . Now fix /. Then γ'(/) can be

written as CXZ + C2V where Cf + C2

2 = 1, | |Z|| = 1, ||K|| = 1, V G S γ ( / ) c
Ty(t)NTTC> a i l d Z G γ̂("θ C Ty(t)NTTC ^^^ f θ Γ a n y S U c h J» U δ i l l S Proposition
2.3, we have K(s) = <Λ(γ/(/). y ) ^ ϊ '(0> = C?c± + C22C". Hence the re-
sult follows, q.e.d.

If Λf is a homogeneous riemannian manifold such that A TCp(M) = n — 1

and /i > 5, then either K(p) = /)(/?) (both are one-dimensional) or M is a

space of constant curvature. Thus if M is a normal homogeneous space of

nonconstant curvature both Theorem 4.3 and Corollary 4.6 apply. In this case

it is not hard to see that the group of isometries of M has dimension

\n(n — 1) + 1. The riemannian manifolds M, along with the isometry groups

I(M) such that the dimension of I(M) is \n(n — 1) 4- 1, have been classified

(see [3]). One example, Sn~ι XKS1 where K = {idj} w i t h / = (antipodal,

antipodal) was mistakenly left off this list. This example shows up in conse-

quence of Corollary 4.6.

One also sees in [3] that manifolds M with dim I(M) =\n(n — 1) + 1 are

precisely those homogeneous riemannian manifolds such that dim Ip =

\{n — \){n - 2). One can show, with an argument similar to Proposition 1.5

and some Lie theory that if dim Ip =\{n - \){n - 2) and n > 5, then

ATCp(M) = n - 1.
The interest in studying the case dim Ip = \{n — \){n — 2) comes from the

fact that for « ^ = 4 the largest proper subgroup of SO(ri) has dimension
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\{n — l)(n — 2), [3]. As mentioned before the homogeneous case has essen-
tially been done, while Theorem 3.6 gives us some geometric information in
the nonhomogeneous case.
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