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SOME NEW RIEMANNIAN INVARIANTS

CHRISTOPHER B. CROKE

Introduction
The purpose of this paper is to introduce some new riemannian invariants

and to study their properties. In a future paper we will study riemannian
manifolds whose invariants are large.

In the first section the invariants are defined and are related to the
dimension of the group of isometries. In particular, we have

dim Ip < \ATCp(2n - ATCp - 1),

where Ip is the isotropy group of isometries at a point p of an w-dimensional
complete connected riemannian manifold M, and ATCp is one of the in-
variants.

In the second section we show, using the invariants and the Rauch
comparison theorem, that for manifolds whose diameter is small relative to
their sectional curvature, the group Ip is finite for all p in M. We also study
other properties of such "small diameter" manifolds.

In the third section we study how the invariants behave under products and
coverings.

In the fourth section we compute the invariants on some riemannian
manifolds.

In the fifth section we study in detail some of the properties the invariants
possess. In particular we study the/?-dependence.

In the sixth section we prove a result which relates the geometries of the
submanif olds in question.

Throughout the paper a manifold will be a complete connected riemannian
manifold unless otherwise stated. A submanif old will always be an embedded
submanifold.
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1. Definitions and preliminary theorems

1.1. Definitions. A subset TV of a complete riemannian manifold is said to

be:

(a) Totally Convex (TC) if whenever x,y E N and γ is any geodesic from x

toy, thenγ c N.
(b) Almost Totally Convex (ATC) if whenever x,y E N and y is any

geodesic from x toy such that x is not conjugate to>> along γ, then γ c N.
(c) Completely Convex (CC) if whenever x,y E N and γ is a unique

minimizing geodesic from x to y such that x is not conjugate to y along γ,
then γ c i V .

It is clear from the definitions that

TC^ATC^CC.

1.2. Definitions. Let M be a complete connected riemannian manifold.
For every linear S c TpM, define iV^ to be the smallest topologically closed
totally geodesic submanifold through p such that Λ^ c is completely convex
and S c Tp(N£c). Similarly, defined Ngτc and N£c. Let NjG be the smallest
topologically closed totally geodesic submanifold such that S c 7^(iV/σ).

The existence and uniqueness of these submanifolds follows from the fact
that M satisfies all of the properties (except being the smallest) and the
properties are closed under intersections.

The submanifolds are related by NfG c Ngc c Ngτc C Nfc c M. The
submanifolds Λ^ c and Ngτc are important in studying isometries as the
following propositions show.

13. Proposition. Let f:M^>Mbean isometry of a complete connected
riemannian manifold, and S a linear subspace of TpM. Then / J 5 determines

Proof. Assume g: M -> M is another isometry such that g+\s = / J 5 , and
let h = g'1 of Then h+\s = id. We need only show h\Ncc = id. Let Mh be
the fixed point set of Λ. We know that Mh is a topologically closed totally
geodesic submanifold of M. We need only show Mh is completely convex.
Let x andy be in Mh, and γ a unique minimizing geodesic from x toy. Since
h(x) = x and h{y) = y, Λ(γ) is a geodesic from x toy. Since γ is minimizing,
so is A(γ). Since γ is the unique minimizing geodesic, γ = A(γ). Since h
preserves lengths, y(t) = h(y(t)) so γ c Mh and Mh is completely convex.
Further S c TpM

h. Since N£c is the smallest topologically closed totally
geodesic completely convex submanifold, we have Ngc c Mh. So A^cc = id.

For Ngτc we have a similar result.
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1.4. Proposition. Let I(M) be the group of isometries of a complete con-
nected riemannian manifold M, and let If

s= { g E I{M)sΛ. g+\s = f*\s} for S
linear in TpM and f E /(M). Then the set {h: Ngτc -> M s.t. h = g\NΛτc for
g E /£} is finite.

Note. Proposition 1.3 says that the corresponding set for Λ^ c consists of
one element.

Proof. Ps = /• if. if is a closed Lie subgroup of the isotropy subgroup at
p and thus is compact. It is sufficient to show that the action of g E if on
N£τc is determined by the component of if which g lies in, since there are
only a finite number of components. Since if is a Lie group it is sufficient to
show that if g is in the identity component of if, then g\NATC = id. So let gt

be a one-parameter subgroup of if such that g = gίo for some t0. Let M8t be
the set of points fixed by all gt. We know that Mgt is a topologically closed
totally geodesic submanifold of M. Further g,J 5 = id for all / s o S c TpM

gι.
Thus in order to show N$τc C Mgt we need only show M8t is almost totally
convex. Let x,y E Mg\ and γ be a geodesic from x to y. If γ 2 Mg\ then
g,(γ) is a one-parameter group of geodesies from x ioy. This implies that x is
conjugate to y along γ. Therefore, if x is not conjugate to y along γ, then
γ c Mgt. Thus Mg/ is almost totally convex, q.e.d.

These propositions are most interesting, when S has small dimension, and
N£c or Ngτc is the whole manifold.

1.5. Definition. For M complete and connected, and p E M, CCp(M) =
min{dim5'|5' c TpM and NgC = M). This is clearly well defined since

Similarly, define Γς,(M),^Γς,(M), ΓG/M).
We have the following relationship 0 < TCp(M) < ATCp(M) < CCp(M)

< TGp{M) < n, where n is the dimension of M. Further 1 < CCp(M) as the
point p is always a topologically closed totally geodesic completely convex
submanifold.

These numbers do depend on the point/?. See Section 4 for examples and
Section 5 for discussion of the ̂ -dependence.

The previous propositions lead us to the following relationships between
ATCp, CCp and the dimension of the isotropy subgroup of isometries at/?.

1.6. Theorem. Let M be a complete connected riemannian manifold. For
p E M, let Ip be the isotropy subgroup of isometries at p. Then

dim(/,) < \ATCp(2n- ATCp - 1) <\CCp{2n - CCp - l).

Proof. Let p: Ip-> 0{ή) be the isotropy representation. Let S be an
ΛΓC^-dimensional linear subspace of TpM such that N$τc = M. Such a
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subspace exists by the definition of ATCp. Now by Proposition 1.4 there are
only a finite number of isometries whose differentials leave S fixed. Let
0{n-ATCp) be the group of rotations which leave S fixed. Then ρ(Ip) n O(n
- ΛTCp) is finite. Since p is injective, the result follows by checking the
dimensions of the Lie algebras, i.e., dim Ip < dim O(n) - dim O(n - ATCp)
= \ATCp(ln - ATCp - 1). The other inequality follows from noticing that
ATCp < CCp. q.e.d.

Note. The inequality dim(Ip) < \ CCp(2n - CCp - 1) can be derived di-
rectly using a similar argument and Proposition 1.3. These inequalities can be
improved by using representations of Lie groups.

The inequality dim Ip < \ CCp(2n - CCpp - 1) can be made strict for most
values of n and CCp by noticing that O(n)/O(n - CCp) does not admit a Lie
group structure so that the embedding/

O(n)IO(n - CCp)

cannot be diffeomorphism.
The riemannian invariants ATCp, CCp, TCp, TGp give rise to differential

invariants as follows.
1.7. Definition. If M is a smooth connected manifold and/? E M, define

CC = max{ CCp(M, p)\p a complete metric}.

Likewise define ATC, TC, TG.
Note. The differential invariants are independent of the point/?. Let q be

any other point of M. Then there is a diffeomorphism f of M such that
f(q) = p. Thus

CCp(M,p) = CCq(M,f*p)

The differential invariants are related to the Hsiang (or Compact) degree of
symmetry by

1.8. Corollary. If Mn is a smooth connected manifold, then

h{M) < \ATC{2n - ATC - 1) + n,

where h(M) is the Hsiang degree of symmetry.
Proof. Let G be a compact group of diffeomorphisms of dimension h(M)

acting effectively on M. Let p be any complete metric on M, and p the
G-averaged metric (i.e., p = j G g~ιp dg). Let Gp be the isotropy subgroup.
With the averaged metric, M is a complete connected riemannian manifold
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on which G acts as a group of isometries. Since G is effective, dim G <
dim Gp + n. By Theorem 1.6,

dim Gp < \ATCp{M)(2n - ATCp(M) - 1) < \ATC(2n - ATC - 1).

Hence the corollary follows.

2. Manifolds with small diameter
The inequality of Theorem 1.6,

dim^) < \ATCp(2n - ATCp - 1),

tells us that ATCp = 0 implies Ip is finite (since it is known to be compact
Lie). In this chapter we will take advantage of this fact.

The following will be a useful corollary to the Rauch Comparison Theo-
rem.

2.1. Lemma. Let Mn, M$ be complete riemannian manifolds such that
KMQ > KM (i.e., all sectional curvatures in Mo are larger than those in M). Let
p EL M and p0 E MO. Let I be an isometry from TpM to TpJM. Assume further
that there are no critical points of Exp^ or Exp/,o in Br(0). If T C Br(0) c TpM
is a differentiable curve, then

L[Exppr] >L(ExPpoI(τ)),

where L represents length.
Proof. It is sufficient to show for every t that HExp̂  τ'(/)|| >

||Exppo /(τ'(ί))ll Consider the variations

a(s, i) = Exp^ s τ(t),

ao(s, t) = Exp^ s /(τ(0).

Now for fixed / the variation vector fields V\ VQ along the geodesies
γ(s) = a(s, t) and γo(^) = ao(s, t) are Jacobi fields with F'(0) = 0 = F^O),
and further 7(F"(0)) = V"0(0) and /(γ'(0)) = γ^O) so by the Rauch theorem
(see [2, pp. 29, 30]), || K'(J) | | > || V0(s)\\. But V\\) = Exp^ τ'(i) and V&l) =
Exp^^ I(τ'(t)\ so the lemma follows, q.e.d.

The following standard path lifting lemma will be useful in proving the
main theorem of this chapter.

2.2. Lemma. Let M be a complete connected riemannian manifold, and
r: [0, 1] -> M a piecewise differentiable curve. Let p G M and v E TpM such
that v is not in the conjugate locus in TpM and that Exp^ v = τ(0). Assume
further that for ί 6 [0, 1] there is an ε > 0 such that for all s < t there is a
unique lift τs: [0, s] -+ TpM starting at v (i.e., f/0) = v and Exp̂ , f = τ|[Oj])
such that the distance from τs(s) to the conjugate locus is > ε {in the usual
metric on TpM). Then there is a unique lift f: [0, /] -» TpM of τ starting at v.
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Remark. The above lemma tells us that T can be uniquely lifted to f as
long as f does not approach the conjugate locus. This follows from the fact
that if f: [0, /] -» TpM exists, and τ(t) is not in the conjugate locus, then near
f(/), Expp is a diffeomorphism, so for some ε > 0, f can be uniquely extended
to [0, t + ε].

Proof of Lemma 2.2. All lengths of vectors in TpM will be with respect to
the usual metric while all distances of points in M will be with respect to the
metric on M. Let L be the length of T (/(T)). By the Gauss Lemma any partial
lift f: [0, s] -> TpM must lie in Br(0) where r = | |υ| | + L. Let (J ε be the union
of all Bε(w) for w in the conjugate locus in TpM. Then (J ε is open and for all
s < t, τ(s) E(TpM - U ε) Π £,.(0) = C. C is a compact subset of TpM which
contains no conjugate points. Consider Exp^ restricted to SC, the unit sphere
bundle of TC c TTpM. Since SC is compact and yExp, Ύ|| ψ 0 for Ύ G
SC, there is an A > 0 such that ||Exp^ Ύ|| > A for all V e SC. Thus for
any piecewise differentiable curve γ c C w e have /(Exp^ C) > ^/(C). There-
fore L/A > /(f| [00). Since C is compact, (f(»|.ϊ E [0, 0} has a limit point
r{t). This limit point is uniquie since τ| f O ί ) has finite length. Thus there is a
unique lift f: [0, t] -+ TpM.

Remark. In the above lemma we ignored questions of differentiability of
f. The necessary differentiability conditions follow from the fact that T is
piecewise differentiable, and Exp^ is a local diffeomorphism away from the
conjugate locus.

23. Definition. A riemannian manifold M is said to have small diameter if
M is compact connected with diameter d such that d < \π/Vk where k is
some positive number with k > KM.

2.4. Theorem. If M is a manifold of small diameter, then Ip is finite for all
p G M.

Remark. Let RPΛ have the metric of constant curvature k. Then rf(RP")

= ^π/Vk and Ip = O(n) for all/? G RPn showing that the theorem is sharp.

The theorem contains the following well-known result.
2.5. Corollary. If M is a connected compact manifold of nonpositive curva-

ture, then Ip is finite for allp G M.
Proof. M is easily seen to have small diameter by letting 0 < k <

W
2.6. Corollary. If a manifold M of small diameter also satisfies one of the

following:
(a) χ(M) φ 0, where χ is the Euler characteristic,
(b) M is orientable and some Pontrjagin number is not 0,

then I(M) is finite.
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Proof. These conditions imply that one-parameter groups of 7(M) have
fixed points (see [3]).

Proof of Theorem 2.4. By the Rauch Comparison Theorem, the first
conjugate point y(t0) along any geodesic γ from p does not occur until a
distance π/Vk along γ. Therefore the critical points of Exp^: TpM -> M lie
outside the open ball B^^ (0).

We claim that Exp"^/?) n Bv/yfc(0) does not lie in any (n - 1)-
dimensional linear subspace S of TpM.

Assume such an S exists. Let V G TpM be a unit vector normal to S. Let
q =\π/Vk V G TpM and q = Exp^ q. Let r be a minimal geodesic from q
top. Since diam(M) <\π/Vk , L(τ) <\π/Vk . By the Gauss Lemma and
Lemma 2.2 there is a unique lift f of T to 7̂ ,M such that f(0) = q. Further,
the Gauss Lemma tells us f c B^^φ). Now Exp^ f(l) = /?, so f(l) G S by
assumption.

TpM

Let/?0 G S"1, the sphere of constant curvature k, and let /: TpM
n

an isometry. By Lemma 2.1, L(τ) = ^(Exp^ f) > ^(Exp^ /f).
+ TpS

n be
If we let

Exppo Iq be the north pole, then Exp^ 7(5) is the equator, and since Exp^ 7f
is a curve from Exp^ Iq to Exp/,o 7(5),

> L(τ) > 7f) >

giving the contradiction.
Now consider N$τc -p G N$τc. Let V G Exp;1^) n i ^ / ^ Then

Exp /K is a geodesic γ from/? to/? such that/? is not conjugate top along γ.
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Thus γ C Nfτc and V E TpN$τc. By the claim the set of such F's
span TpM. Thus TpM = TpN{*τc which implies that N$τc = M so that
A TCp(M) = 0. From Theorem 1.6 we get Ip is finite, q.e.d.

If M is a complete connected riemannian manifold, we will let M denote its
universal covering space with the induced metric from π: M —» M.

2.7. Proposition. Let M be a manifold of small diameter. If for somep E M
we have the cut locus to p is equal to the first conjugate locus in TpM, then
\ττx(M)\ > dim(M). Further I<p) c Aut^ίΛO).

Proof. Consider the following commutative diagram:
~ Exp- ^

TpM >M

, Jlf
> M

7Γ* will take the first conjugate locus in T~M to the first conjugate locus in
Tm^M. Since M is a manifold of small diameter, we know that the first
conjugate locus lies outside ^ / v χ ( 0 ) . Therefore the cut locus in TpM lies
outside of Bπ/λ/^{0). Thus Expβ\Bv^(0) is a diffeomorphism. Let S =
Exp~(

1

)̂τ7 (/) π Bπ/Vk (0). By the claim in the proof of Theorem 2.6 we know
that S lies in no (n — l)-dimensional linear subspace, so S contains at least
n + 1 points. Let S ' c M b e Expp~ ° π~\S). Since Exp,- ° πlι]Bv/λ/t(0) is a
diffeomorphism, S' has at least n + 1 points. Further ^(S") = {π(/0}, s o

TΓ^M) > n. Now we know that each element of / ^ acts as an automorphism
of πλ(M), so we have a homomorphism / ^ -> Aut(ττi(Af)). We need only
show that this is injective. For each element V E S, the loop Exp^ tV
corresponds to an element of ττ\{M). The above argument shows that the
function S -> πλ(M) is one-to-one. Let / E Iπip) such that / corresponds to
the identity in A\X\{ITX{M)). Now fp acts as a permutation on S, and since /
corresponds to Id E Aut^^M)), fp leaves S fixed but since S spans 7],M, j£
leaves TpM fixed. Therefore/ = Id on Λf, so the map 1^-> A\xt(πx(M)) is
injective.

2.8. Corollary. Let M be a manifold of small diameter. If for some p E M
the first conjugate point along any geodesic eminating from p has multiplicity >
2, then |τr,(M)| > dim(M), and Ip c Autί^M)).

Proof Let p E M be such that ττ(/?) = p. Then the first conjugate point
along any geodesic emanating from/ has multiplicity > 2. The corollary will
follow from the theorem and the following lemma found in Warner [6].

2.9. Lemma. Let M be a complete riemannian manifold. Let p E M such
that the first conjugate point along any geodesic from p has multiplicity > 2.
Then M is simply connected if and only if the first conjugate locus is equal to the
cut locus in TpM.
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Proof. Let q be any point in M such that q is not conjugate to/? along any
geodesic, and q is not in the cut locus to/7. By Morse theory [5], Ω has the
homotopy type of a C.W. complex with a cell of dimension λ for each
geodesic from p to q to index λ. Since the first conjugate point along any
geodesic has multiplicity > 2, we see there are no 1-cells in this C.W.
complex. Thus M is simply connected if and only if for each such q there is a
unique geodesic yq of index 0. yq must be the unique minimizing geodesic. If
cut = first conjugate, it is clear that the only geodesic from p to such a q of
index 0 is the unique minimizing geodesic. Since the set of such q's is dense,
we have that if the only geodesic from p to q of index 0 is the unique
minimizing geodesic then the cut locus equals the first conjugate locus.

2.10. Corollary. Let Mn be a complete simply connected riemannian mani-
fold. Assume that there is a k > 0 such that k > KM, and that for some p E M
the first conjugate locus is equal to the cut locus in TpM. Let G be a finite group
acting freely on M through isometries. If \G\ < n, then the orbit of B^^Vkip)
does not cover M.

Proof. Assume the orbit did cover M. Studying the proofs of Theorems
2.4 and 2.7 we see that we can replace the condition on the diameter with a
similar condition on the maximum distance from/? to any point in M. In the
current case the image of p in M/G will satisfy this condition. Hence
\vx(M/G)\ > n, but irx(M/G) = G and \G\ < n.

Remark. A similar statement can be made about free group actions where
\G\ < mn only, then the disk will be smaller.

2.11. Corollary. If M is a compact manifold of nonpositive curvature, then Ip

is a subgroup of A\it(πx(M)) for allp E M.
Remarks. (1) If T2 is the flat torus coming from the standard Z X Z

action on R2, then for all/? E T2, Ip = Aλxt(πλ(M)).
(2) Applying Corollary 2.10 to 5" with constant curvature k we see that the

orbit of the open upper hemisphere under a G action (\G\ < n) does not
cover. In fact, there is no way to cover Sn with n disks of radius iτ/2Vk even
without a group action. Such a conclusion, however, is hard to make for other
simply connected spaces with first conjugate locus equal to the cut locus. A
simple volume argument will not suffice. The corollary may be saying more
about the shape of such spaces than about free finite group actions.

3. Products and coverings

In this section we study how the invariants behave under coverings and
products. In the next chapter we will give examples which show that the
results of this section are the best possible.
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We begin with some useful lemmas.
If Mx and M2 are complete connected riemannian manifolds, then so is

Mx X M2. Any geodesic γ from (px,p2) is (γi, γ2) where yx and γ2 are
geodesies in Mx and M2 from the points px and/?2.

3.1. Lemma. Let γ c Mx X M2be a geodesic from (px,p2) to (qx, q^. Then
(px,p2) is conjugate to (qx, q2) along γ if and only ifpt is conjugate to qi along γ,
for some i = 1 or 2.

Proof If Pi is conjugate to qt along γ/5 then there is a variation a(s, t) —»
Λ/, through geodesies such that the variation vector field V(t) along α(0, /) =
γ,(0 is not identically 0, but F(0) = F(l) = 0. Let ά(s, t)^>MxX M2 be
defined by ά(s, t) = (a(s, t), Ύj(t)), * ̂ 7- Then ά(s, t) is a variation through
geodesies, γ(/) = ά(0, t) and the variation vector field V(f) along γ(/) is not
identically 0, but F(0) = F(l) = 0. Thus (pvp2) is conjugate to (ql9 q^ along
γ. If (p^p^ is conjugate to (qx, q^ along γ, let a(s, i)-* Mx X M2 be an
appropriate variation through geodesies. Now a(s, t) determines variations
ax(s, t) -* Mx and a2(s, t) —» M2 through geodesies by projection. Now if V(t)
is the variation field along γ, then V(t) = Vx(t) + V2{i) where Vx and V2

correspond to the variations ax and a2. Thus K(ί) ̂  0 implies Vf^O for
some i, and F(0) = F(l) = 0 implies ^.(0) = F,(l) = 0. Therefore^, is con-
jugate to qt along γ, = ^(0, -) .

3.2. Lemma. 7/ Λ̂  iy a topologically closed totally geodesic submanifold
(resp. CC, ATC, TC) of Mi9 i = 1, 2, then Nx X N2 is a topologically closed
totally geodesic submanifold {resp. CC, ATC, TC) of Mx X M2.

Proof. Nx X N2 is clearly a closed submanifold. If V G T{pχtPύNx X N2,
then V = Vx + F 2 where Fj is tangent to Nx, and F 2 is tangent to N2. Since
iV,. is totally geodesic, the geodesies γ# such that γ/(0) = Vt are in Nt. Thus the
geodesic γ = (γ1? γ2) is in Nx X Â 2, and γr(0) = F. Thus Nx X iV2 is totally
geodesic. Now if γ is a unique minimizing geodesic from (px,p2) to (qx, q2),
then γ, will be the unique minimizing geodesies from/?, to qt. Thus if the TV/s
are CC, Nx X N2 is CC. If γ is any geodesic from (px,p2) to (qx, q2), then γf

will be a geodesic from/?z to qt. Thus, if the JV,'s are ΓC, then iVj X N2 is ΓC.
If γ is a geodesic from (px,p2) to (#1? q2) such that (p^p^ is not conjugate to
(<7i> ̂ 2) along γ, then Lemma 3.1 tells us that/?, is not conjugate to qt along γ/β

Thus, if the JV?s are ATC, then JVj X 7V2 is ATC. Hence the lemma follows.
33. Lemma. Let N c Mx X M2 be a topologically closed totally geodesic

(resp. CC, ATC, TC) submanifold, and let (px,p2) E N. Then N n Mt (Mt

here is the copy of Mt going through the point (px,p2)) is a topologically closed
totally geodesic (resp. CC, ATC, TC) submanifold of Mt.

Proof. Since M is a closed totally geodesic submanifold of Mx X M2, so is
N π Mr Thus N π Mi is a topologically closed totally geodesic submanifold
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of Mt. If γ c A/) is a geodesic in Mt between two points in N π Mi9 then γ is
clearly a geodesic in Mx X M2 between two points in N. Thus N being TC
gives N n Mi being ΓC. If γ c M, is a unique minimizing geodesic, then γ is
a unique minimizing geodesic in Mx X M2. Thus, if iV is CC, then iV n A/, is
CC. If γ c M, is a geodesic from/? to g E M, such that/? is not conjugate to
q along γ (thinking of conjugacy in A/,), then p is not conjugate to q along γ
in Mx X M2. This follows since γ = (γ^ γ2) where yj9 j φ i, is the constant
geodesic, so Lemma 3.1 tells us that γ, not conjugate implies γ is not
conjugate. Thus TV being A TC gives TV π M( being ATC.

3.4. Proposition. Let Mx and M2 be connected complete riemannian
manifolds. Then CCpχ(Mx) + CCpi{M2) > CCipupύ(Mx X M2) >
max{ CCPχ(Mx), CCPi{M2)}. Likewise for TC, ATC, and TG.

Proof '(1) Assume CCpχ(Mx) > CCPi(M2). Let S C T{PχtPύ(Mι X M^
such that άim{S) < CCpMv Let Sι be the projection of S onto T{pχ>pύMx.
Then dim(5Ί) < dim S < CCpMλ. Let TV c Mi be Λ ^ . Since ά\m{Sx) <
CCPχ(Mx\ N ΦMX, thus N χlM2ΦMxX M2. Now N 'x M2 is a topologi-
cally closed complete convex totally geodesic submanifold of Mx X M2 by
Lemma 3.2. S c T{PχPi)N X M2, so ̂ c c N X M2=£ Mx X M2. Since this
was true for all S of dimension less than CCpMx > CCpM2 we have
CC(PvP2)Mx X M2> max{ CCpχ{Mx\ CCP2(M2)}. The exact same argument
works for TC, ATC and TG.

(2) Let Si c T M; be such that dim(S,) = CCp{M^ and Ngc = M/5 and
S c T{PχP2)Mx X' M2 the direct sum Sj Θ S2. Consider iVfc. By Lemma 3.3,
N£c π M/ is a closed totally geodesic CC submanifold of M,. Further,
S/ c T(pχfP2)(Ngc π M,), and since N£c(Mi) = M,- we have that M, c iVfc.
Thus T(p*pi)Mx Θ Γ( ;?b/;2)M2 = T(pχ,P2)Mx X M2 is in Tp(N£c). Therefore
7V5

CC = Mj X M2, so CC{Pχ,P2)(Mx X M2) < dim(S) = CCpMx + C ς M 2 ,
and the result follows. Again, the same proof works for TC, ATC, and TG.

In §5 we will see that if either Mx and M2 is compact, then CC(PuP2)(Mx X
M2) = max{CCpχ(Mx), CCp2(M2)}. Likewise for TC andΛΓC.

If M is a connected complete riemannian manifold, we will denote by M its
universal covering space with the induced metric, and by TΓ: M -> M the
covering projection.

3.5. Lemma. If N c M is a closed totally geodesic (resp. TC, ATC)
submanifold, then so is π~ι(N) c M.

Note. This lemma is false for CC. Let/? E T2 (flat torus), then {/?} is CC,
but <π~Xp) E £ 2 is not CC.

PAW/ 0/ Lemma. Let iV = π~ι(N). N is closed since iV is closed. TV is a
totally geodesic submanifold since N is, and this is a local property. Let γ be
geodesic in M between two points in N. Then 7r(γ) = γ is a geodesic between
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two points in N. Thus, if N is TC so is N. If γ is a geodesic in M between p
and q such that p is not conjugate to q along γ, then γ = π(γ) is a geodesic
from π(p) to π{q) such that π(p) is not conjugate to π{q) along γ. Thus if N is
ATC, so is TV.

3.6. Proposition. A TCp(M) > A TC<pY Similarly for TC and TG.
Note. The author cannot prove the corresponding result for CC, but has

found no counterexample.
Proof. Let S c TpM such that dim(5) < ATC<p)(M\ and let S" = π+S.

Then N£τc ΦM since <X\m(S') <ATC<p){M). Therefore π~\N^τc) φ M,
but Lemma 3.5 implies Ngτc c π~\N£τc) φ M. Thus ATCp(M) >
ATCπ(p)(M). Similarly for TC and TG.

Remark. The above obviously holds for any covering space.

4. Examples

In this section we examine some examples where the invariants can be
computed. These examples serve to show the sharpness of the propositions in
§3, and also illustrate some further properties of the invariants.

4.1. Example. If M is a manifold of small diameter, then

TCp(M) = ATCp{M) = 0

for all/? G M.
This follows from the results in §2 and the fact that TCp{M) < ATCp(M).
4.2. Example. If S", RP", or Rn (n > 1) have constant curvature, then, for

all/?,

Γς(S") = 0,ATCp(Sn) = Cς(S") = TGp(Sn) = n,

Γς,(RPΛ) = 0,ΛΓς,(RP") = CCp(RPn) = ΓG/RP") = n,

TCp(Rn) = ATCp{Rn) = CCp(Rn) = TGp(Rn) = n.

To show this let M be one of SΛ, RP" or RΛ, and fix/? G M. If S C TpM is
any linear subspace, then Exp^ S is a topologically closed almost totally
convex totally geodesic submanifold of M. Thus ATCp(M) = n. Since ATCp

< CCp < TGp < n, all of the above follow with the exception of the ΓC's.
For Sn or RP" the set of closed geodesies from p to p covers the space.
Therefore TCp(Sn) = TCp(RPn) = 0. In RΛ, Exp^ S is totally convex for any
S C TpM. Thus TCp(Rn) = n.

In a future paper we will show that these spaces are the only ones with
CCp{M) = n for all/? G M.
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The projection m\ S Λ ^ R P " serves as an example where ATCΛM) =
ATC<p)(M). While the projection π: Rn -> Tn where Tn is the flat torus is an
example where ATCp(M) > ATC^p)(M). In fact these same examples work
similarly for the other invariants.

Next we consider an example where the invariants depend on the point at
which they are evaluated.

43. Example. Let M be a paraboloid of revolution with vertex v.

FIG. 4.1

TCV(M) = ATCυ(M) = 1, CCV(M) = TGV(M) = 2, TCp{M) = ATCp(M) =
0, CCp(M) = TGp(M) = 1, for/7 + v.

First consider the vertex v. Since every geodesic from υ does not return to
v, we see that {t>} is totally convex, so that NQC φ M. If S is any one-dimen-
sional subspace of TVM then Exρv S consists of the two geodesies running
down on opposite sides of M. Since this set is completely convex, CCC(M) =
2 and so TGV(M) = 2. However there are geodesies running from one side of
M to the other such that the endpoints are not conjugate along the geodesic.
Thus ATCV(M) = 1 and TCV(M) = 1. Now if p Φv9 consider the closed
geodesic γ represented in Fig. 4.1. Let S be the one-dimensional subspace at/?
generated by γ'(0). It is clear that the only topologically closed totally
geodesic submanifold N of M with S c TpM is M itself. Thus TGp{M) < 1.
But 1 < CCp(M) < TGp(M) < 1. Further, since/? is not conjugate top along
γ, we get ATCp(M) = 0 and thus TGp(M) = 0.

Now we will consider some products. For brevity we will consider only
ATCp,

4.4. Examples. (1) ATCp(Sr X Ss) = max{r, s}.
(2) A TCp(Rr x R 5 ) = r + i;R r, R* with flat metric.
(3) ATCp(Sr X Ts) = r where Ts is the flat torus, and we assume that

r> 1.
Example (2) is the same as Example 4.2, while Examples (1) and (3) will

follow from Proposition 5.8.
In the above, Examples (1) and (2) serve to show the sharpness of

Proposition 3.4. (3) shows that for every pair (n, r) of integers such that
0 < r < n there is an ^-dimensional manifold M with ATCp(M) = r.
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In general it is not easy to compute these invariants. In the next example
we will consider CPΛ.

4.5. Example. For CPn with the symmetric space metric we have

TCp(CPn) = 0,ATCp(CP") = CCp(CP"k) = TGpiCV") = n.

(Note: n = | real dimension.) Every geodesic emanating from/? returns to/?,
thus TCp(CP") = 0.

The strategy in computing the remaining numbers is as follows. First we
will show that if S c TpCPn is a complex subspace, then Exp^ S is a
topologically closed, almost totally convex, totally geodesic submanifold.
Then since every subspace of dimension less than n is contained in a complex
subspace S φ T^CF, we have ATCp(CPn) > n. Next, by examining Lie triple
systems we construct an ^-dimensional subspace S c Tp(CP") such that the
only closed totally geodesic submanifold n with S c TpN is CF1 itself.
Therefore TGp(CP") < n. Furthermore, n < ATCp(CP") < CCp(CP") <
TGpiCY1) < n, and the result will follow.

For the first part consider the fibration:

u
C F

m is a riemannian submersion where S2n+ι has the usual metric induced from
C + 1 . If/5 G S2n+\ let fβ c TpS

2n+ι be the subspace perpendicular to ip (ip
is the vector at/? obtained by parallel translation in C π + 1 of ip E ΓOCΠ+1).
Then ^(CF 1 ) can be identified with 7) (π(p) = /?) through <n^. If γ is a
geodesic from/? in CF1, then the geodesic γ from/ in S2n+ι with correspond-
ing initial tangent vector has the property that π(γ) = γ.

Kobayashi and Nomizu (see [3, pp. 273-278]) show that for each complex
m-dimensional subspace S c T^CF* there is a complex totally geodesic
submanifold N c CPn such that S = TpN (in fact N = CF"). We need to
show that N is ATC. Let γ be a geodesic between two points ql9 q2E. N such
that γ £ N. It is sufficient to show that qx is conjugate to q2 along γ.

Let qx G S2n+ι such that π(qλ) = ql9 and let Sι = TqN and S 1 c f5i be
the corresponding subspace. We claim that π~ι(N) c S 2 π + 1 is equal to
£2/ι+i n QC ^gj-g QC JS the complex linear subspace of C Λ + 1 spanned by qx

and S\Sι being translated to 0 G CΛ + 1 .
Proof of claim. Since N is totally geodesic, we know that all geodesies

from qx with initial tangent vectors in Sι must lie in π~ι(N). This tells us that

S2n+\ n QR C flr-i(jv) where QR is the real span of qλ and S1. By the
definition of C Λ + 1 -> CPΛ we see that S2n+ι n Q c C π~ι(N). For dimension
reasons and the fact that π~\N) is a connected closed 2m + 1 submanifold,
we see S2n+ι n Q c = 9r"!(
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Now let γ c S2n+ι be the geodesic from qx corresponding to γ. Since
γ £ N, γ £ π~\N). Since S2n+ι n Q c = ir!(JV) is ATC, we see that qx is
conjugate to #2 along γ (q2 = γ(l) so 7r(<?2) = #2). In fact, we can find a
variation ys of geodesies such that^ γ0 = γ, γ5(0) = qx, γ,(l) = £2 and
(ϊfsΦX ^i> = 0 I n particular γj(O) E 7^. Therefore ys = ^(γ,) is a variation
through geodesies in CPn with γ0 = γ, γ5(0) = ql9 and γ5(l) = q2, and ^ is
conjugate to q2 along γ.

For the second part we first consider a subspace T c TpCPn such that
Γ = TpN where N is a totally geodesic submanifold of CF1. We know that if
£!,£,, £3 E ^ t h e n t f ^ ^ e Γ.

We claim that if ξl9 ξ 2 e Γ such that <|2, Jξλ) φ 0, then Jξ2 E Γ. We
know that R(ξl9 ξ2)ξ2 E T. Using the formula for curvature given by
Kobayashi and Nomizu (see [4, p. 277]),

- h(ξ2, ξ,)ξ2 + A(S

where h is the hermitian inner product. The first two terms are clearly in Γ,
and since g(ξ2, Jξ) ψ 0 we get Jξ2 E T.

We now construct an ^-dimensional subspace S by describing a basis
{£i> ^2' ' ' * > /̂i} Choose ^ arbitrarily, and ξ2 outside the subspace spanned
by £i and Jξλ but close enough to Jζx such that g(ξ2, Jξx) φ 0. In general
choose 4 outside the subspace spanned by ίlf / | 1 ? ξ2, /£2k, , ξf-v J£i-\
but close enough to Jξi_ { such that g(ξf, «/ft-i) ^ 0 We can certainly choose
n vectors this way. Let T = 7^™, so that SET. For / > 1, g(ξ l + 1,7^) ^
0 so J$+l E Γ. Further g(^, Jξ2) = - g(ξ2, / ^ ) Φ 0, so J^! E T. Thus
Γ = Γ^CP1 so that N£G = CPΛ, and hence ΓG/CF1) < AZ.

It should be possible to compute the invariants for the other symmetric
spaces of rank 1 in a similar way.

One would expect CPn to have large invariants where in fact we get only
half the real dimension. In a future paper we will see that for normal
homogeneous spaces M if ATCp{M) >\{n + 3), then M is isometric to
M[ X M2 where Mr is a constant curvature space and r > \{n + 3). Thus
irreducible normal homogeneous spaces other than Sn

9 RP", or RΛ have
ATCp < \{n + 3).

We have been able to show, with the assistance of Allen Back, that for
simple lens spaces ATCp(L£) =\{n - 1). We have also computed the in-
variants for generalized Lens spaces and compact Lie groups with bi-in-
variant metrics.
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5. Continuity properties

For a smooth manifold M let Gr{M) be the Grassman bundle of r-
planes. Define the bundle G{M)^M by G(M) = G0(M) + Gγ(M)
+ + Gn(M), where + is disjoint union. For M connected complete
riemannian consider the following functions:

G(M) ——>G(M) G(M) >Z

M ^ > M M —

where d{S) = dimension of S, CC(p) is CCp, and / c c ( 5 ) = Tn{S)(Ngc).
These functions are related as follows: CC(p) = min{d(S)\S E π~\p) Π
(d°fccy\n)}. We can likewise define ATCJATC (resp. TC, TG).

In this section we wish to consider the continuity properties of these
functions. We have seen that CC need not be constant, thus CC is not
necessarily continuous. We will show it is upper semi-continuous. Also fcc

need not be continuous, for there could exist Sv S2 such that d(Sx) = d(S2)
but d(fccSx) =£ d(fccS2). We will show that this is the only way in which fcc

is not continuous. Using the results we will then show CC{Pχ^(Mλ X M^ =
max{CCPχ(Mx\ CCP2(M2)} (resp. TC, ATC) whenever Mx oτM2 is compact.

If N is a connected topologically closed totally geodesic submanifold of M
and p E N, then Expp(T^Λf) = N. With this the following lemma comes
immediately from the definition of/cc.

5.1. Lemma, (a) S c JCCS.
(b) Image offcc = {S\Exp<S)(S) = N™}.

( C ) JCC ° JCC = JCC'

Similarly for TC, A TC, and TG.
5.2. Proposition. The image offcc is closed in G{M).
Proof. Let St —> S be a convergent sequence in G(M) such that S, E

Im(/ c c). We can assume that d(Sj) = d(S) = r for all /. Let pt = 7r(5f) and
p = π(S). We know/?, -^p. We need only show that Exp^ S = NςC, i.e., that
Expp S is a topologically closed, completely convex, totally geodesic submani-
fold. Let Ng = ExppS, and N = Exp^ S. For every q E N we will show:

(1) 3S* c TqM such that d(Sq) = r and Exp^S*) c N.
(2) Vq' E N iϊy isa unique minimizing geodesic from q to q' such that q is

not conjugate to q' along γ, then γ c N.
(1) Let q EN. Then there is a F E S such that q = Exp, V. Let K, E 5f.

such that V,-*V and | V\ = | F|. Let qt = ExpΛ ^ , and 5* = ^(JV,). Let
γf(/) = ExpΛ(/^ ). Then since each Λ̂  is totally geodesic, 5* is the parallel
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translate of S, along γ, to qt. If y(t) = Expp(tV), then γ, -> γ, and thus
Sq' -» Sq where Sq is the parallel translate of S along γ. Now let W G Sq,
and choose Wt G Sq< such that Wi-^W and | ^ | = |W\. We need to show
that Exp^ W G N. Let z = Exp^ W and let zf = Exp^ Wt. Thus z, -> z. Since
JV,. is totally geodesic and Wt G TqNi9 we have z, G Nt. Thus there is a
ί^ G S, such that z, = ExρΛ ί^ . We can choose Wt such that | W\ < | p;.| +
\Wi\ = IK| + \W\, Therefore some subsequence of the H^ converge to W G
S. Thus we get Exp^ W = l im^^ ExpΛ Wt = lim,^^ z, = z. So property (1)
is shown.

(2) Let q' G Expp S and let γ be a unique minimizing geodesic from q to q'
such that # is not conjugate to qf along γ. That is, the cut point along γ (if it
occurs at all) happens after q'. Similar to part (1) choose qi -^q,q[^> q\ and
Sqi, Sq. Let γ, be a minimizing geodesic from qt to q[. Since the distance to the
cut locus is a continuous function on the unit sphere bundle (see [2, p. 94]),
for i large enough there is a unique minimizing geodesic τf from qt to q- such
that qt is not conjugate to q- along T,. Since N, is completely convex T, C Ni9

so τ/(0) G 7̂ ,/V,. = Sqi. Some subsequence of the τ;(0) converge to a V G S^.
Let r = Exp^ /F. By part (1), T c N. Since T is a limit of minimizing
geodesies, T is minimizing from q to #'. Since γ is the unique minimizing
geodesic, r = γ. Therefore γ c N and (2) is shown.

To complete the proof of the proposition it is sufficient to show that for
every q G N there is an ε > 0 such that N n Bε(q) = Exp^S* n Bε(0)).
Choose ε so small that Exp^ is a diffeomorphism on Bε(0) and that for every
q', q" G Bε(q) = Exp^(5ε(0)) there is a unique geodesic yq» from q' to q" in
Bε(q), further yql will be minimizing and q' will not be conjugate to q" along
yql. We know from (1) that Exp^S"7 n Bε(0)) C N n Bε(q). Assume there
was a q' G N n Bε(q) such that q' ί Exp^(5^ Π 5e(0)). By (2) all the geodes-
ies yq» will be in N for q" G Exp^(S9 Π ^ε(0)). But this means that N
contains an open subset of dimension r + 1. But N is the image of S by the
exponential map, so by Sard's theorem this cannot happen. Thus the proposi-
tion follows.

Next we consider the image oϊfATC. We will use the following lemma. The
author would like to thank Allen Back for the proof.

53. Lemma. Let V G TM such that V is not a critical point of Expπ(K).
Then there are open sets U, £/', U\ with V G U C TM, π(V) G U' C M,
and Exp(K) G U" c M, such that f: U-^ Uf X U" is a diffeomorphism where
f: TM-+M X Mbyf(W) = (π(W\ Exp(^)).

Proof. The function / is clearly differentiable. Consider /„,,,: TVTM -*
Tπ(V)M Θ ΓExp(F)Λf. Since TM is a bundle over M, the image of f+v contains

, and since V is not a critical point of Exp^^ we see that T^^y^M) is
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in the image of f+v. For dimension reasons f*v is an isomorphism. By the
inverse function theorem there is an open set O c TM such that / | 0 is a
diffeomorphism onto its image. Choose U\ U" such that U' X t/" C /(0),
andletί/ = /-1(ί/ /X U").

5.4. Proposition. The image offATC is closed.
Proof. We first note that lmfATC c I m / c c . This follows because if

Exp, S = N£τc then Exp, S = JV5

CC. Let S, -> 5 in G(M) such that 5, e
rc % Proposition 5.2, 5 E I m / c c . Therefore we need only show that

pp S is almost totally convex (p = π(S)). Let q, q' E N = Exp^ S. Let γ
be a geodesic from q to #' such that q is not conjugate to q' along γ. Let
F E 7^M be such that V is tangent to γ and Exp V = q'. We need to show
V E TqV. Since q is not conjugate to q' along γ, Vis not a critical point of
E x ρ r Choose subsets F G ί / c TM, q E ί/' c M, and ?' 6 ί / " c M as in
Lemma 5.3. As in the proof of Proposition 5.2 choose sequences #, -> q, q[ -»
^ such that qi9 q E JV,. = Exp^ Sr For i sufficiently large qi E ί/' and
qj E: U". Thus by the lemma there is a unique Vi• E U such that iτ{V^ = ^
and Exρ(F ) = r̂/. Further FJ -> F. Since the function / of the lemma is
nonsingular in U, Vi is not a critical point of Expft. Now the geodesic
γ,(/) = Expg tVιr is a geodesic from ^ to ςr/ such that ^ is not conjugate to q[
along γ. Therefore since Nt is almost totally convex, γf. c Nέ so FJ E T^AΓ.
Since TqNi -> Γ̂ Â  (see proof of Proposition 5.2) and V{ -> F, we have
F E Γ îV. Therefore Λ̂  is almost totally convex and the proposition follows.

Remark. The author suspects that Im(/Γ C) is always closed while Im(/Γ G)
is not always closed.

Next we consider the functions d ° fcc and d ° fATC.
5.5. Proposition. The functions d ° fcc and d ° fATC are lower semU

continuous.
Proof. We need to show that for every q E {0, 1, •••,«} the set Q =

(d ofcc)~l{°> 1, , ?} is closed. Let Sέ -» S in G(M) where S,. E β. We
have rf ° fcc(Si) E {0, 1, , ̂ } and therefore rf ° fCc(^i) = r f°Γ a n infinite
number of /'s and some r < q. Thus fcc(S^) E GrM. By the compactness of
the fibres in GrM some subsequence fcc(Sj) converges to an S E Gr(M).
Since the image of fcc is closed, S is in the image of fcc. By Lemma 5.1 we
have Exp^ S = Nξc and Sj c / C c( 5

y ) Therefore S c S. So we get Ngc c
N£c and d ° fcc(S) < r < q. Thus S G β implying that ζ? is closed. The
same argument works for d ° fATC.

We are now in a position to study the function CC.
5.6. Theorem. The image of the function CC (resp. TC, ATC, TG) consists

of at most two consecutive integers r and r + 1. Further CC {resp. ATC) is
upper semi-continuous {i.e., CC'\r) is open).
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Proof. To show the first part we will show that for every p and q in M,
CC(q) < CC(ρ) + 1. Let S c TpM be a linear subspace of dimension
CC(p), such that A^ c = M. Let γ be any geodesic from p to q. Let
S" C 7^M be S" = γ*(S) + γ(q), where γq represents parallel translation.
Dimension of S" < dimension of S + 1 = CC(p) + 1. We need only show
Nfc = M. Since y\q) E S', we know that γ is in Ng,c, SO that p E N$c.
Since yζ(S) c S ' c TqNgF and ^ c is totally geodesic, S c 7 ĴV£C, but Λf
is the only topologically closed, completely convex, totally geodesic submani-
fold through p with S in its tangent space at p. Therefore N£c = M. The
same argument works for ΓC, A TC, and TG.

For the second part, assume the image of CC consists of the points r and
r+\. Then CC~\r) = π(Gr(M) n (rf ° /cc)"1^))- BY Proposition 5.5,
(rf o fccY

x{ri) is open in G(M). Thus Gr{M) Π (rf ° /Cc)~1(n) *s ° P e n i n

Gr(M). Since m: Gr(M)^>M is an open map, τr(GΓ(M) n (^ ° /cc)"1^)) i s

open. The same argument works for Λ TC.
Now we consider the functions fcc and /4Γ C in greater detail. We have

noted earlier that these functions need not be continuous since subspaces of
the same dimension can have images of different dimensions. We will put a
new topoplogy on G(M) to take care of this, and the resulting functions will
be continuous.

Let GCCr

s(M) = Gr(M) n ίcc^s{M)\ and define GCC(M) to be the dis-
joint union of the GCCr

s. We have the following commutative diagrams of
functions:

Gcc
I

*
1
M —

fee

id

+ G
I

π

1

Gcc
I

•
M —

fee

id

Gcc L

Γ I*
id φidM §

where i is the identification (ignoring topologies). Similar spaces and dia-
grams can be constructed for A TC.



462 CHRISTOPHER B. CROKE

5.7. Theorem. The diagrams (1), (2), and (3) are commutative diagrams of
continuous functions.

Proof We need to show:

(a) G C C Λ G is continuous.
(b) Gcc -> M is continuous.

(c) Gcc —» G is continuous.

(d) G c c -> G c c is continuous.
(a) is continuous since Gcc has a finer topology than G. (b) is continuous

from the commutative diagram:

In order to show that a function from Gcc is continuous it is sufficient to
show that its restriction to each Gfσ is continuous. fcc: Gs

cc' -> GS(M). Let
C be a closed set in GS{M). We need to show that D = fcc(C) *s closed in
Gs

cc\ Let Sj -> S be a convergent sequence in G,c c r such that S, E Zλ Since
Sg -> 5 in G5

CCΓ, S, -> S in G. By a previous argument some subsequence
fcc(Sj) converges to a subspace S E G. Since fcc(Sj) E G5(Λ/), 5 E G/Λf ).
Since fcc{Sj) E C a closed set, S E C. By the same argument as before
fcc(S) E S, but for dimension reasons (i.e., S E GCCr

s so fCc(S) ^
Gs(M))fcc(S) = S £ C so S 6 D = /cc(Q. Therefore (c) follows. In order
to show (d) we need only note that since fcc ° / c c = / c c we have fcc(GfC)
C GyCCί, thus (c) implies (d). All of the arguments above work for A TC.

Remarks. In Theorem 5.6 we see that the points with highest CC form a
closed set F. The author suspects that they form a closed submanifold of
codimension at least 2.

We are now in a position to prove
5.8. Proposition. Let Mλ be a compact riemannian manifold, and M2 a

complete riemannian manifold. Then for px E Ml9 p2£ Λf2, CC^^J^Mχ X
max{ CCPι(Mλ\ CCPi{M2)} (resp. TC, A TC),

Remark. This does not hold for TG as TGp(Rι) = 1, TGq(Sι) = 1, while

( M )

Proof Let η = CCp{M^, Let A'' = {S E G\TpιM^\Nξc = M,}. By pro-
position 5.5, Λ1 and A1 are open in Grχ(TpMλ) and Gr\TpM^ respectively.
Since the set of geodesies γ from/? such that y(t) is a cut point of p for all
/ > t0 is nowhere dense (that is to say the set of γ'(0)'s is nowhere dense in the
unit sphere) and since Aλ is open, we can choose Sι E Aι and a basis
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{Xx, , Xrχ) of Sι such that the geodesies yt(t) = Exp^ tXi are not in the
above set. Choose S2 E A2 and a basis {Yx, , y r j . We will assume
MGl = l^il = l Since Λ1 is open, there is an ε > 0 such that for any set
{Zj, Z2, : , ZΓJ of unit vectors in TpMx the subspace spanned by {Xx +
axZx, - , ZΓi + ΛriZri} is in Λ ! whenever |α(.| < ε for all /.

Let d be the diameter of Mx. Choose b{ > 0 such that d < εbt and 7,(6,) is
not a cut point of />lβ Let c > 0 be some number less than the distance from
p2 to its cut locus. Let S c T(PχP2)Mx X Λf2 be the span of {^A^ +
cl^i, , brXrχ + cyΓi, cy r i + 1, , cYr2) (or the other way around if rx >
r2). We need only show by 3.4 that N§c = M, X M2. Let γ1 be the geodesic
(γ/, γ2') = E x p ^ ^ / ί ^ + cY,). y\t) lies in N*τc for all /. By the choice of
b( and c, γ'(l) = (γί(l), Ϊ2(l)) is not on the cut locus to (px,p^) in Mj X Λf2.
Thus the unique minimizing geodesic σ'(/)from (pχ,p^) to γ'(l) must lie in
Ngc. If we parameterize σ'"(0 so that σf'(l) = γ'O), then σ''(0) = {etZi9 cY^ G

w h e r e î < ^ a n d lz/l =

γ''(0) - σ''(0) - btX, + cr, - e,Z, - cYt = 6 ^ - ^Z, e TiPι,P2)N<~c,

which implies that Λ) - {eJb^Zi is in T{pχPi)Mλ X M2, so that the subspace
5" spanned by {>¥, - {ex/by}Zx, - - - , Xrχ — (erjbrχ)Zrχ) is contained in
T{p^Pl)Nξc. Since \-eJb\ <ε, S' E A1 where 5 ' is considered as a subspace
of TpMx. By Lemma 3.3, 7Vfc n Mλ must contain iV^c = Mx, so that
Λ; E 7 ^ , ^ . Thus Y,. E T(pχ,P2)Ns

cc and 5 2 c T^^™* and hence
M2 C V̂y70". The result now follows. The exact same argument works with CC
replaced with ATC or TC.

6. A geometric relationship

The purpose of this section is to prove the following result.
6.1. Theorem. Let r: [0, 1] -> Gr{TpM) be a piecewise C 0 0 path such that

τ(t) is in the image of fcc (resp. TC, ATC). Then Expp(τ(0)) is isometric to

Exp,(τ(0).
We will first need a series of lemmas.
6.2. Lemma. Let M be a complete riemannian manifold. Let σx(t), σ2(t) be

C 0 0 curves in M such that ox{G) = σ2(0). Assume further that for each t E [0, 1]
there is a topologically closed totally geodesic CC submanifold Nt such that

(i)afr)eNtf

(ii) σ (t) is perpendicular to Nt.
Then σx{t) = σ2(t)for all t.

Proof. Let A = {t E [0, l]|σ t(0 = σ2(t)}. Clearly A Φ 0 and A is closed.
For t close to A, σx(t) is not a cut point of o2{t\ so there exists a unique
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minimizing geodesic yt(s) from σλ(t) to σ2(t):

Since σ,(0 E Nt and Nt is completely convex, yt(s) E Nr Therefore by (ii),
<γ;(0), σ[(t)} = <γ,'(l), σ^O) = 0. The first variation formula allows us to
conclude that A is open, and the lemma follows.

63. Lemma. Let N c M be a topologically closed totally geodesic submani-
fold ofM. Forp E N,A E TpN, and X E TATpM such that X is perpendicular
to TpN, we have Expp* X is perpendicular to N.

Proof. If Expp* X = 0, the result holds trivially. Otherwise, let J(t) be the
Jacobi field along Exp^ tA such that J(0) = 0, and /'(0) is the translation of
X to 0 in TpM. Then J(\) = E x p ^ * ) , but since N is totally geodesic and
both J(0) and J'(0) are perpendicular to TV, we have /(/) perpendicular to N,
and the result follows.

6.4. Lemma. Let F: Nn X I-> Mm (n <m)beaC°° function where N is a
smooth manifold and M is a complete riemannian manifold. Assume:

(i) Ft: N ̂ > M is a smooth embedding,
(ii) Ft{N) = Nt is totally geodesic (not necessarily closed),

(in) for every (p, t) E N X /; F^p^/dt is perpendicular to Nr

Then No is isometric to Nt in the induced metric.
Proof For p E N and X, Y E TpN, define X(t), Y(t) E T(Pft)N X / in

the obvious way. We need only show d/dt(F?g)(X(t), Y(t)) = 0 where Ffg is
the pulled back metric.

Let A = {(p, t) E N X I\FHpί)d/dt φ 0}. By continuity it is sufficient to
show that the above holds on A and on the complement of the closure of A.

Let (p, t) be in the complement of the closure of A. There are open sets
/ ? G ί / c i V a n d / G F c / such that for all (q, s) E U X F, F+(q, s)d/dt =
0. Therefore Ft\v = F J σ for tl912 E V. Thus for X(t), Y(t) at (p, t) we have
d/dt(Ffg)(X(i 7(0) = 0.

Let (p, t) EA. There is an open set U X V c N X I such that F\ux v is a
C 0 0 embedding. Extend Jφ), 7(0 on U X / such that [X, θ/3/] = [y, 3/9/]
= 0. Let X, Y and T be the vector fields on F(U X V) induced by F+. Then
we have */to(F*gχX(t)9 7(0) = Tg(X, Y) =Vτg(X, Y) = g(VΓX, 7) +
g(x, VΓ7) = g(V^Γ, 7) + g(X, VYT). On the other hand, Nt is totally geo-
desic, and X and 7 are tangent to Â , while T is perpendicular to Nt. Thus
V^Γ and V yΓ are perpendicular to Nr Hence θ/θ^i^gX^O, Y(ή) = 0,
and the lemma follows.
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Proof of Theorem 6.1. Clearly we can assume that τ is C °°. Let STr(T M)

be the stiefel manifold of orthonormal r-frames in TnM with the normal
7Γ P

homogeneous metric. Let STr{TpM)-*Gr{TpM) be the principal bundle.
Define a connection on π by taking as horizontal subspaces the subspace
perpendicular to the fibre. Let τ{i) be any horizontal lift of τ(t). Let L: RΓ X
/ - * TpM be L(X, t) = τ{t)X where τ(t): R r-^ TpM is the orthogonal trans-
formation induced by τ(ί) as an element of STr{TpM). Since f is horizontal,
L^xί)d/dt is perpendicular to the linear subspace τ(t) = f(t)(Rr) c TpM. Let
TV, = Expp(τ(/)). By assumption, Nt is a topologically closed totally geodesic
CC submanifold. By Lemma 6.3, Expp* L^^θ/Θ/ is perpendicular to Nt for
all (x, t)<ΞW X I.

We now define F: No X / -+ M. For q E iV0 c M let <? E 7J,iV0 be such
that Exp^ q = q. Let F(q, t) = Exρp(L(τθy\q), t). To show F is well defined
let q be another point in TpN0 such that Expp q = q. Let σj(/) =
ExP/,[L(ί(-0\(<7), 0] and let σ2(t) = Expp[L(τ^(ql t)]. Now σ^O) = σ2(0) = q
and σλ(t), σ2{t) E Nr Further we have o\{t) = Expp* L^-ι^t)d/dt which is
perpendicular to Nr Similarly σ^O is peφendicular to Nr Lemma 6.2 now
tells us that ox{t) = σ2(t), so F is well defined. A similar argument shows that
Ft is 1 — 1. Ft is clearly onto Nt as the image of Ft is Exp^ τ(t) = Nr

If q E 7V0 is such that there is more than one minimizing geodesic in Λ̂ o

from p to q, then the image Ft(q) will have more than one minimizing
geodesic in Nt from p (this follows from the definition of Ft which takes
geodesies from p to geodesies from p). Since the continuous function
L(-, /) ° fφ) = i> takes ordinary tangent cut points in 7^No t° ordinary
tangent cut points in TpNt and since the ordinary tangent cut points are dense
in the tangent cut locus in TpN0 (see [1, p. 133]), Ft. takes tangent cut points
in NQ to cut points in Nr Now by the definition we see that Ft is a
diffeomorphism when restricted to the complement of the cut locus. Thus
Lemma 6.4 tells us that Ft is an isometry when restricted to the complement
of the cut locus to/?.

In fact the theorem will follow from Lemma 6.3 if we show Ft is a
diffeomorphism. This will follow if we show that Ft is a diffeomorphism when
restricted to the complement of the cut locus to q for all q in a small
neighborhood of/?.

Let c be the distance from p to its cut locus in iV0 (and hence Nt). Let
q E No be any point in the ball B^c(p). Let qt = Ft(q). Let Bt be the
orthonormal frame at qt obtained by the parallel translation of f(/) along the
unique minimizing geodesic from/? to qr Note Bt = Ft+B0 by the fact that Ft

is a local isometry. Let Lq:W X / -> TM be the transformation induced
from the 2?/s. For x E Rr, |JC| < | c , we see by the local isometry of Ft that
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there is ay G RΓ such that for all t e /, Exp^ Lq(x, t) = Exp, L(Y, t). Thus
we have Exp^* Lq

(xί)d/dt is peφendicular to Nt for all x E Rr such that
|JC| <\C. Along the geodesic γ,(s) = Exp^ Lq(sx, t) c Nt consider the field
Exp^ L%{xt)d/dt =J(s). J(s) is the variation field of the variation α(s, t) =
yt(s) and thus is Jacobi. By the above for small s, J(s) is perpendicular to Nt

and is always so since Nt is totally geodesic. Thus Exp^ LJ(jc>/)8/9/ is
peφendicular to Nt for all (x, t) E R r X /.

Now define Fq from Lq as we defined F, from L. All the facts about Ft

now hold for Ft

q. In particular, F^ is a diffeomoφhism when restricted to the
complement of the cut locus to q in No. We need only show Ff = Fr From
the definition, Fg = Fo (they correspond to the identity map on Λ ô). Let σ be
in No. Let σx{t) = Fq(σ) and σ2(t) = /^(σ). From the above, σ/(0 is per-
pendicular to Nt and σ,(7) G 7VP so the result follows from Lemma 6.2. The
result follows for ΛTC and TC since the image of fATC or fτc is contained in
the image of fcc.

Remark. Theorem 6.1 is false for TG. Let M = Sι X R. Then all geodes-
ies through a given point are TG (their images are closed). All but one are
isometric to R while one is isometric to Sι.

Added in proof. The author has recently noticed that arguments similar to
those in the second section of this paper show that if Mn is a manifold of
small diameter such that 1 > KM > 1/4, then |π,(M)! > n and Ip injects into
Aut(ττ1(M))foralljp e M.
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