SOME NEW RIEMANNIAN INVARIANTS

CHRISTOPHER B. CROKE

Introduction

The purpose of this paper is to introduce some new riemannian invariants and to study their properties. In a future paper we will study riemannian manifolds whose invariants are large.

In the first section the invariants are defined and are related to the dimension of the group of isometries. In particular, we have

$$
\operatorname{dim} I_{p} \leqslant \frac{1}{2} A T C_{p}\left(2 n-A T C_{p}-1\right)
$$

where I_{p} is the isotropy group of isometries at a point p of an n-dimensional complete connected riemannian manifold M, and $A T C_{p}$ is one of the invariants.

In the second section we show, using the invariants and the Rauch comparison theorem, that for manifolds whose diameter is small relative to their sectional curvature, the group I_{p} is finite for all p in M. We also study other properties of such "small diameter" manifolds.

In the third section we study how the invariants behave under products and coverings.

In the fourth section we compute the invariants on some riemannian manifolds.

In the fifth section we study in detail some of the properties the invariants possess. In particular we study the p-dependence.

In the sixth section we prove a result which relates the geometries of the submanifolds in question.

Throughout the paper a manifold will be a complete connected riemannian manifold unless otherwise stated. A submanifold will always be an embedded submanifold.

I would like sincerely to thank my advisor, Professor Richard K. Lashof, for his advice and encouragement. I would also like to thank Dr. Allen Back, Professor Melvin Rothenberg, and Dr. Jonathan Sacks for many helpful conversations.

[^0]
1. Definitions and preliminary theorems

1.1. Definitions. A subset N of a complete riemannian manifold is said to be:
(a) Totally Convex (TC) if whenever $x, y \in N$ and γ is any geodesic from x to y, then $\gamma \subset N$.
(b) Almost Totally Convex (ATC) if whenever $x, y \in N$ and γ is any geodesic from x to y such that x is not conjugate to y along γ, then $\gamma \subset N$.
(c) Completely Convex (CC) if whenever $x, y \in N$ and γ is a unique minimizing geodesic from x to y such that x is not conjugate to y along γ, then $\gamma \subset N$.

It is clear from the definitions that

$$
T C \Rightarrow A T C \Rightarrow C C .
$$

1.2. Definitions. Let M be a complete connected riemannian manifold. For every linear $S \subset T_{p} M$, define $N_{S}^{C C}$ to be the smallest topologically closed totally geodesic submanifold through p such that $N_{S}^{C C}$ is completely convex and $S \subset T_{p}\left(N_{S}^{C C}\right)$. Similarly, defined $N_{S}^{A T C}$ and $N_{S}^{T C}$. Let $N_{S}^{T G}$ be the smallest topologically closed totally geodesic submanifold such that $S \subset T_{p}\left(N_{S}^{T G}\right)$.

The existence and uniqueness of these submanifolds follows from the fact that M satisfies all of the properties (except being the smallest) and the properties are closed under intersections.

The submanifolds are related by $N_{S}^{T G} \subseteq N_{S}^{C C} \subseteq N_{S}^{A T C} \subseteq N_{S}^{T C} \subseteq M$. The submanifolds $N_{S}^{C C}$ and $N_{S}^{A T C}$ are important in studying isometries as the following propositions show.
1.3. Proposition. Let $f: M \rightarrow M$ be an isometry of a complete connected riemannian manifold, and S a linear subspace of $T_{p} M$. Then $\left.f_{*}\right|_{s}$ determines $\left.f\right|_{N_{S}^{c c}}$.

Proof. Assume g: $\mathbf{M} \rightarrow \mathbf{M}$ is another isometry such that $\left.g_{*}\right|_{s}=\left.f_{*}\right|_{s}$, and let $h=g^{-1} \circ f$. Then $\left.h_{*}\right|_{S}=$ id. We need only show $\left.h\right|_{N_{s}^{c c}}=$ id. Let M^{h} be the fixed point set of h. We know that M^{h} is a topologically closed totally geodesic submanifold of M. We need only show M^{h} is completely convex. Let x and y be in M^{h}, and γ a unique minimizing geodesic from x to y. Since $h(x)=x$ and $h(y)=y, h(\gamma)$ is a geodesic from x to y. Since γ is minimizing, so is $h(\gamma)$. Since γ is the unique minimizing geodesic, $\gamma=h(\gamma)$. Since h preserves lengths, $\gamma(t)=h(\gamma(t))$ so $\gamma \subset M^{h}$ and M^{h} is completely convex. Further $S \subset T_{p} M^{h}$. Since $N_{S}^{C C}$ is the smallest topologically closed totally geodesic completely convex submanifold, we have $N_{S}^{C C} \subset M^{h}$. So $\left.h\right|_{N_{S}^{c c}}=$ id. For $N_{S}^{A T C}$ we have a similar result.
1.4. Proposition. Let $I(M)$ be the group of isometries of a complete connected riemannian manifold M, and let $I_{S}^{f}=\left\{g \in I(M)\right.$ s.t. $\left.\left.g_{*}\right|_{S}=\left.f_{*}\right|_{S}\right\}$ for S linear in $T_{p} M$ and $f \in I(M)$. Then the set $\left\{h: N_{S}^{A T C} \rightarrow M\right.$ s.t. $h=\left.g\right|_{N_{S}^{A T C}}$ for $\left.g \in I_{S}^{f}\right\}$ is finite.

Note. Proposition 1.3 says that the corresponding set for $N_{S}^{C C}$ consists of one element.

Proof. $\quad I_{S}^{f}=f \cdot I_{S}^{\text {id }} . I_{S}^{\text {id }}$ is a closed Lie subgroup of the isotropy subgroup at p and thus is compact. It is sufficient to show that the action of $g \in I_{S}^{\text {id }}$ on $N_{S}^{A T C}$ is determined by the component of $I_{S}^{\text {id }}$ which g lies in, since there are only a finite number of components. Since $I_{S}^{\text {id }}$ is a Lie group it is sufficient to show that if g is in the identity component of $I_{S}^{\text {id }}$, then $\left.g\right|_{N_{S}^{1 T C}}=$ id. So let g_{t} be a one-parameter subgroup of $I_{S}^{\text {id }}$ such that $g=g_{t_{0}}$ for some t_{0}. Let $M^{g_{t}}$ be the set of points fixed by all g_{t}. We know that $M^{g_{t}}$ is a topologically closed totally geodesic submanifold of M. Further $\left.g_{t *}\right|_{S}=$ id for all t so $S \subset T_{p} M^{g_{t}}$. Thus in order to show $N_{S}^{A T C} \subset M^{g_{t}}$ we need only show $M^{g_{t}}$ is almost totally convex. Let $x, y \in M^{g_{1}}$, and γ be a geodesic from x to y. If $\gamma \not \subset M^{g_{1}}$, then $g_{t}(\gamma)$ is a one-parameter group of geodesics from x to y. This implies that x is conjugate to y along γ. Therefore, if x is not conjugate to y along γ, then $\gamma \subset M^{g_{t}}$. Thus $M^{g_{t}}$ is almost totally convex. q.e.d.

These propositions are most interesting, when S has small dimension, and $N_{S}^{C C}$ or $N_{S}^{A T C}$ is the whole manifold.
1.5. Definition. For M complete and connected, and $p \in M, C C_{p}(M) \equiv$ $\min \left\{\operatorname{dim} S \mid S \subset T_{p} M\right.$ and $\left.N_{S}^{C C}=M\right\}$. This is clearly well defined since $N_{T_{p} M}^{C C}=M$.

Similarly, define $T C_{p}(M), A T C_{p}(M), T G_{p}(M)$.
We have the following relationship $0 \leqslant T C_{p}(M) \leqslant A T C_{p}(M) \leqslant C C_{p}(M)$ $\leqslant T G_{p}(M) \leqslant n$, where n is the dimension of M. Further $1 \leqslant C C_{p}(M)$ as the point p is always a topologically closed totally geodesic completely convex submanifold.

These numbers do depend on the point p. See Section 4 for examples and Section 5 for discussion of the p-dependence.

The previous propositions lead us to the following relationships between $A T C_{p}, C C_{p}$ and the dimension of the isotropy subgroup of isometries at p.
1.6. Theorem. Let M be a complete connected riemannian manifold. For $p \in M$, let I_{p} be the isotropy subgroup of isometries at p. Then

$$
\operatorname{dim}\left(I_{p}\right) \leqslant \frac{1}{2} A T C_{p}\left(2 n-A T C_{p}-1\right) \leqslant \frac{1}{2} C C_{p}\left(2 n-C C_{p}-1\right)
$$

Proof. Let $\rho: I_{p} \rightarrow O(n)$ be the isotropy representation. Let S be an $A T C_{p}$-dimensional linear subspace of $T_{p} M$ such that $N_{S}^{A T C}=M$. Such a
subspace exists by the definition of $A T C_{p}$. Now by Proposition 1.4 there are only a finite number of isometries whose differentials leave S fixed. Let $O\left(n-A T C_{p}\right)$ be the group of rotations which leave S fixed. Then $\rho\left(I_{p}\right) \cap O(n$ $-A T C_{p}$) is finite. Since ρ is injective, the result follows by checking the dimensions of the Lie algebras, i.e., $\operatorname{dim} I_{p} \leqslant \operatorname{dim} O(n)-\operatorname{dim} O\left(n-A T C_{p}\right)$ $=\frac{1}{2} A T C_{p}\left(2 n-A T C_{p}-1\right)$. The other inequality follows from noticing that $A T C_{p} \leqslant C C_{p}$. q.e.d.

Note. The inequality $\operatorname{dim}\left(I_{p}\right) \leqslant \frac{1}{2} C C_{p}\left(2 n-C C_{p}-1\right)$ can be derived directly using a similar argument and Proposition 1.3. These inequalities can be improved by using representations of Lie groups.

The inequality $\operatorname{dim} I_{p} \leqslant \frac{1}{2} C C_{p}\left(2 n-C C_{p p}-1\right)$ can be made strict for most values of n and $C C_{p}$ by noticing that $O(n) / O\left(n-C C_{p}\right)$ does not admit a Lie group structure so that the embedding f

cannot be diffeomorphism.
The riemannian invariants $A T C_{p}, C C_{p}, T C_{p}, T G_{p}$ give rise to differential invariants as follows.
1.7. Definition. If M is a smooth connected manifold and $p \in M$, define

$$
\widetilde{C C}=\max \left\{C C_{p}(M, \rho) \mid \rho \text { a complete metric }\right\} .
$$

Likewise define $\widetilde{A T C}, \widetilde{T C}, \widetilde{T G}$.
Note. The differential invariants are independent of the point p. Let q be any other point of M. Then there is a diffeomorphism f of M such that $f(q)=p$. Thus

$$
C C_{p}(M, \rho)=C C_{q}\left(M, f^{*} \rho\right)
$$

The differential invariants are related to the Hsiang (or Compact) degree of symmetry by
1.8. Corollary. If M^{n} is a smooth connected manifold, then

$$
h(M) \leqslant \frac{1}{2} \widetilde{A T C}(2 n-\widetilde{A T C}-1)+n
$$

where $h(M)$ is the Hsiang degree of symmetry.
Proof. Let G be a compact group of diffeomorphisms of dimension $h(M)$ acting effectively on M. Let ρ be any complete metric on M, and $\tilde{\rho}$ the G-averaged metric (i.e., $\tilde{\rho}=\int_{G} g^{-1} \rho d g$). Let G_{p} be the isotropy subgroup. With the averaged metric, M is a complete connected riemannian manifold
on which G acts as a group of isometries. Since G is effective, $\operatorname{dim} G \leqslant$ $\operatorname{dim} G_{p}+n$. By Theorem 1.6,

$$
\operatorname{dim} G_{p} \leqslant \frac{1}{2} A T C_{p}(M)\left(2 n-A T C_{p}(M)-1\right) \leqslant \frac{1}{2} \widetilde{A T C}(2 n-\widetilde{A T C}-1)
$$

Hence the corollary follows.

2. Manifolds with small diameter

The inequality of Theorem 1.6,

$$
\operatorname{dim}\left(I_{p}\right) \leqslant \frac{1}{2} A T C_{p}\left(2 n-A T C_{p}-1\right)
$$

tells us that $A T C_{p}=0$ implies I_{p} is finite (since it is known to be compact Lie). In this chapter we will take advantage of this fact.
The following will be a useful corollary to the Rauch Comparison Theorem.
2.1. Lemma. Let M^{n}, M_{0}^{n} be complete riemannian manifolds such that $K_{M_{0}} \geqslant K_{M}$ (i.e., all sectional curvatures in M_{0} are larger than those in M). Let $p \in M$ and $p_{0} \in M_{0}$. Let I be an isometry from $T_{p} M$ to $T_{p_{0}} M$. Assume further that there are no critical points of Exp_{p} or $\operatorname{Exp}_{p_{0}}$ in $B_{r}(0)$. If $\tau \subset B_{r}(0) \subset T_{p} M$ is a differentiable curve, then

$$
L\left[\operatorname{Exp}_{p} \tau\right] \geqslant L\left(\operatorname{Exp}_{p_{0}} I(\tau)\right)
$$

where L represents length.
Proof. It is sufficient to show for every t that $\left\|\operatorname{Exp}_{p_{*}} \tau^{\prime}(t)\right\| \geqslant$ $\left\|\operatorname{Exp}_{p_{0 *}} I\left(\tau^{\prime}(t)\right)\right\|$. Consider the variations

$$
\begin{aligned}
\alpha(s, t) & =\operatorname{Exp}_{p} s \cdot \tau(t) \\
\alpha_{0}(s, t) & =\operatorname{Exp}_{p_{0}} s \cdot I(\tau(t))
\end{aligned}
$$

Now for fixed t the variation vector fields V^{t}, V_{0}^{t} along the geodesics $\gamma(s)=\alpha(s, t)$ and $\gamma_{0}(s)=\alpha_{0}(s, t)$ are Jacobi fields with $V^{t}(0)=0=V_{0}^{t}(0)$, and further $I\left(V^{\prime t}(0)\right)=V_{0}^{\prime t}(0)$ and $I\left(\gamma^{\prime}(0)\right)=\gamma_{0}^{\prime}(0)$ so by the Rauch theorem (see [2, pp. 29, 30]), $\left\|V^{t}(s)\right\| \geqslant\left\|V_{0}(s)\right\|$. But $V^{t}(1)=\operatorname{Exp}_{p_{*}} \tau^{\prime}(t)$ and $V_{0}^{t}(1)=$ $\operatorname{Exp}_{p_{0 *}} I\left(\tau^{\prime}(t)\right.$), so the lemma follows. q.e.d.

The following standard path lifting lemma will be useful in proving the main theorem of this chapter.
2.2. Lemma. Let M be a complete connected riemannian manifold, and $\tau:[0,1] \rightarrow M$ a piecewise differentiable curve. Let $p \in M$ and $v \in T_{p} M$ such that v is not in the conjugate locus in $T_{p} M$ and that $\operatorname{Exp}_{p} v=\tau(0)$. Assume further that for $t \in[0,1]$ there is an $\varepsilon>0$ such that for all $s<t$ there is a unique lift $\tilde{\tau}_{s}:[0, s] \rightarrow T_{p} M$ starting at $v\left(i . e ., \tilde{\tau}_{s}(0)=v\right.$ and $\left.\operatorname{Exp}_{p} \tilde{\tau}=\left.\tau\right|_{[0, s}\right)$ such that the distance from $\tilde{\tau}_{s}(s)$ to the conjugate locus is $>\varepsilon$ (in the usual metric on $T_{p} M$). Then there is a unique lift $\tilde{\tau}:[0, t] \rightarrow T_{p} M$ of τ starting at v.

Remark. The above lemma tells us that τ can be uniquely lifted to $\tilde{\tau}$ as long as $\tilde{\tau}$ does not approach the conjugate locus. This follows from the fact that if $\tilde{\tau}:[0, t] \rightarrow T_{p} M$ exists, and $\tilde{\tau}(t)$ is not in the conjugate locus, then near $\tilde{\tau}(t), \operatorname{Exp}_{p}$ is a diffeomorphism, so for some $\varepsilon>0, \tilde{\tau}$ can be uniquely extended to $[0, t+\varepsilon]$.

Proof of Lemma 2.2. All lengths of vectors in $T_{p} M$ will be with respect to the usual metric while all distances of points in M will be with respect to the metric on M. Let L be the length of $\tau(l(\tau))$. By the Gauss Lemma any partial lift $\tilde{\tau}:[0, s] \rightarrow T_{p} M$ must lie in $B_{r}(0)$ where $r=\|v\|+L$. Let \cup_{ε} be the union of all $B_{\varepsilon}(w)$ for w in the conjugate locus in $T_{p} M$. Then \cup_{ε} is open and for all $s<t, \tilde{\tau}(s) \in\left(T_{p} M-\cup_{\varepsilon}\right) \cap \overline{B_{r}(0)} \equiv C . C$ is a compact subset of $T_{p} M$ which contains no conjugate points. Consider $\operatorname{Exp}_{p_{*}}$ restricted to $S C$, the unit sphere bundle of $T C \subset T T_{p} M$. Since $S C$ is compact and $\left\|\operatorname{Exp}_{p_{p}} \mathscr{V}\right\| \neq 0$ for $\mathscr{V} \in$ $S C$, there is an $A>0$ such that $\left\|\operatorname{Exp}_{p_{*}} \mathscr{V}\right\| \geqslant A$ for all $\mathscr{V} \in S C$. Thus for any piecewise differentiable curve $\gamma \subset C$ we have $l\left(\operatorname{Exp}_{p} C\right) \geqslant A l(C)$. Therefore $L / A \geqslant l\left(\left.\tilde{\tau}\right|_{[0, t)}\right)$. Since C is compact, $\{\tilde{\tau}(s) \mid s \in[0, t)\}$ has a limit point $\tilde{\tau}(t)$. This limit point is uniquie since $\left.\tau\right|_{[0, t)}$ has finite length. Thus there is a unique lift $\tilde{\tau}:[0, t] \rightarrow T_{p} M$.

Remark. In the above lemma we ignored questions of differentiability of $\tilde{\tau}$. The necessary differentiability conditions follow from the fact that τ is piecewise differentiable, and Exp_{p} is a local diffeomorphism away from the conjugate locus.
2.3. Definition. A riemannian manifold M is said to have small diameter if M is compact connected with diameter d such that $d<\frac{1}{2} \pi / \sqrt{k}$ where k is some positive number with $k \geqslant K_{M}$.
2.4. Theorem. If M is a manifold of small diameter, then I_{p} is finite for all $p \in M$.

Remark. Let $\mathbf{R P}^{n}$ have the metric of constant curvature k. Then $d\left(\mathbf{R P}^{n}\right)$ $=\frac{1}{2} \pi / \sqrt{k}$ and $I_{p}=O(n)$ for all $p \in \mathbf{R P}^{n}$ showing that the theorem is sharp.
The theorem contains the following well-known result.
2.5. Corollary. If M is a connected compact manifold of nonpositive curvature, then I_{p} is finite for all $p \in M$.

Proof. M is easily seen to have small diameter by letting $0<k<$ $\left(\frac{1}{2} \pi / d\right)^{2}$.
2.6. Corollary. If a manifold M of small diameter also satisfies one of the following:
(a) $\chi(M) \neq 0$, where χ is the Euler characteristic,
(b) M is orientable and some Pontrjagin number is not 0 , then $I(M)$ is finite.

Proof. These conditions imply that one-parameter groups of $I(M)$ have fixed points (see [3]).

Proof of Theorem 2.4. By the Rauch Comparison Theorem, the first conjugate point $\gamma\left(t_{0}\right)$ along any geodesic γ from p does not occur until a distance π / \sqrt{k} along γ. Therefore the critical points of $\operatorname{Exp}_{p}: T_{p} M \rightarrow M$ lie outside the open ball $B_{\pi / \sqrt{k}}(0)$.

We claim that $\operatorname{Exp}_{p}^{-1}(p) \cap B_{\pi / \sqrt{k}}(0)$ does not lie in any $(n-1)$ dimensional linear subspace S of $T_{p} M$.

Assume such an S exists. Let $V \in T_{p} M$ be a unit vector normal to S. Let $\tilde{q}=\frac{1}{2} \pi / \sqrt{k} \cdot V \in T_{p} M$ and $q=\operatorname{Exp}_{p} \tilde{q}$. Let τ be a minimal geodesic from q to p. Since $\operatorname{diam}(M)<\frac{1}{2} \pi / \sqrt{k}, L(\tau)<\frac{1}{2} \pi / \sqrt{k}$. By the Gauss Lemma and Lemma 2.2 there is a unique lift $\tilde{\tau}$ of τ to $T_{p} M$ such that $\tilde{\tau}(0)=\tilde{q}$. Further, the Gauss Lemma tells us $\tilde{\tau} \subset B_{\pi / \sqrt{k}}(0)$. Now $\operatorname{Exp}_{p} \tilde{\tau}(1)=p$, so $\tilde{\tau}(1) \in S$ by assumption.

Let $p_{0} \in S^{n}$, the sphere of constant curvature k, and let $I: T_{p} M^{n} \rightarrow T_{p_{0}} S^{n}$ be an isometry. By Lemma 2.1, $L(\tau)=L\left(\operatorname{Exp}_{p} \tilde{\tau}\right) \geqslant L\left(\operatorname{Exp}_{p_{0}} I \tilde{\tau}\right)$. If we let $\operatorname{Exp}_{p_{0}} I \tilde{q}$ be the north pole, then $\operatorname{Exp}_{p_{0}} I(S)$ is the equator, and since $\operatorname{Exp}_{p_{0}} I \tilde{\tau}$ is a curve from $\operatorname{Exp}_{p_{0}} I \tilde{q}$ to $\operatorname{Exp}_{p_{0}} I(S)$,

$$
\frac{1}{2} \pi / \sqrt{k}>L(\tau) \geqslant L\left(\operatorname{Exp}_{p_{0}} I \tilde{\tau}\right) \geqslant \frac{1}{2} \pi / \sqrt{k}
$$

giving the contradiction.
Now consider $N_{0}^{A T C} \cdot p \in N_{0}^{A T C}$. Let $V \in \operatorname{Exp}_{p}^{-1}(p) \cap B_{\pi / \sqrt{k}}$. Then $\operatorname{Exp}_{p} t V$ is a geodesic γ from p to p such that p is not conjugate to p along γ.

Thus $\gamma \subset N_{0}^{A T C}$ and $V \in T_{p} N_{0}^{A T C}$. By the claim the set of such V 's span $T_{p} M$. Thus $T_{p} M=T_{p} N_{0}^{A T C}$ which implies that $N_{0}^{A T C}=M$ so that $A T C_{p}(M)=0$. From Theorem 1.6 we get I_{p} is finite. q.e.d.

If M is a complete connected riemannian manifold, we will let \tilde{M} denote its universal covering space with the induced metric from $\pi: \tilde{M} \rightarrow M$.
2.7. Proposition. Let M be a manifold of small diameter. If for some $\tilde{\sim} \in \tilde{M}$ we have the cut locus to \tilde{p} is equal to the first conjugate locus in $T_{\tilde{p}} \tilde{M}$, then $\left|\pi_{1}(M)\right|>\operatorname{dim}(M)$. Further $I_{\pi(\tilde{p})} \subset \operatorname{Aut}\left(\pi_{1}(M)\right)$.

Proof. Consider the following commutative diagram:

π_{*} will take the first conjugate locus in $T_{\tilde{p}} \tilde{M}$ to the first conjugate locus in $T_{\pi(\tilde{p})} M$. Since M is a manifold of small diameter, we know that the first conjugate locus lies outside $B_{\pi / \sqrt{k}}(0)$. Therefore the cut locus in $T_{\tilde{p}} \tilde{M}$ lies outside of $B_{\pi / \sqrt{k}}(0)$. Thus $\operatorname{Exp}_{\tilde{p}} \mid B_{\pi / \sqrt{k}}(0)$ is a diffeomorphism. Let $S=$ $\operatorname{Exp}_{\pi(\tilde{p})}^{-1} \pi(\tilde{p}) \cap B_{\pi / \sqrt{k}}(0)$. By the claim in the proof of Theorem 2.6 we know that S lies in no $(n-1)$-dimensional linear subspace, so S contains at least $n+1$ points. Let $S^{\prime} \subset \tilde{M}$ be $\operatorname{Exp}_{\tilde{p}} \circ \pi_{*}^{-1}(S)$. Since $\operatorname{Exp}_{\tilde{p}} \circ \pi_{*}^{-1} \mid B_{\pi / \sqrt{k}}(0)$ is a diffeomorphism, S^{\prime} has at least $n+1$ points. Further $\pi\left(S^{\prime}\right)=\{\pi(\tilde{p})\}$, so $\pi_{1}(M)>n$. Now we know that each element of $I_{\pi(\tilde{p})}$ acts as an automorphism of $\pi_{1}(M)$, so we have a homomorphism $I_{\pi(\tilde{p})} \rightarrow \operatorname{Aut}\left(\pi_{1}(M)\right)$. We need only show that this is injective. For each element $V \in S$, the loop $\operatorname{Exp}_{p} t V$ corresponds to an element of $\pi_{1}(M)$. The above argument shows that the function $S \rightarrow \pi_{1}(M)$ is one-to-one. Let $f \in I_{\pi(\tilde{p})}$ such that f corresponds to the identity in $\operatorname{Aut}\left(\pi_{1}(M)\right)$. Now f_{p} acts as a permutation on S, and since f corresponds to Id $\in \operatorname{Aut}\left(\pi_{1}(M)\right), f_{p}$ leaves S fixed but since S spans $T_{p} M, f_{p}$ leaves $T_{p} M$ fixed. Therefore $f=\operatorname{Id}$ on M, so the map $I_{\pi(\tilde{p})} \rightarrow \operatorname{Aut}\left(\pi_{1}(M)\right)$ is injective.
2.8. Corollary. Let M be a manifold of small diameter. If for some $p \in M$ the first conjugate point along any geodesic eminating from p has multiplicity \geqslant 2, then $\left|\pi_{1}(M)\right|>\operatorname{dim}(M)$, and $I_{p} \subset \operatorname{Aut}\left(\pi_{1}(M)\right)$.

Proof. Let $\tilde{p} \in \tilde{M}$ be such that $\pi(\tilde{p})=p$. Then the first conjugate point along any geodesic emanating from \tilde{p} has multiplicity $\geqslant 2$. The corollary will follow from the theorem and the following lemma found in Warner [6].
2.9. Lemma. Let M be a complete riemannian manifold. Let $p \in M$ such that the first conjugate point along any geodesic from p has multiplicity $\geqslant 2$. Then M is simply connected if and only if the first conjugate locus is equal to the cut locus in $T_{p} M$.

Proof. Let q be any point in M such that q is not conjugate to p along any geodesic, and q is not in the cut locus to p. By Morse theory [5], $\Omega_{p, q}$ has the homotopy type of a C.W. complex with a cell of dimension λ for each geodesic from p to q to index λ. Since the first conjugate point along any geodesic has multiplicity $\geqslant 2$, we see there are no 1 -cells in this C.W. complex. Thus M is simply connected if and only if for each such q there is a unique geodesic γ_{q} of index 0. γ_{q} must be the unique minimizing geodesic. If cut $=$ first conjugate, it is clear that the only geodesic from p to such a q of index 0 is the unique minimizing geodesic. Since the set of such q 's is dense, we have that if the only geodesic from p to q of index 0 is the unique minimizing geodesic then the cut locus equals the first conjugate locus.
2.10. Corollary. Let M^{n} be a complete simply connected riemannian manifold. Assume that there is a $k>0$ such that $k \geqslant K_{M}$, and that for some $p \in M$ the first conjugate locus is equal to the cut locus in $T_{p} M$. Let G be a finite group acting freely on M through isometries. If $|G| \leqslant n$, then the orbit of $B_{\pi / 2 \sqrt{k}}(p)$ does not cover M.

Proof. Assume the orbit did cover M. Studying the proofs of Theorems 2.4 and 2.7 we see that we can replace the condition on the diameter with a similar condition on the maximum distance from p to any point in M. In the current case the image of p in M / G will satisfy this condition. Hence $\left|\pi_{1}(M / G)\right|>n$, but $\pi_{1}(M / G)=G$ and $|G| \leqslant n$.

Remark. A similar statement can be made about free group actions where $|G| \leqslant m n$ only, then the disk will be smaller.
2.11. Corollary. If M is a compact manifold of nonpositive curvature, then I_{p} is a subgroup of $\operatorname{Aut}\left(\pi_{1}(M)\right)$ for all $p \in M$.

Remarks. (1) If T^{2} is the flat torus coming from the standard $Z \times Z$ action on \mathbf{R}^{2}, then for all $p \in T^{2}, I_{p}=\operatorname{Aut}\left(\pi_{1}(M)\right.$).
(2) Applying Corollary 2.10 to S^{n} with constant curvature k we see that the orbit of the open upper hemisphere under a G action $(|G| \leqslant n)$ does not cover. In fact, there is no way to cover S^{n} with n disks of radius $\pi / 2 \sqrt{k}$ even without a group action. Such a conclusion, however, is hard to make for other simply connected spaces with first conjugate locus equal to the cut locus. A simple volume argument will not suffice. The corollary may be saying more about the shape of such spaces than about free finite group actions.

3. Products and coverings

In this section we study how the invariants behave under coverings and products. In the next chapter we will give examples which show that the results of this section are the best possible.

We begin with some useful lemmas.
If M_{1} and M_{2} are complete connected riemannian manifolds, then so is $M_{1} \times M_{2}$. Any geodesic γ from $\left(p_{1}, p_{2}\right)$ is $\left(\gamma_{1}, \gamma_{2}\right)$ where γ_{1} and γ_{2} are geodesics in M_{1} and M_{2} from the points p_{1} and p_{2}.
3.1. Lemma. Let $\gamma \subset M_{1} \times M_{2}$ be a geodesic from $\left(p_{1}, p_{2}\right)$ to $\left(q_{1}, q_{2}\right)$. Then $\left(p_{1}, p_{2}\right)$ is conjugate to $\left(q_{1}, q_{2}\right)$ along γ if and only if p_{i} is conjugate to q_{i} along γ_{i} for some $i=1$ or 2 .

Proof. If p_{i} is conjugate to q_{i} along γ_{i}, then there is a variation $\alpha(s, t) \rightarrow$ M_{i} through geodesics such that the variation vector field $\tilde{V}(t)$ along $\alpha(0, t)=$ $\gamma_{i}(t)$ is not identically 0 , but $V(0)=V(1)=0$. Let $\tilde{\alpha}(s, t) \rightarrow M_{1} \times M_{2}$ be defined by $\tilde{\alpha}(s, t)=\left(\alpha(s, t), \gamma_{j}(t)\right), i \neq j$. Then $\tilde{\alpha}(s, t)$ is a variation through geodesics, $\gamma(t)=\tilde{\alpha}(0, t)$ and the variation vector field $\tilde{V}(t)$ along $\gamma(t)$ is not identically 0 , but $\tilde{V}(0)=\tilde{V}(1)=0$. Thus $\left(p_{1}, p_{2}\right)$ is conjugate to $\left(q_{1}, q_{2}\right)$ along γ. If (p_{1}, p_{2}) is conjugate to (q_{1}, q_{2}) along γ, let $\alpha(s, t) \rightarrow M_{1} \times M_{2}$ be an appropriate variation through geodesics. Now $\alpha(s, t)$ determines variations $\alpha_{1}(s, t) \rightarrow M_{1}$ and $\alpha_{2}(s, t) \rightarrow M_{2}$ through geodesics by projection. Now if $V(t)$ is the variation field along γ, then $V(t)=V_{1}(t)+V_{2}(t)$ where V_{1} and V_{2} correspond to the variations α_{1} and α_{2}. Thus $V(t) \neq 0$ implies $V_{i} \neq 0$ for some i, and $V(0)=V(1)=0$ implies $V_{i}(0)=V_{i}(1)=0$. Therefore p_{i} is conjugate to q_{i} along $\gamma_{i}=\alpha_{i}(0,-)$.
3.2. Lemma. If N_{i} is a topologically closed totally geodesic submanifold (resp. CC, ATC, TC) of $M_{i}, i=1,2$, then $N_{1} \times N_{2}$ is a topologically closed totally geodesic submanifold (resp. CC, ATC, TC) of $M_{1} \times M_{2}$.

Proof. $\quad N_{1} \times N_{2}$ is clearly a closed submanifold. If $V \in T_{\left(p_{1}, p_{2}\right)} N_{1} \times N_{2}$, then $V=V_{1}+V_{2}$ where V_{1} is tangent to N_{1}, and V_{2} is tangent to N_{2}. Since N_{i} is totally geodesic, the geodesics γ_{i} such that $\gamma_{i}^{\prime}(0)=V_{i}$ are in N_{i}. Thus the geodesic $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ is in $N_{1} \times N_{2}$, and $\gamma^{\prime}(0)=V$. Thus $N_{1} \times N_{2}$ is totally geodesic. Now if γ is a unique minimizing geodesic from $\left(p_{1}, p_{2}\right)$ to $\left(q_{1}, q_{2}\right)$, then γ_{i} will be the unique minimizing geodesics from p_{i} to q_{i}. Thus if the N_{i} 's are CC, $N_{1} \times N_{2}$ is CC. If γ is any geodesic from $\left(p_{1}, p_{2}\right)$ to $\left(q_{1}, q_{2}\right)$, then γ_{i} will be a geodesic from p_{i} to q_{i}. Thus, if the N_{i} 's are $T C$, then $N_{1} \times N_{2}$ is $T C$. If γ is a geodesic from $\left(p_{1}, p_{2}\right)$ to $\left(q_{1}, q_{2}\right)$ such that $\left(p_{1}, p_{2}\right)$ is not conjugate to $\left(q_{1}, q_{2}\right)$ along γ, then Lemma 3.1 tells us that p_{i} is not conjugate to q_{i} along γ_{i}. Thus, if the N_{i}^{\prime} 's are $A T C$, then $N_{1} \times N_{2}$ is $A T C$. Hence the lemma follows.
3.3. Lemma. Let $N \subset M_{1} \times M_{2}$ be a topologically closed totally geodesic (resp. CC, ATC, TC) submanifold, and let $\left(p_{1}, p_{2}\right) \in N$. Then $N \cap M_{i}\left(M_{i}\right.$ here is the copy of M_{i} going through the point $\left.\left(p_{1}, p_{2}\right)\right)$ is a topologically closed totally geodesic (resp. CC, ATC, TC) submanifold of M_{i}.

Proof. Since M is a closed totally geodesic submanifold of $M_{1} \times M_{2}$, so is $N \cap M_{i}$. Thus $N \cap M_{i}$ is a topologically closed totally geodesic submanifold
of M_{i}. If $\gamma \subset M_{i}$ is a geodesic in M_{i} between two points in $N \cap M_{i}$, then γ is clearly a geodesic in $M_{1} \times M_{2}$ between two points in N. Thus N being $T C$ gives $N \cap M_{i}$ being $T C$. If $\gamma \subset M_{i}$ is a unique minimizing geodesic, then γ is a unique minimizing geodesic in $M_{1} \times M_{2}$. Thus, if N is $C C$, then $N \cap M_{i}$ is $C C$. If $\gamma \subset M_{i}$ is a geodesic from p to $q \in M_{i}$ such that p is not conjugate to q along γ (thinking of conjugacy in M_{i}), then p is not conjugate to q along γ in $M_{1} \times M_{2}$. This follows since $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ where $\gamma_{j}, j \neq i$, is the constant geodesic, so Lemma 3.1 tells us that γ_{i} not conjugate implies γ is not conjugate. Thus N being $A T C$ gives $N \cap M_{i}$ being $A T C$.
3.4. Proposition. Let M_{1} and M_{2} be connected complete riemannian manifolds. Then $C C_{p_{1}}\left(M_{1}\right)+C C_{p_{2}}\left(M_{2}\right) \geqslant C C_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times M_{2}\right) \geqslant$ $\max \left\{C C_{p_{1}}\left(M_{1}\right), C C_{p_{2}}\left(M_{2}\right)\right\}$. Likewise for $T C, A T C$, and $T G$.

Proof. (1) Assume $C C_{p_{1}}\left(M_{1}\right) \geqslant C C_{p_{2}}\left(M_{2}\right)$. Let $S \subset T_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times M_{2}\right)$ such that $\operatorname{dim}(S)<C C_{p_{1}} M_{1}$. Let S_{1} be the projection of S onto $T_{\left(p_{1}, p_{2}\right)} M_{1}$. Then $\operatorname{dim}\left(S_{1}\right) \leqslant \operatorname{dim} S<C C_{p_{1}} M_{1}$. Let $N \subset M_{1}$ be $N_{S_{1}}^{C C}$. Since $\operatorname{dim}\left(S_{1}\right)<$ $C C_{p_{1}}\left(M_{1}\right), N \neq M_{1}$, thus $N \times M_{2} \neq M_{1} \times \mathrm{M}_{2}$. Now $N \times M_{2}$ is a topologically closed complete convex totally geodesic submanifold of $M_{1} \times M_{2}$ by Lemma 3.2. $S \subset T_{\left(p_{1}, p_{2}\right)} N \times M_{2}$, so $N_{S}^{C C} \subset N \times M_{2} \neq M_{1} \times M_{2}$. Since this was true for all S of dimension less than $C C_{p_{1}} M_{1} \geqslant C C_{p_{2}} M_{2}$ we have $C C_{\left(p_{1}, p_{2}\right)} M_{1} \times M_{2} \geqslant \max \left\{C C_{p_{1}}\left(M_{1}\right), C C_{p_{2}}\left(M_{2}\right)\right\}$. The exact same argument works for $T C, A T C$ and $T G$.
(2) Let $S_{i} \subset T_{p_{i}} M_{i}$ be such that $\operatorname{dim}\left(S_{i}\right)=C C_{p_{i}}\left(M_{i}\right)$ and $N_{S_{i}}^{C C}=M_{i}$, and $S \subset T_{\left(p_{1}, p_{2}\right)} M_{1} \times M_{2}$ the direct sum $S_{1} \oplus S_{2}$. Consider $N_{S}^{C C}$. By Lemma 3.3, $N_{S}^{C C} \cap M_{i}$ is a closed totally geodesic $C C$ submanifold of M_{i}. Further, $S_{i} \subset T_{\left(p_{1}, p_{2}\right)}\left(N_{S}^{C C} \cap M_{i}\right)$, and since $N_{S_{i}}^{C C}\left(M_{i}\right)=M_{i}$ we have that $M_{i} \subset N_{S}^{C C}$. Thus $T_{\left(p_{1}, p_{2}\right)} M_{1} \oplus T_{\left(p_{1}, p_{2}\right)} M_{2}=T_{\left(p_{1}, p_{2}\right)} M_{1} \times M_{2}$ is in $T_{p}\left(N_{S}^{C C}\right)$. Therefore $N_{S}^{C C}=M_{1} \times M_{2}$, so $C C_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times M_{2}\right) \leqslant \operatorname{dim}(S)=C C_{p_{1}} M_{1}+C C_{p_{2}} M_{2}$, and the result follows. Again, the same proof works for $T C, A T C$, and $T G$.

In $\S 5$ we will see that if either M_{1} and M_{2} is compact, then $C C_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times\right.$ $\left.M_{2}\right)=\max \left\{C C_{p_{1}}\left(M_{1}\right), C C_{p_{2}}\left(M_{2}\right)\right\}$. Likewise for $T C$ and $A T C$.

If M is a connected complete riemannian manifold, we will denote by \tilde{M} its universal covering space with the induced metric, and by $\pi: \tilde{M} \rightarrow M$ the covering projection.
3.5. Lemma. If $N \subset M$ is a closed totally geodesic (resp. TC, ATC) submanifold, then so is $\pi^{-1}(N) \subset \tilde{M}$.

Note. This lemma is false for $C C$. Let $p \in T^{2}$ (flat torus), then $\{p\}$ is $C C$, but $\pi^{-1}(p) \in E^{2}$ is not $C C$.

Proof of Lemma. Let $\tilde{N}=\pi^{-1}(N) . \tilde{N}$ is closed since N is closed. \tilde{N} is a totally geodesic submanifold since N is, and this is a local property. Let $\tilde{\gamma}$ be geodesic in \tilde{M} between two points in \tilde{N}. Then $\pi(\tilde{\gamma})=\gamma$ is a geodesic between
two points in N. Thus, if N is $T C$ so is \tilde{N}. If $\tilde{\gamma}$ is a geodesic in \tilde{M} between p and q such that p is not conjugate to q along $\tilde{\gamma}$, then $\gamma=\pi(\tilde{\gamma})$ is a geodesic from $\pi(p)$ to $\pi(q)$ such that $\pi(p)$ is not conjugate to $\pi(q)$ along γ. Thus if N is $A T C$, so is \tilde{N}.
3.6. Proposition. $A T C_{p}(\tilde{M}) \geqslant A T C_{\pi(p)}$. Similarly for $T C$ and $T G$.

Note. The author cannot prove the corresponding result for $C C$, but has found no counterexample.

Proof. Let $S \subset T_{p} \tilde{M}$ such that $\operatorname{dim}(S)<A T C_{\pi(p)}(M)$, and let $S^{\prime}=\pi_{*} S$. Then $N_{S^{\prime}}^{A T C} \neq M$ since $\operatorname{dim}\left(S^{\prime}\right)<A T C_{\pi(p)}(M)$. Therefore $\pi^{-1}\left(N_{S^{\prime}}^{A T C}\right) \neq \tilde{M}$, but Lemma 3.5 implies $N_{S}^{A T C} \subset \pi^{-1}\left(N_{S^{\prime}}^{A T C}\right) \neq \tilde{M}$. Thus $A T C_{p}(\tilde{M}) \geqslant$ $A T C_{\pi(p)}(M)$. Similarly for $T C$ and $T G$.

Remark. The above obviously holds for any covering space.

4. Examples

In this section we examine some examples where the invariants can be computed. These examples serve to show the sharpness of the propositions in $\S 3$, and also illustrate some further properties of the invariants.
4.1. Example. If M is a manifold of small diameter, then

$$
T C_{p}(M)=A T C_{p}(M)=0
$$

for all $p \in M$.
This follows from the results in $\S 2$ and the fact that $T C_{p}(M) \leqslant A T C_{p}(M)$.
4.2. Example. If $\mathbf{S}^{n}, \mathbf{R} \mathbf{P}^{n}$, or $\mathbf{R}^{n}(n>1)$ have constant curvature, then, for all p,

$$
\begin{aligned}
T C_{p}\left(\mathbf{S}^{n}\right) & =0, A T C_{p}\left(\mathbf{S}^{n}\right)=C C_{p}\left(\mathbf{S}^{n}\right)=T G_{p}\left(\mathbf{S}^{n}\right)=n, \\
T C_{p}\left(\mathbf{R} \mathbf{P}^{n}\right) & =0, A T C_{p}\left(\mathbf{R} \mathbf{P}^{n}\right)=C C_{p}\left(\mathbf{R} \mathbf{P}^{n}\right)=T G_{p}\left(\mathbf{R} \mathbf{P}^{n}\right)=n, \\
T C_{p}\left(\mathbf{R}^{n}\right) & =A T C_{p}\left(\mathbf{R}^{n}\right)=C C_{p}\left(\mathbf{R}^{n}\right)=T G_{p}\left(\mathbf{R}^{n}\right)=n
\end{aligned}
$$

To show this let M be one of $\mathbf{S}^{n}, \mathbf{R P}^{n}$ or \mathbf{R}^{n}, and fix $p \in M$. If $S \subset T_{p} M$ is any linear subspace, then $\operatorname{Exp}_{p} S$ is a topologically closed almost totally convex totally geodesic submanifold of M. Thus $A T C_{p}(M)=n$. Since $A T C_{p}$ $\leqslant C C_{p} \leqslant T G_{p} \leqslant n$, all of the above follow with the exception of the $T C$'s. For \mathbf{S}^{n} or $\mathbf{R} \mathbf{P}^{n}$ the set of closed geodesics from p to p covers the space. Therefore $T C_{p}\left(\mathbf{S}^{n}\right)=T C_{p}\left(\mathbf{R} \mathbf{P}^{n}\right)=0$. In $\mathbf{R}^{n}, \operatorname{Exp}_{p} S$ is totally convex for any $S \subset T_{p} M$. Thus $T C_{p}\left(\mathbf{R}^{n}\right)=n$.

In a future paper we will show that these spaces are the only ones with $C C_{p}(M)=n$ for all $p \in M$.

The projection $\pi: \mathbf{S}^{n} \rightarrow \mathbf{R} \mathbf{P}^{n}$ serves as an example where $A T C_{p}(\tilde{M})=$ $A T C_{\pi(p)}(M)$. While the projection $\pi: \mathbf{R}^{n} \rightarrow T^{n}$ where T^{n} is the flat torus is an example where $A T C_{p}(M)>A T C_{\pi(p)}(M)$. In fact these same examples work similarly for the other invariants.

Next we consider an example where the invariants depend on the point at which they are evaluated.
4.3. Example. Let M be a paraboloid of revolution with vertex v.

Fig. 4.1
$T C_{v}(M)=A T C_{v}(M)=1, C C_{v}(M)=T G_{v}(M)=2, T C_{p}(M)=A T C_{p}(M)=$ $0, C C_{p}(M)=T G_{p}(M)=1$, for $p \neq v$.

First consider the vertex v. Since every geodesic from v does not return to v, we see that $\{v\}$ is totally convex, so that $N_{0}^{T C} \neq M$. If S is any one-dimensional subspace of $T_{v} M$ then $\operatorname{Exp}_{v} S$ consists of the two geodesics running down on opposite sides of M. Since this set is completely convex, $C C_{c}(M)=$ 2 and so $T G_{v}(M)=2$. However there are geodesics running from one side of M to the other such that the endpoints are not conjugate along the geodesic. Thus $A T C_{v}(M)=1$ and $T C_{v}(M)=1$. Now if $p \neq v$, consider the closed geodesic γ represented in Fig. 4.1. Let S be the one-dimensional subspace at p generated by $\gamma^{\prime}(0)$. It is clear that the only topologically closed totally geodesic submanifold N of M with $S \subset T_{p} M$ is M itself. Thus $T G_{p}(M) \leqslant 1$. But $1 \leqslant C C_{p}(M) \leqslant T G_{p}(M) \leqslant 1$. Further, since p is not conjugate to p along γ, we get $A T C_{p}(M)=0$ and thus $T G_{p}(M)=0$.

Now we will consider some products. For brevity we will consider only $A T C_{p}$.
4.4. Examples. (1) $A T C_{p}\left(S^{r} \times S^{s}\right)=\max \{r, s\}$.
(2) $A T C_{p}\left(\mathbf{R}^{r} \times \mathbf{R}^{s}\right)=r+s ; \mathbf{R}^{r}, \mathbf{R}^{s}$ with flat metric.
(3) $A T C_{p}\left(S^{r} \times T^{s}\right)=r$ where T^{s} is the flat torus, and we assume that $r>1$.

Example (2) is the same as Example 4.2, while Examples (1) and (3) will follow from Proposition 5.8.

In the above, Examples (1) and (2) serve to show the sharpness of Proposition 3.4. (3) shows that for every pair (n, r) of integers such that $0 \leqslant r \leqslant n$ there is an n-dimensional manifold M with $A T C_{p}(M)=r$.

In general it is not easy to compute these invariants. In the next example we will consider $\mathbf{C P}^{n}$.
4.5. Example. For $\mathbf{C P}{ }^{n}$ with the symmetric space metric we have

$$
T C_{p}\left(\mathbf{C P}^{n}\right)=0, A T C_{p}\left(\mathbf{C P}^{n}\right)=C C_{p}\left(\mathbf{C P}{ }^{n} k\right)=T G_{p}\left(\mathbf{C P}^{n}\right)=n
$$

(Note: $n=\frac{1}{2}$ real dimension.) Every geodesic emanating from p returns to p, thus $T C_{p}\left(\mathbf{C P}^{n}\right)=0$.

The strategy in computing the remaining numbers is as follows. First we will show that if $S \subset T_{p} \mathbf{C P}$ is a complex subspace, then $\operatorname{Exp}_{p} S$ is a topologically closed, almost totally convex, totally geodesic submanifold. Then since every subspace of dimension less than n is contained in a complex subspace $S \neq T_{p} \mathbf{C P}^{n}$, we have $A T C_{p}\left(\mathbf{C P}^{n}\right) \geqslant n$. Next, by examining Lie triple systems we construct an n-dimensional subspace $\tilde{S} \subset T_{p}\left(\mathbf{C P}^{n}\right)$ such that the only closed totally geodesic submanifold n with $\tilde{S} \subset T_{p} N$ is $\mathbf{C P}^{n}$ itself. Therefore $T G_{p}\left(\mathbf{C P}^{n}\right) \leqslant n$. Furthermore, $n \leqslant A T C_{p}\left(\mathbf{C P}^{n}\right) \leqslant C C_{p}\left(\mathbf{C P}^{n}\right) \leqslant$ $T G_{p}\left(\mathbf{C P}^{n}\right) \leqslant n$, and the result will follow.

For the first part consider the fibration:

$$
\begin{gathered}
S^{1} \rightarrow S^{2 n+1} \\
\downarrow \pi \\
\mathbf{C P}^{n}
\end{gathered}
$$

π is a riemannian submersion where $S^{2 n+1}$ has the usual metric induced from \mathbf{C}^{n+1}. If $\tilde{p} \in S^{2 n+1}$, let $\tilde{T}_{\tilde{p}} \subset T_{\tilde{p}} S^{2 n+1}$ be the subspace perpendicular to $i \tilde{p}$ (ip is the vector at p obtained by parallel translation in \mathbf{C}^{n+1} of $i p \in T_{0} \mathbf{C}^{n+1}$). Then $T_{p}\left(\mathbf{C P}^{n}\right)$ can be identified with $\tilde{T}_{\tilde{p}}(\pi(\tilde{p})=p)$ through $\pi_{* \tilde{p}}$. If γ is a geodesic from p in $\mathbf{C P}^{n}$, then the geodesic $\tilde{\gamma}$ from \tilde{p} in $S^{2 n+1}$ with corresponding initial tangent vector has the property that $\pi(\tilde{\gamma})=\gamma$.

Kobayashi and Nomizu (see [3, pp. 273-278]) show that for each complex m-dimensional subspace $S \subset T_{p} \mathbf{C P}^{n}$ there is a complex totally geodesic submanifold $N \subset \mathbf{C P}^{n}$ such that $S=T_{p} N$ (in fact $N=\mathbf{C P}^{m}$). We need to show that N is $A T C$. Let γ be a geodesic between two points $q_{1}, q_{2} \in N$ such that $\gamma \not \subset N$. It is sufficient to show that q_{1} is conjugate to q_{2} along γ.

Let $\tilde{q}_{1} \in S^{2 n+1}$ such that $\pi\left(\tilde{q}_{1}\right)=q_{1}$, and let $S^{1}=T_{q_{1}} N$ and $S^{1} \subset \tilde{T}_{\tilde{q}_{1}}$ be the corresponding subspace. We claim that $\pi^{-1}(N) \stackrel{q_{1}}{\subset} S^{2 n+1}$ is equal to $S^{2 n+1} \cap \mathbf{Q}^{\mathbf{C}}$ where $\mathbf{Q}^{\mathbf{C}}$ is the complex linear subspace of \mathbf{C}^{n+1} spanned by \tilde{q}_{1} and S^{1}, S^{1} being translated to $0 \in \mathbf{C}^{n+1}$.

Proof of claim. Since N is totally geodesic, we know that all geodesics from \tilde{q}_{1} with initial tangent vectors in S^{1} must lie in $\pi^{-1}(N)$. This tells us that $S^{2 n+1} \cap \mathbf{Q}^{\mathbf{R}} \subset \pi^{-1}(N)$ where $\mathbf{Q}^{\mathbf{R}}$ is the real span of \tilde{q}_{1} and S^{1}. By the definition of $\mathbf{C}^{n+1} \rightarrow \mathbf{C P}^{n}$ we see that $S^{2 n+1} \cap \mathbf{Q}^{\mathbf{C}} \subset \pi^{-1}(N)$. For dimension reasons and the fact that $\pi^{-1}(N)$ is a connected closed $2 m+1$ submanifold, we see $S^{2 n+1} \cap \mathbf{Q}^{\mathbf{C}}=\pi^{-1}(N)$.

Now let $\tilde{\gamma} \subset S^{2 n+1}$ be the geodesic from \tilde{q}_{1} corresponding to γ. Since $\gamma \not \subset N, \tilde{\gamma} \not \subset \pi^{-1}(N)$. Since $S^{2 n+1} \cap \mathbf{Q}^{\mathbf{C}}=\pi^{-1}(N)$ is $A T C$, we see that \tilde{q}_{1} is conjugate to \tilde{q}_{2} along $\tilde{\gamma}\left(\tilde{q}_{2}=\tilde{\gamma}(1)\right.$ so $\left.\pi\left(\tilde{q}_{2}\right)=q_{2}\right)$. In fact, we can find a variation $\tilde{\gamma}_{s}$ of geodesics such that $\tilde{\gamma}_{0}=\gamma, \tilde{\gamma}_{s}(0)=\tilde{q}_{1}, \tilde{\gamma}_{s}(1)=\tilde{q}_{2}$ and $\left\langle\tilde{\gamma}_{s}^{\prime}(0), i \tilde{q}_{1}\right\rangle=0$. In particular $\tilde{\gamma}_{s}^{\prime}(0) \in \tilde{T}_{\tilde{q}_{1}}$. Therefore $\gamma_{s}=\pi\left(\tilde{\gamma}_{s}\right)$ is a variation through geodesics in $\mathbf{C P}^{n}$ with $\gamma_{0}=\gamma, \gamma_{s}(0)=q_{1}$, and $\gamma_{s}(1)=q_{2}$, and q_{1} is conjugate to q_{2} along γ.
For the second part we first consider a subspace $T \subset T_{p} C P^{n}$ such that $T=T_{p} N$ where N is a totally geodesic submanifold of $\mathbf{C P}^{n}$. We know that if $\xi_{1}, \xi_{2}, \xi_{3} \in T$, then $R\left(\xi_{1}, \xi_{2}\right) \xi_{3} \in T$.

We claim that if $\xi_{1}, \xi_{2} \in T$ such that $\left\langle\xi_{2}, J \xi_{1}\right\rangle \neq 0$, then $J \xi_{2} \in T$. We know that $R\left(\xi_{1}, \xi_{2}\right) \xi_{2} \in T$. Using the formula for curvature given by Kobayashi and Nomizu (see [4, p. 277]),

$$
\begin{aligned}
R\left(\xi_{1}, \xi_{2}\right) \xi_{2} & =h\left(\xi_{2}, \xi_{2}\right) \xi_{1}-h\left(\xi_{2}, \xi_{1}\right) \xi_{2}+h\left(\xi_{1}, \xi_{2}\right) \xi_{2}-h\left(\xi_{2}, \xi_{1}\right) \xi_{2} \\
& =h\left(\xi_{2}, \xi_{2}\right) \xi_{1}-g\left(\xi_{2}, \xi_{1}\right) \xi_{2}-\left[2 g\left(\xi_{2}, J \xi_{1}\right)-g\left(\xi_{1}, J \xi_{2}\right)\right] J \xi_{2} \\
& =h\left(\xi_{2}, \xi_{2}\right) \xi_{1}-g\left(\xi_{2}, \xi_{1}\right) \xi_{2}-3 g\left(\xi_{2}, J \xi_{1}\right) J \xi_{2}
\end{aligned}
$$

where h is the hermitian inner product. The first two terms are clearly in T, and since $g\left(\xi_{2}, J \xi\right) \neq 0$ we get $J \xi_{2} \in T$.

We now construct an n-dimensional subspace S by describing a basis $\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right\}$. Choose ξ_{1} arbitrarily, and ξ_{2} outside the subspace spanned by ξ_{1} and $J \xi_{1}$ but close enough to $J \xi_{1}$ such that $g\left(\xi_{2}, J \xi_{1}\right) \neq 0$. In general choose ξ_{i} outside the subspace spanned by $\xi_{1}, J \xi_{1}, \xi_{2}, J \xi_{2} \mathrm{k}, \cdots, \xi_{i-1}, J \xi_{i-1}$ but close enough to $J \xi_{i-1}$ such that $g\left(\xi_{i}, J \xi_{i-1}\right) \neq 0$. We can certainly choose n vectors this way. Let $T=T_{p} N_{S}^{T G}$, so that $S \in T$. For $i \geqslant 1, g\left(\xi_{i+1}, J \xi_{i}\right) \neq$ 0 so $J \xi_{i+1} \in T$. Further $g\left(\xi_{1}, J \xi_{2}\right)=-g\left(\xi_{2}, J \xi_{1}\right) \neq 0$, so $J \xi_{1} \in T$. Thus $T=T_{p} \mathbf{C} \mathbf{P}^{n}$ so that $N_{S}^{T G}=C P^{n}$, and hence $T G_{p}\left(\mathbf{C P}^{n}\right) \leqslant n$.

It should be possible to compute the invariants for the other symmetric spaces of rank 1 in a similar way.

One would expect $\mathbf{C P}^{n}$ to have large invariants where in fact we get only half the real dimension. In a future paper we will see that for normal homogeneous spaces M if $A T C_{p}(M) \geqslant \frac{1}{2}(n+3)$, then \tilde{M} is isometric to $M_{1}^{r} \times M_{2}^{s}$ where M^{r} is a constant curvature space and $r \geqslant \frac{1}{2}(n+3)$. Thus irreducible normal homogeneous spaces other than $S^{n}, \mathbf{R P}^{n}$, or \mathbf{R}^{n} have $A T C_{p}<\frac{1}{2}(n+3)$.

We have been able to show, with the assistance of Allen Back, that for simple lens spaces $A T C_{p}\left(L_{q}^{n}\right)=\frac{1}{2}(n-1)$. We have also computed the invariants for generalized Lens spaces and compact Lie groups with bi-invariant metrics.

5. Continuity properties

For a smooth manifold M let $G_{r}(M)$ be the Grassman bundle of r planes. Define the bundle $G(M) \xrightarrow{\pi} M$ by $G(M)=G_{0}(M)+G_{1}(M)$ $+\cdots+G_{n}(M)$, where + is disjoint union. For M connected complete riemannian consider the following functions:

where $d(S)=$ dimension of $S, C C(p)$ is $C C_{p}$, and $f_{C C}(S)=T_{\pi(S)}\left(N_{S}^{C C}\right)$. These functions are related as follows: $C C(p)=\min \left\{d(S) \mid S \in \pi^{-1}(p) \cap\right.$ $\left.\left(d \circ f_{C C}\right)^{-1}(n)\right\}$. We can likewise define $A T C, f_{A T C}$ (resp. TC, $T G$).

In this section we wish to consider the continuity properties of these functions. We have seen that $C C$ need not be constant, thus $C C$ is not necessarily continuous. We will show it is upper semi-continuous. Also $f_{C C}$ need not be continuous, for there could exist S_{1}, S_{2} such that $d\left(S_{1}\right)=d\left(S_{2}\right)$ but $d\left(f_{C C} S_{1}\right) \neq d\left(f_{C C} S_{2}\right)$. We will show that this is the only way in which $f_{C C}$ is not continuous. Using the results we will then show $C C_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times M_{2}\right)=$ $\max \left\{C C_{p_{1}}\left(M_{1}\right), C C_{p_{2}}\left(M_{2}\right)\right\}($ resp. TC, $A T C)$ whenever M_{1} or M_{2} is compact.

If N is a connected topologically closed totally geodesic submanifold of M and $p \in N$, then $\operatorname{Exp}_{p}\left(T_{p} N\right)=N$. With this the following lemma comes immediately from the definition of $f_{C C}$.
5.1. Lemma. (a) $S \subset f_{C C} S$.
(b) Image of $f_{C C}=\left\{S \mid \operatorname{Exp}_{\pi(S)}(S)=N_{S}^{C C}\right\}$.
(c) $f_{C C} \circ f_{C C}=f_{C C}$.

Similarly for TC, ATC, and TG.
5.2. Proposition. The image of $f_{C C}$ is closed in $G(M)$.

Proof. Let $S_{i} \rightarrow S$ be a convergent sequence in $G(M)$ such that $S_{i} \in$ $\operatorname{Im}\left(f_{C C}\right)$. We can assume that $d\left(S_{i}\right)=d(S)=r$ for all i. Let $p_{i}=\pi\left(S_{i}\right)$ and $p=\pi(S)$. We know $p_{i} \rightarrow p$. We need only show that $\operatorname{Exp}_{p} S=N_{S}^{C C}$, i.e., that $\operatorname{Exp}_{p} S$ is a topologically closed, completely convex, totally geodesic submanifold. Let $N_{i}=\operatorname{Exp}_{p} S_{i}$ and $N=\operatorname{Exp}_{p} S$. For every $q \in N$ we will show:
(1) $\exists S^{q} \subset T_{q} M$ such that $d\left(S^{q}\right)=r$ and $\operatorname{Exp}_{q}\left(S^{q}\right) \subset N$.
(2) $\forall q^{\prime} \in N$ if γ is a unique minimizing geodesic from q to q^{\prime} such that q is not conjugate to q^{\prime} along γ, then $\gamma \subset N$.
(1) Let $q \in N$. Then there is a $V \in S$ such that $q=\operatorname{Exp}_{p} V$. Let $V_{i} \in S_{i}$ such that $V_{i} \rightarrow V$ and $\left|V_{i}\right|=|V|$. Let $q_{i}=\operatorname{Exp}_{p_{i}} V_{i}$, and $S^{q_{i}}=T_{q_{i}}\left(N_{i}\right)$. Let $\gamma_{i}(t)=\operatorname{Exp}_{p_{i}}\left(t V_{i}\right)$. Then since each N_{i} is totally geodesic, $S^{q_{i}}$ is the parallel
translate of S_{i} along γ_{i} to q_{i}. If $\gamma(t)=\operatorname{Exp}_{p}(t V)$, then $\gamma_{i} \rightarrow \gamma$, and thus $S^{q_{i}} \rightarrow S^{q}$ where S^{q} is the parallel translate of S along γ. Now let $W \in S^{q}$, and choose $W_{i} \in S^{q_{i}}$ such that $W_{i} \rightarrow W$ and $\left|W_{i}\right|=|W|$. We need to show that $\operatorname{Exp}_{q} W \in N$. Let $z=\operatorname{Exp}_{q} W$ and let $z_{i}=\operatorname{Exp}_{q_{i}} W_{i}$. Thus $z_{i} \rightarrow z$. Since N_{i} is totally geodesic and $W_{i} \in T_{q_{i}} N_{i}$, we have $z_{i} \in N_{i}$. Thus there is a $\bar{W}_{i} \in S_{i}$ such that $z_{i}=\operatorname{Exp}_{p_{i}} \bar{W}_{i}$. We can choose \bar{W}_{i} such that $\left|\bar{W}_{i}\right| \leqslant\left|V_{i}\right|+$ $\left|W_{i}\right|=|V|+|W|$. Therefore some subsequence of the \bar{W}_{i} converge to $\bar{W} \in$ S. Thus we get $\operatorname{Exp}_{p} \bar{W}=\lim _{i \rightarrow \infty} \operatorname{Exp}_{p_{i}} \bar{W}_{i}=\lim _{i \rightarrow \infty} z_{i}=z$. So property (1) is shown.
(2) Let $q^{\prime} \in \operatorname{Exp}_{p} S$ and let γ be a unique minimizing geodesic from q to q^{\prime} such that q is not conjugate to q^{\prime} along γ. That is, the cut point along γ (if it occurs at all) happens after q^{\prime}. Similar to part (1) choose $q_{i} \rightarrow q, q_{i}^{\prime} \rightarrow q^{\prime}$, and $S^{q_{i}}, S^{q}$. Let γ_{i} be a minimizing geodesic from q_{i} to q_{i}^{\prime}. Since the distance to the cut locus is a continuous function on the unit sphere bundle (see [2, p. 94]), for i large enough there is a unique minimizing geodesic τ_{i} from q_{i} to q_{i}^{\prime} such that q_{i} is not conjugate to q_{i}^{\prime} along τ_{i}. Since N_{i} is completely convex $\tau_{i} \subset N_{i}$, so $\tau_{i}^{\prime}(0) \in T_{q_{i}} N_{i}=S^{q_{i}}$. Some subsequence of the $\tau_{i}^{\prime}(0)$ converge to a $V \in S^{q}$. Let $\tau=\operatorname{Exp}_{q} t V$. By part (1), $\tau \subset N$. Since τ is a limit of minimizing geodesics, τ is minimizing from q to q^{\prime}. Since γ is the unique minimizing geodesic, $\tau=\gamma$. Therefore $\gamma \subset N$ and (2) is shown.

To complete the proof of the proposition it is sufficient to show that for every $q \in N$ there is an $\varepsilon>0$ such that $N \cap B_{\varepsilon}(q)=\operatorname{Exp}_{q}\left(S^{q} \cap B_{\varepsilon}(0)\right)$. Choose ε so small that Exp_{q} is a diffeomorphism on $B_{\varepsilon}(0)$ and that for every $q^{\prime}, q^{\prime \prime} \in B_{\varepsilon}(q)=\operatorname{Exp}_{q}\left(B_{\varepsilon}(0)\right)$ there is a unique geodesic $\gamma_{q^{\prime \prime}}^{q^{\prime}}$ from q^{\prime} to $q^{\prime \prime}$ in $B_{\varepsilon}(q)$, further $\gamma_{q^{\prime \prime}}^{q^{\prime}}$ will be minimizing and q^{\prime} will not be conjugate to $q^{\prime \prime}$ along $\gamma_{q^{\prime \prime}}^{q^{\prime}}$. We know from (1) that $\operatorname{Exp}_{q}\left(S^{q} \cap B_{\varepsilon}(0)\right) \subset N \cap B_{\varepsilon}(q)$. Assume there was a $q^{\prime} \in N \cap B_{\varepsilon}(q)$ such that $q^{\prime} \notin \operatorname{Exp}_{q}\left(S^{q} \cap B_{\varepsilon}(0)\right)$. By (2) all the geodesics $\gamma_{q^{\prime \prime}}^{q^{\prime}}$ will be in N for $q^{\prime \prime} \in \operatorname{Exp}_{q}\left(S^{q} \cap B_{\varepsilon}(0)\right)$. But this means that N contains an open subset of dimension $r+1$. But N is the image of S by the exponential map, so by Sard's theorem this cannot happen. Thus the proposition follows.

Next we consider the image of $f_{A T C}$. We will use the following lemma. The author would like to thank Allen Back for the proof.
5.3. Lemma. Let $V \in T M$ such that V is not a critical point of $\operatorname{Exp}_{\pi(V)}$. Then there are open sets $U, U^{\prime}, U^{\prime \prime}$, with $V \in U \subset T M, \pi(V) \in U^{\prime} \subset M$, and $\operatorname{Exp}(V) \in U^{\prime \prime} \subset M$, such that $f: U \rightarrow U^{\prime} \times U^{\prime \prime}$ is a diffeomorphism where $f: T M \rightarrow M \times M$ by $f(W)=(\pi(W), \operatorname{Exp}(W))$.

Proof. The function f is clearly differentiable. Consider $f_{* V}: T_{V} T M \rightarrow$ $T_{\pi(V)} M \oplus T_{\operatorname{Exp}(V)} M$. Since $T M$ is a bundle over M, the image of $f_{* V}$ contains $T_{\pi(V)} M$, and since V is not a critical point of $\operatorname{Exp}_{\pi(V)}$ we see that $T_{\operatorname{Exp}(V)}(M)$ is
in the image of $f_{* V}$. For dimension reasons $f_{* V}$ is an isomorphism. By the inverse function theorem there is an open set $O \subset T M$ such that $\left.f\right|_{0}$ is a diffeomorphism onto its image. Choose $U^{\prime}, U^{\prime \prime}$ such that $U^{\prime} \times U^{\prime \prime} \subset f(0)$, and let $U=f^{-1}\left(U^{\prime} \times U^{\prime \prime}\right)$.
5.4. Proposition. The image of $f_{A T C}$ is closed.

Proof. We first note that $\operatorname{Im} f_{A T C} \subset \operatorname{Im} f_{C C}$. This follows because if $\operatorname{Exp}_{p} S=N_{S}^{A T C}$ then $\operatorname{Exp}_{p} S=N_{S}^{C C}$. Let $S_{i} \rightarrow S$ in $G(M)$ such that $S_{i} \in$ $\operatorname{Im} f_{A T C}$. By Proposition 5.2, $S \in \operatorname{Im} f_{C C}$. Therefore we need only show that $\operatorname{Exp}_{p} S$ is almost totally convex $(p=\pi(S))$. Let $q, q^{\prime} \in N \equiv \operatorname{Exp}_{p} S$. Let γ be a geodesic from q to q^{\prime} such that q is not conjugate to q^{\prime} along γ. Let $V \in T_{q} M$ be such that V is tangent to γ and $\operatorname{Exp} V=q^{\prime}$. We need to show $V \in T_{q} V$. Since q is not conjugate to q^{\prime} along γ, V is not a critical point of Exp_{q}. Choose subsets $V \in U \subset T M, q \in U^{\prime} \subset M$, and $q^{\prime} \in U^{\prime \prime} \subset M$ as in Lemma 5.3. As in the proof of Proposition 5.2 choose sequences $q_{i} \rightarrow q, q_{i}^{\prime} \rightarrow$ q^{\prime} such that $q_{i}, q_{i}^{\prime} \in N_{i} \equiv \operatorname{Exp}_{p_{i}} S_{i}$. For i sufficiently large $q_{i} \in U^{\prime}$ and $q_{i}^{\prime} \in U^{\prime \prime}$. Thus by the lemma there is a unique $V_{i} \in U$ such that $\pi\left(V_{i}\right)=q_{i}$ and $\operatorname{Exp}\left(V_{i}\right)=q_{i}^{\prime}$. Further $V_{i} \rightarrow V$. Since the function f of the lemma is nonsingular in U, V_{i} is not a critical point of $\operatorname{Exp}_{q_{i}}$. Now the geodesic $\gamma_{i}(t)=\operatorname{Exp}_{q_{i}} t V_{i}$ is a geodesic from q_{i} to q_{i}^{\prime} such that q_{i} is not conjugate to q_{i}^{\prime} along γ. Therefore since N_{i} is almost totally convex, $\gamma_{i} \subset N_{i}$ so $V_{i} \in T_{q_{i}} N_{i}$. Since $T_{q_{i}} N_{i} \rightarrow T_{q} N$ (see proof of Proposition 5.2) and $V_{i} \rightarrow V$, we have $V \in T_{q} N$. Therefore N is almost totally convex and the proposition follows.
Remark. The author suspects that $\operatorname{Im}\left(f_{T C}\right)$ is always closed while $\operatorname{Im}\left(f_{T G}\right)$ is not always closed.

Next we consider the functions $d \circ f_{C C}$ and $d \circ f_{A T C}$.
5.5. Proposition. The functions $d \circ f_{C C}$ and $d \circ f_{A T C}$ are lower semicontinuous.

Proof. We need to show that for every $q \in\{0,1, \cdots, n\}$ the set $Q=$ $\left(d \circ f_{C C}\right)^{-1}\{0,1, \cdots, q\}$ is closed. Let $S_{i} \rightarrow S$ in $G(M)$ where $S_{i} \in Q$. We have $d \circ f_{C C}\left(S_{i}\right) \in\{0,1, \cdots, q\}$ and therefore $d \circ f_{C C}\left(S_{i}\right)=r$ for an infinite number of i 's and some $r \leqslant q$. Thus $f_{C C}\left(S_{i}\right) \in G_{r} M$. By the compactness of the fibres in $G_{r} M$ some subsequence $f_{C C}\left(S_{j}\right)$ converges to an $\tilde{\tilde{S}} \in G_{r}(M)$. Since the image of $f_{C C}$ is closed, \tilde{S} is in the image of $f_{C C}$. By Lemma 5.1 we have $\operatorname{Exp}_{p} \tilde{S}=N_{S}^{〔 C}$ and $S_{j} \subset f_{C C}\left(S_{j}\right)$. Therefore $S \subset \tilde{S}$. So we get $N_{S}^{C C} \subset$ $N_{S}^{C C}$ and $d \circ f_{C C}(S) \leqslant r \leqslant q$. Thus $S \in Q$ implying that Q is closed. The same argument works for $d \circ f_{A T C}$.

We are now in a position to study the function $C C$.
5.6. Theorem. The image of the function CC (resp. TC, ATC, TG) consists of at most two consecutive integers r and $r+1$. Further CC (resp. ATC) is upper semi-continuous (i.e., $C C^{-1}(r)$ is open).

Proof. To show the first part we will show that for every p and q in M, $C C(q) \leqslant C C(p)+1$. Let $S \subset T_{p} M$ be a linear subspace of dimension $C C(p)$, such that $N_{S}^{C C}=M$. Let γ be any geodesic from p to q. Let $S^{\prime} \subset T_{q} M$ be $S^{\prime}=\gamma_{q}^{p}(S)+\gamma^{\prime}(q)$, where γ_{q}^{p} represents parallel translation. Dimension of $S^{\prime} \leqslant$ dimension of $S+1=C C(p)+1$. We need only show $N_{S^{\prime}}^{C C}=M$. Since $\gamma^{\prime}(q) \in S^{\prime}$, we know that γ is in $N_{S^{\prime}}^{C C}$, so that $p \in N_{S^{\prime}}^{C C}$. Since $\gamma_{q}^{p}(S) \subset S^{\prime} \subset T_{q} N_{S^{\prime}}^{C C}$ and $N_{S^{\prime}}^{C C}$ is totally geodesic, $S \subset T_{p} N_{S^{\prime}}^{C C}$, but M is the only topologically closed, completely convex, totally geodesic submanifold through p with S in its tangent space at p. Therefore $N_{S^{\prime}}^{C C}=M$. The same argument works for $T C, A T C$, and $T G$.

For the second part, assume the image of $C C$ consists of the points r and $r+1$. Then $C C^{-1}(r)=\pi\left(G_{r}(M) \cap\left(d \circ f_{C C}\right)^{-1}(n)\right)$. By Proposition 5.5, $\left(d \circ f_{C C}\right)^{-1}(n)$ is open in $G(M)$. Thus $G_{r}(M) \cap\left(d \circ f_{C C}\right)^{-1}(n)$ is open in $G_{r}(M)$. Since $\pi: G_{r}(M) \rightarrow M$ is an open map, $\pi\left(G_{r}(M) \cap\left(d \circ f_{C C}\right)^{-1}(n)\right)$ is open. The same argument works for $A T C$.

Now we consider the functions $f_{C C}$ and $f_{A T C}$ in greater detail. We have noted earlier that these functions need not be continuous since subspaces of the same dimension can have images of different dimensions. We will put a new topoplogy on $G(M)$ to take care of this, and the resulting functions will be continuous.

Let $G^{C C_{r}}(M)=G_{r}(M) \cap f_{C C}^{-1}\left(G_{s}(M)\right)$, and define $G^{C C}(M)$ to be the disjoint union of the $G^{C C_{r}}$. We have the following commutative diagrams of functions:

where i is the identification (ignoring topologies). Similar spaces and diagrams can be constructed for $A T C$.
5.7. Theorem. The diagrams (1), (2), and (3) are commutative diagrams of continuous functions.

Proof. We need to show:
(a) $G \xrightarrow{C C} G$ is continuous.
(b) $G^{C C} \xrightarrow{\boldsymbol{\pi}} M$ is continuous.
(c) $G \xrightarrow{c c} G$ is continuous.
(d) $G^{C C} \xrightarrow{f_{C C}} G^{C C}$ is continuous.
(a) is continuous since $G^{C C}$ has a finer topology than G. (b) is continuous from the commutative diagram:

In order to show that a function from $G^{C C}$ is continuous it is sufficient to show that its restriction to each $G_{s}^{C C^{r}}$ is continuous. $f_{C C}: G_{s}^{C C^{r}} \rightarrow G_{s}(M)$. Let C be a closed set in $G_{s}(M)$. We need to show that $D=f_{C C}^{-1}(C)$ is closed in $G_{s}^{C C^{r}}$. Let $S_{i} \rightarrow S$ be a convergent sequence in $G_{s}^{C C^{\prime}}$ such that $S_{i} \in D$. Since $S_{i} \rightarrow S$ in $G_{s}^{C C^{\prime}}, S_{i} \rightarrow S$ in G. By a previous argument some subsequence $f_{C C}\left(S_{j}\right)$ converges to a subspace $\tilde{S} \in G$. Since $f_{C C}\left(S_{j}\right) \in G_{s}(M), \tilde{S} \in G_{s}(M)$. Since $f_{C C}\left(S_{j}\right) \in C$ a closed set, $\tilde{S} \in C$. By the same argument as before $f_{C C}(S) \subset \tilde{S}$, but for dimension reasons (i.e., $S \in G^{C C_{r}}$ so $f_{C C}(S) \in$ $\left.G_{s}(M)\right) f_{C C}(S)=\tilde{S} \in C$ so $S \in D=f_{C C}^{-1}(C)$. Therefore (c) follows. In order to show (d) we need only note that since $f_{C C}{ }^{\circ} f_{C C}=f_{C C}$ we have $f_{C C}\left(G_{s}^{C C^{\prime}}\right)$ $\subset G_{s}^{C C^{s}}$, thus (c) implies (d). All of the arguments above work for $A T C$.

Remarks. In Theorem 5.6 we see that the points with highest $C C$ form a closed set F. The author suspects that they form a closed submanifold of codimension at least 2.

We are now in a position to prove
5.8. Proposition. Let M_{1} be a compact riemannian manifold, and M_{2} a complete riemannian manifold. Then for $p_{1} \in M_{1}, p_{2} \in M_{2}, C C_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times\right.$ $\left.M_{2}\right)=\max \left\{C C_{p_{1}}\left(M_{1}\right), C C_{p_{2}}\left(M_{2}\right)\right\}($ resp. TC, $A T C)$.

Remark. This does not hold for $T G$ as $T G_{p}\left(\mathbf{R}^{1}\right)=1, T G_{q}\left(S^{1}\right)=1$, while $T G_{(p, q)}\left(\mathbf{R}^{1} \times S^{1}\right)=2$.

Proof. Let $r_{i}=C C_{p_{i}}\left(M_{i}\right)$. Let $A^{i}=\left\{S \in G^{r_{i}}\left(T_{p_{i}} M_{i}\right) \mid N_{S}^{C C}=M_{i}\right\}$. By proposition 5.5, A^{1} and A^{i} are open in $G^{r_{1}}\left(T_{p_{1}} M_{1}\right)$ and $G^{r_{2}}\left(T_{p_{2}} M_{2}\right)$ respectively. Since the set of geodesics γ from p such that $\gamma(t)$ is a cut point of p for all $t \geqslant t_{0}$ is nowhere dense (that is to say the set of $\gamma^{\prime}(0)$'s is nowhere dense in the unit sphere) and since A^{1} is open, we can choose $S^{1} \in A^{1}$ and a basis
$\left\{X_{1}, \cdots, X_{r_{1}}\right\}$ of S^{1} such that the geodesics $\gamma_{i}(t)=\operatorname{Exp}_{p} t X_{i}$ are not in the above set. Choose $S^{2} \in A^{2}$ and a basis $\left\{Y_{1}, \cdots, Y_{r_{2}}\right\}$. We will assume $\left|X_{i}\right|=\left|Y_{i}\right|=1$. Since A^{1} is open, there is an $\varepsilon>0$ such that for any set $\left\{Z_{1}, Z_{2}, \cdots, Z_{r_{1}}\right\}$ of unit vectors in $T_{p_{1}} M_{1}$ the subspace spanned by $\left\{X_{1}+\right.$ $\left.a_{1} Z_{1}, \cdots, X_{r_{1}}+a_{r_{1}} Z_{r_{1}}\right\}$ is in A^{1} whenever $\left|a_{i}\right|<\varepsilon$ for all i.

Let d be the diameter of M_{1}. Choose $b_{i}>0$ such that $d<\varepsilon b_{i}$ and $\gamma_{i}\left(b_{i}\right)$ is not a cut point of p_{1}. Let $c>0$ be some number less than the distance from p_{2} to its cut locus. Let $S \subset T_{\left(p_{1}, p_{2}\right)} M_{1} \times M_{2}$ be the span of $\left\{b_{1} X_{1}+\right.$ $\left.c Y_{1}, \cdots, b_{r_{1}} X_{r_{1}}+c Y_{r_{1}}, c Y_{r_{1}+1}, \cdots, c Y_{r_{2}}\right\}$ (or the other way around if $r_{1}>$ r_{2}). We need only show by 3.4 that $N_{S}^{C C}=M_{1} \times M_{2}$. Let γ^{i} be the geodesic $\left(\gamma_{1}^{i}, \gamma_{2}^{i}\right)=\operatorname{Exp}_{\left(p_{1}, p_{2}\right)} t\left(b_{i} X_{i}+c Y_{i}\right) \cdot \gamma^{i}(t)$ lies in $N_{S}^{A T C}$ for all t. By the choice of b_{i} and $c, \gamma^{i}(1)=\left(\gamma_{1}^{i}(1), \gamma_{2}^{i}(1)\right)$ is not on the cut locus to $\left(p_{1}, p_{2}\right)$ in $M_{1} \times M_{2}$. Thus the unique minimizing geodesic $\sigma^{i}(t)$ from (p_{1}, p_{2}) to $\gamma^{i}(1)$ must lie in $N_{S}^{C C}$. If we parameterize $\sigma^{i}(t)$ so that $\sigma^{i}(1)=\gamma^{i}(1)$, then $\sigma^{i \prime}(0)=\left(e_{i} Z_{i}, c Y_{i}\right) \in$ $T_{\left(p_{1}, p_{2}\right)} N_{S}^{C C}$ where $e_{i}<d$ and $\left|Z_{i}\right|=1$. Thus

$$
\gamma^{i^{\prime}}(0)-\sigma^{i \prime}(0)=b_{i} X_{i}+c Y_{i}-e_{i} Z_{i}-c Y_{i}=b_{i} X_{i}-e_{i} Z_{i} \in T_{\left(p_{1}, p_{2}\right)} N_{S}^{c c}
$$

which implies that $X_{i}-\left(e_{i} / b_{i}\right) Z_{i}$ is in $T_{\left(p_{1}, p_{2}\right)} M_{1} \times M_{2}$, so that the subspace S^{\prime} spanned by $\left\{X_{i}-\left(e_{1} / b_{1}\right) Z_{1}, \cdots, X_{r_{1}}-\left(e_{r_{1}} / b_{r_{1}}\right) Z_{r_{1}}\right\}$ is contained in $T_{\left(p_{1}, p_{2}\right)} N_{S}^{C C}$. Since $\left|-e_{i} / b_{i}\right|<\varepsilon, S^{\prime} \in A^{1}$ where S^{\prime} is considered as a subspace of $T_{p_{1}} M_{1}$. By Lemma 3.3, $N_{S}^{C C} \cap M_{1}$ must contain $N_{S^{\prime}}^{C C}=M_{1}$, so that $X_{i} \in T_{\left(p_{1}, p_{2}\right)} N_{S}^{C C}$. Thus $Y_{i} \in T_{\left(p_{1}, p_{2}\right)} N_{S}^{C C}$ and $S^{2} \subset T_{\left(p_{1}, p_{2}\right)} N_{S}^{C C}$, and hence $M_{2} \subset N_{S}^{C C}$. The result now follows. The exact same argument works with $C C$ replaced with $A T C$ or $T C$.

6. A geometric relationship

The purpose of this section is to prove the following result.
6.1. Theorem. Let $\tau:[0,1] \rightarrow G^{r}\left(T_{p} M\right)$ be a piecewise C^{∞} path such that $\tau(t)$ is in the image of $f_{C C}\left(\right.$ resp. TC, ATC). Then $\operatorname{Exp}_{p}(\tau(0))$ is isometric to $\operatorname{Exp}_{p}(\tau(t))$.

We will first need a series of lemmas.
6.2. Lemma. Let M be a complete riemannian manifold. Let $\sigma_{1}(t), \sigma_{2}(t)$ be C^{∞} curves in M such that $\sigma_{1}(0)=\sigma_{2}(0)$. Assume further that for each $t \in[0,1]$ there is a topologically closed totally geodesic CC submanifold N_{t} such that
(i) $\sigma_{i}(t) \in N_{t}$,
(ii) $\sigma_{i}^{\prime}(t)$ is perpendicular to N_{t}.

Then $\sigma_{1}(t)=\sigma_{2}(t)$ for all t.
Proof. Let $A=\left\{t \in[0,1] \mid \sigma_{1}(t)=\sigma_{2}(t)\right\}$. Clearly $A \neq \varnothing$ and A is closed. For t close to $A, \sigma_{1}(t)$ is not a cut point of $\sigma_{2}(t)$, so there exists a unique
minimizing geodesic $\gamma_{t}(s)$ from $\sigma_{1}(t)$ to $\sigma_{2}(t)$:

Since $\sigma_{i}(t) \in N_{t}$ and N_{t} is completely convex, $\gamma_{t}(s) \in N_{t}$. Therefore by (ii), $\left\langle\gamma_{t}^{\prime}(0), \sigma_{1}^{\prime}(t)\right\rangle=\left\langle\gamma_{t}^{\prime}(1), \sigma_{2}^{\prime}(t)\right\rangle=0$. The first variation formula allows us to conclude that A is open, and the lemma follows.
6.3. Lemma. Let $N \subset M$ be a topologically closed totally geodesic submanifold of M. For $p \in N, A \in T_{p} N$, and $X \in T_{A} T_{p} M$ such that X is perpendicular to $T_{p} N$, we have $\operatorname{Exp}_{p^{*}} X$ is perpendicular to N.

Proof. If $\operatorname{Exp}_{p^{*}} X=0$, the result holds trivially. Otherwise, let $J(t)$ be the Jacobi field along $\operatorname{Exp}_{p} t A$ such that $J(0)=0$, and $J^{\prime}(0)$ is the translation of X to 0 in $T_{p} M$. Then $J(1)=\operatorname{Exp}_{p_{*}}(X)$, but since N is totally geodesic and both $J(0)$ and $J^{\prime}(0)$ are perpendicular to N, we have $J(t)$ perpendicular to N, and the result follows.
6.4. Lemma. Let $F: N^{n} \times I \rightarrow M^{m}(n<m)$ be a C^{∞} function where N is a smooth manifold and M is a complete riemannian manifold. Assume:
(i) $F_{t}: N \rightarrow M$ is a smooth embedding,
(ii) $F_{t}(N) \equiv N_{t}$ is totally geodesic (not necessarily closed),
(iii) for every $(p, t) \in N \times I ; F_{*(p, t)} \partial / \partial t$ is perpendicular to N_{t}.

Then N_{0} is isometric to N_{t} in the induced metric.
Proof. For $p \in N$ and $X, Y \in T_{p} N$, define $X(t), Y(t) \in T_{(p, t)} N \times I$ in the obvious way. We need only show $\partial / \partial t\left(F_{t}^{*} g\right)(X(t), Y(t))=0$ where $F_{t}^{*} g$ is the pulled back metric.

Let $A=\left\{(p, t) \in N \times\left. I\right|_{*(p, t)} \partial / \partial t \neq 0\right\}$. By continuity it is sufficient to show that the above holds on A and on the complement of the closure of A.

Let (p, t) be in the complement of the closure of A. There are open sets $p \in U \subset N$ and $t \in V \subset I$ such that for all $(q, s) \in U \times V, F_{*}(q, s) \partial / \partial t=$ 0 . Therefore $\left.F_{t_{1}}\right|_{U}=\left.F_{t_{2}}\right|_{U}$ for $t_{1}, t_{2} \in V$. Thus for $X(t), Y(t)$ at (p, t) we have $d / d t\left(F_{t}^{*} g\right)(X(t), Y(t))=0$.

Let $(p, t) \in A$. There is an open set $U \times V \subset N \times I$ such that $\left.F\right|_{U \times V}$ is a C^{∞} embedding. Extend $X(t), Y(t)$ on $U \times I$ such that $[X, \partial / \partial t]=[Y, \partial / \partial t]$ $=0$. Let X, Y and T be the vector fields on $F(U \times V)$ induced by F_{*}. Then we have $\partial / \partial t\left(F_{t}^{*} g\right)(X(t), Y(t))=T g(X, Y)=\nabla_{T} g(X, Y)=g\left(\nabla_{T} X, Y\right)+$ $g\left(x, \nabla_{T} Y\right)=g\left(\nabla_{X} T, Y\right)+g\left(X, \nabla_{Y} T\right)$. On the other hand, N_{t} is totally geodesic, and X and Y are tangent to N_{t}, while T is perpendicular to N_{t}. Thus $\nabla_{X} T$ and $\nabla_{Y} T$ are perpendicular to N_{t}. Hence $\partial / \partial t\left(F_{t}^{*} g\right)(X(t), Y(t))=0$, and the lemma follows.

Proof of Theorem 6.1. Clearly we can assume that τ is C^{∞}. Let $S T^{r}\left(T_{p} M\right)$ be the stiefel manifold of orthonormal r-frames in $T_{p} M$ with the normal homogeneous metric. Let $S T^{r}\left(T_{p} M\right) \xrightarrow{\pi} G^{r}\left(T_{p} M\right)$ be the principal bundle. Define a connection on π by taking as horizontal subspaces the subspace perpendicular to the fibre. Let $\tilde{\tau}(t)$ be any horizontal lift of $\tau(t)$. Let $L: \mathbf{R}^{r} \times$ $I \rightarrow T_{p} M$ be $L(X, t)=\tilde{\tau}(t) X$ where $\tilde{\tau}(t): \mathbf{R}^{r} \rightarrow T_{p} M$ is the orthogonal transformation induced by $\tilde{\tau}(t)$ as an element of $S T^{r}\left(T_{p} M\right)$. Since $\tilde{\tau}$ is horizontal, $L_{*(x, t)} \partial / \partial t$ is perpendicular to the linear subspace $\tau(t)=\tilde{\tau}(t)\left(\mathbf{R}^{r}\right) \subset T_{p} M$. Let $N_{t}=\operatorname{Exp}_{p}(\tau(t))$. By assumption, N_{t} is a topologically closed totally geodesic $C C$ submanifold. By Lemma 6.3, $\operatorname{Exp}_{p^{*}} L_{*(X, t)} \partial / \partial t$ is perpendicular to N_{t} for all $(x, t) \in \mathbf{R}^{r} \times I$.

We now define $F: N_{0} \times I \rightarrow M$. For $q \in N_{0} \subset M$ let $\tilde{q} \in T_{p} N_{0}$ be such that $\operatorname{Exp}_{p} \tilde{q}=q$. Let $F(q, t)=\operatorname{Exp}_{p}\left(L(\tilde{\tau} 0)^{-1}(\tilde{q}), t\right)$. To show F is well defined let $\tilde{\tilde{q}}$ be another point in $T_{p} N_{0}$ such that $\operatorname{Exp}_{p} \tilde{q}=q$. Let $\sigma_{1}(t)=$ $\operatorname{Exp}_{p}\left[L\left(\tilde{\tau}_{(0)}^{-1}(\tilde{q}), t\right)\right]$ and let $\sigma_{2}(t)=\operatorname{Exp}_{p}\left[L\left(\tilde{\tau}_{(0)}^{-1}(\tilde{\tilde{q}}), t\right)\right]$. Now $\sigma_{1}(0)=\sigma_{2}(0)=q$ and $\sigma_{1}(t), \sigma_{2}(t) \in N_{t}$. Further we have $\sigma_{1}^{\prime}(t)=\operatorname{Exp}_{p^{*}} L_{*\left(\tilde{\tau}_{(10)}, \tilde{q}_{t}\right)} \partial / \partial t$ which is perpendicular to N_{t}. Similarly $\sigma_{2}^{\prime}(t)$ is perpendicular to N_{t}. Lemma 6.2 now tells us that $\sigma_{1}(t)=\sigma_{2}(t)$, so F is well defined. A similar argument shows that F_{t} is $1-1 . F_{t}$ is clearly onto N_{t} as the image of F_{t} is $\operatorname{Exp}_{p} \tau(t)=N_{t}$.

If $q \in N_{0}$ is such that there is more than one minimizing geodesic in N_{0} from p to q, then the image $F_{t}(q)$ will have more than one minimizing geodesic in N_{t} from p (this follows from the definition of F_{t} which takes geodesics from p to geodesics from p). Since the continuous function $L(-, t) \circ \tilde{\tau}_{(0)}^{-1}=F_{t^{*}}$ takes ordinary tangent cut points in $T_{p} N_{0}$ to ordinary tangent cut points in $T_{p} N_{t}$ and since the ordinary tangent cut points are dense in the tangent cut locus in $T_{p} N_{0}$ (see [1, p. 133]), $F_{t^{*}}$ takes tangent cut points in N_{0} to cut points in N_{t}. Now by the definition we see that F_{t} is a diffeomorphism when restricted to the complement of the cut locus. Thus Lemma 6.4 tells us that F_{t} is an isometry when restricted to the complement of the cut locus to p.
In fact the theorem will follow from Lemma 6.3 if we show F_{t} is a diffeomorphism. This will follow if we show that F_{t} is a diffeomorphism when restricted to the complement of the cut locus to q for all q in a small neighborhood of p.

Let c be the distance from p to its cut locus in N_{0} (and hence N_{t}). Let $q \in N_{0}$ be any point in the ball $B_{\frac{1}{3}} c(p)$. Let $q_{t}=F_{t}(q)$. Let B_{t} be the orthonormal frame at q_{t} obtained by the parallel translation of $\tilde{\tau}(t)$ along the unique minimizing geodesic from p to q_{t}. Note $B_{t}=F_{t^{*}} B_{0}$ by the fact that F_{t} is a local isometry. Let $L^{q}: \mathbf{R}^{r} \times I \rightarrow T M$ be the transformation induced from the B_{t} 's. For $x \in \mathbf{R}^{r},|x|<\frac{1}{3} c$, we see by the local isometry of F_{t} that
there is a $y \in \mathbf{R}^{r}$ such that for all $t \in I, \operatorname{Exp}_{q_{t}} L^{q}(x, t)=\operatorname{Exp}_{p} L(Y, t)$. Thus we have $\operatorname{Exp}_{q_{t} *} L_{*(x, t)}^{q} \partial / \partial t$ is perpendicular to N_{t} for all $x \in \mathbf{R}^{r}$ such that $|x|<\frac{1}{3} C$. Along the geodesic $\gamma_{t}(s)=\operatorname{Exp}_{q_{t}} L^{q}(s x, t) \subset N_{t}$ consider the field $\operatorname{Exp}_{q_{t} *} L_{*(x, t)}^{q} \partial \partial t \equiv J(s) . J(s)$ is the variation field of the variation $\alpha(s, t)=$ $\gamma_{t}(s)$ and thus is Jacobi. By the above for small $s, J(s)$ is perpendicular to N_{t} and is always so since N_{t} is totally geodesic. Thus $\operatorname{Exp}_{q_{t} *} L_{*(x, t)}^{q} \partial / \partial t$ is perpendicular to N_{t} for all $(x, t) \in \mathbf{R}^{r} \times I$.

Now define F_{t}^{q} from L^{q} as we defined F_{t} from L. All the facts about F_{t} now hold for F_{t}^{q}. In particular, F_{t}^{q} is a diffeomorphism when restricted to the complement of the cut locus to q in N_{0}. We need only show $F_{t}^{q}=F_{t}$. From the definition, $F_{0}^{q}=F_{0}$ (they correspond to the identity map on N_{0}). Let σ be in N_{0}. Let $\sigma_{1}(t)=F_{t}^{q}(\sigma)$ and $\sigma_{2}(t)=F_{t}(\sigma)$. From the above, $\sigma_{i}^{\prime}(t)$ is perpendicular to N_{t} and $\sigma_{i}(t) \in N_{t}$, so the result follows from Lemma 6.2. The result follows for $A T C$ and $T C$ since the image of $f_{A T C}$ or $f_{T C}$ is contained in the image of $f_{C C}$.

Remark. Theorem 6.1 is false for $T G$. Let $M=S^{1} \times \mathbf{R}$. Then all geodesics through a given point are $T G$ (their images are closed). All but one are isometric to \mathbf{R} while one is isometric to S^{1}.

Added in proof. The author has recently noticed that arguments similar to those in the second section of this paper show that if M^{n} is a manifold of small diameter such that $1 \geqslant K_{M}>1 / 4$, then $\left|\pi_{1}(M)\right|>n$ and I_{p} injects into $\operatorname{Aut}\left(\pi_{1}(M)\right)$ for all $p \in M$.

References

[1] R. L. Bishop, Decomposition of cut loci, Proc. Amer. Math. Soc. 65 (1977) 133-136.
[2] J. Cheeger \& D. G. Ebin, Comparison theorems in Riemannian geometry, North Holland, Amsterdam, 1975.
[3] S. Kobayashi, Transformation groups in differential geometry, Springer, Berlin, 1972.
[4] S. Kobayashi \& K. Nomizo, Foundations of differential geometry, Vol. II, Interscience, New York, 1969.
[5] J. Milnor, Morse theory, Annals of Math. Studies No. 51, Princeton University Press, Princeton, 1963.
[6] F. W. Warner, Conjugate loci of constant order, Ann. of Math. 86 (1967) 192-212.

[^0]: Received March 5, 1979. This research was partly supported by the Fannie and John Hertz Foundation. Part of it constitutes part of the author's Dissertaion from the University of Chicago.

