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ABSTRACT WEINGARTEN SURFACES

TILLA KLOTZ MILNOR

1. introduction
Suppose a pair of real quadratic forms A and B is prescribed on an

oriented surface S. If A is definite, one can imitate many classical procedures
involving the fundamental forms / and / / on a surface in 3-space. In
particular, there are obvious analogs H = H(A, B) and K= K(A> B) of
mean and extrinsic curvature, and one easily defines sequences of fundamen-
tal forms Xn = Xn(A, B) and skew fundamental forms X'n = X'n(A, B) (See
§2.) If some nontrivial equation is satisfied on S connecting H, K9 and
(perhaps) the intrinsic curvatures of certain of the forms Xn or X'ny we call S
an abstract Weingarten surface.

It is no surprise that various results from the theory of immersed surfaces
can be recaptured in this setting. Indeed, a good deal of literature is based, to
one extent or another, on this realization. References [7], [8], [25], [26], [27]
and [28] provide just a few examples.

In this paper, we give abstract versions of some simple theorems from
surface theory. In particular, we study the situation in which H and K satisfy
a linear equation. We describe the exact connection between the Codazzi-
Mainardi equations and the appearance in seemingly unrelated situations (see
Examples 1 through 5 in §3) of certain holomorphic quadratic differentials.
The Main Lemma is independent of the Codazzi-Mainardi equations, and
gives information deduced from the one assumption that a particular
quadratic differential associated with B is holomorphic on the conformal
structure determined by A.

The usefulness of most results below depends upon the identification in
natural geometric settings of pairs A> B which satisfy their hypothesis. Such
applications are provided by Theorems 1 and 2, the Corollary to Theorem 3,
and Example 3. In addition, the Main Lemma, Corollary 2 to Lemma 1, and
Theorem 3 have already proved valuable in the study of harmonically
immersed surfaces. (See [19], [20] and [22].)
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2. Preliminary notions

Throughout this paper, we assume C 0 0 smoothness, and we use the symbols

α, β9 γ and c to denote constants. Let S be an oriented surface. (Otherwise

work with its universal cover.) Real quadratic forms A = Edx2 + IFdxdy +

Gdy2 and B = Ldx2 + IMdxdy + Ndy2 on S yield a pair A, B if A is

nondegenerate. It is convenient to use the terminology applicable when A = I

and B = Π are the fundamental forms of classical surface theory. Thus we

call a pair A, B flat if B = 0 and spherical if B = cA ^ 0. A point on 5 where

2?α/4 is called an umbilic. Define the mean and extrinsic curvatures H and K

of a pair A, B by

£G - F2

If Λ is definite, call the pair A, B fundamental, define the skew curvature H'

by

H' = H'(A, B) = (H2 - K)\

and denote by /cj and k2 the principal curvatures H ± H' taken in whichever

order is convenient. Given a fundamental pair A, B

2H = kx + k29 2H' = \k2 - fcj, K - jfcjifca,

so that umbilics are characterized by H' — 0. Moreover

(1) #(£, Λ)tf(Λ, B) = H(A, B\ K(A, B)K(B, A) = 1,

if B is nondegenerate. When B9 A is also a fundamental pair,

(2) H\B, A)\K(A, B)\ = H\A, B\

\H(A, B)\H'{B, A) = \H(B, A)\H'{A, B).

Wherever H' φ 0 and throughout the interior of the umbilic set, there are

local coordinates x, y orthogonal for both A and B, so that

A = Edx2 + Gdy2, B = kλEdx2 + k2Gdy2.

Such doubly orthogonal coordinates are locally available for a fundamental

pair on an open dense subset of S. It is therefore convenient to use them to

check (by continuity) identities valid on all of 5.

If a pair A, B is given, call coordinates x,y asymptotic if L = N = 0, and

Tchebychev 'ύ\E\ = \G\ = 1. Let K(A) denote the intrinsic curvature of A, so

that, whenΛ = Edx2 + Gdy2

9

(3) 4(EG)2K(A) = GX(EG)X + Ey(EG)y - 2EG(GXX + Eyy).
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If E = G = λ above,

(4) -2λK(A) - Δ log|λ| = (log λ)xx + (log λ)yy.

Here λ φ 0 because A is nondegenerate.

To any fundamental pair A, B we associate doubly infinite sequences Xn

and Λ^ of fundamental and skew fundamental forms, as follows. (See [16] or

[17]-)
Let Xι = A, X2 = B and set

(5) *„ = 2HXn_λ - KXΠ_2

for n > 3. Wherever ΛΓ ̂  0, use (5) to give Xn f or n < 0 as well. Wherever
H'ΦQ,

(6) / ί ' ^ = Xn+1 - HXn

defines X'n for n > 1, and for Λ < 0 wherever H'K φ 0. In statements

involving a form Xn or X'n any condition necessary for its definition is implicitly

assumed. In terms of doubly orthogonal coordinates.

(7) Xn - k?-xEdx2 + k^-ιGay\ ±X'n = k^Edx1 - k^Gdy2,

where ± is the sign of kι — k2. The superscript(/) wll be used when the prime

in parenthesis can be consistently included or excluded. Where X^ is

definite,

H(X%X"+ι) = H, K{X% X<%k) = K,

H{X% X«}_,) - H/K, K(X% X<>)_,) = 1 /K.

If we set A' = *ί(Λ, 5 ) and B' = ^ ( ^ ' 5)> w e 8 e t a fundamental pair A', B'
with the same H and AT as Λ, B. Thus

(5') *„' = lHX'n_λ - KX'n_2

and

X&A, B) - Jζ,^ ' , 5 0 , JfΛ^', ^ 0 - J ζ , ^ , 5).

By (7), the Xjp are definite (or indefinite) for all odd n if Ao) is definite (or

indefinite). If Xn is definite, then X'n is indefinite, and vice versa. A shift from

A, B to & fundamental pair Xp Xj+ι shifts each X<f) backy - 1 places. Thus

and similarly

(9) λ

In classical notation, /// = X3(I, II). We set C w = X£\A, B). By (9),

X('\{C, B) = A('\

so that, in the classical situation, / = X3(IH, II).
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The forms Xjp by no means exhaust the supply of real quadratic forms on

S which can be associated with a fundamental pair A, B. Consider, for

example, the "lines-of-curvature" form W = W{A, B) given by

{EG - F2YW
( 1 0 ) = {EM - FL)dx2 + {EN - GL)dxdy + {FN - GM)dy2.

(See [11].) Integral curves for the equation W = 0 are level lines for doubly

orthogonal coordinates. Umbilics are points where W = 0 for all values of dx

and dy. Since singularities in the net of curves satisfying W = 0 occur only at

umbilics, one has the familiar fact that H' must vanish somewhere on any

compact S of genus g φ 1 for any fundamental pair A, B. Note that

(11) H{A, W{A., B)) = H{B, W{A, B)) = 0.

Other quadratic forms related to A, B are discussed in §3.

We call a pair A, B Codazzi and write Coά{A, B) in case

Iy-Mx = LT\2 + M(T2

l2 - ΓJO - NΓ2

n,

° 2 ) My-Nx = LT\2 + M{T\2 - T\2) - NT\2,

where the Christoffel symbols are computed for A. These equations take on

the simple form

(13) Ίy^EyH9 NX = GXH,

or

(14) T{kι)yE=EyH\ ± (k2)xG = GXH\

for doubly orthogonal coordinates x,y. Here ± is the sign of kι — k2,

and + its negative. Basic facts about Codazzi pairs are proved in [21]. We

cite just the following.

Fact 1. A pair A, B is flat or spherical if Cod(Λ, B) with BaA.

Fact 2. Suppose K{A, B) φ 0 for a fundamental pair A, B. Then

(i) Cod{XJ9 Xk) if and only if Coά{Xj, Xβ9

(ii) Cod(Λ}, Xβ if and only if Cod(Xj, Xk\ and

(iii) Cod(*/>, Xj%) if and only if Cod(Λ#2jt, *£>*).

Fact 3. Suppose A, B is a fundamental pair. If Cod(Λ, B) and

Cod{λA, B), then λ is constant near any point where H =£ 0. If Cod(Λ, B)

and H = 0, then Cod(λ/1, B) holds for all λ which are locally constant on the

umbilic set.

Fact 4. Suppose A, B is a fundamental pair. If Cod{A, B) and

Cod(Λ, λB), then λ is constant near any point where Kφ 0. If Cod(Λ, B)

and K = 0, then near any point where H' φ 0, there is a nonconstant

function λ such that Coά{A, \B).



ABSTRACT WEINGARTEN SURFACES 369

Fact 5. If Cod(A, B) and Cod(£, A) for a fundamental pair A, B, then
K = 0 and K(A) = K(B) = 0 on the closure of the nonumbilic set.

Fact 6. If Cod(A, B) and K(A, B)Φ0 for a fundamental pair A, B then
# ( 0 = K(A)/K(A, B). (See [16] or [28].)

Remark 1. Fact 6 shows that Cod(A, B) and K(C) = 1 imply the theorem
egregium equation K(A) = K(A, B) whenever K(A, B)φO for a fundamen-
tal pair A, B. Similarly, by (8), if K(I) = 1 on an S in E3, S3 or H3, the
theorem egregium equation K(III) = K(III, II) holds for the Codazzi pair
///, // wherever K(I, II) φ 0. Thus there exists (locally) a not necessarily
different immersion of S in E3 achieving /// as its first fundamental form and
// as its second, wherever K(I, II) φ 0.

Most results in [6] and [17] remain valid if the pair /, // is replaced by a
fundamental Codazzi pair A, B. In particular, we have the following state-
ment. (See [29].)

Fact 7. If a + βH 4- yK = 0 for a fundamental Codazzi pair A, B, then
OLA + βB + γC is flat wherever it is nondegenerate, that is, flat wherever
(α + βkx + yk])(a 4- βk2 4- ykj) φ 0.

3. Fundamental pairs on a Riemann surface

By R we denote a Riemann surface (or conformal structure) on S. To work
on R, use only those coordinates x,y on S for which z — x + iy is a
conformal parameter on R. If A is a definite real quadratic form on S, we
write R = RAin case Λ = λdzdz on /£ for some function λ. When Λ = RA, A
is called an i£-conformal metric. Use of the symbol RA automatically implies
that A is definite.

Suppose now that B = Ldx1 + IMdxdy + Ndy2 is any real quadratic form
on S. Working on R, we define the forms Ω, Γ, Π and T by

4ω = 4Ω(J5, R) = (L- N - 2iM)dz2,

2T(B, R) = (L+ N)dzdz,

Π = Π(£, R) = \LN - Mψdzdz,

T = T(B9 R) = Ndx2 - IMdxdy - Ldy2.

To the quadratic differential Ω, we associate the real quadratic forms |Ω|,

Re Ω and Im Ω on R. Note that

(16) 5 = 2ReΩ + Γ = Ω + Ω+Γ, T = 2Γ - B.

Given a definite form B, R = RB if and only if Ω ΞΞ Ω ΞΞ 0. Those familiar
with Riemann surfaces witll recognize 2Ω/(Γ + Π) as the Beltrami differen-
tial on R associated with a positive definite B. (See [2].)
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By the rules of tensor calculus, the forms Γ, Π, T, |Ω|, Re Ω and Im Ω

extend to real quadratic forms on S. In terms of any Λ-conformal metric A

on S one has

T(B, RA) = HA, U(B, RA) = \K\*A, T{B, RA) = 2HA - B

2\Q(B, RA)\ = HΆ, 2 Re Ώ(B, RA) = H'A1, 2 Im Ω(B, RA) = W,

where H, K, H' and W are computed for the fundamental pair A, B. Using

(15) and (16), it is easy to check that

H(A, Re Ω) = H(A, Im Ω) = H\A, Π) = H'{A, Γ) = H'(A9 |Ω|) = 0,
( } H{A,T) = H, K(A,π)=*\K\, K(A, Re Ω) < 0, K(A, Im Ω) < 0.

If ± equals sign(det B) φ 0, X3(B, Π) = ± T and

H(B, Im Ω) = 0, K(B, T) = 1, K(U, T) = iί(5, Π) = ± 1,

tf(£, Im Ω) < 0, H\B, T) > 1, H2(Π, T) > 1.

If B is definite,

(20) 7/(Γ, B) = 1, #(£, Π) ΞΞ 1, 0 < K(T, B) < 1, H2(B, Π) > 1.

Lemma 1. If A and B are positive definite and B is complete, then HA is

complete.

Proof Work on RA. By (15) and (17), 2Γ - B = Ndx1 - 2Mdxdy + Ldy2

is positive definite, since B is. Thus B < 2Γ, and since Γ = HA, the lemma

follows.

Corollary 1 to Lemma 1. Suppose A and B are positive definite with B

complete. If H is bounded, A is complete. If H/K is bounded, C is complete.

Proof. By (8), H(C, B) = H/K, so one need only apply Lemma 1 to the

fundamental pairs A, B and C, B.

If A is positive definite, the energy function e(f) of an immersion /:

(S, A) -* Mn of S in a Riemannian manifold Mn is given by H = H(A, /),

where / is the metric induced on S by /. (See [5].) Indeed, the immersion /:

(S, HA) —» Mn has energy e(f) = 1, which yields the following.

Corollary 2 to Lemma 1. For an immersion f: (S,A)-+ Mn with constant

energy e(f), A is complete if I is complete.

Denote by Rjf^ the conformal structure determined on S by a definite form

X^. Lemma 3 in [15] provides considerable arithmetic information about the

forms Ω and Γ associated with an Xj-^ on Rn or R^. In particular,

(21) Γ(Λ ;, Rn) = T(Xn, K) = 0, 2|Ω(XΠ', RJl = X'n, 2|Ω(*n, ΛΛ')| = Xn

Using (8), (15) and (17), one gets

(22) 2 | Ω ( C ' Λ β ) l = 2K^A> R ^ " H'B' 2K\Q(B, Rc)\ = H'C,
T(C, Rs) = KT(A, RB) = HB, KT(B, Rc) = HC,

n.
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while by (5), (5') and (6), one gets

Ω(C, RA) = 2Hίl(B, RA), H'Ώ(A\ RA) = Ω(2?, RA\

H'Q(A', RB) = -HΩ(A, RB),

2HΏ(B, Rc) = Kti(A, Rc), H'Ώ(B', Rc) = -Hΐί{B, Rc\

Ω(C, RB) = -KΩ(A, RB) = HΏ(B', RB).

A quadratic differential Ω = φdz2 on R is holomorphic if φ = φ(z) is
complex analytic for each conformal parameter z o n i ? . Thus the zeros of a
holomorphic Ω are isolated unless Ω = 0.

Formulas (22) and (23) remain valid if one simultaneously exchanges the
symbols A and A\ B and B\ and C and C". Many statements of the following
sort can be deduced from (23). When H = c φ 0, Ω(2?, /^) is holomorphic if
and only if Ω(C, Z^) is. When K = c φ 0, Ω(Λ, i^) is holomorphic if and
only if Ω(C, i?5) is.

We now describe some classical situations in which an Ω associated with
/(/), //(/) or /// is holomorphic. These examples motivated the study under-
taken in this paper.

Example 1. (See [10].) H = c on a surface in E3 if and only if Ω(//, Rx) is
holomorphic.

Example 2. (See [12].) ^ = c > 0 o n a surface in JE:3 if and only if
Ω(/, R^) is holomorphic.

Example 3. (See Lemma 9 in §5.) # = c < 0 o n a surface in E3 if and
only if Ω(/', R£) is holomorphic.

Example 4. (See [4] and [18].) If/: (5, A) -• Mπ is a harmonic immersion
of S in a Riemannian manifold Mn, then Ω = Ω(/, Λ^) is holomorphic.
Indeed, when n = 2, / is harmonic if and only if Ω is holomorphic. Thus the
search for Riemannian metrics A and B onS for which Ω(2?, /^) is holomor-
phic coincides with the search for A and B such that id: (5, Λ) -> (5, 2?) is
harmonic.

Example 5. (See [4] and [24].) H = c on a surface in is 3 if and only if
Ω(//7, Λj) is holomorphic (that is, if and only if the Gauss map is harmonic).

4. The main lemma and some applications

A great deal is implied by the simple assumption that Ω(2?, RA) ^ 0 is
holomorphic, as the next lemma indicates. The result incorporates Lemmas 1
and 2 from [13] and Lemma 1 from [15], but much of it is new. See [1] for the
definitions of subharmonic and superharmonic functions.
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Main lemma. Suppose Ω(£, RA) ^ 0 is holomorphic, with A positive defi-

nite. Then except at isolated points where H' = 0, the following statements hold.

(i) H'A, H'A' and W are flat,

(ii) There are coordinates x9y such that H'A = dx1 + dy2 and H'B =

{H + H')dx2 + {H- H')dy2,

(iii) The function log H' is subharmonic on RΛ if K(A) > 0 and super-

harmonic on RA if K(A) < 0,

(iv) For positive definite B, cosh~ι(H/H') > 0 is superharmonic on RA if

K(B) > 0, subharmonic on RA if K(B) < 0, and constant only if K(B) =

K(HA) = 0, while H/H' is itself subharmonic on RA if K(B) < 0.

(v) For indefinite B, H/H' is subharmonic on RA if K{B) > 0 and H < 0,

superharmonic on RA if K(B) < 0 and H > 0, and constant only if K(B) =

K(HA) = 0.

Moreover, everywhere on S these statements hold.

(vi) For positive definite B, K(B) > (H2/K)K(HA), so that K(B) > 0

where K(HA) > 0, and K(HA) < 0 where K(B) < 0.

(vii) For indefinite B, K(B) < 0 where K(HA) > 0 and H < 0, while K(B)

> OwhereK(HA) < OandH > 0.

Proof. The isolated zeros of the holomorphic Ω = Ω(B, RA) z£ 0 occur

where Hf — 0. Wherever Hf Φ 0, there are RA conformal parameters z = x

+ iy in terms of which cΩ = dz2 for any c ^ 0 . (See [3].) Thus the metrics |Ω|,

Re Ω and Im Ω are flat wherever H' φ 0, and part (i) follows by (17). If

c = 2, one has A = λ(dx2 + dy2) and B = Ldx2 + (L - 2)dy2. If A is posi-

tive definite, then λ > 0, λH = L - 1, and λ2ΛΓ = L(L - 2). Thus λ/Γ = 1,

H'L = H + H'9 H\L - 2) - H - H\ and part (iii) follows. Since λ =

\/H' above, (4) yields

2K(A) = /f 'Δ log H\

which confirms part (iii). If/ = /ί//f', then (3) and (4) yield

(24) 2 ( / 2 - l)K(B) + Δ/ = XΛ2 + //)/ (/ 2 - 1),

(25) 2/2tf(iL4) + Δ/ - (Λ2 + //)//.

Subtraction of (25) from (24) gives

(26) *(£) = H2K(HA)/K + {/Γ5(Λ2 + f2)/2HK2}.

When >4 and 5 are positive definite,/ > 1, so that part (iv) follows from (24).

If A is positive definite and B indefinite, f2 < 1 and fH > 0. Since K =

(H'k)\f2 - 1), part (v) follows from (24). To check parts (vi) and (vii) where

H' φ 0, use (26). By continuity, the inequalities involved extend to all of S.



ABSTRACT WEINGARTEN SURFACES 373

Corollary to the main lemma. // Ώ(Xn, /*„') or Ω ^ , Rn) is holomorphic,
Xn, X'n, W(Xn, X'n) and W(X'n, Xn) are flat while Cod(Zπ, ΛΓn') and Cod(*n', Xn).

Proof. By (7), H(Xn, *„') = H(X'n, Xn) = 0 and K(Xn, *„') = *(*„', Xn) -
- 1 , so that H\Xn,X^ = H\X^,Xn)=\. By part (i) of the lemma,
Xn, X'n, W(Xn, X£ and W(X'n, Xn) are flat. Indeed, using the coordinates
provided by part (ii), Xn and X'n have constant coefficients. Thus C o d ^ , X£)
and Cod(Λ;', Xn) hold.

In several proofs, we will use the fact (see [1]) that a subhaπnonic function
bounded above (or a superharmonic function bounded below) must be
constant on a parabolic Riemann surface. It follows that a subhaπnonic
function bounded above (or a superharmonic function bounded below) by a
harmonic function must itself be harmonic on a parabolic Riemann surface.
The next result is closely related to material in [9], [13], [30] and [31].

Lemma 2. Suppose that A is positive definite and complete, while Ω =
Ω(B, RA) 5* 0 is holomorphic. Then K(A) = 0 and H' =c φ 0 // either K(A)
> 0 with H' bounded or K(A) < 0 with \/H' bounded.

Proof. Since Ω Ξ£ 0 is holomorphic, RA is not conformally the sphere. If A
is a complete Riemannian metric with K(A) > 0, RA is parabolic by Lemma 5
in [13]. If K(A) > 0 and H' < c, the Main Lemma (ϋi) states that log H' <
log c is subharmonic on RA, except at isolated points where H' φ 0. But
isolated values of -oo for a subharmonic function are allowed. (See [1].) Thus
H' φ 0 is constant, and K(A) = 0.

Remark 2. In [15], we replace the assumption that Ω = Ω(JB, A) ^ 0 is
holomorphic by the basically weaker assumption that H'A is less than some
flat, RA conformal metric on S. Results similar to Lemma 1 can be obtained,
and such generalizations are left to the reader.

Lemma 3. If A and B are positive definite, HA is complete, K(HA) > 0 and
Ω = Ω(£, RA) i* 0 is holomorphic, then K(HA) = K(B) = 0, H/H' =c and
ΩφO.

Proof. As in the proof of Lemma 2, RA is parabolic. Part (vi) of the Main
Lemma gives K(B) > 0, while part (iv) provides a superharmonic function
cosh"1 (H/Hf) > 0 on RA except at isolated points where H' = 0. But iso-
lated values of +oo for a superharmonic function are allowed. Thus H/H' is
constant, and by the Main Lemma (iv), K(HA) = K(B) = 0, while H' and Ω
never vanish.

Lemma 4. If A and B are positive definite, B is complete, K(B) < 0, H/H'
is bounded and Ω = Ω(£, RA) ^ 0 is holomorphic, then K(A) = K(B) = 0,
H/H' =c,andΏφO.

Proof. Since H/Hf is bounded and H > 0, neither H' nor Ω can vanish.
By Lemma 1, HA = (H/Hf)HfA is complete, and since H/H' > 1 is
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bounded, HA is complete. But H'A is flat, so that RA is parabolic, by [23].
Since K(B) < 0, the Main Lemma (iv) provides a subharmonic function
H/H' on RA which is bounded from above. Thus H/H' is constant, and by
the Main Lemma (iv), K(HA) = K(B) = 0.

Lemma 5. Suppose that A is positive definite and complete, B is indefinite,
and Ω = Ώ(B, RA) 5* 0 is holomorphic. Then K(HA) = K(B) = 0, and H/H'
is constant if either K(B) > Oand H < c < 0,or K(B) <0andH > c > 0.

Proof Here, K < 0, so that H' > \H\. Thus H' > c > 0 if \H\ > c > 0,
and H 'A is complete because A is complete. By the Main Lemma (i), H'A is
flat, so that RA is parabolic, by [23]. If K(B) > 0 and H < 0, the Main
Lemma (iv) provides a subharmonic function H/Hf < 0 on RA which must
be constant. If K(B) < 0 and H > c > 0, apply this reasoning to the pair
A,-B.

Remark 3. Results of a similar sort can be obtained by reversing the roles
of A and B in Lemmas 2 through 5. This task is left to the reader.

Lemmas 2 and 4 can be applied to a harmonic immersion/: (S, A) —» Mn

in case A = //' = ^ ( Z , //) for the second fundamental form // associated
with some choice of a normal vector field. (As shown in [18], if/is harmonic
and A = // 4- gll, then Aal or A all'.) We take for 5 the metric / induced by
the Riemannian metric on Mn, and compute H, K and H' for the fundamen-
tal pair /, //. This yields the following. (Theorem 1 is an expanded version of
Theorem 6 in [18].)

Theorem 1. Suppose that f: (S, II') —» Mn is a harmonic intersion and II' is
complete. Then K(IΓ) = 0 and H/K =c if either K(IΓ) > 0 with \H/K\
bounded, or K(II') < 0 with \K/H\ bounded.

Theorem 2. Iff: (S, II') —> Mn is a harmonic immersion and I is complete,
with K(I) < 0 and \H'/H\ bounded, then K(I) = K(HΊI/K) = 0, and H' =

5. Codazzi pairs and holomorphic quadratic differentials

The results in this section provide an abstract setting for many well known
facts. Extensive references are not provided. Some statements (like Theorem 3
and 6) are entirely new. Others (like the lemmas) mix old with new informa-
tion. Theorem 8 is central to the investigation undertaken in this paper. It
provides a coherent context for the examples cited in §3.

The fact in Example 1 was observed by Heinz Hopf, who used it to show
that a soap bubble immersed in E3 which is topologically a sphere must be a
sphere. It is widely understood that one can replace the pair /, // in Example
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1 by any fundamental Codazzi pair. Thus Hopfs old argument (see [10])

shows that an ovaloid in E3 with H/K constant must be a sphere, because

H/K for the Codazzi pair /, // is H for the Codazzi pair ///, //. (See [11].)

To describe the exact role of the Codazzi-Mainardi equations in Examples 1,

4 and 5, we have the following.

Lemma 6. If A, B is a fundamental pair and C = X3(A, B)9 then any two of

the conditions (i), (ϋ) or (iii) imply the third, and (iv) as well:

(i) Cod(A9 B\

(ii) H(A, B) constant,

(iii) Ω(2?, RA) holomorphic,

(iv) Ω(C, RA) holomorphic.

Proof If 2d/dz = d/dx - id/dy and 2d/dz = d/dx + id/dy for any

conformal parameter z = x + iy on RA, the Codazzi-Mainardi equations (12)

take on the form

(27) ^h = λHz,

where Ω = Ω(2?, RA) = φdz2 and A = λdzdz. The form Ω is holomorphic if

and only if φE = 0 , while H is constant if and only if Hz = 0. Thus any two

of the statements (i), (ii) or (iii) implies the third and (iv) as well, since

Ω(C, RA) = 2i/Ω(£, RA) by (3).

Remark 4. In Lemma 6, (iv) and (i) give (ii) and (iii) if K(A, B) φ 0, (iv)

and (ii) give (i) and (iii) if H(A, B) φ 0, and (iv) and (iii) give (i) and (ii) if

BβCA. Analogous comments apply to Lemma 7.

Because H(HA, B)= 1 if H φ 0, Lemma 6 has the following consequence.

Theorem 3. IfA, B is a fundamental pair with H φ 0, then Cod(HA, B) is

equivalent to Ω(2?, RA) holomorphic.

An immersion /: (S, A) —> M" is harmonic if and only if Ω(/, RA) is

holomorphic and 3C* = 0, where / is the induced metric, and %* the

A -mean curvature vector field. (See [18].) Theorem 3 gives a more practical

characterization of harmonic immersions since both conditions Cod(HA, B)

and %* = 0 can be checked using arbitrary coordinates on 5.

Corollary to Theorem 3. An immersion f: (S, A) —> Mn is harmonic if and

only ifCod(HA, I) and %* = 0, where H = H(A, I) φ 0.

By Lemma 6, the condition Ω(i?, RA) ^ 0 holomorphic in Lemmas 2

through 5 can be replaced by the stronger assumption that Cod(Λ, B), H =c

and H' ^ 0. This yields the following, much of which is known. (See [9], [13],

[30] or [31].)

Theorem 4. If A is complete and positive definite with Cod(Λ, B) and

H = c, then K(A) = K(B) = K(C) = 0, and K is constant in case (i) and (ii)
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or (iii) holds'.

(i) K(A) > 0, H' 5* 0 and either B positive definite or Hr bounded,

(ii) K(A) < 0 and \/H' bounded,

(iii) B indefinite and cK(B) < 0 with c ΞΞ H φ 0.

P/ΌO/. Given (i), use Lemmas 2 and 3 together with Lemma 1 and the

Main Lemma (vi). That gives H' constant, and since H is constant, so is K.

The Main Lemma (ii) gives the rest. Similar arguments check Theorem 4

given (ii) or (iii).

One can apply Theorem 4 to a Codazzi pair C, B. By Fact 6, this yields the

following.

Theorem 5. // A is positive definite, C = X3(A, B) complete, Coά(A, B)

and H/K = c, then K(A) = K(B) = K(C) = 0 while both H and K are

constant in case (i) and (ii) or (iii) holds:

(i) H' ϋ* 0 and either K(A) > 0 with B positive definite, or K(A) < 0 with

H'/\K\ bounded,

(ii) \K\/H' bounded and K K(A) < 0 with K Φ 0,

(iii) B indefinite and cK(B) < 0 with CΞΞH/KΦO.

Application of Lemma 6 to the pair C, B yields the next result, which

shows that the inverse of the Gauss map is harmonic in case H/K is constant

on a surface in E3. Analogous statements based on other lemmas and the

observation in Example 4 are left to the reader. Note that K(C, B) φ 0 is

automatic when C is nondegenerate for a fundamental pair A, B.

Lemma 7. If A, B is a fundamental pair with C = X3(A, B) positive defi-

nite, then any two of the conditions (i), (ii) or (rii) imply the third, and (iv) as

well:

(i) Coά(A,B),

(ii) H(A, B)/K(A, B) constant,

(iii) Ω(2?, Rc) holomorphic,

(iv) ίl(A, Rc) holomorphic.

Lemma 8. If A, B is a pair with B definite and C = X3(A, B), then any two

of the conditions (i), (ii) or (iii) imply the third, and (iv) as well:

(i) Cod(Λ, B),

(ii) K{A, B) constant,

(iii) &(A, RB) holomorphic,

(iv) Ω(C, RB) holomorphic.

Proof. On RB, the Codazzi-Mainairdi equations (12) take on the form

(28) μx = μ(T2

12-Tι

22), ^ = μ(Γ|2 - I*),

where B = μdzdz, and the Christoffel symbols are computed for A. Setting
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D = άeXAy one has

(29) ΓJ, + T\2 = DX/2D, Y\2 + Γ}2 = Dy/2D.

If Ω = Ω(Λ, RB) = φdz2, the Cauchy-Riemann equations for Re φ and Im φ
are equivalent to

(30) ΓJ, + T\2 - I*, + T\2 - 0.

Finally, A' = ft2//) is constant if and only if

(31) 2μxD - μDx - 2μ,Z) - μDy - 0.

Using (29) together with any two of the relations (28), (30) or (31) one gets the
third relation. Thus any two of the conditions (i), (ii) or (in) imply the third,
and (iv) as well, because Ω(C, RB) = -KQ(A, RB) by (23).

Remark 5. In Lemma 8, K(A, B) ψ 0 is automatic. Thus (iv) and (i) give
(ii) and (iii), (iv) and (ii) give (i) and (iii), and if B&A, (iv) and (in) give (i) and
(ii). Analogous comments apply to Lemma 9.

When A is definite and K(A, B) < 0 is constant, B is indefinite, so that
Lemma 8 seems inapplicable. However, H'(A, B) φ 0, and then Lemma 8
applies to the pair A\ B'. Since K(A\ B') = K(A, B\ and Cod(Λ, B) is
equivalent to Cod(yί', B'\ we have the next result. It gives the new fact that
Ω(/', R2) is holomorphic on a surface in E3, S3 or H3 with constant negative
extrinsic curvature.

Lemma 9. IfA, B is a fundamental pair with C = X$(A\ B'), then any two
the conditions (i), (ii) or (iii) imply the thirds and (iv) as well:

(i) Cod04, B),
(ii) K(A9 B) < 0 constant.

(iii) Ω(Λ', RB,) holomorphic.
(iv) Ω(C", RB) holomorphic.
Remark 6. If K(A, B) = 0, Cod(A9 B), and A is positive definite, then the

form (1 + H'2)A + (1 - H'2)A' is flat and positive definite wherever W φ
0. Further assumptions seem to be required to achieve stronger conclusions.

Because K(B9 K*A) = 1 wherever K = K(A, B) φ 0, Lemma 9 has the
following consequence.

Theorem 6. If A and B are definite, Cod(5, K *A) if and only if Q(B, RA) is
holomorphic.

Putting this together with Lemma 6, one has a slightly different statement.

Corollary to Theorem 6. Suppose that A and B are definite with Cod(A, B).

Then H is constant if and only ifCod(B, K*A).
Using Lemma 8 and Remark 3 one proves the following.
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Theorem 7. If A is definite, B positive definite, Coά(A, B) and K == c φ 0,
then K(A) = K(B) = K(C) = 0 and H is constant in case (i) or (ii) or (iii)
holds:

(i) B complete with either K(B) > 0 and H' 5* 0 bounded or K(B) < 0 α/w/
\/H'bounded,

(ii) H >0,HB complete, K(HB) > 0 α/zrf # ' 5* 0,
(iii) # > 0, A or C complete, K(A) < 0 and H/H' bounded.
For those familiar with the classical proof of Hubert's theorem (see [14]),

we note the following relative of Lemma 9.
Lemma 10. If A, B is a fundamental pair, any two statements below imply

the third:

(i) Cod(Λ, B),
(ii) K(A, B) < 0 constant,

(iii) Asympotitc Tchebychev coordinates are locally available and B φ 0.
Proof. Classical arguments (see [14]) give (iii) if (i) and (ii) are known.

Given the coordinates provided by (iii), the Codazzi-Mainardi equations (12)
for A = ± (dx2 + 2 cos ω dxdy + dy2) and B = IMdxdy φ 0 read (ln|M\)x

= (In sin ω)x and (ln|Λf 1)̂  = (In sin ω)y for 0 < ω < π. Thus (i) and (iii)
together yield \M\ = c sin ω for some constant c > 0, so that (ii) must hold.
Similarly, (ii) and (iii) together yield (i).

The next result ties together Lemmas 7 through 10, and gives a common
explanation for the facts described in Examples 1, 2 and 3 above.

Theorem 8. If A is positive definite, Cod(Λ, B) and a + βH + yK = 0
with β2 - 4ay φ 0, then (i) or (ii) or (iii) must hold:

(i) γ = 0, H is constant and Ω(J&, RA) is holomorphic.
(ii) γ φ 0, β2 - 4αγ > 0 and Ώ(A, Rx) is holomorphic for X = βA + 2yB.

(iii) y Φ0, β2 - 4ay <0 and Q(A', Rx) is holomorphic for X' = βA' +
2yB'.

Proof. If γ = 0, H is constant and Lemma 6 gives (i). If γ φ 0, take
* = βA + 2γ£. Since α + βH + γϋΓ = 0,

K(A, X) = (2ykλ + β)(2yk2 + 0) = β2 - 4αγ

even at umbilics, where i/ 2 = #. If β2 - 4αγ > 0, then K(A, X) > 0 and *
is definite. Thus Lemma 8 gives Ω(A, Rx) holomorphic. If β2 — 4αγ < 0,
then K(A, X) < 0, X is indefinite, and X' = βA' 4- 2yB' is definite, where
A' = X{(A, B) and B' = X£(,4, 5). Thus Lemma 9 gives ΩG4', iί^,) holomor-
phic.

HopΓs old soap bubble argument used the fact that a holomorphic
quadratic differential on a surface homeomorphic to the sphere must vanish
identically. Here his argument yields the following statement which provides
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a unified explanation for classical results which assume either H or K or
H/K is constant. (See [11].)

Corollary to Theorem 8. // A is positive definite, Cod(A, B) and a + βH
+ yK = 0 with β2 — 4αγ ̂  o, and S is topologically a sphere, then A, B is a

flat or spherical pair.
Remark 7. It is well known that one can find a Codazzi pair A, B with

K(A) = K{A, B) and H(A, B) = 1 which is neither flat or spherical if S is
compact with genus g > 0. This is why it requires more than compatability
conditions to settle the full soap bubble conjecture. One example is formed by
identification of corresponding boundary points on a suitable fundamental
region for a periodic surface of revolution with H = 1 described by Finn in
[6]. Choosing A = / and B = II, everything fits together smoothly on the
surface so formed. Since one can double the size of the initial fundamental
region, one can get an example with H = 1, and arbitrarily large area with
respect to A.
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