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TOTALLY GEODESIC FOLIATIONS

DAVID L. JOHNSON & LEE B. WHITT

0. Introduction

In recent years the study of foliations has become one of the most elegant
and fruitful areas of research in mathematics [7]. Foliations are also of
fundamental importance in differential geometry; however, the study of the
geometric aspects of foliations per se has received considerably less attention.
This paper considers a natural geometric setting for these topological struc-
tures, where each leaf is assumed to be a totally geodesic submanifold of the
ambient space. Precisely, we have

Definition (0.1). Let Mn be a smooth manifold. A codimension-k foliation
ί of M is a decomposition of M into a union of disjoint connected
codimension-Λ: submanifolds M = U L(E<$L, called the leaves of the foliation,
such that for each m G M, there is a neighborhood U of M and a smooth
submersion fυ\ U-*Rk with fyX(x) a leaf of <5\w the restriction of the
foliation to U, for each x G Rk.

Definition (0.2). Let M be a Riemannian manifold, and let f be a
codimension-A: foliation on M. ®s is totally geodesic if each leaf L is a totally
geodesic submanifold of M; that is, any geodesic tangent to L at some point
must lie within L.

The two basic questions in this realm are:

Given a Riemannian manifold M, does it admit a totally
1 geodesic foliation of a given codimensionΊ

Given a foliation ¥ on a manifold M, is there a Riemannian

Q2\ metric on M so that ®i is totally geodesic, that is, is ?F

geodesibleΊ

If the dimension of S" is one, H. Gluck has recently made significant
progress on these questions [1], In particular, Gluck has shown that any
closed 3-manifold has a geodesic flow, and has characterized those flows on
2-manifolds which are geodesible. However, in [4] the authors have shown
that the codimension-one case is considerably more restrictive. In fact, given
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any compact manifold M with χ(M) = 0, there are codimension-one folia-
tions on M which are not geodesible. Also, any compact 3-manifold with a
codimension-one totally geodesic foliation must have infinite fundamental
group.

In the present article we classify all compact manifolds M admitting a
codimension-one totally geodesic foliation with at least one compact leaf. If
the foliation is transversely orientable, M is shown to fiber over a circle, with
fiber the compact leaf (any two compact leaves are necessarily isometric).
Geometric restrictions on the manifold are also obtained; in particular, the
leaves of any totally geodesic foliation are shown to be locally isometric in
any codimension. In codimension one stronger relations are shown between
the isometry group of the ambient manifold and that of the leaves; in
particular, if the leaves are compact the space of Killing vector fields
decomposes.

Remark. R. Hermann, B. Rienhart, et al. have studied an alternate
geometrization of foliations, called bundle-like or fiber-like metrics. M has a
fiber-like metric compatible with <•? if the local submersions defining ®j m a y be
chosen to be Riemannian submersions for a suitable choice of metrics on the
images [3]. Equivalently, the leaves are assumed locally to remain a constant
distance apart. Relations between this notion and totally geodesic foliations
are developed below.

1. The General situation

Throughout this paper W will denote a foliation of codimension A: in a
Riemannian manifold M" of dimension n with Riemannian metric < , >.
References to dimension will be dropped where unnecessary. ®f will also
denote the associated integrable distribution on Γ+(M), % = ^ will be
called the horizontal distribution; when needed, ?F will be called the vertical
distribution. Vector fields in % or <3r

9 respectively, will be referred to as
horizontal or vertical as well. The symbols % and ̂  will also refer to the
orthogonal projections onto the indicated distributions.

Definition 1.1. For E, F e %(M)9 define tensors AEF, TEF9 of type (1,2)
by

ΛEF = %V%E%F + %^%E^F, TEF = ΦV9E%F + %V9E&E,

where V is the Riemannian covariant derivative operator on M.
Remark. As in [9] it is easily seen that A and T are tensors. Many of their

properties are similar to those described for the analogous tensors in [9], thus
a complete description is not given here.
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Lemma (1.2).

(1) TVW = TWV for V, W vertical {i.e., tangent to <$), and T = 0 if and
only if Φ is totally geodesic.

(2) AXY = AYX for X, Y horizontal {tangent to %) if and only if % is
integrable.

(3) AXY = -AYX for X, Y horizontal if and only if the metric on M is
fiber-like, compatible with ?F.

(4) A = 0 if and only if % is totally geodesic.
Proof. All except (3) are in [9]. If the metric is fiber-like, O'Neill [9]

verifies (3) by the definition of fiber-like metrics. Now, if AXY = -AYX for
horizontal X, Y, then AXY =\%[X, Y]. Let fυ\ U^>Rk be a local submer-
sion defining (3r\u. To find a metric on R* making/^ a Riemannian submer-
sion, let X, Y be horizontal vector fields on U which are/^-related to X, Y on
Rk. If (X, Y)lf-ι(x) is constant, defining (X, Ϋ}x = (X, Y)fΛx) will yield the
necessary metric. If V is any vertical vector field

v(x, Y) = <yvx, y> + <x, vvγ)
= <[ v, x] - vxv, y> + (x, [ F, Y] - vγvy.

As V is /^-related to 0, and X is /^-related to X, [ V, X] is vertical, being
/^-related to 0. Thus

V(X, Y) = <F, VXY) + <K, VYX) = 0,

a&&VxY=±$[X, Y]. q.e.d.

If ^ = ker(τ7Ϋ), where π: M ̂ > B is a global Riemannian submersion,
O'Neill shows that the tensors A and T determine the geometry of the total
space given the geometry of the fibers and the base. In our more general
setting a similar result holds, though the determination is considerably less
precise. This result was originally due to Kashiwabara [5], but the proof given
here is quite different and will prove useful in the sequel.

Proposition (1.3). If A and T are both 0, M is locally isometric to a

Riemannian product.

This proposition is clearly established by applying the following result
twice, once to 3F and then to %, yielding the required local trivialization.

Proposition (1.4). Assume that ^ is totally geodesic. Given m E M, there is

a neighborhood V of m so that, if Lλ, L2 are leaves of 5] v, then Lλ and L2 are

isometric.

Proof. Choose a local trivializing neighborhood U of m with/^: ί/-» R* a
local submersion defining <3r

)c/. Set xo = fσ{m), and let Lo = fΰι{x0). For
x G R* in a small enough neighborhood of x0, choose a regular curve γ from
x0 to x, γ(0) = x0, γ(l) = x. By an argument standard in the geometry of



228 DAVID L. JOHNSON & LEE B. WHITT

connections, for any p G Lo close enough to m, there is a unique horizontal
lift γ of γ such that γ(0) = p. Let φ(/?) = γ(l). If Lλ = fϋ\x\ Φ maps a
neighborhood of m in Lo onto a neighborhood of Lx. By suitably shrinking t/
to V the proposition will be verified once φ is shown to be an isometry.

Up, q £ Lo are close enough, there is a unique geodesic a in K from/? to #.
As ίF is totally geodesic, a lies within Lo. Assume α is parametrized by arc
length, with α(0) = p, α(/) = #, where / = dist(/?, ςr). For each t, if γ̂  and yq

are the horizontal lifts of γ beginning at p and q, respectively, there is a
unique geodesic at from yp(t) to γ^(0 Let lt be the length of α,, so that
«X0) = γ (0, 01,(1,) = γ^(0. As 9 is totally geodesic, α, c /^(γ(0) e <%.

It suffices to show /, is a constant (= /), for then dist(φ(p), φ(#)) =
dist(γ/>(l), γ/0)) = lλ = I. Define an embedding Σof G = {(5, ί)|0 < ^ < /„
0 < / < 1} into M by Σ(s, t) = at(s). The coordinate system Σ"1: Σ(G) -+ R2

is classically termed a geodesic coordinate system along yp of Σ. It is well-
known that for such a coordinate system, the metric tensor satisfies gl2 = 0;
that is, (d/ds at(s\ 2^(3/3/)) = 0. Thus the α, are orthogonal to the curves
s = constant. However, yq is also orthogonal to α,, thus yq is one of the
s = constant curves, implying that lt is constant.

Remark. If % is not integrable, the map φ will depend on the choice of
path γ. Conversely, if the isometry φ is determined, % must be integrable, as
is shown by the following

Corollary (1.5). // the leaves admit no local isometries, then % is integra-

ble.

Remark. The required condition is actually infinitesimal; no neighbor-
hood of a leaf may admit a nonzero Killing field.

Proof. If γ in the proposition is closed, then so is γ by hypothesis. Let
X, Y be horizontal vector fields on V such that X, Y are /^-related to
commuting vector fields X, Y on R*. Then [X, Y] is vertical, being /^-related
to zero. As $"[-, -] is tensorial on horizontals, it suffices to show [X, Y] = 0.
By the standard geometric interpretation of the Lie bracket, as [X, Y] = 0,
the "rectangle" of integral curves of X, Y used (in the limit) to describe
[X, Y] are closed. By hypothesis, the lifted rectangles are also closed, hence
[X, Y] = 0. q.e.d.

Prima facie it may appear that totally geodesic foliations are of a more
restrictive nature than the fiber-like metrics of [3] and [11]. Moreover, as
foliations are generalizations of fiber bundles, it may seem more natural to
consider fiber-like metrics, being a straightforward generalization of Rieman-
nian submersions. However, in the case where the orthogonal distribution is
integrable (e.g. codimension one), the two notions are interchangeable.
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Theorem (1.6). // <% is a totally geodesic foliation on M, and % is

integrable, then the metric on M is fiber-like, compatible with %. Conversely, if

M has a fiber-like metric compatible with a foliation (Sr, and % is integrable,

then % is totally geodesic.

Proof. For the first statement, it suffices to show that, for some choice of

local trivialization of %, fυ\ U^>Rn~k (k = codimension of Sr), there is a

metric making fυ a Riemannian submersion. Let U be a local trivializing

neighborhood of (3r, and choose L o E % (L o ^Rn~k) and V c U as in

Proposition (1.4). Define fv: V -+Rnk by fv(p) = </>(/?) E L o - R Λ * where

φ is the local isometry constructed in that Proposition. As Λ~|ker(/ )± is an

isometry, fv is a Riemannian submersion.

Conversely, if the metric on M is fiber-like, compatible with 5", let/^: U ->

Rk be a local Riemannian submersion for some metric on Rk. Assuming that

% is integrable, to show it is totally geodesic it suffices to show that

<5VX Y = 0 for vector fields X, Y in %. By [9, Lemma 2], f V X Y =\Φ[X, Y],

which vanishes as % is integrable.

Corollary (1.7). The metric on M is fiber-like compatibly with a foliation *$

if and only if any geodesic tangent to % = ^ at one point is always tangent to

%.

Proof. Assume any geodesic a orthogonal to 5" at p = α(0) is always

orthogonal to W. For a given local trivialization/^: £/—»R* of $F with/? G U,

fu(fu(«))> near/>> i s f o l i a t e d by ( i n i ϊ W α ) ) } = %, and %a = ^ (in
the induced metric) is totally geodesic. This follows as VXX E % for any

horizontal vector field X, which in turn follows from writing X — f'Xi9 where

Xt are horizontal geodesic vector fields witfr/'(/?) = δn. If X is a unit vector

field generating %a, X is /^-related to the vector field fv {af) along /^(α), as

the induced metric onfyX{fu{a)) is fiber-like by Theorem (1.6). However, this

must apply to any geodesic orthogonal to <# zip. The required metric at/^/?)

on Rn~k is then defined by \fu*(afφ))\ = 1 for all such geodesies α parame-

trized by arclength. The converse statement appears in [11].

Suppose that the metric on M is fiber-like compatibly with <S, and more-

over is itself totally geodesic. If % is integrable, then applying theorem (1.6)

and Proposition (1.3) we know that M will be locally a Riemannian product.

If an additional assumption on the isometry groups of the leaves L of 5" is

made, a stronger conclusion follows (cf. also [2] and [11]).

Corollary (1.8). // M has a totally geodesic foliation <& such that the

Riemannian metric on M is fiber-like compatibly with ¥, and the leaves admit

no local isometries, then M is a Riemannian product.

Remark. Here the necessary condition is that, for no neighborhoods U, V

in any leaf L G ®i is there a local isometry φ: U -> V.
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Proof. As in Corollary (1.5), the assumption on the isometry groups

implies that % is integrable. Theorem (1.6) implies % is also totally geodesic,

so M is locally a Riemannian product. The corollary then follows from the

following lemma.

Lemma (1.9). If *% is totally geodesic, and % is integrable, then each leaf of

*$ meets any leaf of %. If the leaves of <$ have no local isometries, L Π H

consists of exactly one point for each L G *$, H G 3C.

Proof. The second statement follows easily from the first. Assume then

that <5 is totally geodesic, and let if be a leaf of % missing a leaf L of 3F. As

^ = %, L n H = 0 . The closure of a leaf is clearly a union of leaves of the

foliation. Thus, if a G L, b G Ή are such that dist(α, b) = dist(L, H) = /,

and a: [0, /] -> M is a minimal geodesic realizing that distance, with α(0) = α,

α(/) = b, then α ^ X S ^ and ct'(l)±%a(r>. If α'(0) were not orthogonal to

<$, a shorter curve between L and if could easily be constructed. But, as <% is

totally geodesic, and a\l) G 3Fα(/), α must be contained in a leaf of f'. This

contradiction completes the proof of the lemma.

Remark. The argument presented here is a simple but very useful method

which will be used repeatedly in this paper.

Pick a leaf Lo G 5',• and define TΓ: Af —> Lo by: any w G M is on exactly

one H G 3C, so 77-(m) = H π Lo. Using the local isometries described in

Proposition (1.4), TΓ is readily seen to be a Riemannian submersion. [2] then

implies, as % is totally geodesic, that π: M—> L o is a fiber bundle. If 77 were

not a product projection, then π^L, L another leaf of 9% would necessarily be

a nontrivial Riemannian covering. But the action of ITX{L^)/IT JJTλ{L)) on L

yields a nontrivial isometry of L, contrary to the hypotheses. This completes

the proof of Corollary (1.8). q.e.d.

In the case that the codimension of *$ is one, as % is automatically

integrable the hypotheses in the previous corollary may be considerably

weakened, and still yield interesting conclusions.

Corollary (1.10). // *$ is a codimension-one, transversely oriented, totally

geodesic foliation, and % is also totally geodesic, then the leaves of ?F are

globally isometric.

Remarks. This does not say that M is a Riemannian product; in particu-

lar, if M is compact the leaves of ¥ need not be. Also, this corollary could be

stated equivalently by assuming that F̂ is totally geodesic and that the metric

on M is fiber-like.

Proof. As ?F is transversely oriented, there is a unit vector field X

spanning %. As % is totally geodesic, X is a geodesic flow field.

Claim. X is Killing.
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Proof. For any E, F e 9C(M), consider <VEX, F). <VEX9 F} = 0 if E

or F is horizontal (i.e., in %). If both are vertical, (VEX9 F) = -{X, VEF}

= 0 as <$ is totally geodesic. As the Killing condition <VEX, F} = -

(VFX, Ey is tensorial in is and F, the claim follows, q.e.d.

The one-parameter group of isometries φ, of X takes leaves into leaves as

Φt (Xp) = A ^ , thus φ, (3F) = Φ, and φ, L : L -> L' is an isometry.

2. Codimension one

The purpose of this section is to classify all compact manifolds M admit-

ting a geodesible codimension-one foliation ξF, under the assumption that

there is a compact leaf L o E ίF. By passing to a 2-fold cover, if necessary, it

will be assumed throughout that W is transversely oriented.

Theorem (2.1). If M is a compact Riemannian manifold with a codimension-

one totally geodesic transversely oriented foliation *% such that there is a

compact leaf LQ, then M fibers over S \ with fiber Lo.

Remarks. (1) If ίF is not transversely oriented, M is the orbit space of a

free Z2-action on such a fibration.

(2) The foliation ¥ is not necessarily the trivial foliation in this fibration.

For example, Gluck [1] has shown that any flow on Sι X Sι with no Reeb

components is geodesible.

The proof of Theorem (2.1) is based on the following propositions.

Proposition (2.2). Let M be a compact Riemannian manifold with a codi-

mension-one , transversely oriented\ totally geodesic foliatioin ίF. If there is a

compact leaf Lo e <$, then M — Lo is connected, and Hλ{M, R) φ 0.

Proof. Consider the Mayer-Vitoris sequence (using real coefficients) of the

pair M — Lo and V, where V is a tubular neighborhood of Lo. The sequence

• -> HX{M)XHQ({M - Lo) Π V) -> H0(M - Lo) Θ H0(L0) -> H0(M)

—>0 is exact. As ίF is transversely oriented, (M — Lo) n F ^ L 0 x Z 2 , so

HX(M) X R2 -* H0(M - Lo) Θ R -H> R -> 0 is exact. Either M - Lo is con-

nected, and d{Hλ(M)) φ 0, or M - Lo has 2 components.

Assume now that M — Lo is disconnected. Call one component of M — Lo

the inside of Lo. Choose a unit vector field X in % so that X(Lo is inward-

pointing. Let γ be an integral curve of X so that γ(0) = x E Lo.

As previously stated, γ - γ = γ(0, oo) - γ(0, oo) is a union of leaves of %.

As ΛrjLo is inward-pointing, γ[0, oo) meets Lo only at 0, thus dist(L0, γ - γ) =

/ > 0. Pick y G γ - γ, z e L o realizing this distance, and let a be a minimal

unit-speed geodesic from y to z, with α(0) = >>, α(/) = z. α'(0) is in ^ , but

a'(I) is in DC, contradicting the fact that 3F is totally geodesic. Thus M - Lo

must be connected, implying that HX(M) φ 0. q.e.d.
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Let M, φ, and Lo be as in the previous Proposition. Construct a manifold
M with boundary Lo X Z2 by the following method: begin with the
manifold-with-boundary M - V, V a tubular neighborhood of Lo. By the
collaring theorem the two closed halves of V may be glued back onto M - V,
including the zero-section in each half, with the Riemannian metric inherited
from M. This is the manifold M; simply stated, cut M open along Lo. Note
that ¥ lifts to a totally geodesic foliation §" with one additional copy of Lo.
As usual, let %= Φ±. Call dM = Lo u Lx. Note that L, is identified with Lo

in such a way that M ^ M/~ where x E Lx ~ x E Lo.

The following result is an easy consequence of Lemma (1.9).
Proposition (2.3). Each leaf γ G ίC meets both components of 3(M).
Proof of Theorem (2.1). Let A" be a unit vector field generating % in M,

with X\LQ inward-pointing. For each x E Lo, let yx be the integral curve of X
with yxφ) = x. Note that {γ x} x G L o = 3C, and let tx be that parameter value
so that yx(tx) E Lx. The function Λ: H> /X is a smooth, positive function on Lo.
Consider the mapping φ: Lo X /—> M defined by φ(x, s) = ŷ ί̂ 1 Ẑ ). As all
leaves of % are represented, φ is clearly surjective; as % is a foliation φ must
be injective. φ is also easily seen to be smooth and nonsingular, thus is a
diffeomorphism.

Note that /: Lo -^ Lx defined by f(x) = φ(x, 1) is precisely the mapping
obtained by stringing together the local isometries of leaves described in
Proposition (1.4), thus / is an isometry. Evidently, M ^ i ί / φ , 1) -
(f(x), 0), considering f(x) as an element of Lo (using the identification
involved in the definition of M).

Define TΓ: M ^> Sι c C by π(φ(x, s)) = elmsi. π is well-defined as a map-
ping on M, rather than on M, by construction. That π is a submersion is
straightforward; from [2] and Theorem (1.6), π is seen to be a fibering.

Corollary (2.4). If W is a codimension-one totally geodesic, transversely

oriented foliation on a compact Riemannian manifold M, any two compact

leaves of *$ are isometric.

Proof. Let Lo, Lx be two compact leaves. Construct M as in the theorem,
using Lo. Consider ψ: Lx^> Lo defined by ψ(y) = x, where x E Lo is that
point such that y E yx. ψ is easily seen to be a locally isometric covering
projection. Reversing the roles of Lo and Lx completes the proof.

3. Isometries and Killing fields

In this section, we consider Killing fields and isometries on a complete
Riemannian manifold. Recall that a Killing field I is an infinitesimal
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generator of a one-parameter group of isometries. Equivalently, X satisfies the
condition

for all vector fields X and Y.

Theorem (3.1). Let M be a complete connected Riemannian manifold admit-

ting a codimension-one totally geodesic foliation *% by compact leaves. If a

Killing field X is tangent to ¥ somewhere, then it is tangent everywhere.

Remark. The condition that the leaves be compact cannot be eliminated,
even if M is assumed to be compact. For example, consider the flow on the
torus Sι X S1 obtained as follows. The graphs of y = arctan(x — Λ:0), for
x0 e R, and>> = ± π/2 foliate R X [-π/2, π/2]. The identifications (n,y) ~
(m, y), n, m G Z and (x, -π/2) — (x, π/2) yield the required flow. A genera-
tor for this flow is given by

9* 1 + tanV &

where d/dx, θ/θy are the standard coordinate vector fields on Sι X Sι

induced from R X [-π/2, π/2]. This flow has a unique compact leaf corre-
sponding to the graph of y = π/2.

Consider a metric on the torus defined by ||Θ/Θ>>|| = ||Y|| = 1 and
(d/dy, Y > = 0. Then Y is a geodesic field and d/dx is a Killing field. To see
that VYY = 0, first note that the 1-form dx is dx = < , Y). Since this form is
closed, it easily follows that ([Y, θ/θy], Y) = 0, and hence <θ/θ>>, VYY) =
0. To see that d/dx is Killing, observe that this flow preserves Y and θ/θ>>,
and hence preserves the metric. Thus there is a Killing field on the torus
which is tangent to the compact leaf of the flow, but nowhere else tangent.

Also, in higher codimensions the theorem is false. The Hopf fibration
Sι —> S3 -> S2 gives a geodesic flow on the constant curvature 3-sphere.
Regarding S3 c C X C, the Killing field generated by rotating one of the
complex factors is tangent to exactly two circles.

Proof. First note that if Z is any vector field (generated by a one-parame-
ter group ψ, of diffeomorphisms) on a manifold with a codimension-one
foliation by compact leaves, then ψ/L) is tangent to the foliation at some
point, for any leaf L. In our totally geodesic setting, this implies that the
one-parameter group of isometries generated by any Killing field preserves
the foliation.

Assume that X is somewhere tangent and transverse to L, and let/? belong
to the boundary of the tangency set in L. By trivializing <f in a neighborhood
of p, it is clear that X cannot take L into another leaf. Thus X is everywhere
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tangent to L. Now assume that X is everywhere transverse to a leaf L. Since

L and L are compact, there is a minimizing geodesic α: / -» M between

them. Suppose that <α'(a), X) is positive (otherwise use -A"), and let a flow

along X to generate a family α̂  of geodesies, as(t) = φ5(α(7)), <& in the

one-parameter group of isometries generated by A". For small positive s, it

follows that as and Lr intersect at as(t\ for some t < 1 depending on s. So as

is a shorter geodesic from L to Z/, a contradiction; hence X is tangent to ZΛ

q.e.d.

As an immediate consequence, if X vanishes somewhere, then it is every-

where tangent to $'. Let G<$ denote the identity component of the isometries

of M which preserve each leaf of (3r. The associated Lie algebra consists of

those Killing fields everywhere tangent to 3F. Also let Go denote the identity

component of the isometry group of M.

Proposition (3.2). Assuming the hypothesis of Theorem (3.1), then G<$ is a

compact normal subgroup of Go, and the quotient Go/ G<$is either {e}, R, or Sι.

Proof. Let X (resp. Y) be a Killing field tangent (resp. transverse) to *%

with one-parameter group of isometries φt (resp. ψf). To show that G$ is a

normal subgroup, it suffices to show that [X, Y] is tangent to $\ By the above

remarks, φt and ψ, preserve <3r, and it is clear that the curve t H»

Ψ~lV~t Φ^h ΨVΪΦVt (P) lies in a leaf L for any/? G L. But [X, Y] is the tangent

vector to this curve and so G^is normal. As for the compactness, first observe

that Gc$ is closed. Let pn be a sequence of isometries in G<$. If a E L, any leaf,

then there is a subsequence, still denoted by ρn, such that ρn(a) converges. By

[6, Lemma 3, p. 47], it follows that there is a subsequence of this subsequence

which converges in G, and hence in G^.

If Z is any Killing field, then by Theorem (3.1), Z can be uniquely written

as a linear combination of Y and an ^-tangent Killing field. Hence the

codimension of G<$ in G is 0 or 1 depending on the existence of Y. If M is

compact, then G/G<$ is either {e} or Sι. If M is noncompact and y exists,

then no flow line a of y intersects a leaf more than once. Otherwise, consider

any two points a{tγ), a(t2) G £ and set M, = U , e [ , , j L(α(/)), where L(a(t))

is the leaf through a(t). Since y is everywhere transverse, it follows that M, is

open and closed. But Mx is also compact, a contradiction. Hence the

one-parameter group of isometries ψ, is not periodic; in particular, G / G ^ =

R. q.e.d.

We conclude with the following classification result.

Theorem (33). Let M be a complete noncompact Riemannian manifold with

a codimension-one transversely oriented totally geodesic foliation by compact

leaves. Then all of the leaves are isometric (to say L) and M is diffeomorphic to

L X R.
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Remark. M need not be isometric to a product; for example, put a bend

in the cylinder Sx X R.

Proof. As in the proofs of Theorem (2.1) and Corollary (2.4), it suffices to

show that every orthogonal curve intersects each leaf exactly once. This

follows as in the proof of Proposition (3.2).
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