PROJECTIVE MAPPINGS AND DISTORTION THEOREMS

ZVI HAR'EL

1. Introduction

Distance- and volume-decreasing theorems have been investigated since Ahlfors [1] extended Schwarz's Lemma. In the complex domain, the results were distortion theorems for various holomorphic (see [9]) and even almostcomplex mappings [5]. In the real domain, the theorems were obtained for certain classes of harmonic mappings, mainly by Chern [2], Goldberg [2], [6], [7], T. Ishihara [7], Petridis [7] and the present author [6], [8].

Although the notion of a projective change of a linear connection is classical, the notion of a projective mapping has not been investigated until recently. Two different notions were investigated, a weaker one by Yano and S. Ishihara [14] and a stronger by Kobayashi. The former, discussed in §2, requires the preservation of paths, while the latter, discussed in $\S 4$, requires, in addition, the preservation of the projective parameters of Whitehead [12].

In a recent paper [10], Kobayashi showed that projective mappings of an interval into a Riemannian manifold whose Ricci curvature is negative and bounded away from zero are distance decreasing up to a constant. This is generalized in $\S 5$ for mappings of a complete Riemannian manifold whose Ricci curvature is bounded below. In particular, this is valid for the hyperbolic open ball, which is the n-dimensional analog of Kobayashi's interval.

For projective mappings in the sense of Yano, we prove in §3 a volume-decreasing theorem, in the equidimensional case, under the same curvature requirements as above. We also show that the two notions of a projective mapping agree if the mapping is a diffeomorphism.

The author would like to express his gratitude to Professors Kobayashi and Goldberg, for the valuable discussions he had with them.

2. Projective mappings and transformations

Let (M, ∇) and ($M^{\prime}, \nabla^{\prime}$) be differential manifolds with symmetric linear connections. A curve $\gamma: I \rightarrow M$ with velocity vector $\dot{\gamma}$ is mapped by a

[^0]smooth mapping $f: M \rightarrow M^{\prime}$ to a curve $f \circ \gamma: I \rightarrow M^{\prime}$ with velocity vector $f_{*} \dot{\gamma} \cdot \gamma$ is called a path in (M, ∇) if its acceleration vector $\nabla_{D} \dot{\gamma}$ is tangent to γ, that is, $\dot{\gamma}$ satisfies the differential equation $\nabla_{D} \dot{\gamma}=h \dot{\gamma}$ with a certain smooth function h on I, where D is the differentiation operator in \mathbf{R}. If an arbitrary path in (M, ∇) is mapped into a path in $\left(M^{\prime}, \nabla^{\prime}\right), f$ is said to be a projective mapping (see [14]). If M^{\prime} coincides with M (in the non-Riemannian case, ∇^{\prime} does not coincide with ∇ necessarily), and f is a diffeomorphism, f is called a projective transformation of M. It is well known, (see [4]), that the identity transformation is projective if and only if there exists a smooth 1 -form σ on M with the property that for any two vector fields, X, Y on $M, \nabla_{X}^{\prime} Y-\nabla_{X} Y$ $=\sigma(X) Y+\sigma(Y) X$. In this case, ∇^{\prime} and ∇ are called projectively related connections. More generally, let M_{f} be the dense open submanifold of M on which rank f attains its maximum (if f has a constant rank, $M_{f}=M$). We prove:
Proposition 1. Let $f:(M, \nabla) \rightarrow\left(M^{\prime}, \nabla^{\prime}\right)$ be a smooth mapping, the connections ∇, ∇^{\prime} being symmetric. If f is projective, then there exists a smooth 1-form σ on M_{f} such that
\[

$$
\begin{equation*}
\nabla_{X}^{\prime} f_{*} Y-f_{*} \nabla_{X} Y=\sigma(X) f_{*} Y+\sigma(Y) f_{*} X \tag{1}
\end{equation*}
$$

\]

Conversely, if (1) holds with σ defined on M, f is projective.
($f_{*} Y$ is differentiated as a vector field along f, i.e., a section of the vector bundle $f^{-1} T M^{\prime}$ with the connection induced from M^{\prime}.)

Proof. Let $\bar{\nabla}$ be the covariant differentiation of tensor fields on M with values in the vector fields along f, i.e., the connection in the vector bundle $(\otimes T M) \otimes f^{-1} T M^{\prime}$ induced from ∇ and ∇^{\prime}. Consider f_{*} as a section of $(T M)^{*} \otimes f^{-1} T M^{\prime}$, we have

$$
\left(\bar{\nabla} f_{*}\right)(X, Y)=\left(\bar{\nabla}_{X} f_{*}\right) Y=\nabla_{X}^{\prime} f_{*} Y-f_{*} \nabla_{X} Y .
$$

If both connections are symmetric, $\bar{\nabla} f_{*}$ is a symmetric bilinear form on M (with values in the vector fields along f), and it is sufficient to show that

$$
\left(\bar{\nabla} f_{*}\right)(X, X)=2 \sigma(X) f_{*} X,
$$

or even

$$
\begin{equation*}
\left(\bar{\nabla} f_{*}\right)(\dot{\gamma}, \dot{\gamma})=\nabla_{D}^{\prime} f_{*} \dot{\gamma}-f_{*} \nabla_{D} \dot{\gamma}=2 \sigma(\dot{\gamma}) f_{*} \dot{\gamma}, \tag{2}
\end{equation*}
$$

where γ is an arbitrary path in M, is equivalent to the projectiveness of f. Evidently, (2) implies the projectiveness. The converse is also obvious, except the linearity of $\sigma .\left(\sigma(\dot{\gamma})\right.$ is not determined by (2) if $f_{*} \dot{\gamma}=0$, a situation which does not happen if f is a transformation.)

Suppose f is projective; $f_{*}: M_{p} \rightarrow M_{f(p)}^{\prime}, p \in M_{f}$, induces a splitting $M_{p}=$ $\operatorname{ker} f_{*} \oplus N_{p}$, where N is a smooth distribution on M_{f}. Define $\sigma: N_{p} \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
\left(\bar{\nabla} f_{*}\right)(v, v)=2 \sigma(v) f_{*} v \tag{3}
\end{equation*}
$$

for $v \in N_{p}$. If $v, w \in N_{p}$ are linearly independent, so are $f_{*} v$ and $f_{*} w$, thus

$$
\begin{aligned}
2 \sigma(v) f_{*} v+2 \sigma(w) f_{*} w= & \left(\bar{\nabla} f_{*}\right)(v, v)+\left(\bar{\nabla} f_{*}\right)(w, w) \\
= & \frac{1}{2}\left(\bar{\nabla} f_{*}\right)(v+w, v+w)+\frac{1}{2}\left(\bar{\nabla} f_{*}\right)(v-w, v-w) \\
= & \sigma(v+w)\left(f_{*} v+f_{*} w\right)+\sigma(v-w)\left(f_{*} v-f_{*} w\right) \\
= & (\sigma(v+w)+\sigma(v-w)) f_{*} v \\
& +(\sigma(v+w)-\sigma(v-w)) f_{*} w,
\end{aligned}
$$

which yields $\sigma(v \pm w)=\sigma(v) \pm \sigma(w)$, and σ is linear on $N_{p}(\sigma(a v)=a \sigma(v)$ evidently). Now, extend σ to M_{p} linearly by setting $\left.\sigma\right|_{\operatorname{ker} f_{*}}=0$. As N is smooth, σ is a smooth 1 -form on M_{f}. To show that (3) holds for all $v \in M_{p}$, set $v=v_{1}+v_{0}$ with $v_{1} \in N_{p}, f_{*} v_{0}=0$. Then the symmetry of $\bar{\nabla} f_{*}$ implies

$$
\begin{aligned}
\left(\bar{\nabla} f_{*}\right)(v, v) & =\left(\bar{\nabla} f_{*}\right)\left(v_{1}, v_{1}\right)+2\left(\bar{\nabla} f_{*}\right)\left(v_{0}, v_{1}\right)+\left(\bar{\nabla} f_{*}\right)\left(v_{0}, v_{0}\right) \\
& =2 \sigma\left(v_{1}\right) f_{*} v_{1}=2 \sigma(v) f_{*} v
\end{aligned}
$$

where $\left(\bar{\nabla} f_{*}\right)\left(v_{0}, w\right)=0$ for any $w \in M_{P} .\left(f_{*} v_{0}=0\right.$ implies $\nabla_{v_{0}}^{\prime} f_{*} Y=0$ for any vector field Y on M, because $\nabla_{v_{0}}^{\prime}\left(Y^{\prime} \circ f\right)=\nabla_{f_{*} v_{0}}^{\prime} Y^{\prime}=0$ for any field Y^{\prime} on M^{\prime}, and $f_{*} Y$ is locally a combination of vector fields along f with the form Y^{\prime} $\circ f$. Also, a proper extension Y of w may be chosen so that $\nabla_{v_{0}} Y=0$.) q.e.d.

Let R be the curvature tensor on (M, ∇), defined by $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z$ $-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$. Then a straightforward computation together with a use of (1) shows (cf. [13, Chapter 1, Formula 4.6]; R^{\prime} is defined similarly on M^{\prime})

$$
\begin{align*}
R^{\prime}\left(f_{*} Y, f_{*} Y\right) f_{*} Z= & f_{*}\{R(X, Y) Z+(d \sigma)(X, Y) Z \tag{4}\\
& +(\square \sigma)(X, Z) Y-(\square \sigma)(Y, Z) X\}
\end{align*}
$$

on M_{f}, where

$$
\begin{equation*}
(\square \sigma)(X, Y)=(\nabla \sigma-\sigma \otimes \sigma)(X, Y)=\left(\nabla_{X} \sigma\right)(Y)-\sigma(X) \sigma(Y), \tag{5}
\end{equation*}
$$

and

$$
(d \sigma)(X, Y)=(\nabla \sigma)(X, Y)-(\nabla \sigma)(Y, X)=\left(\nabla_{X} \sigma\right)(Y)-\left(\nabla_{Y} \sigma\right)(X)
$$

as ∇ is symmetric. If f is a projective transformation, we have

$$
\begin{aligned}
f_{*}^{-1} R^{\prime}\left(f_{*} X, f_{*} Y\right) f_{*} Z= & R(X, Y) Z+(d \sigma)(X, Y) Z \\
& +(\square \sigma)(X, Z) Y-(\square \sigma)(Y, Z) X .
\end{aligned}
$$

Let Ric be the Ricci tensor on (M, ∇), defined by $\operatorname{Ric}(Y, Z)=\operatorname{tr}(X \rightarrow$ $R(X, Y) Z$), then we get (Ric $^{\prime}$ is defined similarly on M^{\prime})

$$
\operatorname{Ric}^{\prime}\left(f_{*} Y, f_{*} Z\right)=\operatorname{Ric}(Y, Z)+(d \sigma)(Y, Z)+(\square \sigma)(Y, Z)-n(\square \sigma)(Y, Z)
$$

on $M_{f}=M$, or

$$
\begin{equation*}
f^{*} \mathrm{Ric}^{\prime}=\operatorname{Ric}-d \sigma-(n-1) \square \sigma \tag{6}
\end{equation*}
$$

The relation is equally true for a projective mapping of equidimensional manifolds, except at the singularities of f_{*}, i.e., at the points where f is degenerate.

3. A volume-decreasing theorem

Let $f: M \rightarrow M^{\prime}$ be a projective mapping of equidimensional Riemannian manifolds, with the metrics \langle,$\rangle and \langle$,$\rangle and the Levi-Civita connections \nabla$ and ∇^{\prime} respectively. Let V be the unit frame field of $\Lambda^{n} T M$, dual to the volume n-form on M, and set

$$
u=\left\langle f_{*} V, f_{*} V\right\rangle^{\prime}
$$

where f_{*} and \langle,\rangle^{\prime} are naturally extended to $\Lambda^{n} T M$ and $f^{-1} \Lambda^{n} T M^{\prime}$ respectively. f is volume decreasing (up to a constant C) if and only if $u \leqslant 1\left(\leqslant C^{2}\right.$ respectively), and f is degenerate at p if and only if $u(p)=0$. (Note that u is globally defined even if M is nonorientable.)

Let γ be a geodesic in M_{f}, and $\left(X_{i}\right)_{i=1}^{n}$ a parallel frame field along γ such that $V \circ \gamma=X_{1} \wedge \cdots \wedge X_{n}$ and $\dot{\gamma}=X_{1}$. As f is projective,

$$
\nabla_{D}^{\prime} f_{*} X_{i}=\sigma(\dot{\gamma}) f_{*} X_{i}+\sigma\left(X_{i}\right) f_{*} \dot{\gamma}
$$

so

$$
\begin{aligned}
\nabla_{D}^{\prime} f_{*} V \circ \gamma & =\sum_{i=1}^{n} f_{*} X_{1} \wedge \cdots \wedge \nabla_{D}^{\prime} f_{*} X_{i} \wedge \cdots \wedge f_{*} X_{n} \\
& =\sum_{i=1}^{n} \sigma(\dot{\gamma}) f_{*} V \circ \gamma+\delta_{1 i} \sigma(\dot{\gamma}) f_{*} V \circ \gamma \\
& =(n+1) \sigma(\dot{\gamma}) f_{*} V \circ \gamma .
\end{aligned}
$$

Thus

$$
d u(\dot{\gamma})=D(u \circ \gamma)=2\left\langle f_{*} V \circ \gamma, \nabla_{D}^{\prime} f_{*} V \circ \gamma\right\rangle^{\prime}=2(n+1) \sigma(\dot{\gamma})(u \circ \gamma)
$$

or

$$
d u=2(n+1) u \sigma .
$$

Hence, at all the points where f is nondegenerate,

$$
\begin{equation*}
\sigma=\frac{d u}{2(n+1) u} \tag{7}
\end{equation*}
$$

(As a result we find that if f is an immersion, σ is exact.)
We now substitute σ as given by (7) in (6). We have

$$
\nabla \sigma=\frac{1}{2(n+1)}\left(\frac{\nabla^{2} u}{u}-\frac{d u \otimes d u}{u^{2}}\right)
$$

so

$$
\square \sigma=\frac{1}{2(n+1)} \frac{\nabla^{2} u}{u}-\frac{2 n+3}{4(n+1)^{2}} \frac{d u \otimes d u}{u^{2}}
$$

and also

$$
d \sigma=0
$$

Thus, at the points where $u \neq 0$,

$$
f^{*} \mathrm{Ric}^{\prime}=\operatorname{Ric}-\frac{n-1}{2(n+1)} \frac{\nabla^{2} u}{u}+\frac{(n-1)(2 n+3)}{4(n+1)^{2}} \frac{d u \otimes d u}{u^{2}}
$$

Taking the trace of both sides with respect to \langle,$\rangle , we obtain$

$$
S^{\prime}=S-\frac{n-1}{2(n+1)} \frac{\Delta u}{u}+\frac{(n-1)(2 n+3)}{4(n+1)^{2}} \frac{\langle d u, d u\rangle}{u^{2}}
$$

where Δ is the Laplacian on M, S is the scalar curvature of M, and S^{\prime} is the trace of f^{*} Ric'. We have locally

$$
S^{\prime}=\sum_{i=1}^{n}\left(f^{*} \mathrm{Ric}^{\prime}\right)\left(E_{i}, E_{i}\right)
$$

with $\left(E_{i}\right)$ an arbitrary orthonormal frame field in M.
Theorem 1. Let $f: M \rightarrow M^{\prime}$ be a projective mapping of n-dimensional Riemannian manifolds, M being complete. If the Ricci curvature of M is bounded below by a constant $-A$, and the Ricci curvature of M^{\prime} is bounded above by a constant $-B<0$, then either f is totally degenerate, or $A>0$ and f is volume decreasing up to a constant $(A / B)^{n / 2}$.

Proof. By the curvature assumption we have

$$
\begin{aligned}
S & =\sum_{n=1}^{n} \operatorname{Ric}\left(E_{i}, E_{i}\right) \geqslant-n A \\
S^{\prime} & =\sum_{i=1}^{n} \operatorname{Ric}^{\prime}\left(f_{*} E_{i}, f_{*} E_{i}\right) \\
& \leqslant-B \sum_{i=1}^{n}\left\langle f_{*} E_{i}, f_{*} E_{i}\right\rangle^{\prime} \\
& \leqslant-n B\left(\left\langle f_{*} E_{1} \wedge \cdots \wedge f_{*} E_{n}, f_{*} E_{1} \wedge \cdots \wedge f_{*} E_{n}\right\rangle^{\prime}\right)^{1 / n} \\
& =-n B u^{1 / n} .
\end{aligned}
$$

Thus

$$
-n B u^{1 / n} \geqslant-n A-\frac{n-1}{2(n+1)} \frac{\Delta u}{u},
$$

or $(B>0)$

$$
u\left(u^{1 / n}-\frac{A}{B}\right) \leqslant \frac{n-1}{2 n(n+1) B} \Delta u,
$$

wherever $u \neq 0$. The proof is concluded by Omori-Yau maximum principle (see Lemma below), which provides a sequence of points $\left(p_{v}\right)$ in M with the properties

$$
\lim _{\nu \rightarrow \infty} u\left(p_{\nu}\right)=\sup u(\leqslant \infty), \quad \lim _{\nu \rightarrow \infty} \frac{(\Delta u)\left(p_{\nu}\right)}{\left(u\left(p_{\nu}\right)+\delta\right)^{1+2 \alpha}} \leqslant 0
$$

with α, δ arbitrary positive numbers. Hence

$$
\lim _{\nu \rightarrow \infty} \frac{u\left(p_{\nu}\right)\left(\left(u\left(p_{\nu}\right)\right)^{1 / n}-(A / B)\right)}{\left(u\left(p_{\nu}\right)+\delta\right)^{1+2 \alpha}} \leqslant 0
$$

Choose $0<\alpha<\frac{1}{2 n}$. Then the degree of the denominator is lower than the degree of the numerator, thus sup u is finite, and either $u \equiv 0$ or $0<\sup u \leqslant$ $(A / B)^{n}$. q.e.d.

The above proof uses the following version of the maximum principle, which is proved in [6].

Lemma. Let M be a complete Riemannian manifold with Ricci curvature bounded below, and let u be a C^{2} function on M. Then, for any $\alpha>0$ and $\delta>-\sup u$, there exists a sequence $\left(p_{v}\right)$ in M such that

$$
\lim _{\nu \rightarrow \infty} u\left(p_{\nu}\right)=\sup u, \lim _{\nu \rightarrow \infty} \frac{\left\|d u\left(p_{\nu}\right)\right\|}{\left|u\left(p_{\nu}\right)+\delta\right|^{1+\alpha}}=0, \lim _{\nu \rightarrow \infty} \frac{(\Delta u)\left(p_{\nu}\right)}{\left|u\left(p_{\nu}\right)+\delta\right|^{1+2 \alpha}} \leqslant 0
$$

4. Strongly projective mappings

The discussion in $\S 3$ assumed the validity of (6), which is not true in the general situation. We shall now show that a similar formula can be proven even if $\operatorname{dim} M \neq \operatorname{dim} M^{\prime}$, for a restricted class of projective mappings.

We first discuss the classical situation, in which ∇^{\prime} and ∇ are projectively related connections in M, i.e., the identity transformation id: $(M, \nabla) \rightarrow$ (M, ∇^{\prime}) is projective. If $\gamma: I \rightarrow M$ is a ∇-geodesic, we have

$$
(\nabla \sigma)(\dot{\gamma}, \dot{\gamma})=\left(\nabla_{\dot{\gamma}} \sigma\right)(\dot{\gamma})=\nabla_{D}(\sigma \circ \gamma)(\dot{\gamma})=D(\sigma(\dot{\gamma}))-\sigma\left(\nabla_{D} \dot{\gamma}\right)=D(\sigma(\dot{\gamma})),
$$ or

$$
\begin{equation*}
(\square \sigma)(\dot{\gamma}, \dot{\gamma})=D(\sigma(\dot{\gamma}))-(\sigma(\dot{\gamma}))^{2} \tag{8}
\end{equation*}
$$

Let $\phi: I \rightarrow \tilde{I}$ be a reparameterization of γ, such that $\tilde{\gamma}=\gamma \circ \phi^{-1}: \tilde{I} \rightarrow M$ is a ∇^{\prime}-geodesic. (ϕ is called an affine parameter with respect to ∇^{\prime}.) Then

$$
\dot{\tilde{\gamma}}=\left(D \phi^{-1}\right) \dot{\gamma} \circ \phi^{-1}=\frac{\dot{\gamma}}{D \phi} \circ \phi^{-1}
$$

implies

$$
\nabla_{D}^{\prime} \dot{\tilde{\gamma}}=\left[\frac{\nabla_{D}^{\prime} \dot{\gamma}}{(D \phi)^{2}}-\frac{\left(D^{2} \phi\right) \dot{\gamma}}{(D \phi)^{3}}\right] \circ \phi^{-1}=0,
$$

or

$$
\begin{equation*}
\nabla_{D}^{\prime} \dot{\gamma}=\frac{D^{2} \phi}{D \phi} \dot{\gamma} \tag{9}
\end{equation*}
$$

Thus, by (2), if γ is not constant, we get $2 \sigma(\dot{\gamma})=\left(D^{2} \phi\right) /(D \phi)$, and

$$
\begin{equation*}
(\square \sigma)(\dot{\gamma}, \dot{\gamma})=\frac{1}{2}\left(D\left(\frac{D^{2} \phi}{D \phi}\right)-\frac{1}{2}\left(\frac{D^{2} \phi}{D \phi}\right)^{2}\right)=\frac{1}{2} \delta \phi \tag{10}
\end{equation*}
$$

where \mathcal{S} is the Schwarzian differentiation operator. We reparametrize γ and $\tilde{\gamma}$ using the classical projective parameters [12], i.e., the solutions $p: I \rightarrow \mathbf{R}$ and \tilde{p} : $\tilde{I} \rightarrow \mathbf{R}$ of the differential equation

$$
\begin{aligned}
& \delta p=\frac{2}{n-1} \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \\
& \delta \tilde{p}=\frac{2}{n-1} \operatorname{Ric}^{\prime}(\dot{\tilde{\gamma}}, \dot{\tilde{\gamma}})=\left[\frac{2}{n-1} \frac{1}{(D \phi)^{2}} \operatorname{Ric}^{\prime}(\dot{\gamma}, \dot{\gamma})\right] \circ \phi^{-1} .
\end{aligned}
$$

Then, using the chain rule for \mathcal{S} as well as (6) and (10), we get

$$
\begin{aligned}
\mathcal{S}(\tilde{p} \circ \phi) & =(D \phi)^{2}(\mathcal{\delta} \tilde{p}) \circ \phi+\mathcal{S} \phi \\
& =\frac{2}{n-1}\left(\operatorname{Ric}^{\prime}(\dot{\gamma}, \dot{\gamma})+\frac{n-1}{2} \delta \phi\right)=\frac{2}{n-1} \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) .
\end{aligned}
$$

This means that if \tilde{p} is a projective parameter for the ∇^{\prime}-geodesic $\tilde{\gamma}$, then $\tilde{p}{ }^{\circ} \phi$ is a projective parameter for the ∇-geodesic $\gamma=\tilde{\gamma} \circ \phi$, and if p is any other projective parameter for γ, then $\delta(\tilde{p} \circ \phi)=\delta p$ implies that $\tilde{p} \circ \phi=\left(C_{1} p+\right.$ $\left.C_{2}\right) /\left(C_{3} p+C_{4}\right)$. This is the classical statement that a projective change of the symmetric affine connection preserves both paths and their projective parameters.

Definition. A smooth mapping $f: M \rightarrow M^{\prime}$ is said to be strongly projective if it maps each path in M into a path in M^{\prime}, preserving the projective parameters.

By (6), a projective transformation is strongly projective. In the general situation, we prove

Proposition 2. Let $f: M \rightarrow M^{\prime}$ be a strongly projective mapping of manifolds with symmetric linear connection. Then for each $v \in T M$ with $f_{*} v \neq 0$,

$$
\left(f^{*} \operatorname{Ric}^{\prime}\right)(v, v)=\operatorname{Ric}(v, v)-\left.\frac{n-1}{2} \delta \phi\right|_{\circ},
$$

where ϕ is an affine parameter for the path $t \mapsto(f \circ \exp)(t v)$. In particular, if $v \in T M_{f}$,

$$
\left(f^{*} \operatorname{Ric}^{\prime}\right)(v, v)=\operatorname{Ric}(v, v)-(n-1)(\square \sigma)(v, v)
$$

Proof. Let γ be the geodesic in M with $\dot{\gamma}(0)=v$. Then $\tilde{\gamma}=f \circ \gamma \circ \phi^{-1}$ is a geodesic in M^{\prime}. Let p, \tilde{p} be projective parameters for γ and $\tilde{\gamma}$ respectively. Then

$$
\begin{gathered}
\delta p=\frac{2}{n-1} \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \\
\delta(\tilde{p} \circ \phi)=\frac{2}{n-1}\left(\operatorname{Ric}^{\prime}\left(f_{*} \dot{\gamma}, f_{*} \dot{\gamma}\right)+\frac{n-1}{2} \delta \phi\right) .
\end{gathered}
$$

If f is strongly projective, $\delta(\tilde{p} \circ \phi)=\delta p$ implies

$$
\operatorname{Ric}^{\prime}\left(f_{*} \gamma, f_{*} \dot{\gamma}\right)=\operatorname{Ric}(\dot{\gamma}, \dot{\gamma})-\frac{n-1}{2} \delta \phi
$$

and the assertion follows from (10) for the path $f \circ \gamma$.

5. A distance-decreasing theorem

In this section we restrict ourselves again to the Riemannian case. We shall show that under the curvature conditions already discussed in §3, a strongly projective mapping is distance decreasing up to a constant.

Theorem 2. Let $f: M \rightarrow M^{\prime}$ be a strongly projective mapping of Riemannian manifolds, M being complete. If the Ricci curvature of M is bounded below by a constant $-A$, and the Ricci curvature of M^{\prime} is bounded above by a constant
$-B<0$, then either f is constant, or $A>0$ and f is distance decreasing up to a constant $(A / B)^{1 / 2}$.

Proof. We show that for each $v \in T M$ with $\|v\|=1,\left\|f_{*} v\right\|^{2} \leqslant A / B$. Let γ be the unit-speed geodesic with $\dot{\gamma}(0)=v$. Set $u=\left\|f_{*} \dot{\gamma}\right\|^{2}$. As $f \circ \gamma$ is a path, either it is constant and $u \equiv 0$, or else u is nowhere zero, in which case we show that $u \leqslant A / B$ along γ. By (9) we have, for an affine parameter ϕ for $f \circ \gamma$,

$$
\frac{D^{2} \phi}{D \phi}=\frac{\left\langle\nabla_{D}^{\prime} f_{*} \dot{\gamma}, f_{*} \dot{\gamma}\right\rangle^{\prime}}{\left\langle f_{*} \dot{\gamma}, f_{*} \dot{\gamma}\right\rangle^{\prime}}=\frac{D u}{2 u} .
$$

Thus

$$
\frac{1}{2} \delta_{\phi}=\frac{1}{4} \frac{D^{2} u}{u}-\frac{5}{16}\left(\frac{D u}{u}\right)^{2}
$$

and by Proposition $2\left(\right.$ as $\left.f_{*} \dot{\gamma} \neq 0\right)$

$$
\left(f^{*} \operatorname{Ric}\right)(\dot{\gamma}, \dot{\gamma})=\operatorname{Ric}(\dot{\gamma}, \dot{\gamma})-\frac{n-1}{4} \frac{D^{2} u}{u}+\frac{5(n-1)}{16}\left(\frac{D u}{u}\right)^{2}
$$

Since

$$
\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \geqslant-A\|\dot{\gamma}\|^{2}=-A, \quad\left(f^{*} \operatorname{Ric}^{\prime}\right)(\dot{\gamma}, \dot{\gamma}) \leqslant-B\left\|f_{*} \gamma\right\|^{2}=-B u,
$$

we have

$$
-B u \geqslant-A-\frac{n-1}{4} \frac{D^{2} u}{u}
$$

or

$$
u\left(u-\frac{A}{B}\right) \leqslant \frac{n-1}{4} D^{2} u .
$$

Finally, we take a sequence of real numbers $\left(t_{v}\right)$ with the properties

$$
\lim _{\nu \rightarrow \infty} u\left(t_{\nu}\right)=\sup u(\leqslant \infty), \quad \lim _{\nu \rightarrow \infty} \frac{\left(D^{2} u\right)\left(t_{\nu}\right)}{\left(u\left(t_{\nu}\right)+\delta\right)^{1+2 \alpha}} \leqslant 0
$$

where α, δ are arbitrary positive numbers. This follows from the Lemma, or from a similar statement about $u \in C^{2}(-\infty, \infty)$. Hence

$$
\lim _{\nu \rightarrow \infty} \frac{u\left(t_{\nu}\right)\left(u\left(t_{\nu}\right)-(A / B)\right)}{\left(u\left(t_{\nu}\right)+\delta\right)^{1+2 \alpha}} \leqslant 0,
$$

and since by our assumption $u \neq 0$, we obtain, for $\alpha<\frac{1}{2}$, that $0<\sup u \leqslant$ A / B.

Since a projective transformation and its inverse are strongly projective, we get

Corollary. A projective transformation of a negatively curved complete Einstein manifold is an isometry.

This generalizes a result of Couty [3] for infinitesimal projective transformations.

We thank Professor Kobayaski for the following remark: Since an affine transformation of an Einstein manifold is necessarily an isometry (as it preserves the Ricci tensor) the corollary follows from the main theorem of Tanaka [11].

References

[1] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938) 359-364.
[2] S. S. Chern \& S. I. Goldberg, On the volume decreasing property of a class of real harmonic mappings, Amer. J. Math. 97 (1975) 133-147.
[3] R. Couty, Transformations infinitésimales projectives, C. R. Acad. Sci. Paris 247 (1958) 804-806.
[4] L. P. Eisenhart, Non-Riemannian Geometry, Amer. Math. Soc. Colloq. Publ. Vol. 8, 1927.
[5] S. I. Goldberg \& Z. Har'El, Mappings of almost hermitian manifolds, J. Differential Geometry 14 (1979).
[6] \qquad , A general Schwarz lemma for Riemannian manifolds, Bull. Greek Math. Soc., Memorial volume for C. Papakyriakopoulus, 18 (1977) 141-148.
[7] S. I. Goldberg, T. Ishihara \& N. C. Petridis, Mappings of bounded dilatation of Riemannian manifolds, J. Differential Geometry 10 (1975) 619-630.
[8] Z. Har'El, Harmonic mappings of negatively curved manfifolds, Canad. J. Math. 30 (1978) 631-637.
[9] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Math., No. 2, Marcel Dekker, New York, 1970.
[10] __ Projective structures of hyperbolic type, Proc. U.S.-Japan Seminar on Minimal Submanifolds and Geodesics, 1978.
[11] N. Tanaka, Projective connections and projective transformations, Nagoya Math. J. 12 (1957) 1-24.
[12] J. H. C. Whitehead, The representation of projective spaces, Ann. of Math. 32 (1931) 327-360.
[13] K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Math., No. 1, Marcel Dekker, New York, 1970.
[14] K. Yano \& S. Ishihara, Harmonic and relatively affine mappings, J. Differential Geometry 10 (1975) 501-509.

University of Illinois
Technion, Israel Institute of Technology

[^0]: Received, June 9, 1978.

