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KAHLER SUBMERSIONS AND HOLOMORPHIC
CONNECTIONS

DAVID L. JOHNSON

0. Introduction

In this paper we consider two related fundamental real-geometric structures
transferred to a complex-geometric setting; connections in principal bundles
and Riemannian submersions [5]. Both of these notions, more obviously so
the former, are integral part of Riemannian geometry; furthermore, as we
shall see they are quite interdependent. Here we place these structures in the
framework of Kahler geometry; that is, all maps and spaces will be taken to
be holomorphic and, where possible, all metrics will be Kahler.

These notions separately have already been studied in a complex-analytic
category. M. Atiyah [1] has considered holomorphic connections on principal
bundles over compact Kahler manifolds, and, rather than the fundamental
notion that connections are in the C °° category, in this case the very existence
of a holomorphic connection is an extremely restrictive notion. In particular,
if the structural group is semi-simple or Gl(n, C), the characteristic algebra of
the bundle must vanish. More recently, B. Watson [7] has shown that the
existence of a Kahler submersion is similarly restrictive; in fact the horizontal
distribution must be integrable.

The purpose of this paper is to present some indication of the relationship
between the ridigity of these two transferred concepts, in particular, we are
able to show

Theorem (1.5) (Watson). Let π: M-» B be a Kahler submersion, Ύ =

ker π+ the vertical subbundle, and % = Ύ1" the orthogonal distribution. Then

% is integrable; furthermore, the integral submanifolds are totally geodesic.

This phenomenon seems to be produced not primarily by the submersion,
but by the interaction of the metric and the complex-analytic structure, as is
evidenced by

Theorem (2.1). Let Ύ c T+(M) be any holomorphic distribution, M a

Kahler manifold, and % = Ύ"1 the orthogonal distribution. Then % is also a
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holomorphic distribution if and only if Ύ and % both are not only integrable,

but are totally geodesic.

Here a distribution & is said to be holomorphic if the subbundle of T+(M)
is a holomorphic subbundle. This is easily seen to be equivalent to the
existence locally of a spanning set of holomorphic vector fields in &, where a
holomorphic vector field is a holomorphic section of T+(M).

Remark. Thus, in the case of a Kahler submersion, the horizontal distrib-
ution %, even though integrable, is not itself holomorphic unless the fibers of
the projection are totally geodesic.

Consider now a holomorphic principal bundle TΓ: P -» M over a Kahler
manifold M with complex-analytic structure group G. Given a fixed left-in-
variant hermitian metric < , }G on G there is, for each connection % of P, a
naturally-associated metric < , >oc on P such that TΓ: P -> M is a Riemannian
submersion.

Theorem (3.4). < , }% is hermitian if and only if %p c T+(P,p) is a

complex subspace for all p E P. Furthermore, % is holomorphic if and only if

< , }% is hermitian, and VXJ = 0 for x E %, where J is the complex structure

tensor of P, and V is the Riemannian connection of < , y%.

Theorem (3.5). Let the metric < , >G be Kahler.

(a) TΓ: P —» M is Kahler submersion if and only if % is holomorphic and flat.

(b) If % is holomorphic, the extent to which < , ) ϋ C is not Kahler is given by

the curvature of %.

Some of these results are a part of the author's doctoral thesis at
Massachusetts Institute of Technology. The author wishes to take this oppor-
tunity to thank his advisor, I. M. Singer, for the encouragement and assis-
tance provided. The author would also like to thank Richard S. Millman for
many helpful suggestions.

1. Kahler submersions

A Riemannian submersion is a submersion TΓ: M -^> B of Riemannian
manifolds such that, if Ύ = ker ττ+, and % = Ύ"1, then πj% is an isometry at
each point. B. O'Neill [5] has characterized the geometry of this situation in
terms of tensors T, A defined for E, F G X(M) by

TEF = Ύ VΎE%F + % VΎEΎF, AEF = Ύ V%E%F + % V%EΎF,

where the symbols Ύ and % refer also to the orthogonal projections on the
subspaces of T^{M,p) indicated. In particular, the geometry of M is de-
scribed by that of B, the fibers of TΓ, and these tensors.

Definition (1.1). TΓ: M ^> B is a Kahler submersion if M, B are Kahler
manifolds, and TΓ holomorphic with TΓ: M —» B a Riemannian submersion. All
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other objects are defined as in [5]. In particular, a vector field in Ύ is said to
be vertical, and one in % is termed horizontal.

Lemma (1.2). If J is the complex structure tensor of M, we have, for E,
F G X(M),

(1) TE(JF) = JTEF,

(2) TJEV= JTEV for Vvertical,

(3) AE(JF) = JAEF,

(4) ΛJEH = JAEH, for H horizontal.

Proof. As M is Kahler, JV = VJ. Also, both projections % % at/? E M
are complex-linear, thus ΎJ = JΎ, %J = J%, and so

AEJF = Ύ V ^ X / F ) + % V%E(ΎJF) = Λ4^F.

If H, Z are both horizontal, AHZ = -ΛziJ, [5], and AEF = ̂ g ^ F by
definition, so AJEH = AcKJEH = -AH%JE = -JAH%E = + JA%EH =

Similarly we establish the relations for Γ.
These first are expected relations in A, T. The next result, Theorem (1.5), is

much less expected. First we must dispose of some more standard notions.
Definition (13). A vector field X G X(M) is said to be basic if

(1) X is horizontal,
(2) X is 7r-related to some vector field X onB.

The following straightforward facts may be found in [5].
Lemma (1.4).

(1) IfX, Y are horizontal, AXY =±Ύ[X, Y].

(2) IfX is basic, and V is vertical, then [X, V] is vertical.
Theorem (1.5) ( Watson). If π: M -> B is a Kahler submersion, the horizon-

tal distribution % is integrable and totally geodesic.
Proof. Were the horizontal distribution integrable, in general Ax Y would

be the second fundamental form of the integral submanifolds for horizontal
vector fields X, Y; thus, we have only to show A = 0. By Lemma (1.4) it
suffices to show Ύ[X, Y] = 0 for X, Y basic. Let V be vertical, and let φ be
the Kahler form of M. As M is Kahler,

o = dφ(x, Y, v) = X(Y, jv) - Y(X, jvy + v<x, JY)

-<[*, y], jvy + <[*, K], JY) - <[ y, v], jxy.

By Lemma (1.4) and the definitions involved, the first and last two terms
vanish. We will be done once we show

Lemma (1.6). V, X, Y as above, then

, y> = o.
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Note that JY is basic if and only if Y is.
Proof._ As X, Y are basic, <*, Y\ = (X, Ϋ\(p), that is, (X, Y)-=

π*((X, y » . As V <Ξ ker <π^ V(X, Y > = 0.
At first glance this appears to show only that AXY = 0 for X, Y horizontal.

However, an easy unwinding of the definitions shows A = 0 from this.

2. Foliations in Kahler manifolds

In the interest not only of generality, but to determine where the rigidity
occurs in the notion of a Kahler submersion, we weaken our assumptions
considerably in this section, only to find that the rigidity of the situation
remains basically intact. Consider a Kahler manifold M with a holomorphic
distribution Ύ. ker π+ from §1 will serve as a prime example; however, we do
not a priori assume that Ύ is integrable. As before, however, we see that
under apparently very mild conditions involving Ύ we again have very strong
restrictions.

Theorem (2.1). Let Ύ c T+(M) be a holomorphic distribution of codimen-

sion k, M a Kahler manifold, and % = Ύ1- the orthogonal distribution. Then %

is also a holomorphic distribution if and only if Ύ and % both are not only

integrable, but totally geodesic.

Remark. Thus, if % is holomorphic, both distributions are parallel;
equivalently, both of the orthogonal foliations are totally geodesic, or in
O'Neill's terminology, the tensors A and T both vanish. (These tensors may
be defined for any foliation, and appear to yield similar information about
the geometry of M as in the submersion case.) In [3] it is shown that this
implies M is locally isometric to a Riemannian product; the reader may also
refer to a forthcoming paper by the author and L. B. Whitt, Totally geodesic
foliations, to appear in the next issue of J. Differential Geometry.

Proof. Assume first that Ύ, % are totally geodesic. Let U be a neighbor-
hood of M such that Ύl^ is trivial. Then there is an analytic submersion π:
U-^Ck (not a Riemannian submersion) such that Ύ\υ = ker π+. Let X be a
horizontal vector field (i.e., in %) such that X is ^-related to a vector field X
on C*; assume moreover that X is holomorphic. It suffices to show that X is
holomorphic, as an easy argument will then show that % may be locally
spanned by holomorphic vector fields.

Remark. As noted in the introduction, we consider a vector field X to be
holomorphic if it is a holomorphic section of TJ^M), contrary to common
practice in complex geometry, which deals with the complexified tangent
bundle.

The following lemma is well-known [4].
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Lemma (2.2). X G £(Λf ) is holomorphic if and only if [X, JY] = J[X, Y]

for all Y E 3E(Af), thai is, if and only if X is an infinitesimal automorphism of

the complex structure.

Note that this condition is tensorial in Y.
Now consider the Kahler form φ of M, and let V, W be holomorphic

vertical (i.e., in Ύ) vector fields. We have

0 = dφ(W,JV,X)

= x<w, -vy + <[ w, x], -vy - <[JV, x], jwy
= -<^xw, vy - <yxv, wy - <ywx, vy + <yxw, vy

= -<yvx + [jr, v], wy + <jr, v^κ>
The second term vanishes as Ύ is totally geodesic, similarly for the first part
of the first term. We see therefore that [X, JV] - J[X, V] is horizontal.
However, V, being vertical, is π-related to 0, and X is τr-related to X, thus
[X, V] is 7r-related to 0. This says that both terms above are vertical, so they
are equal. That [X, JY] = J[X, Y] for Y horizontal follows from the fact that
% is integrable by taking Y τr-related (locally) to Y a vector field on C*, as in
the construction of X. This shows that X is holomorphic, thus % is.

Now assume that % is holomorphic. We will be done if we show % is
totally geodesic, for then we may switch the roles of Ύ and % (Ύ is
holomorphic). Let X, Y be holomorphic sections of %. Note that we need not
assume integrability. Then [X, JY] = J[X9 Y], hence (J[X, Y], F> =
([X, JY], Vy for V vertical and holomorphic. But the right-hand side

= <yxjγ - vJYx, vy

Y, vy + (x, VVJY + [JY, v]y

= -<yxγ, jvy + <*, J(VVY + [ y, v])y
= -<v^y,/F> + <x, vγjvy
= -<yxγ,jvy-<yγx,jvy.

Meanwhile, the left-hand side = -<VXY - VγX,JVy, so <VYX, F> = 0,
and % is totally geodesic.

This theorem implies the surprising
Corollary (23). Let π: M -> B be a Kahler submersion and Ύ = ker π+ the

tangents to the fibers. Then % = T 1 is not a holomorphic distribution, even

though the integral submanifolds of % are complex submanifolds, unless T = 0.

We also derive the following corollary on Kahler metrics of product
manifolds.
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Corollary (2.4). If M = Mj X M2 is a complex product manifold, where Mx

and M2 are Kάhler, then the only Kάhler metrics on M such that the subbundles

π^T^MJ) are orthogonal are product metrics, where π,: M^> Mt are the

product projections.

3. Holomorphίc connections

Let IT: P -* M be a complex-analytic principal bundle, with complex Lie

group G as structure group and fiber, and Q the Lie algebra. Let Ύ = ker π+

be the holomorphic subbundle of T+(P) consisting of tangents to the fibers.

A connection % is holomorphic if the distribution % is a holomorphic

subbundle of T+(P) (cf. §0). As G is complex, G has a left-invariant hermitian

metric < , >G given by a hermitian inner product on q also denoted by < , >σ,

which we will consider to be fixed in the sequel.

Given any smooth connection % on P we can construct a unique Rieman-

nian metric on P compatible with both the connection and the metric on the

base (in the sense that π: P -^ M is a Riemannian submersion). Such a metric

is clearly equivariant under the action of G on P. Conversely, given such an

equivariant metric on P, the horizontal subspaces are a connection on P

whose associated metric is the given one. Precisely; we have

Definition (3.1). The Riemannian metric < , }% on P associated to % is

defined by, for X, Y tangent vectors on P at/? G P,

(1) if X G % , and Y G %p, then {X, Y}% = 0,

(2) if both X, Y G % , then (X, Y}%= <ω(X), ω(Y))G, where ω is the

1-form of the connection %,

(3) if both X,Y(Ξ%, then <X, Y}% = (π+X, π+Y).

As above, we say X is horizontal (vertical) providing X G %p (resp., Ύp).

With this metric clearly π: P —» M is a Riemannian submersion.

There is a natural subalgebra of 3E(P), denoted by g, defined by, for X G g,

any connection 1-form ω (this is independent of choice of connection), I G g

is the vertical vector field such that ω(X) =^X [2]. Vector fields X G § are

said to be fundamental in [2].

Remark. The metric defined above is equivariant in the following sense:

Given g G G, Rg* the induced right action of g on T+(P\ if A", Y are

horizontal, then </*£•(*), Rg*(Y)) = <*, Γ>; if X, Y are vertical, extend to

fundamental vector fields X, Y, then (Rg*(X), Rg*(Ϋ)> = ((Adg_ιX),

(Ad g_! Y)>, where I , 7 £ g correspond to X, Y G Q. Conversely, given any

Riemannian metric on P which is equivariant in this sense, if % = Ύ"1 then

3C is a connection.

As in §1, a vector field X on P is said to be basic if A" is horizontal and

TΓ-related to a vector field X on M. Note that this differs from the terminology
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of [2]; in particular, their basic vector fields are not π-related to a vector field

on the base.

Lemma (3.2). If X is basic, and V is fundamental, then [ F, X] = 0.

Proof. [2] shows, as V fundamental and X horizontal, that [V, X] is

horizontal, while Lemma (1.4) shows, as V vertical and X basic, that [ V, X] is

vertical.

Let V be the covariant derivative operator of the Riemannian connection

associated to the metric < , }%onP for a given connection %.

Proposition (33). The fibers are totally geodesic.

Proof. The horizontal part % VVW of VVW (notation as in §1) for

vertical vector fields V and W is TVW. TVW is tensorial, so we may assume

that F, W are fundamental. We have, for X horizontal,

i<yvw,xy = v(w,x) + w<y,xy - x(v, wy + <[F, w]9xy
+<[*, v], wy + <y, [x,w]y.

X(V9 W} = 0 as <F, wy is constant. The rest are easily seen to be zero as

Ύ integrable and by Lemma (3.2), thus VVW is vertical.

Theorem (3.4). < , >9C is hermitian if and only if %p is a complex subspace

of T^(P,p) at each point. Furthermore, % is holomorphic if and only //< , >gc is

hermitian and Vx(/) = Ofor x G %, where J is the complex structure tensor of

P.

Proof. The first statement is elementary. Now assume that % is holomor-

phic. Extend x to a basic vector field X, and let Y be another basic field.

% VXJY is also basic, being ττ-related to Vπ xττJJY) (V= Riemannian

connection on M) [5]. As M is Kahler, VvJcirJJY) = J V^*77"* Y. But

%J VXY is also basic, being π-related to / Vw x*π+ Y. As πj%is an isometry,

we have

% VXJY = % VXJY.

Now change the extension of x to a holomorphic vector field X. Then, if Y

is basic as before, Ύ VXJY = Ύ±[X, JY] = ΎJ±[X, Y] = JΎVXY. Thus, if

Y is basic, VXJY = J VXY. Now, if Y is any horizontal vector field, then

Y = a( Yi9 Yt basic, and a simple calculation yields

VXJY = JVXY.

We have only to check VXJV = JVX V for V vertical. If H is a horizontal

field, <yxJV, Hy = -(JV, VxHy = + <F, VxJHy = (J VXV, H>. If W is

another vertical vector field, extend x to X horizontal and holomorphic, as

before. Then

(VXJV9 wy = <yJvx, wy + <[X,JV], wy

= -<*, vJvwy + (j[x, F], wy.
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By Proposition (3.3) the first term vanishes, so the above

= (JVVX, W) + (J[X, V], W)

= (jvxv,wy.

Thus we have VX(J) = 0.
Now assume that < , ) % is hermitian and that / is parallel in horizontal

directions. Let Xj be holomoφhic vector fields on M which span T+(M) in a
neighborhood, and let Xj be the unique basic lifts, which span % locally. It
suffices to show that these are holomorphic.

First, let Y be basic. As before, %[Xp JY] is basic, being π-related to
[Xj^π+JY] = /[Jζ, vmY]. But %J[Xp Y] is basic, and is π-related to
J[Xj, m^ Y] as well, so

%[Xj, π+JY] = %j[xp ir+Y].

On the other hand, Ύ[Xp JY] = 2Ύ VXJY = 2ΎJ VXY = ΎJ[Xp Y]9 by
the parallelism of /. Thus [XJ9 JY] = J[Xp Y] if Y is basic. Now, if Y is an
arbitrary horizontal field, then Y = α, Yi9 Y, basic, and again we see [Xp Jat Yt]
= a,[XJ9 JY,] + Xj(aiyYi = Jat[XJ9 Yt] + J{X^)Yt - J[Xp Y].

Now let V be a fundamental field. As Xj are basic, Lemma (3.2) implies
[Xj, JV] = 0 = J[Xj, V\ We may, as before, easily extend this to show
[Xj, JV] = J[Xj, V] for V vertical, which completes the proof of Theorem
(3.4).

Theorem (3.5). Let < , >G be chosen to be Kάhler.

(a) P is Kάhler, and so π: P —» M is a Kάhler submersion, if and only if % is

holomorphic and flat.

(b) If % is holomorphic, the extent to which < , }% is not Kάhler is given by

the curvature Ω of %, that is, for X, Y horizontal, V vertical,

<yvjχ - j vvx, y> = </Ω(x, Y) , κ>.

Proof. Part (a) is immediate from Theorems (1.5) and (2.1) along with
Proposition (3.3).

For (b), first note that both

Vχ(/) = 0 and V\JW = J VVW

for x G %, V, W vertical, thus the extend to which < , ) % is not Kahler, that
is, VΌ(J) is given by VVJX - J VυX for v e Ύ, X horizontal. As <VoΛ

r, W}
= -{X, VυW} = 0 for W vertical by Proposition (3.3), VΌJX - J VΌX is
horizontal. For X, Y basic and holomoφhic, V vertical and holomoφhic,
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<yvjχ - J vvx, Y) = <vjxv, Y} + <[ v, jχ]9 r>

= -<r> VJXY + J VXY> = -2<κ,/ vxγy.

Now, ΎVXY= Ύ\[X, Y] by Lemma (1.4), so the above = -<F, J[X, Y])

= -< V, JΏ(X, Y)). As both sides of the equation

<yvjχ - J vvx, Y) = -(v,jti(x, Y) >
are tensorial, this completes the proof.

Corollary (3.6). Let M be a Riemann surface. % is holomorphic if and only
if ζ , y<χis Kάhler.

Proof. It is enough to show that if % is holomorphic, it must be flat. But,
for a nonzero X holomorphic and basic, X and JX span % locally, and
Ύ[X, JX] = ΎJ[X, X] = 0, so % must be integrable.

Corollary (3.7). Suppose that the bundle P is the bundle of complex bases of
T+(M), and % is the Riemannian connection of the Kάhler metric on M. Then
% is holomorphic if and only if the associated metric is Kάhler.

Proof. Again, it suffices to show that if % is holomorphic, then % is flat.
The argument of the preceding corollary shows that Ω(X, JX) = 0. However,
Ω is the Riemannian curvature of M, thus, by standard Kahler geometry [4],
as Ω(X, JX) = 0, Ω = 0.

Remark. The fundamental property of Ω used here is that Ω ^ , Y) =
Ώ(JX, JY). Any such curvature form is of course determined by its values on
(X, JX). Thus the result of Corollary (3.7) may be extended to a larger class
of bundles and connections, described in [6].
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