THE FIRST PROPER SPACE OF Δ FOR p-FORMS IN COMPACT RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE OPERATOR

SHUN-ICHI TACHIBANA \& SEIICHI YAMAGUCHI

Introduction

Let M^{n} be an n-dimensional Riemannian manifold, and denote the curvature tensor of M^{n} by $R_{k j i}{ }^{h}$. If there exists a positive constant k such that

$$
\begin{equation*}
-R_{k j i h} u^{k j} u^{i h} \geqslant 2 k u_{j i} u^{j i} \tag{*}
\end{equation*}
$$

holds for any 2 -form u on an M^{n} everywhere, then the M^{n} is said to be of positive curvature operator. For a compact orientable M^{n} of positive curvature operator, M. Berger [1] and D. Meyer [9] have proved that its first $n-1$ Betti numbers $b_{i}\left(M^{n}\right), i=1, \cdots, n-1$, vanish. It has been also known that such a manifold is of constant curvature if its metric satisfies $\nabla_{h} R_{k j i}^{h}=0$, [10]. Let Δ denote the Laplacian operator. A nonzero p-form u satisfying $\Delta u=\lambda u$ with a constant λ is called a proper form of Δ corresponding to the proper value λ. S. Gallot and D. Meyer have discussed the proper value in compact M^{n} of positive curvature operator and obtained its lower bound as follows.

Theorem A, [6]. In a compact Riemannian manifold M^{n} of positive curvature operator, the proper value λ of Δ for p-form $u(n \geqslant p \geqslant 1)$ satisfies

$$
\begin{array}{ll}
\lambda \geqslant p(n-p+1) k & \text { if } d u=0 \\
\lambda \geqslant(p+1)(n-p) k & \text { if } \delta u=0 .
\end{array}
$$

Furthermore, Gallot [2], Gallot and Meyer [7] and the present authors [11], [14] discussed the case when λ actually takes the possible minimal values. In particular, the present authors showed that the Killing and the conformal Killing p-forms play essential roles in this field. On the other hand, one of the present authors has obtained

Theorem B, [12]. In a $2 m$-dimensional compact conformally flat Riemannian manifold with positive constant scalar curvature $R=2 m(2 m-1) k$, the proper value λ of Δ for m-forms satisfies

$$
\lambda \geqslant m(m+1) k,
$$

and the following relations hold:

$$
V_{m(m+1) k}^{m}=C^{m}=C^{m}(d) \oplus K^{m}, \quad(\text { direct sum })
$$

Here and throughout this paper, V_{λ}^{p}, C^{p} etc. denote vector spaces with natural structure defined by

$$
\begin{aligned}
V_{\lambda}^{p} & =\text { the proper space of } p \text {-forms corresponding to } \lambda, \\
C^{p} & =\text { the space of all conformal Killing } p \text {-forms, } \\
C^{p}(d) & =\text { the space of all closed conformal Killing } p \text {-forms, } \\
K^{p} & =\text { the space of all Killing } p \text {-forms, } \\
K_{c}^{p} & =\text { the space of all special Killing p-forms with } c .
\end{aligned}
$$

The purpose of this paper is to determine the first proper space of compact Riemannian manifold of positive curvature operator in terms of K^{p}, K_{c}^{p} and $C^{p}(d)$.

1. Preliminaries

Let $M^{n}(n>1)$ be an n-dimensional Riemannian manifold. Throughout this paper, manifolds are assumed to be connected and of class C^{∞}. We denote respectively by $g_{j i}, R_{k j i}^{h}$ and $R_{j i}=R_{h j i}^{h}$ the metric, the curvature and the Ricci tensor of a Riemannian manifold. We shall represent tensors by their components with respect to the natural base, and shall use the summation convention. For a differential p-form

$$
u=\frac{1}{p!} u_{i_{1} \cdots i_{p}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
$$

with skew symmetric coefficients $u_{i_{1}} \cdots_{i}$, the coefficients of its exterior differential $d u$ and the exterior codifferential δu are given by

$$
\begin{aligned}
(d u)_{i_{1}} \cdots i_{p+1} & =\sum_{a=1}^{p+1}(-1)^{a+1} \nabla_{i_{a}} u_{i_{1}} \cdots i_{a} \cdots i_{p+1} \\
(\delta u)_{i_{2}} \cdots i_{p} & =-\nabla^{h} u_{h i_{2} \cdots i_{p}},
\end{aligned}
$$

where $\nabla^{h}=g^{h j} \nabla_{j}, \nabla_{j}$ denotes the operator of covariant differentiation, and \hat{i}_{a} means i_{a} to be deleted. For p-forms u and v the inner product $\langle u, v\rangle$, the
lengths $|u|$ and $|\nabla u|$ are given by

$$
\begin{aligned}
\langle u, v\rangle & =\frac{1}{p!} u_{i_{1} \cdots i_{p}} v^{i_{1} \cdots i_{p}}, \quad|u|^{2}=\langle u, u\rangle \\
|\nabla u|^{2} & =\frac{1}{p!} \nabla_{h} u_{i_{1} \cdots i_{p}} \nabla^{h} u^{i_{1} \cdots i_{p}} .
\end{aligned}
$$

Denoting by $\Delta=d \delta+\delta d$ the Laplacian operator, we have $\nabla f=-\nabla^{r} \nabla_{r} f$ for function f and

$$
\begin{equation*}
(\Delta u)_{i_{1} \cdots i_{p}}=-\nabla^{r} \nabla_{r} u_{i_{1} \cdots i_{p}}+H(u)_{i_{1} \cdots i_{p}} \tag{1.1}
\end{equation*}
$$

as the coefficients of Δu, where $H(u)_{i_{1} \cdots_{i}}$ are the coefficients of $H(u)$ given by

$$
\begin{aligned}
& H(u)_{i}=R_{i r} u^{r}, \\
& H(u)_{i_{1}} \cdots i_{p}=\sum_{a=1}^{p} R_{i_{a}}{ }^{r} u_{i_{1} \cdots r \cdots i_{p}}+\sum_{a<b} R_{i_{a} i_{b}}{ }^{r} u_{i_{1}} \ldots r \ldots s \cdots i_{p}, \quad n \geqslant p \geqslant 2 .
\end{aligned}
$$

In the second term on the right-hand side of the last above equation the subscripts r and s are in the positions of i_{a} and i_{b} respectively, and we shall use similar arrangements of indices without special notice. (1.1) may be written as

$$
\begin{equation*}
\Delta u=-\nabla^{r} \nabla_{r} u+H(u) . \tag{1.2}
\end{equation*}
$$

The quadratic form $F_{p}(u)$ of u is denfined by

$$
\begin{aligned}
F_{p}(u) & =\langle H(u), u\rangle \\
& =\frac{1}{(p-1)!}\left(R_{r s} u^{r i_{2} \cdots i_{i} u^{s} i_{2} \cdots i_{p}}+\frac{p-1}{2} R_{r s j h} u^{r i_{3} \cdots i_{i} u^{i j}{ }_{i_{3}} \cdots i_{p}}\right),
\end{aligned}
$$

and it appears in the following well-known formula which is valid for any p-form u :

$$
\begin{equation*}
\frac{1}{2} \Delta\left(|u|^{2}\right)=\langle\Delta u, u\rangle-|\nabla u|^{2}-F_{p}(u) \tag{1.3}
\end{equation*}
$$

2. The Killing and the conformal Killing \boldsymbol{p}-forms

A p-form $v(p \geqslant 1)$ is said to be Killing if it satisfies

$$
\begin{equation*}
\nabla_{h} v_{i_{2} \cdots i_{p}}+\nabla_{j} v_{h i_{2} \cdots i_{p}}=0 \tag{2.1}
\end{equation*}
$$

Any Killing p-form is coclosed, and it is easy to see that (2.1) is equivalent to the following equation:

$$
\begin{equation*}
(d v)_{h i_{1} \cdots i_{p}}=(p+1) \nabla_{h} v_{i_{1} \cdots j_{p}} \tag{2.2}
\end{equation*}
$$

It is known [13, (1.4)] that a Killing p-form v satisfies

$$
\begin{equation*}
p \nabla^{r} \nabla_{r} v+H(v)=0 . \tag{2.3}
\end{equation*}
$$

Hence, if we take account of (1.2), it follows that

$$
\begin{equation*}
p \Delta v=(p+1) H(v) \tag{2.4}
\end{equation*}
$$

A Killing p-form v is said to be special with c, if it satisfies

$$
\begin{equation*}
\nabla_{h} \nabla_{j} v_{i_{1} \cdots_{b}}+c\left(g_{h j} v_{i_{1} \cdots i_{p}}+\sum_{a=1}^{p}(-1)^{a} g_{h_{a}} v_{i_{1} \cdots \hat{i}_{a} \cdots_{j}}\right)=0 \tag{2.5}
\end{equation*}
$$

with a constant c.
For example, any Killing p-form in the sphere of positive constant sectional curvature k is special with $c=k$.

Transvecting (2.5) with $g^{h j}$, we have $\nabla^{r} \nabla_{r} v+(n-p) c v=0$, from which it follows that $H(v)=p(n-p) c v$ by virtue of (2.3). Substituting the last equation into (2.4) we obtain

$$
\Delta v=(p+1)(n-p) c v
$$

which shows that v is proper corresponding to $(p+1)(n-p) c$. Hence
Lemma 2.1. In any n-dimensional Riemannian manifold, we have

$$
K_{c}^{p} \subset V_{(p+1)(n-p) c}^{p} \quad(n \geqslant p \geqslant 1)
$$

where c is any constant.
Next, let w be a closed p-form $(p>1)$ such that δw is special Killing with c, i.e., $w \in d^{-1}(0) \cap \delta^{-1}\left(K_{c}{ }^{p-1}\right)$. Since $\delta w \in K_{c}{ }^{p-1}$, we have $\Delta \delta w=p(n-p$ $+1) c \delta w$ by Lemma 2.1. Applying d to both sides of the last equation we obtain $\Delta \Delta w=p(n-p+1) c \Delta w$ because of $d \Delta=\Delta d$. Hence

Lemma 2.2. In any n-dimensional Riemannian manifold, we have

$$
\Delta\left(d^{-1}(0) \cap \delta^{-1}\left(K_{c}^{p-1}\right)\right) \subset V_{p(n-p+1) c}^{p} \quad(p>1)
$$

where c is any constant.
A p-form $w(p \geqslant 1)$ is said to be conformal Killing [7, (1.1)], if there exists a $(p-1)$-form θ called the associated form such that

$$
\begin{align*}
\nabla_{h} w_{j i_{2} \cdots i_{p}} & +\nabla_{j} w_{h i_{2} \cdots i_{p}} \\
= & 2 \theta_{i_{2} \cdots \dot{j}_{p}} g_{h j}-\sum_{a=2}^{p}(-1)^{a}\left(\theta_{h i_{2} \cdots \hat{i}_{a} \hat{i}_{j}} g_{j i_{a}}+\theta_{j i_{2} \cdots \hat{i}_{a} \cdots i_{p}} g_{h_{i}}\right) . \tag{2.6}
\end{align*}
$$

For a conformal Killing p-form w, the following equations hold [8, (1.2), (2.4)]

$$
\begin{gather*}
\delta w=-(n-p+1) \theta \tag{2.7}\\
(d w)_{h i_{1} \cdots i_{p}}=(p+1)\left(\nabla_{h} w_{i_{1} \cdots i_{p}}+\sum_{a=1}^{p}(-1)^{a} \theta_{i_{1} \cdots i_{a} \cdots i_{p}} g_{h i_{a}}\right), \tag{2.8}
\end{gather*}
$$

$$
\begin{equation*}
p \nabla^{r} \nabla_{r} w+H(w)+\frac{2 p-n}{n-p+1} d \delta w=0 \tag{2.9}
\end{equation*}
$$

It should be noticed that (2.8) is equivalent to (2.6).
From (2.6) and (2.7) we have

$$
K^{p}=C^{p} \cap \delta^{-1}(0)
$$

On the other hand, a simple calculation shows

$$
\begin{equation*}
K_{c}^{p} \subset d^{-1}\left(C^{p+1}(d)\right) \tag{2.10}
\end{equation*}
$$

to be valid for any constant c.
Now we can prove
Lemma 2.3. In any n-dimensional Riemannian manifold, we have

$$
K^{p} \cap V_{(p+1)(n-p) c}^{p} \cap d^{-1}\left(C^{p+1}(d)\right)=K_{c}^{p} \quad(n>p)
$$

for any constant c.
Proof. The left-hand side includes the right-hand side, because of Lemma 2.1 and (2.10). Conversely, let v be a Killing p-form such that $w=d v$ is conformal Killing and $\Delta v=(p+1)(n-p) c v$. Then we have

$$
\begin{gather*}
w_{i_{1} \cdots i_{p+1}}=(d v)_{i_{1} \cdots i_{p+1}}=(p+1) \nabla_{i_{1}} v_{i_{2} \cdots i_{p+1}} \tag{2.11}\\
\nabla_{h} w_{i_{1} \cdots i_{p+1}}+\sum_{a=1}^{p}(-1)^{a} \theta_{i_{1} \cdots i_{a} \cdots i_{p+1}} g_{h i_{a}}=0, \tag{2.12}\\
\Delta v=\delta d v=\delta w=-(n-p) \theta=(p+1)(n-p) c v \tag{2.13}
\end{gather*}
$$

by virtue of (2.7) and (2.8). If we write out (2.12) in terms of v making use of (2.11) and (2.13), it is seen that (2.5) holds. q.e.d.

Next we shall prove
Lemma 2.4. In any n-dimensional Riemannian manifold, we have

$$
C^{p}(d) \cap V_{p(n-p+1) c}^{p} \cap \delta^{-1}\left(K^{p-1}\right) \subset \delta^{-1}\left(K_{c}^{p-1}\right)(p>1)
$$

for any constant c.
Proof. Let w be a p-form in the left-hand side set, then w is closed conformal Killing such that $\Delta w=p(n-p+1) c w$ and $v=\delta w$ is Killing. Since $\Delta w=d \delta w=d v$, we have

$$
p \nabla_{i_{1}} v_{i_{2} \cdots i_{p}}=p(n-p+1) c w_{i_{1}} \cdots i_{p},
$$

and, in the consequence of (2.7) and (2.8),

$$
\begin{aligned}
\nabla_{h} \nabla_{i_{1}} v_{i_{2} \cdots i_{p}} & =(n-p+1) c \nabla_{h} w_{i_{1} \cdots i_{p}} \\
& =-(n-p+1) c \sum_{a=1}^{p}(-1)^{a} \theta_{i_{1} \cdots \hat{i}_{a} \cdots i_{p}} g_{h i_{a}} \\
& =c \sum_{a=1}^{p}(-1)^{a} v_{i_{1}} \cdots \hat{i}_{a} \cdots i_{p} g_{h i_{a}},
\end{aligned}
$$

which shows that $v=\delta w$ is special with c. q.e.d.
For a closed conformal Killing p-form w, (2.9) becomes

$$
p \nabla^{r} \nabla_{r} w+H(w)+\frac{2 p-n}{n-p+1} \Delta w=0 .
$$

If we take account of (1.2), we have

$$
\begin{equation*}
(n-p) \Delta w=(n-p+1) H(w) \quad \text { for } w \in C^{p}(d) \tag{2.14}
\end{equation*}
$$

which is useful in the next section.
When $n=2 p$, (2.14) reduces to (2.4) without the assumption "closed".
S . Gallot and D. Meyer [6] have proved that the inequality

$$
\begin{equation*}
|\nabla u|^{2} \geqslant \frac{1}{p+1}|d u|^{2}+\frac{1}{n-p+1}|\delta u|^{2} \quad(n \geqslant p \geqslant 1) \tag{2.15}
\end{equation*}
$$

holds for any p-form u. As they did not discuss when the equality holds in (2.15), we shall formulate the inequality as follows, containing the case of equality and with a new proof.

Lemma 2.5. For any p-form u in a Riemannian manifold, the inequality (2.15) holds, where the equality sign holds if and only if the p-form u is conformal Killing.

Proof. Let us define a tensor field t by

$$
\begin{aligned}
t_{h i_{1} \cdots i_{p}}= & \nabla_{h} u_{i_{1} \cdots i_{p}}-\frac{1}{p+1}(d u)_{h i_{1} \cdots i_{p}} \\
& -\frac{1}{n-p+1} \sum_{a=1}^{p}(-1)^{a}(\delta u)_{i_{1} \cdots i_{a} \cdots i_{p}} g_{h_{a}}
\end{aligned}
$$

Then we know by virtue of (2.7) and (2.8) that t vanishes identically if and only if u is conformal Killing. If we put $|t|^{2}=(1 / p!) t_{i_{1} \cdots_{p}} t^{h i_{1} \cdots i_{p}}$, it is easy to see

$$
|t|^{2}=|\nabla u|^{2}-\frac{1}{p+1}|d u|^{2}-\frac{1}{n-p+1}|\delta u|^{2}
$$

which proves our assertion.

3. Theorems

In the remainder of this paper, we assume that M^{n} is compact and of positive curvature operator. Taking its orientable double covering, if necessary, we may consider M^{n} as orientable without loss of generality. As M^{n} is of positive curvature operator, the inequality (*) in Introduction is valid for a positive constant k which will be fixed throughout the paper.

We shall give some theorems for M^{n} as applications of the results in $\S 1$ and §2. Those theorems would be meaningful if we take account of Gallot's works [3], [4].

It is known [9] that any p-form u satisfies

$$
\begin{equation*}
F_{p}(u) \geqslant p(n-p) k|u|^{2} \tag{3.1}
\end{equation*}
$$

by virtue of (*).
Now let us integrate (1.3) for a p-form u over M^{n}. Then it follows from (2.15) and (3.1) that

$$
\begin{align*}
(\Delta u, u) & \geqslant\|\nabla u\|^{2}+p(n-p) k\|u\|^{2} \\
& \geqslant \frac{1}{p+1}\|d u\|^{2}+\frac{1}{n-p+1}\|\delta u\|^{2}+p(n-p) k\|u\|^{2}, \tag{3.2}
\end{align*}
$$

where (,) and || || denote the global inner product and the global length respectively. For a proper form u corresponding to a proper value λ, (3.2) becomes

$$
\lambda\|u\|^{2} \geqslant \frac{1}{p+1}\|d u\|^{2}+\frac{1}{n-p+1}\|\delta u\|^{2}+p(n-p) k\|u\|^{2}
$$

and making use of $(\Delta u, u)=\|d u\|^{2}+\|\delta u\|^{2}$ we have

$$
\begin{align*}
& p\{\lambda-(p+1)(n-p) k\}\|u\|^{2} \geqslant \frac{2 p-n}{n-p+1}\|\delta u\|^{2} \tag{3.3}\\
& (n-p)\{\lambda-p(n-p+1) k\}\|u\|^{2} \geqslant \frac{n-2 p}{p+1}\|d u\|^{2} \tag{3.4}
\end{align*}
$$

If the equality is valid in (3.3) or (3.4), u is conformal Killing by virtue of Lemma 2.5.

Remark 1. Theorem A in Introduction follows from these inequalities.
Remark 2. $\quad(p+1)(n-p) k \geqslant p(n-p+1) k$ if and only if $n \geqslant 2 p$.
Remark 3. When $n=2 p$, (3.3) and (3.4) both reduce to the following single inequality

$$
\begin{equation*}
\lambda \geqslant p(p+1) k \tag{3.5}
\end{equation*}
$$

First we shall prove
Theorem 3.1. In a compact Riemannian manifold M^{n} of positive curvature
operator, we have

$$
V_{(p+1)(n-p) k}^{p} \cap \delta^{-1}(0)=K_{k}^{p} \quad(n>p \geqslant 1) .
$$

Proof. Let $v \in K_{k}{ }^{p}$ for $n \geqslant p \geqslant 1$. Then $\delta v=0$, and by Lemma 2.1 we have $v \in V_{(p+1)(n-p) k}^{p}$ which proves $V_{(p+1)(n-p) k}^{p} \cap \delta^{-1}(0) \supset K_{k}^{p}$.

Conversely, let v be a p-form satisfying

$$
\begin{equation*}
\Delta v=(p+1)(n-p) k v \tag{3.6}
\end{equation*}
$$

and assume that v is coclosed. (It should be noticed that because of (3.3), v is necessarily coclosed if $2 p>n$.) Then the equality holds in (3.3) and hence by Lemma 2.5, v is Killing. If we operate d to both sides of (3.6) and put $w=d v$, then it follows that $\Delta w=(p+1)(n-p) k w$. Next applying (3.4) to the closed $(p+1)$-form w, we find that w is closed conformal Killing. Therefore $v \in K^{p} \cap V_{(p+1)(n-p) k}^{p} \cap d^{-1}\left(C^{p+1}(d)\right)$, and hence we have $v \in K_{k}^{p}$ by Lemma 2.3. q.e.d.

As a corollary we have
Theorem 3.2. In a compact Riemannian manifold M^{n} of positive curvature operator,

$$
V_{(p+1)(n-p) k}^{p}=K_{k}^{p}
$$

holds for $2 p>n>p \geqslant 1$.
Next we shall prove
Theorem 3.3. In a compact Riemannian manifold M^{n} of positive curvature operator, we have

$$
V_{p(n-p+1) k}^{p} \cap d^{-1}(0)=C^{p}(d) \cap \delta^{-1}\left(K_{k}^{p-1}\right) \quad(n>p>1)
$$

Proof. Let $w \in C^{p}(d) \cap \delta^{-1}\left(K_{k}^{p-1}\right)$ for $n>p>1$. As $w \in d^{-1}(0) \cap$ $\delta^{-1}\left(K_{k}{ }^{p-1}\right)$, by Lemma 2.2 we have

$$
\begin{equation*}
\Delta \Delta w=p(n-p+1) k \Delta w . \tag{3.8}
\end{equation*}
$$

On the other hand, as $w \in C^{p}(d)$ we have (2.14), i.e.,

$$
\begin{equation*}
(n-p) \Delta w=(n-p+1) H(w) \tag{3.9}
\end{equation*}
$$

Now let us put $\alpha=\Delta w-p(n-p+1) k w$. Then it follows from (3.8), (3.9) and (3.1) that

$$
\begin{aligned}
\|\alpha\|^{2} & =(\Delta w, \Delta w)-2 p(n-p+1) k(\Delta w, w)+p^{2}(n-p+1)^{2} k^{2}\|w\|^{2} \\
& =p(n-p+1)^{2} k\left(-\frac{1}{n-p} F_{p}(w)+p k\|w\|^{2}\right) \leqslant 0
\end{aligned}
$$

Thus we obtain $\alpha=0$ which shows $w \in V_{p(n-p+1) k}^{p}$.
Conversely, let us consider $w \in V_{p(n-p+1) k}^{p}$, and assume that w is closed. (If $n>2 p$, because of (3.4) w is necessarily closed.) Then w is conformal Killing
by virtue of (3.4). Applying δ to both sides of $\Delta w=p(n-p+1) k w$ and putting $v=\delta w$ we have $\Delta v=p(n-p+1) k v$. Thus v is a coclosed $(p-1)$ form and satisfies (3.3) with the equality. Therefore v is Killing and hence we have $w \in C^{p}(d) \cap V_{p(n-p+1) k}^{p} \cap \delta^{-1}\left(K^{p-1}\right)$, which together with Lemma 2.4 gives $w \in \delta^{-1}\left(K_{k}{ }^{p-1}\right)$. q.e.d.

As a corollary we have
Theorem 3.4. In a compact Riemannian manifold M^{n} of positive curvature operator.

$$
V_{p(n-p+1) k}^{p}=C^{p}(d) \cap \delta^{-1}\left(K_{k}^{p-1}\right)
$$

holds for $n>2 p>2$.
Remark 4. If we take account of (2.10), the assertion of Theorem 3.2 can be written as

$$
V_{(p+1)(n-p) k}^{p}=K_{k}^{p} \cap d^{-1}\left(C^{p+1}(d)\right)
$$

Remark 5. Gallot [2] has determined $V_{p(n-p+1) k}^{p} \cap d^{-1}(0)$ in a way different from ours.

The case of $n=2 p$ is special; for the case we can have
Theorem 3.5. In a compact Riemannian manifold $M^{2 m}(m>1)$ of positive curvature operator, the following direct sum holds:

$$
V_{m(m+1) k}^{m}=K_{k}^{m} \oplus\left(C^{m}(d) \cap \delta^{-1}\left(K_{k}^{m-1}\right)\right)
$$

Proof. Let $u \in V_{m(m+1) k}^{m} \cdot u$ is written uniquely as $u=v+w$, where $\delta v=0$ and $d w=0$, because the m th Betti number vanishes. Then we have

$$
\Delta u=\Delta v+\Delta w=m(m+1) k u=m(m+1) k(v+w)
$$

As $\delta \Delta v=\Delta \delta v=0, d \Delta w=\Delta d w=0$ and the decomposition of Δu is unique, we obtain

$$
v \in V_{m(m+1) k}^{m} \cap \delta^{-1}(0), \quad w \in V_{m(m+1) k}^{m} \cap d^{-1}(0)
$$

Consequently, using Theorems 3.1 and 3.3. and taking account of (3.5) we see that $v \in K_{k}^{m}, w \in C^{m}(d) \cap \delta^{-1}\left(K_{k}^{m-1}\right)$. The converse is evident.

Remark 6. In [14] there have been given the converse parts of Theorems 3.1 and 3.3 with further results.

Remark 7. Yanamoto [15] has conjectured that in any Riemannian manifold the dual $* u$ of a conformal Killing p-form u would be conformal Killing, and has proved the conjecture for $n=3$. In a compact Riemannian manifold of positive curvature operator we know that $u \in K_{k}^{n-p}$ implies $* u \in C^{p}(d)$ $\cap \delta^{-1}\left(K_{k}^{p-1}\right)$ and vice versa.

References

[1] M. Berger, Sur les variétés à operateur de courbure positif, C. R. Acad. Sci. Paris 253 (1961) 2832-2834.
[2] S. Gallot, Sur les variétés à operateur de courbure positif qui ont même première valeur propre du p-spectre que la sphère, C. R. Acad. Sci. Paris 277 (1973) 457-459.
[3] , Variétés dont le spectre ressemble à celui de la sphère, C. R. Acad. Sci. Paris 28 (1976) 647-650.
[4] , Equations différentielles caractéristiques de la sphère, to appear.
[5] S. Gallot \& D. Meyer, Sur les variétés riemanniennes à operateur de courbure positif ou nul, C. R. Acad. Sci. Paris 274 (1972) 1557-1559.
[6] \qquad , Sur le première valeur propre du p-spectre pour les variétés à operateur de courbure positif, C. R. Acad. Sci. Paris 276 (1973) 1619-1621.
[7] \qquad , Opérateur de courbure et laplacian des formes différentielles d'une variété riemanniennes, J. Math. Pures Appl. 54(1975) 259-284.
[8] T. Kashiwada, On conformal Killing tensor, Nat. Sci. Rep. Ochanomizu Univ. 19 (1968) 67-74.
[9] D. Meyer, Sur les variétés riemanniennes à operateur de courbure positif, C. R. Acad. Sci. Paris 272 (1971) 482-485.
[10] S. Tachibana, A theorem on Riemannian manifolds of positive curvature operator, Proc. Japan Acad. 50 (1974) 301-302.
[11] \qquad , On Killing tensors in Riemannian manifolds of positive curvature operator, Tôhoku Math. J. 28 (1976) 177-184.
[12] ___ On the proper space of Δ for m-forms in $2 m$ dimensional conformally flat Riemannian manifolds, Nat. Sci. Rep. Ochanomizu Univ. 28 (1978) 111-115.
[13] S. Tachnibana \& T. Kashiwada, On the integrability of Killing-Yano's equation, J. Math. Soc. Japan 21 (1969) 259-265.
[14] S. Yamaguchi, On a theorem of Gallot-Meyer-Tachibana in Riemannian manifolds of positive curvature operator, TRU Math. 11 (1975) 17-22.
[15] H. Yanamoto, On conformal Killing tensors of degree 2 in 3-dimensional spaces, Res. Rep. Nagaoka Tech. Coll. 9 (1974)191-196.

Ochanomizu University
Science University of Tokyo

