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THE EULER CYCLE OF A FOLIATION

ANTHONY PHILLIPS & DAVID STONE

Introduction

The Poincare dual of the Euler class of (the tangent bundle of) a codimen-
sion-one foliation is a one-dimensional homology class. For a sufficiently
smooth foliation the Euler class may be calculated locally by choosing a
Riemannian metric on the underlying manifold. This determines a closed
form (for a 2-dimensional foliation this is the curvature form of the induced
connection on the tangent bundle to the foliation) which when integrated
over any closed leaf gives its Euler characteristic (Gauss-Bonnet Theorem)
and which in fact represents the Euler class of the foliation.

We present here an analogous construction for the Poincare dual of the
Euler class, but combinatorial rather than differentiable. The foliation now
need only be of class C0'1, i.e., tangent to a continuous field of hyperplanes.
For the choice of a Riemannian metric we substitute the choice of a smooth
triangulation in general position (in Thurston's sense) with respect to the
foliation. We prove that this choice determines a locally computable 1-cycle
representing the dual class. This will be the Euler cycle. The analogy with the
differentiable construction is more than formal: the coefficient of a 1-simplex
transverse to the foliation is equal to the "combinatorial curvature" (defined
following Banchoff in §2) of the leaves of the foliation at the points where it
intersects them.

The search for such a combinatorial expression was motivated by the
representation, conjectured by Stiefel [9, p. 342], proved and reproved by
Whitney, Cheeger, and Halperin-Toledo [5] for the duals of the Stiefel-Whit-
ney classes of a manifold.

Consider then a smooth oriented n-manifold M carrying a transversely
oriented (n — l)-dimensional foliation ¥. We assume as mentioned above
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that the tangent plane to the foliation a t ^ G M varies continuously with x. A
smooth triangulation T of M is made up of a coherent collection of smooth
maps σ: Δ" -> M where A " c Λ " is a linear simplex. Each σ induces a
foliation f (σ) on Δn. For xGΛ" let Nx be the unit normal to ^(σ) at x in the
direction of the transversal orientation.

Definition. A smooth triangulation T of M is in general position with
respect to & if for each σ E Γ, for each x 6 i " and for each pair of vertices
Vt φ Vj of Δπ the normal vector at x to the induced foliation has nonzero
dot-product with Vj — Vt:

Nx'(Vj-V)ΦQ.

Remark. This is a rephrasing of a definition made for arbitrary codimen-
sion by Thurston in [10]. He proves there that any smooth triangulation of M
can be subdivided and jiggled so as to give one in general position with
respect to f.

Theorem. Given M, <$ as above, the choice of a triangulation T of M in
general position with respect to <$ determines a refinement K of the 2-skeleton of
T and in K a rational \-cycle e = e(ίF, T) with the following properties.

1. The definition of e is local in the sense that the coefficient attached to a
l-simplex is calculated in the closed star {in T) of that simplex.

2. The homology class of e is Poincare dual to the Euler class of the tangent
bundle of <5.

Outline of Proof. After digressions on general position (§1) and combina-
torial curvature (§2) the chain e will be constructed (§3). Property 1 will be
apparent from the construction. Property 2 and the fact that e is a cycle will
be proved together in §4 and §5.

1. Combinatorial consequences of general position

Consider a smooth w-manifold M carrying a codimension-one foliation ξF
and a triangulation T in general position with respect to ίF.

As in the definition, we consider an ^-simplex σ: Δπ -» M of T and the
foliation ^(σ) induced on the linear simplex Δrt c Rn. Let Vo, , Vn be the
vertices of ΔΛ. It follows from general position that each edge VtVj is
transverse to ?F(σ), since the definition gives Nx (Vj — Vj) ̂  0 for x E VtVy
In fact non-transversality of any w-face of Δπ, m = 1, , n — 1, at some
point x would mean that the tangent space to the face, Vo, , Vm for
instance, was contained in the tangent space to ^(σ) at x. But Vm — Vo is
tangent to this linear simplex, and Nx - (Vm — Vo) ψ 0 shows this is impossi-
ble.
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It follows that each leaf L of ^(σ), which does not contain any vertices of
ΔΛ, inherits from Δ" a stratification into submanifolds which fit together like
the faces of a simplex. But we can be more precise.

Proposition 1.1. Let L be a leaf of ^(σ) which contains no vertices of Δπ.

Then

(a) L divides the vertices of Δn into 2 sets: those below L (in the sense of the

transverse orientation), say Vo, , Vk, and those above L, say

V . . . v
r k+ 1> » r n'

(b) With k as in part (a), L is combinatorial isomorphic to Δk X Δn~k~x.(It

follows that each face of L is also of the combinatorial type simplex X simplex).

See Fig. 2.

Before beginning the proof of this proposition, let us investigate more in

detail the possible intersections of L with a 2-face of Δπ.

Lemma 1.2. Given a 2-face ViVjVk of ΔΛ, either L n ViVjVk = 0 or L

intersects two of the edges each exactly once.

Proof. Suppose (Vk - Vt), (Vk - Vj) and (Vj - Vt) all have positive

dot-product with the normals of ^(σ). Then their relative position with

respect to the foliation will be as in Fig. la. Suppose L intersects ViVjVk at a

point x. The intersection will be a curve through x. The normal vector to L

has positive dot-product with the 3 edges, and so its projection in the 2-face

must lie in the shaded open sector of Fig. lb. It follows that the tangent

vector to the intersection curve must lie in the orthogonal open sector

bounded by the lines parallel to VtVj and VjVk and shown in Fig. la.

direction of

positive normals

tangent to

curve must

lie in here.
FIG. 1A FIG. 1B

Since this holds true at every intersection point, it follows that the curve must

meet VgVk and one of VtVJ9 VjVk.

If L had more than exactly two intersections with the edges of Vi Vj Vk, the

same reasoning would show that there would be at least two intersections

with the long edge F ^ , say pι and/?2. Every 2-plane P in Rn containing

Vi Vk is transverse to ̂ (σ) and therefore intersects L in a set of curves passing
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through px and p2. As P runs through all possible such planes, the union of

these curves is L. So in at least one plane Po the points px and/>2 would have

to be joining by a curve in L, otherwise L would be disconnected. But in that

plane Po a curve joining px and/?2 would have to be parallel at some point to

the segmentpxp2l at that point the normal to L would be normal to VtVk\

and this is forbidden by general position.

Proof of Proposition 1.1.

(a) Say that Vt and Vj are on the same side of L if L n ViVJr = 0 . This

relation is clearly symmetric and reflexive; Lemma 1.2 implies that it is

transitive. Also, if Vi9 VJ9 Vk were in different equivalence classes, then L

would intersect all three edges of VtVjVk\ this is impossible, again by Lemma

1.2. Choosing Vt from one equivalence class and Vj from the other, we call

the first one "below" and the second "above" if Nx- (Vj — Vt) > 0 for some

x E Δn, and vice-versa otherwise. (The lemma may be used to show that this

is independent of the choices.)

(b) With barycentric coordinates (/0, •••,*„) = Σ/«o h^i f°Γ ΔΛ, consider

the hyperplane section H given by

The section H also separates Vo Vk from Vk+ι Vn. It is a convex

linear (n — l)-cell of combinatorial type Δk X Δn~k~ι as can be seen from

the map

which sends Δ^ X Δn~k~ι facewise onto H. The proof of the proposition will

be completed by the construction of a face-preserving homeomorphism:

L -* H. Let Δ* c Δn be the A:-face spanned by Fo, , Vk9 and Δ'1"^"1 the

(n — k — l)-face spanned by Vk+V , Vn. The simplex Δ" is the join of

these two faces: the segments VW, V G Δk, W G Δn~k~ι fill out all Δn. Each

of these segments intersects H exactly once, in fact in its midpoint, as is easy

to check. We will prove that each VW intersects L exactly once (so the

desired homeomorphism may be obtained by sliding L to H along the VW).

Since the VW lying in edges of Δn have exactly one intersection with L as

proved in Lemma 1.2, extra intersections or no intersections would imply the

existence of points where a VW was tangent to L. But this is impossible: write

V as Σί» 0 Ί Vi9 and W as Σ ? l £ " ι J, Wi9 where Wo = Vk+l9 etc. We know that

^c (wj - vi) > ° f o r a n y Λ e L, for i = 0, , Λ and for j = 0, ,

n - k - l.Then

V)=ΣnΣ sjriNx
/=0 y=0
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2. Combinatorial curvature

Let yk be a convex linear cell in Rk, v a vertex of γ. Thinking of the points
of Rk as vectors, let TV be the set of unit vectors n E: Sk~ι such that
n (JC — v) < 0 for all x G γ. Using the usual (k — l)-volume on S*"1, the
(normalized) exterior angle of γ at v is defined by Banchoff [2] to be

) 1 e * - i

vol Sk

Examples. For k = 0, S(γ, i>) = 1; for k = 1, S(γ, υ) = £; for k = 2,
S (γ, t>) = (277-)"1 (π-interior angle of γ at t>). It is easily seen that
Σ ϋ e γ S(γ, f>).« 1.

Let Γ c Rn be a /7-dimensional complex made up of convex linear cells,
and let v be a vertex of Γ. Following Banchoff [2] we define the polyhedral
Gaussian curvature of Γ at v to be

K(v)=Σ Σ (-l)'S(γ',O).

Example. For/7 = 2 this gives (277-)"1 (2τ7 -sum of the face angles at v).
Theorem 2.1 (Banchoff spolyhedral Gauss-Bonnet theorem [2]). Σ ϋ e Γ K(υ)

= ^(Γ), the Euler characteristic of Γ.
Historical note. This theorem ioτp = 2 is fairly classical [1], [6], [7] and, in

fact, for Γ the boundary of a convex polyhedron, it was known to Descartes1

that, in our notation, Σ K(υ) = 2.
The definition of combinatorial Gaussian curvature at a vertex x of an

abstract regular cell complex C ideally would proceed by replacing each
c G C by a canonically chosen, combinatorially identical, convex linear cell
γ(c) and taking the polyhedral Gaussian curvature of the resulting convex-lin-
ear-cell complex. Unfortunately such a substitution process is not possible in
general (see Grϋnbaum [4, §11.5]). Fortunately the cells we shall encounter in
our analysis of foliations are the generic intersections of leaves with w-sim-
plexes, m = 1, , n, of a triangulation in general position with respect to
the foliation, and it follows from Proposition 1.1 that each such (m — l)-cell
is combinatorially equivalent to some Δk X Δ m " Λ " 1 , k = 0, , m - 1, and
therefore has a canonical realization as the orthogonal product γ = Δ* X

In this case S (γ, v) is the same at all vertices of γ. Since there are

1 "Si quatuor anguli plani recti ducantur per numerum angulorum solidorum & ex producto
tollantur 8 anguli recti plani, remanet aggregatum ex omnibus angulis plants qui in superficie
talis corporis solidi existent," [3, p. 265]. According to the editors of [3], a copy in Leibnitz' hand
of this unpublished work, which they date 1619-1621, lay forgotten among Leibnitz' papers until
its rediscovery in 1860. The original manuscript is lost.
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(k + \)(m - k) vertices, it follows that S(γ, v) = l/[(k + l)(m - k)\

Example. For m = 3 typical sections are shown in Fig. 2.

Δ

• Δ

= Δ 2 x Δ c

= Δ 1 x Δ 1

= Δ° x Δ 2

FIG. 2

Definition. If cm~x is combinatorial^ equivalent to Δ* X Δm~*~\ then

the (normalized) combinatorial exterior angle at a vertex x of cm~ι is defined

to be

* ( )

Definition. If all the cells of a regular /^-dimensional cell complex C have

the combinatorial type simplex X simplex, then the combinatorial Gaussian

curvature at a vertex x E C is defined by

Σ - Σ (-i

where 7V(/, w) is the number of c E C such that x E c and c ^ ^ x A " 1 .

Theorem 2.2. //" α// /Λe ce/& o/ α regular cell complex C have the combina-

torial type simplex X simplex, then

Σ k(C, x) = X(C),

the sum being taken over all vertices x E C.

Pro*?/. Follows immediately from Theorem 2.1 and comparison of C with

the combinatorially identical convex-linear-cell complex Γ = U c e C y(c).

3. Construction of the chain e

With M, 3F, Γ as in §1, the 1-simρlexes of Γ are oriented by the positive

normals to the foliation. By Lemma 1.2, a typical 2-simplex AXA2Λ3 of T

inherits from <% a foliation as in Fig. 3. If we agree that the symbol ΛB
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represents the edge oriented from A to B, then the edges of this simplex, as
oriented by the foliation, are AλA2, AλA3 and A3A2.

A,

direction of

positive normals

FIG. 3

Let K be the 2-dimensional complex formed by splitting each 2-simρlex of
T along the leaf containing its middle vertex. This introduces a new vertex
A}2 for each vertex Ai E linkΓ(^41^42) such that AXA{ and A^ get opposite
orientations from the foliation, as well as a new "horizontal" 1-simplex AgA}2.
The other 1-simplexes of K, which are all transverse to <$, will be referred to
as "vertical" in what follows. We shall define easa 1-chain of K.

Determination of coefficients. Let V be a vertical 1-simplex of K. If x is a
point in the interior of F, then star r θ) c u t s o u t a ceU complex C(x) on the
leaf through x. The combinatorial type of this complex does not depend on
x E V, and is appropriate (Proposition 1.1) for the definition of combina-
torial curvature given in §2. We assign to V the coefficient k(C(x), x).

Let H = AtA{k be a horizontal 1-simplex of K. Pick x E AjAk slightly
above A{k and y slightly below. The triangle AiAjAk determines edges H(x) E
CO), H(y) E C(y). The coefficient of H in e is defined to be

Σ* Σ (-\YE(C(X),X) - "Σ Σ
'=1 H(x)<ci^C(x) ' - 1 #(.y)<c'e

where H <c means that H is a face of c.
Remark. If L is a compact leaf of ^ containing no vertices of Γ, then L

inherits from T the structure of a cell complex C where every cell is of
simplex X simplex type; the chain e intersects L transversely at the vertices
of C, and the intersection number of L and e is Σ Λ G C k(C, x) which by
Theorem 2.2 is the Euler characteristic X(L).

The next two sections prove that, more generally, for any (n — l)-cycle Z,



46 ANTHONY PHILLIPS & DAVID STONE

the intersection number of Z and e is well-defined and is the Euler number

X(T<5)[Z] of the tangent bundle to 3F restricted to Z.

4. The chain a

The remaining properties of e will be established by comparison with the

singular 1-chain a defined as follows.

For each w-simplex σm of Γ, m = 1, , n, let α(σ m ) : [0, 1] -> M be a

singular 1-simplex running from the lowest vertex of σm to the highest (these

relative heights as before determined by the transverse orientation), interior to

σm except at the endpoints, and everywhere transverse to 3F.

Let a be the singular 1-chain

Σ
m=\

Σ (-1)M+I«(σ" ).

The Stiefel process [9, p. 340], [8, p. 202] gives a continuous vector field V on

M tangent to <$ and nonzero except on \a\ = the support of a (Fig. 4). This

vector field is generic except at the vertices of T. At each interior point of an

aiσ000), V has index + 1; at each interior point of an α(σ e v e n), V has index-1.

Let t represent the

cell complex dual to

T, with /-skeleton

^,1 = 0 , . . . , n.
Jiggle

Φ3)

Φ2)

Φ1)

Plaque of F

F I G . 4
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t slightly to put it in general position with respect to \a\ (this will mean that
tn~2 does not intersect any |α(σ')| and that all intersections of tn~x with
|α(σ'")| are transverse) while preserving the duality between tn~ι and Tι: each

1)!; in particular, tn~ι n T°tn~ι
intersects exactly one

since tn~2 π |«|

(n - l)-cell s
= 0.

The vector field V defines a nonzero section in T^\tn~2,
= 0, where T¥ is the (n — l)-plane bundle tangent to <$.

Proposition 4.1. The obstruction to extending this nonzero section over any

(n — l)-cell s G tn~ι is the intersection number of s and α.

Corollary 4.2. This means that "intersecting with α" is equal to the (n — 1)-

cochain obstructing the extension of V\tn~2 to a nonzero section over tn~ι.

Since this cochain is a cocycle [8,/?. 166] representing the Euler class X(T^)9 a

is a cycle and the homology class of a is Poincare dual to X(T^).

Proof of proposition. Choose a trivialization of T^\s which respects the
orientation of Φ. This puts sections of TΦ\s in 1-1 correspondence with maps
of s into Rn~ι, and the vector field V defines a map V: s — {pl9 9pk) —>
Rn~ι — {0} where {pl9 9pk) = s π |α|. Let us orient s by its unique
intersection with Tι. Then the degree of this map at pj is a well-defined
integer. To calculate it, write pj as s Π |a(0')l- Now since |α(σ')| intersects
both s and ®ί transversely at/?y, projection along |a(a f)| will map the leaf L
throughpj onto s nonsingularly near/?,. The degree of this projection is equal
to the intersection number ε, of α(σf) with s at Pj (ε, = ± 1), since α(σ') is
oriented positively with respect to L. Then the degree of V dXpj is εy times the
degree of V (in L) at/?,, i.e., (-l)l+1ε,; this is equal to the intersection number
of s and a at /?y (see Fig. 5).

_
degree (υ) = -1

degree ( υ) = 1

FIG. 5
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So the sum of the degrees of V at the/?,, which is the obstruction to extending
V to a nonzero vector field over s, is equal to the intersection number of s
with α.

5. Comparison of e and a

This section will show that the chains e and a are homologous. It will then
follow from Corollary 4.2 that e is also a cycle and that e has property 2, as
claimed; so this fact, when established, will complete the proof of the
theorem.

The definition of a certain 1-chain β will be convenient for this compari-
son: a simple calculation will show that β is homologous to α. On the other
hand, β will turn out to be equal to e.

First some notation. Consider an m-simplex σ G Γ, and suppose for
simplicity that its vertices are labelled Ao, , Am with Ao <Aι < <
Am in the sense that the edges AjAk withy < k are positively oriented by the
transversal orientation of (3r. Let the plaque through Ai be denoted "level /",
and let K(σ) be the subdivision of σ inherited from K. Every vertical
1-simplex V of K(σ) runs from level i to level (/ + 1) for some / = 0, ,
m — 1, and every horizontal edge lies in some level i, i = 1, , m — 1, and
therefore runs from Ai to some A{k withy < i < k.

Now for σ £ Γ we define a simplical 1-chain β(σ) in K(σ) thus: If K is a
vertical 1-simplex running from level / to level (i + 1), then its coefficient is
[(/ + l)(m — i)]"1. If H is horizontal in level i, then its coefficient is

Lemma 5.1. dβ(σ) = Am — Ao, and thus α(σ) is homologous to β(σ) in
\K(σ)\.

Proof. The edges of K(σ) arriving at Am are all vertical, and they con-
stitute the final portions of A^^ i = 0, , m - 1. Thus there are m such
edges, each running from level (m - 1) to level m. Hence the coefficient of
Am in dβ(σ) is

coefficient of Am = ^ ( ( m _ 1 } + 1 } | m _ ( m _ 1 ) } = l

Similarly,
1

coefficient of Ao = -
(0 + l)(m - 0)

At each AJk there are only three edges of K(σ):
(1) a vertical edge going up from level i,
(2) a horizontal edge coming from At to Λ/* in level i,
(3) a vertical edge coming up from level (i - 1). Consequently
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coefficient of Aj = - —
(i + l)(m - 0 [ (i + l)(m - i) i(m - i + 1)

i(m - i + 1) ~"

Finally at a vertex Ai9 0 < / < m, there are in K(σ)
(1) (m — i) vertical edges going up from level /, namely, the initial portions

oϊ AtAk, k = i + 1, , m,
(2) i(m — /) horizontal edges leaving Ai9 namely, the AtA{k for j =

0, , / — 1 and k = i + 1, , w,
(3) / vertical edges coming up from level (i — 1), namely, the final portions

of AjAfJ = 0, , / — 1. Consequently

coefficient of Ai = - (m — ί)— — —

-ι(m- 1)
(i + l)(m - i) i(m - i + 1)

1
ι(m - i + 1)

Corollary 5.2. α = Σσ™e7 (-l)'"+1α(σm) is homologous to

β- Σ (-l)m + lβ(σm)
σm6Γ

Lemma 53. β = e.
Proof. Let σ = Ao Λm as before be a simplex of T. Given V running

from level i to level (i + 1) in ^(σ), choose x in the interior of V and let
c(σ; x) represent the cell defined by the plaque through x. Then c(σ; x)
separates Ao, , At (below) from Ai+ι, , Am (above) and hence has the
combinatorial type Δ1 X Δm~ϊ + 1. The coefficient of V in β(σ) is [(/ + 1)
• (m — i)]~ι which is equal to the combinatorial exterior angle E(c(σ; x), x).
So the coefficient of V in β is

2 2 (-\)m+ϊE(c(σ;x),x)

= 2 Σ (-l)m+ιE(c(σ;x),x)
m = 1 dim c(σ; x) — m — 1

= λ:(C(x), x) = coefficient of Kin e.

Given H in ^Γ(σ) running from At to Λ/*, pick x E Λ ^ slightly above ^/^
and y slightly below. Then σ determines cells c(σ; Λ:) and c(σ; y), and as
above the coefficient of H in β(σ) is 2s(c(σ; Λ:), X) - E(c(σ; y),y). Hence the
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coefficient of H in β is

£ 2 (-iy+ 1[£(c(σ;x),x)- E(c(a; y), y)]
m = 2 dim σ = m, H Ei K(σ)

= Σ Σ (-
m — 2 dim c(σ; x) « m — 1

" £ Σ (-lΓ+1£(c(σ;7)^)
m = 2 dim c(σ; >>) = m — 1

= coefficient of H in e.
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