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CRITICAL RIEMANNIAN MANIFOLDS

DAVID D. BLEECKER

0. Preliminary motivation

The idea for this paper grew out of the conviction that solutions of
naturally posed variational problems ought to be nice in some respect, such as
symmetry. Consider the intrinsic variational problem of finding those metrics
g on a compact ^-manifold M (with the volume of (M, g) prescribed) for
which the function I(g) = fM R (R = scalar curvature of g) is stationary.
The well-known necessary and sufficient condition is that (Λf, g) is an
Einstein space (Ro = Rg^/ή). It is natural to ask whether there are any
Riemannian manifolds which are so nice that they will be solutions of every
reasonable intrinsic variational problem. The precise meaning of
"reasonable" is given in §1. Certainly the function which defines the problem
should assign the same value to isometric Riemannian manifolds, and a
certain smoothness of the function is required. At any rate, with the definition
of "reasonable" which is adopted, we prove that (Af, g) is a solution of every
reasonable intrinsic variational problem (i.e., (M, g) is a critical Riemannian
manifold) iff (M, g) is a homogeneous space whose isotropy group at a point
acts irreducibly on the tangent space of M at that point (i.e., (Λf, g) is a
isotropy irreducible homogeneous space-see [8] and [9]). A rough outline of
the proof is contained in §1. At this point it suffices to say that, aside from
essential and repeated use of the Ebin-Palais slice theorem [3] for the action
of diffeomorphisms on metrics via pull-back, the rest of the proof lies quite
near the surface of what is commonly known.

1. Notational background and a precise statement

Let M be a fixed compact oriented C°° w-manifold, and let 91L be the
manifold of C°° Riemannian metrics on M. Set ^ = Lie group of C°°
diffeomorphisms of M. The sense in which 9H is a manifold and Φ is a Lie
group is discussed in [2], [3], and [6]. Observe that 9IL is an open subset of
T(S2M) = vector space of C°° symmetric covariant two-tensors. Thus the
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tangent space of 911 at any g E 911 may be identified with T(S2M). A
function /: 9H —> R is said to be smooth if at each g E 911 there is a tangent
vector (Vf)g E IXS^Λf) such that

lim j(/(g + to) - /(g)) = <(V/),, s)g

for all s E Γ(S2M), where <Λ, k\ = fM hyk^g'^o, for A, * E Γ(52M), ωg

being the volume element of (M, g). Note that g = < , >g is a Riemannian
metric on 911 in the sense of [3]. Also, D̂ acts on 911 to the right via
pull-back: g η = η*(g). A calculation [3, p. 20] shows that g—> η*(g) is an
isometry of 911 for each η G ^ ί . A smooth/: 9H -» R is said to be invariant if
Λv*g) = Kg) for all η E <*D and for all g E 911. If, in addition,/(λg) = /(g)
for all λ E R+ and all g E 911, then / is said to be fully-invariant. The
Riemannian manifold (M, g) is said to be critical if (V/)g = 0 for every
smooth fully-invariant/: 911 -^ R. If we had omitted the prefix "fully" in this
definition, no Riemannian manifold would be critical, since the smooth
invariant function V: 911 -*R with V(g) = Volume (M, g) has (VF)g =\g
φ 0 by a calculation in §3.

Recall that an isotropy-irreducible homogeneous space (IHS) is a homoge-
neous space whose isotropy group at a point acts irreducibly on the tangent
space at that point. For a full account of this rich class of spaces see [8]. The
main result of this paper is

Theorem 1.1. (M, g) is critical ΦΦ (Λf, g) is an IHS.
The implication "<=" is proved in §2. The authors's first approach in trying

to prove "=> " was to find a large number of fully-invariant functions formed
by integrating various scalars built from the curvature tensor and normalizing
them by dividing by appropriate powers of the volume. Then one computes
the gradients and sets them equal to 0 E T(S2M\ obtaining a list of condi-
tions which might imply (M, g) is locally an IHS. Whether this approach will
eventually work remains to be seen. Some of the more interesting results of
this effort are summarized in §3. §4 contains a proof of "=> " in Theorem 1.1
and may be read independently of §3. The proof is based on the Ebin-Palais
slice theorem(s) for the action of D̂ on 9H (see Theorem 7.4 and remark 2 on
[3, p. 34]).

The idea of the proof of "=s>" in Theorem 1.1 is briefly explained in this
paragraph. If (M, g) is not homogeneous, then using the above mentioned
slice theorem and the theorem that the group of conformal transformations of
a compact Riemannian manifold is a finite dimensional Lie group, we can
prove the existence of a section s E T(S2(M)) with div s = 0, s φ 0, <j, g)g

= 0, and η*s = s for all isometries η of (M, g). Using the slice theorem again
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we can construct a smooth fully-invariant function/: 9H -^ R with (V/)g = 5
whence (M, g) is not critical. If (M, g) is homogeneous but not an IHS, we
prove the existence of such an s by an interesting algebraic argument, and
construct / as above.

2. IHS =» critical
A Riemannian manifold (M, g) is said to be solo if the only sections

s E T(S2M) with η*s = s for all η e Ig (= group of isometries of (M, g)) are
the real multiples of g. We begin with

Lemma 2.1. (M, g) is solo Φ=> (Λ/, g) is an IHS.
iVotf/. If (M, g) is not homogeneous, then it is an easy matter to construct

a positive nonconstant function F: M -» R invariant under /g, whence Fg is
invariant under Ig, and so (Λf, g) is not solo. Thus solo => homogeneous, and
therefore we need only prove the Lemma for (M, g) homogeneous. Thus, let
(M, g) be homogeneous, but not an IHS. Then the isotropy subgroup K c Ig

at some point p E M leaves a proper nonzero subspace of TpM fixed.
Translating this subspace to all points of M via isometries yields a well-de-
fined distribution { Vq) of subspaces because of the A^-invariance at/7. Define
sq e SqM by ^ ( ^ Y) = g(τ7̂ T, 77y) where 77: TqM-> Vq is orthogonal pro-
jection. Then it is easy to prove η*s = s for all η E /g, but 5 7̂  λg. Thus
(M, g) is not solo, and hence we have solo => IHS. The three-line proof that
IHS => solo is found on [8, p. 137].

Lemma 2.2. If (M, g) is solo, then (M, g) is critical.
Proof. Let/be a smooth fully-invariant function on 91L. Recall (V/)g E

T(S2M). We first prove (V/)g is invariant under /g. Let η E /g. Since / is
invariant under ^D, in particular / ° η*: 9H -+ R is /: 911 -> R. Thus for all
s E Γ(52M) we have

ί-H.0

where the last equaltiy follows from the definition of < , ) g and the fact that
η E 1. From the above calculation, it follows easily that (V/)g = (τ?"1)*(V/)g
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for all η E Ig. Thus (M, g) solo implies (V/)g = λg. However, using the full
invariance of/, we have

nV(g)λ = (λg, g>g = <(V/)g, g\ = lim - ( / ( g + tg) - f(g)) = 0.

Thus λ = 0, and so (V/)g = 0 for all smooth fully-invariant functions/.
Theorem 23. // (M, g) is an IHS, ίΛeλz M is critical.
Proof. This is clear from the lemmas.
It is easy to strengthen Lemma 2.2. In the definition of solo, if we add the

additional requirement that div s = 0 E Γ(Γ*M), we say that (M, g) is
semi-solo. The stronger version of Lemma 2.2 is

Theorem 2.4. // (M, g) is semi-solo, then (M, g) is critical.
Proof. This follows immediately from the next lemma and the proof of

Lemma 2.2.
Lemma 2.5. /// is a smooth invariant function on 9tl, then div(V/)g = 0

where div(V/)g is the divergence, computed with respect to the metric g, of
(V/)g E T(S2M).

It is not difficult to prove the formula

(s,Lxg}g = -2J (divΛ

where I is a vector field and Lx is Lie differentiation. This formula is
equivalent to the formula for the adjoint of 8 = -div: T(S2M) ->Γ(Γ*Λf)
given on [2, p. 380].

Let ηt be the one-parameter group of diffeomorphisms of M generated by
X. The invariance of/yields

o = <(V/)g, Lxg)g = -2Jjdiv(V/)g)(*)ωg

for all vector fields X. Thus div(V/)g = 0. q.e.d.
The converse of Theorem 2.4 is proved in §4. The reader may proceed to §4

at this point, or read through the examples of §3.

3. Examples of functions on 9IL

Here we give a number of examples of invariant and fully-invariant
functions/on 9H, and the results of the somewhat tedious computations of
the gradients (V/)g.

(A) Let V: 911 -> R be given by V{g) = fM ωg = vol(M, g). Observe that
for matrices Λ and B, det(Λ + tB) = det(Λ)det(/ + tA~ιB). Then

— άet(A + tB)t=0 =
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Let A = (gij) and B = (sy% where gtj = g(3, , θ,) for coordinate vector fields θ,,

and ^ = s(θ, , θ,) for 5 G T(S2M). Then the above formula yields

l V 2
Λc, Λ

= |(detΛ)~ 1 / 2detΛ traced ~'5) dxλ/\ • • f\dxn

= 2* Vr
Thus

( = 0

and so (V F ) g = | g.

(B) Let/(g) = / M Rωg where Λ = Λιy

&. is the scalar curvature of (M, g). A

well-known fact (see [5]) is that (Vf)g = -(Ro - \Rgij) where Ro = Rk

the Ricci curvature. The function /0(g) = V(g)1/n~x f

variant, and using the product rule for differentiation we find that

Rk

ikj is

M Rωg is fully-in-

where Λ = V(g)~ι JM Rωg. Thus we see that (M, g) is critical for/0 iff (Λf, g)

is Einstein. This result is well-known, and Muto [5] has even studied the

second variation.

(C) Let/(g) = V(g)4/n~ι fuR jRϋωg. We can compute the gradient of this

fully-invariant function by using the formula (which appears in [7]) derived

by J. C. Du Plessis for the gradient of the unnormalized function g—>

fM RoR
oωg. If (M, g) is Einstein, it is easy (using this formula) to verify that

(V/)g = 0 is automatic. So this function provides no new condition on the

curvature tensor of a critical Riemannian manifold.

(D) To his knowledge, no one but the author has bothered to compute the

gradient of the fully-invariant function/(g) = V(g)4/n~ι JM\\R\\2ω

g where

\\R\\2 = RijkmRijkm. The formulas of H. Rund [7], for computing gradients of

integrals of densities involving two or fewer derivatives of the giJ9 were useful

in obtaining the result:
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where | | / * | | 2 = V(g) ι fM\\R\\2ωg, and the vertical bar represents covariant

differentiation. If (Λf, g) is Einstein and dim M > 3, the second Bianchi

identity along with Rtj = Xg0 (λ = const.) can be used to show Rjhkj\h = 0,

whence the first term of (V/)g vanishes. Thus, when n φ 4, setting (Vf)g = 0

and taking the trace of (V/)g yields \\R\\2 = \\R\\2, i.e., the curvature tensor

has constant length. Moreover, we may then set \\R\\2 = | | Λ | | 2 in the expres-

sion for (Vf)g to obtain the stronger condition RihkmRjhkm = l/nWR^gy for

(A/, g) Einstein, dim M > 3, and critical for /. If dim M = 4, by a tedious

calculation, it is found that RihkmRjhkm =il l^ | | 2 g/, follows automatically if

(M, g) is Einstein. If dim M = 2, (M, g) is automatically Einstein with

Rtj = Kgip K = Gaussian curvature. In this case, M being critical for the

function of B) is a restatement of the Gauss-Bonnet Theorem. Forjhe present

function, (V/)g = 0 yields the_condition 2K\y = (2ΔAΓ + K2 - K2)gip where

Δ is the Laplacian oΓg, and AΓ2= V(g)~ι fM K2ωg. Taking the trace of both

sides yields ΔAΓ = K2 — K2, and thus the original equation becomes

2K\y = (K2 — K2)gjj Surprisingly, there are open surfaces with nonconstant

curvature satisfying this apparently overdetermined equation for any constant

K2, but the author has a proof that the only compact surfaces satisfying the

equation have K = const.

(E) D. Lovelock in [4] considers the scalar

where we have used the generalized Kronecker delta. For brevity we call this

scalar Hlp. It is essentially the 2/?-th mean curvature of a hypersurface in

R Λ + 1 . Recall that the 2/?-th mean curvature is intrinsic. When dim M = 2p,

H2p is the Gauss-Bonnet integrand up to a constant factor. Lovelock com-

putes the gradient of the invariant function/(g) = fM H2pωg. The result is

simply

(Vf\ = I e δkhim"h**R, f A/2 . . . B J2p-\J2p
\VJjg 2&ikυj/ι ' • j2p hxh2 h2p_χh2p

We use this formula to compute the gradiant of the fully-invariant function

f0: 911 -> RJ0(g) = V(g)2p/n~ ιAg) We find easily that

where H2p = V(g)~ι fM H2pωg. Setting_(V/0)g = 0 and computingjhe trace of

both sides, we obtain 0 = (p - n/2)(H2p - H2p). Hence H2p = H2p = const,

for 2p φ n. If n = 2p, then / = / 0 and (V/)g = 0 is automatic since the

generalized δ will be zero when n = 2p. For n = 2p, (V/)g = 0 is a restate-

ment of the higher dimensional Gauss-Bonnet Theorem. Resubstituting H2p

= H2p into the equation (V/0)g = 0 leads to some simplification in the case

n φ 2/?, just as in (B) which is the special case/? = 1.



CRITICAL RIEMANNIAN MANIFOLDS 605

We summarize the information contained in these examples.

Theorem 3.1. In order that (M, g) be critical for fully-invariant functions

defined by normalized integrals of scalars built from the curvature tensor, it is

necessary that

(1) RiHkmψ"1 = λg^, nλ = \\R\\2 = \\R\\2 = const, for nΦ 4 _

(2) Ίg**"^***^2 ' * * KW2P-J2P - Q/2-P/»)»»*»•
In particular, (M9 g) must be Einstein, its curvature tensor must have constant

length, and all the mean curvatures H2p of even orders are constant (n φ 2p).

It seems doubtful that these conditions imply that (M, g) is even locally

homogeneous, except if n < 3 when they do imply that M has constant

curvature. We cannot hope to arrive at the condition that the curvature tensor

is parallel, for there are IHS's which are not locally symmetric. One can

examine integrals of other scalars in an attempt to meet the local condition

for homogeneity which was found by Ambrose and Singer [1]. This line of

attack seems worth pursuing because one gets the impression from reading §4

that Theorem 1.1 is made possible because there are too many fully-invariant

functions, most of them perhaps having little to do with the usual objects that

one studies in geometry (i.e., curvature). Thus it may be more natural to

restrict ouselves to fully-invariant functions defined in terms of the curvature,

and determine what critical implies in that case.

4. Critical => IHS

In this section there will be many references to the following theorem of

Ebin and Palais.

Theorem 4.1 (Slice theorem). Let Og be the orbit o / g E ^ t l under <Φ. Let

π: tf) —> Og be given by 77(17) = η*(g). There is a neighborhood U of g in Og, a

section χ: U —> Φ (π ° χ = Id), and a neighborhood V of O in the space

H = {h G T(S2M): div h = 0), such that (setting S = g + V) F: U X S -*

911, defined by F(u, s) = χ(u)*s, is a diffeomorphism of U X S onto a neigh-

borhood of g in 9IL. Moreover, we may assume S has the following properties:

(l)Forη (Ξlg,η*S = S.

(2) If-η G <$ andη*S Π SΦ0 then η G Ig.

Note. The sense in which F is a diffeomorphism is discussed in the

footnote on [2, p. 381]. Also the slice of Ebin [3] is essentially exρg of the slice

(the Palais slice) which we use here where exρg is the exponential map of 9IL

considered as a Riemannian manifold. The Palais slice theorem was not

stated in the form of Theorem 4.1 (see [3, Remark, p. 34]), but Ebin's proof

goes through if exρg is replaced by h -* g + h and yields Theorem 4.1.

Theorem 4.2. (M, g) is critical ΦΦ (M, g) is semi-solo.
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Proof. We have seen "<=" (Theorem 2.4). Assume that (M, g) is not
semi-solo. Then we know there exists s G T(S2M) such that s φ 0, <̂ , g>g =
0, div 5 = 0, and 17*5- = s for all η E Ig. Define /: S -+ R where S is the slice
of Theorem 4.1 by/(g + A) = <A, s>g for all Λ6 F, K as in Theorem 4.1. We
extend / to a tubular neighborhood of the orbit Og by means of the formula
f(η*(g + A)) = f(g + A) = <A, 5>g. Now / is well-defined: note τrf(g + A^

= vϊ(g + A2) =» (W)*(s + Λi) = s + h2 => (WX^) n ^ 0 ^ W
G /g. It then follows that (ηιηϊι)*hx = A2, whence <A2, s}g = ((viVil)*hl9 s}g
= <Λj, (^^Γ1)*5)^ = <̂ i> s)g Thus / is well-defined. It is clear that / is
smooth in every sense. Indeed, it is smooth on S, and in terms of the local
chart F: U X S -» 9IL of Theorem 4.1, we have/(F(w, s)) = f(χ(u)*s) = f(s).
It is trivial to check that / is invariant, and, although / is not fully-invariant,
we have

f(λη*(g + A)) = f(η*(λ(g + A))) = /(η*(g + (λ - l)g + λA))
= <(λ - l)g + λA, S}g = λ<A, 5>g = λ/(η*(g + A)),

where the arguments are in the domain of /. Thus we may extend / to
R+ Φ *(S)(= Φ *(R+5')) via/(λA:) = λ/(A:) for λ > 0 and k G <3) *(S). We can
define a fully-invariant function /0 on D̂ *(R+5) by dividing / by another
invariant function k -^ (k, fcγjn which is homogeneous of degree 1, obtain-
ing fo(k) = f(k)(k, k}f/n (note <ft, k)k = n vol(M, k)). We can extend f0

(retaining its values on a neighborhood of R+Og) to a fully-invariant function
defined on all of 9H as follows. For s G R+5, define Φ(s) = || g(g, g)~2/n ~
s(s, s)f/n\\p

g where || \\p

g is the Sobolev norm discussed on [3, p. 21]. If
p > n/2 + 2, then there is an ε > 0 such that for h G H (H as in Theorem
4.1), Φ(A) < ε implies h G R+S. (Recall the definition of S in line one of the
proof of [3, Theorems 7.4 and 7.1]. Remember to use A —»g + h in place of
A -»expg A in all constructions.) Extend Φ to 6D*(R+5') via Φ(Ύ\*S) = Φ(s)9

and note that Φ is well-defined since Φ(f *s) = Φ(s) for ζ G Ig. Let p: R -> R
be C0 0, identically 1 in a neighborhood of O, even, and supported in (-ε, ε).
Then we may extend the fully-invariant function (p ° Φ)/o by zero values
from 6D*(R+5t) to all of 911. Finally, we must prove (V/0)g φ 0, whence
(Λf, g) is not critical, and we are done. Note (V/0)g = <g, g>~n/2(V/)g

- f <g, 8>~n/2~lίgf(g)' Now/(g) = <0, *>g = 0 while (V/)g is computed by
noting (V/)g G H by Lemma 2.5, and for A G H, we have

A>g = Jim j(/(g + th) - f(g))

t

whence (V/0)g = <g, g)~n/2s φ 0 as required.
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Theorem 43. If (Λf, g) is semi-solo, then (Λf, g) is homogeneous.
Proof. Suppose (Λf, g) is not homogeneous. Let W be the vector space of

all smooth functions on Λf which are invariant under the isometry group Ig.
Now W is certainly infinite dimensional. Indeed consider all functions with
support in a sufficiently small tubular neighborhood of an orbit of / , and
which are smooth functions of the square of the distance to the orbit. All such
functions are in W. Now, for all/in a sufficiently small neighborhood of 0 in
W, (1 + /)g will be in the image of F(U X S) (see Theorem 4.1). Thus
(1 + f)g = X(w)*̂  for some u E U C Og and s E S. Let η = χ(w)"1. Then
η*((l + f)g) = s. Let Is be the isometry group of s. Observe that Is c Ig by
(2) of the slice theorem. Moreover, the invariance and smallness of / imply
that the isometry group of (1 4- f)g is the same as that of g. As η: (Λf, s) —»
(Λf, (1 + f)g) is an isometry, we have that Φ - ^ η o φ o η ' 1 is an isomor-
phism of Is onto Ig. This fact, together with Is c /g, yields Is = Ig. Now s £ S
implies s = g + h for some h with div h = 0. Since Is = Ig, h is invariant
under Ig. We have yet to establish that / can be chosen so that s =
η*((l + f)g) φ λg. If η*((l + f)g) = λg, then η is a conformal transforma-
tion of (Λf, g). The group of such transformations is a finite dimensional Lie
group. Hence the family of functions / such that η*((l + f)g) = λg for some
η E ^ depends smoothly on finitely many parameters, and hence cannot
contain any neighborhood of 0 in W (by the Baire category theorem). Thus a
suitable/ e W can be chosen so that s = η*((l + f)g) φ λg, and h (defined
by s = g + h) has all the properties required in order to deduce that (M, g) is
not semi-solo.

Theorem 4.4. If (Λf, g) is semi-solo, then (Λf, g) w an IHS.
Proof. By Theorem 4.3 we already know that (M,g) is homogeneous.

Suppose (Λf, g) is not isotropy-irreducible. Then we have the /^-invariant
s E Γ(52Λ/) given by s(X, Y) = g(πX, TTY) as in the proof of Lemma 2.1;
certainly s φ λg. If div s = 0, then (Λf, g) is not semi-solo, and we are done.
If div s φ 0, then Φ = div s is an 7g-invariant one-form. Such a form must be
zero if (Λf, g) is symmetric, but we must do more work if (Λf, g) is not
symmetric. Now λg φ Φ ® Φ E Sf2(Λf), Φ ® Φ is /^-invariant, and div(Φ ®
Φ) = (δΦ)Φ + V^Φ, where X is determined by g(X9) = *(•)> and δ denotes
codifferential. Since δΦ = const, and fM 8Φωg = 0, we have δΦ = 0, and so
div(Φ ® Φ) = VXΦ. If VXΦ = 0, we are done. If V^Φ φ 0, then VXΦ is also an
/^-invariant one-form on Λf. Moreover, 0 = Λ^Φ, Φ> = 2<VXΦ, Φ> implies
that VXΦ φ λΦ. Let Λ be the vector space of 7g-invariant one-forms on Λf.
We have shown that if dim Λ < 1, then we are done. Note that the dim Λ =
k < n, since an element of Λ is determined by its value at a point. Consider
the symmetric tensor product Λ ° Λ c Γ(S2Λf). Certainly elements of Λ ° Λ
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are invariant. Thus div: Λ ° Λ -^ A is a well-defined linear map. Moreover,

dim(ker(div|Λ ° Λ)) > dim(Λ o Λ) - dim Λ = ]rk{k + 1) - k > 1,

since k > 2. Thus we have some h G ker(div|Λ ° Λ) with h φ 0. Certainly
hφ\g unless k = n. For n = 2, we know that if (Λ/, g) is homogeneous, then
(M, g) is symmetric, and recall that we are done with the case where (M, g) is
symmetric. If k = n > 3, then \k(k + 1) — k > 3, and thus in this remain-
ing case we may select h E ker(div|Λ ° Λ) such that h φ\g. Thus (A/, g) is
not semi-solo, q.e.d.

Finally observe that the main Theorem 1.1 follows immediately from
Theorems 4.2, 4.4, and 2.3. Indeed we have shown that all of the following
properties are the same: solo, semi-solo, critical, and isotropy-irreducible
homogeneous.
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