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THE CONE TOPOLOGY ON A MANIFOLD
WITHOUT FOCAL POINTS

M. S. GOTO

Introduction

Let M be a complete, simply connected Riemannian manifold without
focal points. Let a(t) and β(t), t > 0, be geodesic rays parametrized by their
arc lengths, respectively. Then a and β are asymptotic if the distance
between a{t) and β{t) is bounded for all t > 0. Let Λf(oo) be the set of all
classes of asymptotic geodesic rays and let M = M u Λ/(oo). In [4] it was
proved that for any point p in M and a geodesic ray α, there exists a unique
geodesic ray β asymptotic to a with β(0) = p.

Let E beRn+ι with the natural euclidean metric. Then E is an example of
M. In this case two geodesic rays a(ί) = a + fo(||t>|j = 1) and β(t) = b +
ftv(||>v|| = 1) are asymptotic if and only if they are parallel, i.e., υ = w. We
denote the asymptotic class containing α by oot), and suppose that the ray is
extended to the interval [0, oo] by putting α(oo) = oot>. Then E(oo) has the
natural topology as the unit sphere Sn, and E can be identified with the
closed unit (n + 1) — disk.

The purpose of this note is to prove the following:
Theorem. Let M be a complete, simply connected Riemannian manifold

without focal points. Then M has a canonical topology with the following

property: For any p €Ξ M, the exponential map: TpM —> M extends uniquely to

a homeomorphism from TpM onto M.

The topology is called the cone topology since for each point x in Af(oo),
cones containing x form a local basis at x.

The theorem is known in the case of nonpositive curvature (see [2]). In the
case of no focal points, it was proved if either the dimension of M is 2, or the
geodesic flow of M is of Anosov type (see [4]). The proof here refers to [3]
and [4].

Proof of the theorem. Let K(t) be a symmetric n X n matrix valued
continuous function defined for all / G R, and consider the n X n matrix
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differential equation

(J) X"(t) + K{t)X(t) = 0,

where the derivatives are taken componentwise. Let A be the solution of (J)

with the initial conditions A(0) = 0 and Λ'(0) = / (the identity matrix). Also

for s > 0 let Ds be the solution with the boundary conditions Ds(0) = / and

Ds(s) = 0. Then it is known that l i m ^ ^ Ds = D exists and is given by

= A(ήΓ(A*A)-ι(u)du,
Jt

where A * denotes the transposed matrix of A.

Hereafter, M denotes a complete, simply connected Riemannian manifold

of dimension n + 1 and class C 0 0 without focal points. For/? G M, let TpM

denote the tangent space at/?, and let SpM = {υ G TpM; \\v\\ = 1}. Let SM

be the unit tangent bundle. For v G SpM we denote by γ^ the geodesic ray

with γr(0) = p and γ^(0) = υ, parametrized by its arc length. Let

{eλ(t), . . . , en(t), en + ι(t) = γ^(0} be a parallel orthonormal frame field along

the geodesic yv. If Y(t) = Σ"=17/(0^,(0 is a normal vector along γ ,̂ then we

can identify Y with the curve t H> (γx(t), . . . , yn(t)) in R". For each / 6 R w e

denote K(t) = ((Rie^t), γ'(0)ϊ'(0> ^(0»> where R is the curvature tensor,

and consider (J) for this K{t). The solution given above will be denoted by

Dυ.

Next, we define a map bvs: M -^ R for v G SM by

where */ denotes the distance. Then l i m ^ ^ 6m = bv exists. The function bΌ is

called the Busemann function with respect to t>, and is known to be of class

C 2 .

Let v be in SM, and q G M. Then there exists a unique geodesic ray

starting at q asymptotic to yv, and the tangent vector of the geodesic ray at q

is given by (V^)(^). To prove our theorem, it is enough to see the continuous

dependence of Vbv on the parameter v according to the discussion in [2, §2].

Let /? be a point of M, and v a unit vector at /?. Then />„'(()) is a linear

transformation of the vector space v1- = (Λ G TpM\ x±.υ}. We shall con-

sider the vector bundle over SM given by

{(Ό, φ); v G SM, φ G End(ϋ±)},

and the cross section: υ H> £^(0). In [3] Eschenburg obtained that

Vw(VfeJ = ΛX0)(w) f o r w G ι > \

and that Z>c'(0) depends continuously on υ.

We shall now extend Z)o'(0), v G SM, to an endomorphism ^(v) oϊTpMby
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putting

()() for w E ϋ 1 ,

(v)(v) = 0.

Then D̂ (t>) is a cross section of the vector bundle

{(u, ψ); ϋ G SpM, ψ G End(T M) for/? G A/}

over SM and is obviously continuous. On the other hand,

VO(V6C) = 0,

and hence

is continuous with respect tot) £ SM.
Let /? and q be distinct ponts in M. We pick a smooth curve σ(s) such that

σ(0) = p and σ(l) = q, and shall consider a differential equation

where X(s) is a unit vector field along σ(s) of class C1. For a unit vector v at

is a solution of (**) with 1 (̂0) = t>. We shall prove that YΌ(s) is the unique
solution with the initial condition v.

Suppose that X(s) is a solution of (**) with X(0) = υ. We consider the
variation f(t, s) = exρσ{s)tX(s), s e [0, 1], / > 0, of the geodesic ray yv. Then
Λ(0 :== ($/ds)f(t, s) is a Jacobi field for every s. Since X(s) is of class C1,

is continuous with respect to .s. Fix .s0 G [0, 1] and put w = A ^ ) . Then

is a solution of (**) with Y ^ Q ) = w. We put /(/, Λ1) = &φφ)tYw(s) and
/(/) = (d/ds)f(t, S)\S=SQ. Then /(/) is the Jacobi field along yw with

7(0) = σ'(*0),/'(0) = *D(Mθ(σ'(jo)).

Moreover, since the variational curves t\-+f{t, s) are all asymptotic to γw, it
follows that

llΛOll < l|/(0)|| for any t > 0.

On the other hand, JSo(0) = σ'(s0) and/ /0) = Φ (w)(σ'(so)). Hence the Jacobi
field J. coincides with /. Thus

Λo

IIΛWII < II4(O)|| = | |* '(ί) | | for s e [ 0 , 1], / > 0.
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Therefore

d(yo(ή,f(t, s0)) < Γ\\Js(t)\\ ds < f V ( ί ) | | ds,

and hence the geodesic ray / !->/(/, s) = expa^s)tX(s) is asymptotic to γ̂  for
any s E [0, 1]. By the uniqueness of asymptotic geodesic rays, we have

Thus the equation (**) has a unique solution. Because of the continuity of fy,
the solution of (**) depends continuously on the initial value by a theorem of
differential equations (cf. [1, Chapter 2, Theorem 4.1]). Namely, Vbv is
continuous with respect to υ. Hence the proof is complete.
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