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A GLOBAL VERSION OF THE INVERSE
PROBLEM
OF THE CALCULUS OF VARIATIONS

FLORIS TAKENS

1. Introduction

In [4], Tonti gave necessary and sufficient conditions for certain differential
expressions (namely those expressions which we call “source equations”; for
the definition see below or [3]) to be locally the Euler equation of some
variational problem. In this paper we consider the corresponding global
problem. To state the results we need some definitions.

In what follows, #: E — W will be some fixed differentiable fibration i.e.,
(E, 7, W) is a fibre bundle, £ and W are smooth manifolds and = has
everywhere maximal rank. A variational problem, or Lagrangian, on « is an
operator £ which assigns to each smooth (local) section S: W — E of 7 an
n-form (n = dim(W)) £(S) on the domain of S such that, for each x in the
domain of S, (£(S))(x) only depends (smoothly) on the value of S, and on a
finite number of its derivatives, in x.

A source equation on a bundle 7 is an operator & which assigns to each
smooth (local) section S: W — E of 7 and each x in the domain of S an
element (& (S))(x) € (Ker(dm)g))* ® AY(T(W)), which only depends
(smoothly) on the value of S, and a finite number of its derivatives in x.

A source equation & is the Euler equation of the Lagrangian £ if for each
bounded (i.e., having compact closure) oriented open U C W, and each
smooth 1-parameter family of local sections S, of 7 with the properties:

(i) for each 1 € (-¢, +¢), U C interior of the domain of S,, and

(ii) S,(x) is independent of ¢ if x & U, we have

d .
GRS = [ SIS0

where S,(x) denotes the tangent vector of the curve ¢ — S,(x); this tangent
vector is in Ker(dm)g/,, so for each x, (&(S)(x), S (X)>,0 € A(T*H(W)).
Hence on both left- and right-hand side there is an n-form under the integral
sign. The integral is defined because U is oriented and bounded.
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The above definition of “Euler equation” is obtained by adapting the usual
one to the “coordinate-free language” which one has to use when dealing
with arbitrary differentiable bundles; see also the introduction of [3].

The inverse problem of the calculus of variations is concerned with the
question how to decide whether a given source equation is the Euler equation
of a variational problem. If a source equation satisfies the condition of Tonti,
a corresponding Lagrangian can be constructed locally (local refers here to
E). If the bundle is sufficiently simple, e.g., m: E — W is a vector bundle,
then the Tonti condition is enough to guarantee the existence of a (global)
Lagrangian. We want to determine for which bundles 7 the Tonti condition is
necessary and sufficient to guarantee the existence of a Lagrangian corre-
sponding to a given source equation (the Tonti condition is always necessary).
A source equation is said to be locally variational if it satisfies everywhere the
Tonti condition, and to be variational if it is the Euler equation of some
variational problem. Our main result is

Theorem. The vector space of locally variational source equations modulo
the variational source equations is canonically isomorphic with H"*'(E; R),
n = dim (W).

The paper is organized as follows. In §2 we introduce the space of oco-jets of
(local) sections of our differentiable fibration 7 and define smooth functions,
vector fields and differential forms on this jet space. These definitions were
also given in [3], but are repeated here to make the paper self-contained: In §3
we consider Lie derivatives and various types of exterior derivatives for
differential forms on this jet space. In §4 we prove some local exactness
theorems for these differential forms, and relate in some case the lack of
global exactness to the real cohomology of E as in the theorem of de Rham.
In §5 we finally identify Lagrangians and source equations as certain types of
differential forms on our oo-jet space, and deduce the main theorem from the
results in §4.

2. Differential geometry of infinite-jet spaces

A number of the results in this section can also be found in [3]; the present
presentation is more complete, and in some points the proofs are simplified.

Let #: E— W again be a differentiable fibration, i.e., # is a C* map
(unless stated otherwise, everything in this paper is C*) which has every-
where maximal rank and is a bundle projection in the topological sense.
J*(m), the space of k-jets of local sections of =, is defined as follows: J*(7) is
the set of equivalence classes of pairs (w, S), w € W and S local cross section
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of = defined on a neighborhood of w; (w, §) ~ (w', s) if and only if w = w’
and all the derivatives of S and S’ up to and including order k are equal in
w = w’. J¥(7) has, in the obvious way, the structure of a smooth manifold.
There are canonical projections 7;: J*(7) — J/(7) whenever 0 < / < k, and
7, J¥(m) - W. Note that J%x) = E, so m,: E — W equals «. The space of
oo-jets of local sections, which is denoted by J *°(7), is, as set, the inverse limit
of the system {J*(w), m*}; the induced projections are denoted by =%, 7.
We define on J ®(7) the inverse limit topology: if s € J*®(7), and U is a
subset of J®(7) containing s, then U is a neighborhood of s if and only if
there are some k € N and neighborhood U, of 7X(s) in J*(«) such that
(7%)™(U,) C U. The description of all the projections above can be visual-
ized in the following diagram:

,”g(o-tl
lim J' () = J ™ () ———— J**+1(m)

0

Jk(m) —— E= JO(m)
Tk
lﬂ' = rro
x
W

The differentiable structure of J*(w) is determined by specifying the C*
functions on J *(7). A function f: J *(7) — R is said to be C*, or to belong
to C°(J ©(m)), if for each s € J*(7) there are a k € N, a neighborhood U,
of 7% (s) in J¥(#) and a C* function f: U, — R such that f|(z*)'(U,) =
fi o wk.

Proposition (2.1). J ®(w) is paracompact, and each open covering U =
{U;},e; of J °(m) admits a smooth partition of unity, i.e., for each such covering
QL there is a set of smooth functions ¢;: J °(m) > R, i € I, such that {support
(®)}ic; is locally finite, (support @) C U, and 2 ,c; @,(s) = 1 for each s €
J 2(m).

Proof. We first show that J *°(«) is separable. For this, let 9, C J k(m)be a
countable dense set for each k € N; Q, exists because J*(7), being a
manifold, is separable. We can clearly choose some countable Q C J *(7)
such that for each k, 7X(Q) D Q,. From the definition of the topology of
J *(7) it follows that Q is dense. The points of Q are denoted by g, ¢, . . . .

For each ¢; € Q we consider the following basis of neighborhoods:

B, = {s € I2(mlp(nL(s), ™o(2)) < 27},
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where p;, for each j € N, is a metric on J/(7); these metrics are supposed to
be compatible in the sense that whenevery x, y € J*(),

pe(x, ¥) = min p, . ,(x', ).

x' € (mé) (x),y" € (mf) ()
Clearly, {B;};;en is a basis for the topology of J*(w). Hence each open
covering AU of J*(7) admits a refinement V = {V,},cn Wwith each ¥, €
{B;},jens 58y V; = B, gy and such that for each /, V, C U, for some i € I.
In order to obtain from V a locally finite refinement, we first define

Vim = {S € Jw("T)|P,3(1)(7T'go(l)(s)’ ng)(qa(/))) < 27D — 2_"'}

for each I, m € N; the locally finite refinement U = {W,},, of V is now
defined by

W=V, Wy=Vo\ Vi, Wy=V3\(V,5U V), ete.

Hence J *(7) is paracompact (this proof was essentially copied from Lang
[2]). Since for each / € N, there are an integer y(/) and an open subset W, of
JO(z) such that (7XP)"(W,) = W, there is a ¥, € C®(J ®(=)) such that
Y (s)>0if s€ W, and ¥, (s) =0 if s & W,. Let now o: N— 1 be a

function such that for each / € N, W, C U,,). Then we define for i € I:

-1
s = 3 we) (2 v
(JENlo(j)=i) JEN
This is the required partition of unity.
Definition 2.2. A vector field on J>(w) is a linear derivation on
C>®(J *®(m)), i.e., a vector field X is a map C*(J ®(7)) » C*=(J *(m)) such
that X(af + Bg) = a. X(f) + B. X(g)forf,g € C®(J*(7)) and a, B E R,

X(fg) = f X(g) + g X(f).

X (J ®(7)) denotes the vector space of vector fields on J ®(7). If A C J ®(7)
is a subset, and X, Y € X (J *°(#)), then we say that X and Y are equal on 4
if for each f € C®(J ©(7)), X(NH)|4 = Y(f)|4. X (A) is the set of equivalence
classes of X(J *°(7)) under the equivalence relation ~,: X ~, Y if and only
if X and Y are equal on 4. %X.(4) can be interpreted as the set of vector fields
defined on A4 and extendable to J *(x). If a € J *(x), X ({a}) is also denoted
by T7,(J *(w)). Notice that the elements of T7,(J*°(w)) are just the linear
derivations from C *(J *(7)) to R (in a). For X € X.(J ®(w)) its equivalence
class in T, (J *°(m)) is denoted by X(a).

Examples and definitions (2.3). Let X be a vector field on W; we shall
associate to it in a canonical way a vector field X on J ®(7); X is called the
total vector field of X. To do so we have to define (X(f))(s) for each
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f € C*(J*(w)) and s € J *(w). For this we choose a local cross section S of
, defined in a neighborhood of 7 (s) and such that the co-jet of S in 7 _(s)
equals s. Then we define (X(f))(s) as (X(f o SN(7,(s5)). It is not hard to
verify that, for each s € J*(7), the subset of T,(J *(w)), consisting of those
elements which can be represented by total vector fields, is a linear subspace
of T,(J *(m)) whose dimension equals that of W. We denote this subspace by
H_ and call its elements horizontal vectors.

We say that a vector v € T,(J *(m)) is vertical if for each f: W R,
o(f o 7,) = 0. The vertical vectors in T,(J *(w)) form a vector space, denoted
by V,.Clearly H N V, = {0} and H, + V, = T,(J *(7)).

It should be mentioned that the existence of the canonical splitting of
T,(J *(m)) as H, ® V,, which cannot be constructed for J*(a), is the basis for
many of our constructions; the main reason to work on J*(7), instead of

J*(), is the need for such a canonical splitting,

Lemma (24). For each s € J*(w), T,(J®(7)) is canonically zsomorphtc
with the inverse limit of { T, ,(J (77)) dwk} k>LLKkEN:

Proof. First we define maps dr’: T,(J®(m) > T, e o4 k(xr)) as follows:
for X € T,(J (7)) and f: J"(w)—>R a smooth function, ((d7X)(X))(f) =
X(f o k). Then clearly dn/ o dn¥ = dnl, | < k. We have to prove that if
X € T,(J (7)) and X # 0, there is a k such that drk(X) # 0. For this we
take a smooth function f: J ®(7) — R such that X(f) # 0. Then by definition
there are a k € N, a neighborhood U, of 7%(s) in J®(«) and a smooth
function f on U, such that f|(7%)(U,) = f° 7%. From this it follows that
drk (X) # 0.

Finally we have to prove that for each sequence X,;, X, - -, X; €

T, (J i(m)) such that dnl(X,) = X, whenever / <k, there is an X €
T(J °°(1r)) such that 7% (X) = X, for all k. For this we construct a sequence
X,, X2, ... of vector fields on J'(#), JX=),... such that for each k,
X(7%(s)) = X, and for each / < k and 5, € J*(c0), X(7\(s,)) = dm{(X, «(5:)-
Such a sequence can easily be constructed by induction, startlng with X 1
X2, .... The vector field X on J °°(7r) is now defined by (X(f)s") =
(X( j))(-rrw(s’)) whenever s’ € J °°(77), f: J¥(w) > R is a smooth function and,
on a neighborhood of s, f = foxk. Then X = X (s) is the required vector in
T,(J (7).

Lemma (2.5). A vector field X on J ®(w) determines a sequence of mappings
X;:J®°(m)—> T(J' (7)), i =0,1,2,...:X(s) = dm'! (X(s)). These mappings X,
satisfy

L.X(s) ET, (s)(‘l (),

2. dm} 7YX, (s)) = X,_,(5),
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3. for each smooth f: J'(m) —>R, the function J®(m) 3D s — (X(s))(f) is
smooth on J *().

On the other hand, any sequence of mappings X;: J (7)) — T(J'(w))
satisfying the above conditions 1, 2 and 3 uniquely determines a vector field
on J ®(7).

Proof. Trivial consequence of Lemma (2.4).

Remarks and definitions (2.6). Let X be a vector field on E such that
whenever 7(e) = n(e’), dvr(X (e)) = d'rr(X (€)) = m(X)(w(e)) (this last equation
defines the vector field 7(X) on W). X induces a vector field on J ®(x) in the
following way:

For each i, X induces a vector field X, on J(m) such that X,(s), s € J'(7), is
the tangent vector of the curve

t—> (GD)?z oS o C’Dn(l‘—r),_,'GD,,(,\?),,('IT,-(S))),( (S Ji(‘IT),

where S is a local section of = representing s (hence defined in a neighbor-
hood of 7,(s)), and Dz, © S o D, 5 _, consequently is a section defined on
a neighborhood of GD,,( %y (7(s)) and thereby defmmg an element of J ‘(w)

Next we define X J2(m) = T(J(m)) by X, o w’; these maps X satisfy
conditions 1, 2 and 3 in (2.5) and hence determine a vector field X on J *(=).
A vector field on J *®(7) which can be obtained in this way is said to be
integrable; in case also m(X) =0, it is said to be vertical integrable. The
original vector field X on E, for which #(X) on W could be defined, is called
a symmetry of .

Sometimes we need vector fields which are somewhat more general than
integrable ones, namely deformations. A vector field X on J*(w) is called a
deformation if for each local section S: W 5 U — E and each compact
K c U, there is an integrable vector field X’ on J *(7) such that X and X',
restricted to S (K) are equal, where S_: U — J *°(w) is the map assigning to
each u € U, the oo-jet of S in u. One can think of vertical deformation X such
that for each s € J*(7), dn(X(s)) = 0, as vector fields on the space of
(local) sections of .

Notice finally that for each X € T,(J *(m)), there are a total vector field H
and a vertical integrable vector field X such that X = H(s) + X (s).

Definition (finite type) (2.7). We say that a vector field X on J *(x) is of
finite type if for each s € J () there is a k, € N such that for each k > k,
there is a neighborhood U of 7X(s) in J k(w) such that for each pair s,
s" € J°(w) with 7% (s") = nk (s”) € U, X,(s") = X,(s"). X, is again the map
from J *(7) to T(J*(w)) as in Lemma (2.5). Notice that a total nonzero vector
field is not of finite type, and also that if a vector field X is not of finite type,
it is the limit of a sequence of vector fields of finite type, i.e., there is a sequence
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of vector fields X', X2, X?, ... such that for each smooth f: J®(7) - R and
each s € J *(w), there are a neighborhood U of s in J *(7) and a k¥ € N such
that (X — X*)|()U = 0. It is enough to make X’ to be of finite type such
that (X — X’), = 0 whenever k < i. In this case we define X to be the limit of
X/ fori— 0.

Definition (2.8). A k-form w on J*(7) is a multilinear alternating map,
assigning to each k-tuple of vector fields X, - - -, X, on J*(«) a smooth
function w(Xy, - - -, X;) on J*(7) in such a way that w(X, - - -, X,)(s) is
completely determined by w and X,(s), - - -, X,(s). We denote by w(s) the
induced alternating k-linear map from 7,(J *°()) to R.

Lemma (2.9). Let w be a k-form on J ®(w). Then there is a sequence of open
sets U; C J'(w) and k-forms w; on U, such that

L (wi) (U) D (i YUy,

2. U en(m) (U) = J *(m),

3. (ﬂii_l)*wi—l = wi'(wii_l)—l(ji—l’

4. for each s € (vl )™'U,

W(S)(Xy(5), - -+, Xi(5)) = (7o ())(dTo(X1(5)), - - -, dm (X, (5))).
Each such sequence {U, w;};cn satisfying conditions 1, 2 and 3 uniquely
determines a k-form on J®(w); two such sequences {U, w;} and {U}, w}}
determine the same k-form if and only if w|U, N U/ = w}*|U, N U/ for all
ieN.

Proof. We choose s € J*(7) and want to show that there are ani €N, a
neighborhood U of 7/ (s) in J'(7) and a differential form &, on U such that
for each s’ € (7. )7(U)

W(SYWX(5), =+ + 5 Xie(5)) = @(moo (WA o (X1(5)),s =+ -, A7 (X ()
Suppose that such an i does not exist. Then there is a sequence of points
{p;}jen in J *(m), converging to s, such that w(p)(X,(p)), - - -, Xi(p))) is not
determined by the projections dn/ (X,(p)), * - - , dml (X,(p;). This means
that, for suitable vector fields X;, - - - , X}, the function w(X, - - -, X}) is
not constant on any of the sets (72,)(7%,(p)),j = 1, 2, .. . . But this implies
that w(X,, - - - , X, is not smooth and we have the required contradiction.
Next we take for each s € J®(w) an i(s) and U(s) C J*)(w) as
above, where U(s) is an open neighborhood of 7X5Xs). Now U, =
U sesmpior<ia) (M) Us). By the above construction there is a unique
on U, with the required properties.
The rest of the lemma is trivial.
Definition (2.10). We denote by I(f(7) the vector space of those (k + I)-
forms w on J ®(7) with w(X,, - - -, Xi,,) zero if among X, - - -, X, ,, there
are more than / horizontal vector fields (a vector field X is horizontal if each
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X(s) is horizontal), or more than k vertical vector fields (a vector field X is
vertical if each X(s) is vertical).

Lemma (2.11). Each element w € ‘JCf(vr) determines a map E_, which
assigns to each local section S: W O U — E and k-tuple X, b )?k of
vertical symmetries of w an I-form on U, which is defined by
E (S; X\ -, X) = (S )*Xy, - -+, X,) where X, - - - , X, are the verti-
cal integrable vector fields corresponding to X, bt /\_’k, and S _(u) is the
co-jet of S in u.

This map E_ satisfies:

LELS; Xy, -+, X) = E(S; X{, - - -, X)) if X|Im(S) = X/|Im(S),

2. E, is alternating and multilinear (over R)in X, - - - , X,

3. for each s € J ®() there are some i € N and neighborhood U of 77 (s)
in Ji(7) such that, as far as S_(u) € (#))'U, (E(S; X}, -+ + , X))u de-
pends in a smooth way on (and is determined by) the i-jet of S in 4 and the
i-jets of X,|Im(S), - - - , X,|Im(S) in S(x).

Also, if E is a map which assigns to each local section S: W O U — E and
each k-tuple X, - - - , X, of vertical symmetries of =, an /-form on U in such
a way that conditions 1, 2 and 3 above are satisfied, then there is a unique
w € ¥f(m)such that E = E,.

Proof. Trivial.

Remark (2.12). The operations A, ¢, can be defined in the usual way. Also
the d-operator could be defined now, but we shall pospone this until after the
discussion of the Lie derivatives.

3. Lie-derivative and exterior derivatives

Usually the definition of Lie derivative is based on the time 7 integral of
vector fields (locally and for small ). On J ®(w), integral curves of vector
fields do not always exist, and if they do they are not always unique. On the
other hand, if a vector field X on J*®(«) is integrable, and X is the
corresponding symmetry of =, then the time ¢ integral D, , maps s € J *(7)
to the oco-jet of D, o S o D, 5, at D,z ,(7(s)) provided that S is a local
section representing s.

Definition (3.1). If X is a vector field on J ®(7), and f a smooth function
on J *(7), then we define the Lie derivative Lyf of f with respect to X as
Lyf = X(N).

If X,, X, are two vector fields on J *(w), then we define the Lie derivative
Ly X, by

Lx,(Xz(f)) = (Lxlxz)(f) + Xz(Lx,(f))
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or

(Lx,Xz)(f) = XI(X2(f)) - Xz(Xl(f))-
It is easy to see that Ly X, thus defined is again a vector field. Ly x, is also
denoted by [X, X,].
If X is a vector field, and w a k-form on J *(r), then the Lie derivative Lyw
is determined by

LX(“)(XD T Xk)) = (wa)(Xl’ LX)

k
+2 ‘*’(Xl"",LxX's""Xk)’

i=1 '
or
(LX‘*’)(Xp LX) = X(“’(Xl, R Xk))

R

i=1
Remark (3.2). In case X is an integrable vector field on J *(7), the above
definitions are equivalent with

.1
Lyf = }llli%z(f GDX,h - f)s
LyX’ = lim l(X' — (Dy)eX)
X 70 h X,h) % ’

= h 1 *
Lyw = ,111_1)1(1) 7 (Do — ),

where (9Dy,), denotes the induced map for vector fields ((Dy ,)X")(f) =
(X'(fo Dxp) o Dy, and DY, denotes the induced map for differential
forms, defined as in the finite dimensional case.

Theorem (3.3). Let X,, X, be vector fields on J *(7).

1. If X,, X, are integrable with corresponding symmetries X 1 X. > of mon E,
then [X,, X,] is integrable with corresponding symmetry [X, » X. ,l; for the projec-
tions we have [w(X,), 7X,] = 7[X,, X,].

2. If X, is mtegrable with symmetry X and projection n(X 1) and X. X, is the
total vector field of X, 2 then [ X, X,] is the total vector field of [7(X, )X 2]

3. If X, and X, are total vector fields of X, , and X, 2» respectively, then [ X, X,]
is the total vector field of [X, 1 X. Al

Proof. If X is an integrable vector field on J*(w), then (% ,),, maps
integrable (resp. total) vector fields to integrable (resp. total) vector fields,
although it is only defined locally and for small z. From this it follows that
the Lie bracket (is Lie derivative or Lie product) in case 1 is integrable and in
case 2 is total. By evaluating this Lie product on functions of the form
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f=fox% and f= f o« where f, f are smooth functions on E = J°(x) and
W respectively we obtain the above statements for the cases 1 and 2.

In order to deal with case 3, we consider the vector fields X, X, X, b X. 2
take a local section S: W 5 U— E of w, and denote again by S the
corresponding map U — J ®(«). Then, for any smooth function f: J *(7) - R
and u € U, (X,(HNS*(u)) = (X,(f ° S®))(u) so that

([Xv Xz]f)(Sw(“)) = (Xl(XZ(f))) — Xo(X,(N))(S*(w))
= {X((Xx(f) © $%) = X(X,(f) © §°) }(w)
= {XI(XZ(f° Sw)) - Xz(Xl(f° Sw))}(“)-
Since the last expression equals the results oftained by applying the total
vector field of [X, " X. ,] to f on u, the proof is complete.

Definition and proposition (3.4). There is a unique operator d which
assigns to each form w on J®(7) a form dw such that the following formula
holds: Lyw = 1y dw + diyw for each vector field X and differential form w. d
is called the exterior derivative.

Proof (As in the finite dimensional case). If w is a O-form (or function),
then Lyw = 1y dw + diyw; tyw = 0, Lyw = X(w), 50 dw(X) = X(w). For w a
1-form we have Lyw = 1y dw + diyw, so

do(X,, X,) = (Lyw)X, — (d(‘x,‘*’))(Xz)
= X (o(Xy) — ‘*’([Xv Xz]) = Xy(w(X))).

By induction, for a k-form w we find
k
do(Xg - - -, X,) = 20(—1)'Xi(w(X0, D . )

+ 2 D[ X X)) X K X X)),
i<j

Notice that, since our construction is made in the same way as for the finite
dimensional case, if a k-form w is given by the sequence {(U, w;)};en as in
Lemma (2.9), the corresponding sequence for dw is {(U;, dw;)};en-

It is clear that the d operator defined by the above formula is unique.

Lemma (3.5). If w € I (7), then dw € I+ (7) ® I, ().

Proof. We take s € J*°(w) and a number of vectors X, X, ..., X, €
T,(J *(w)) each of which is either horizontal or vertical. We have to show that
if less than / or more than / + 1 of them are horizontal, dw(s)(Xg, - . -, X 4))
= 0. For this we extend X, . . ., X, ,, to vector fields each of which is either
total or vertical integrable. Now the lemma follows as a direct application of
(3.3) and (3.9).
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Definition (3.6). The operators 3: J(f(m) » 3G */(7) and D: IC(7) —
I(f, () are defined by d = 9+ D. 9 is called the vertical exterior derivative,
and D the horizontal exterior derivative.

Remark (3.7). For w € 3(f(7) and E, given Lemma (2.11), E,, is de-
termined by Ep (S; X, . . ., X,) = (-)’(E(S; X, . . ., X})), where S is a
local section of 7, and X Ireeos /\7,( are vertical symmetries.

4. Exactness theorems
In this section we are concerned with the following diagram and the
diagram obtained from it by replacing each J(¢(w) by its sheaf ‘J~Cf‘(w) of
germs of sections (see [1]). -

W(m) S I S () o -
1D 1D 1D
IO_\(r) > IC_(m) S e (m) -

Wm) S Wm S ) S

D ™ 1p
Im) S I L IEm S
1 ) )

R 0 0

We are interested in various exactness properties of these diagrams. First of
all we have the Poincaré lemma. . .

Theorem (4.1) (Poincaré). If ay € (IC,(7),, a, € (I, (7)), . . ., @, €
(33(m)),, m > 1, and Day =0, dag + Da, =0, ..., da,,_, + Da,, =0, da,
=0, then there are By € (5 _ (7)) - - - » Bp_y € (K~ \(m)), such that DB,
=apBo+ DBy =ay, ..., 0B, 5+ DB, = 0y 1, B, =

We use the conventions: J(f(7) = 0 whenever / > n,l < 0 or k < 0, where
(5C<(w)), denotes the stalk of germs of sections at s € J () in 5(w). We
also assume n > 1. The main result of this section is

D-Exactness theorem (4.2). Let w € (3G (7)), 0 <! <n = dim(W), and
Dw € (fTCfH(w))s = 0. Then there is an m € (3_ (7)), such that Dy = w. D:
I (w) > KK () is injective for k > 0, the kernel of D: IQ(m) — I () consists
of the locally constant functions in ¥3(w), and the image of D: IC<_,(7) —
‘jCﬁ('rr) is characterized as follows.

wE (§C’;(w))s, k >0, is in the image of D if and only if there are a
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representative & of w in I(x(w), and a neighborhood U of s in J *(x) such that
for eac_h local section S, defined on a neighborhood of m_(s), and each
V.CV C(S,)'(U), V a bounded oriented open subset of W,

[v E5(S; Xy, ..., X)) depends only on the germs of tﬁe vertiall Ssymmetries
Xy, ..., X, along S@V) (and so S, V, & but not on X,, ..., X, away from
S@V)).

Remark (4.3). The proof of the above theorem is somewhat complicated
and therefore postponed until the end of this section. We first derive a
number of consequences from it.

First we note that our diagram is anticommutative: because d o d = 0,

d=D+ Jdwehaved o d=0,DoeD=0andd oD+ D °9=0.
. 8-Exactl~1ess theorem (4.4). Q'(w) denotes the quotient sheaf
3G, (m)/ D(IC, _ (M) If we (F'(m)s, i >0, with 3w =0 (3_is defined here
because d(D(IC,_,(m)) C D(IC;*) (n))), then there is ann € G~ \(wr) such that
0 = w, and 3: Qo(w) — 8 (m) is injective.

Proof. First we show that 3: 8°(7) — 8'(7) is injective. Suppose not; then
there is an a € (éo(w))s with da = 0. By definition of Qo(w) there is B, €
(9, (), with [ B,] = a and hence 38, € Im(D: (. _,(m) — FC.(x)). Choose
B, € (fTC,‘,(w)): such that 38, + DB, = 0. With induction we go on and find

By - . ., B, with B; € (5C,_,(m)), such that 38, + DB,,, =0,i=0,1,-- - ,n
— 1. Then 088, = 0 because D9S, = —0DB, = 008,_, = 0, and D in this case
is injective. Applying the Poincaré lemma to (B, ..., B,) one obtains
(Yo -+ s Ya-h Vi € (%n i—1(m);, DYo = Bp, Yo + Dy, = By, - - - .S0 By €

Im(D) and hence a = 0.

Next 0 o 3= 0 (also for the sheaves el (7)), so we have to prove that if
a € (8'(m), and da = 0, there is y € (Qo(w))s with 3y = a. Choose B, €
(‘JCl (7)), with [ B;] = a. Then 98, € Im(D), so there is 8, € (‘JC2 1(m)), such
that 98, + DB1 = 0. Now we proceed as in the above casetofind B,,..., B,
and then vy, ..., v, with y, € (3(,0(77)):, Y1 E( (M), Yo + Dy, = B,
Hence 9[y,] = «, so we may take y = [y,].

In the same way one now proceeds easily to prove that d makes éi(w) an
exact complex. This completes the proof.

Remark (4.5). A stronger version of (4.4) can also be proved using~a kind
of “fibrewise Poincaré lemma”; in this way one can show that if w € (3G (m)),
and dw = 0, k > 0, then there is an ) € (I~ '(7)), with dn = w; see [3.]. We
shall however not need this fact here.

D-cohomology theorem (4.6). Let §'(7) denote the set of global sections of
the sheaf G'(w) defined in Theorem (4.4); the canonical map IC,(m) — 8i(m) is
denoted by D (one has to be careful; for a correct interpretation of (4.1), D:
IC (7) — IC, . ((7) is the zero map!). Then
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Ker(D: 3G (7) > 3Gy 1(m)) { 0, ifi 0,0 <k <n,
Im(D: 3C,_ () - ¥(x)) | HYE;R), ifi=0,0<k <n;

D: 3G (m) — IC (7) is injective provided i > 0, and

Ker(D: 3C,(7) — (7)) N [O, ifi #0,
Im(D: 3C,_(7) > (7)) | H(E;R), ifi=0.

Proof. By (2.1), 3C(m) is a fine sheaf for all i, j; see [1]. Hence
0-R- JYm350m 3 - - B9

is a fine resolution of the constant sheaf R, and applying the argument used
in [1] to prove the Rham’s theorem, one finds that for 0 < kK <n

Ker(D: I3Q(7)) — I, (7)/Im(D: I _ (7) > IQ(7)) =~ H*(E;r).
This argument still works if the last sheaf of the resolution is not fine; hence
we can add 2» ég(w) — 0, and for the case i = 0 the theorem follows.

For i > 0, one has to deal with a “fine” resolution of the zero sheaf, and
hence we obtain the exactness.

Remark (4.7). Using the same arguments one can show that D: IC,(7) -
&' is surjective for i > 0.

G-cohomology theorem (4.8). Fori > 0,

Ker(d: 8'(7) — 8"+ '(7))/Im(Dd: I '(7) — §(7)) =~ H"*'(E: R).

Proof. We shall use the following procedure.

First we show how to associate to each a € §(7) with da = 0 an (n + i)
form B on J ®(7) with dB = 0. The construction of such B is not unique but
we prove that each closed (n + i)-form B on J ®(7) can be obtained by the
above mentioned construction, from some & € §'(7) with @ = 0 and that

a € Im(DJ) if and only if B is in the image of 4 (independent of the
choices). From this one deduces immediately that Ker(d: §'(7) —
8+ (7)) /Im(D3: IC,"(w) — G(m)) is isomorphic with the (n + i)th de
Rham cohomology group of J *(r), which course equals H"*’ (E; R).

Now we come to the construction of B for given a € §'() with da = 0. By
(4.7) there is a B, € IC,(7) such that DB, = a. Since da = 0, we have
-0DB, = D3P, = 0, and hence by (4.2) there is a B, € JC+! (7) such that
DB, + 3B, = 0. By induction, one finds now B, € ICr2(n), ..., B, €
9C*"(w) such that DB, + 0B, =0,- -+, DB, + 3B,_, = 0. Then DB, = -
0DB, =9 ° 9dB,_, =0 and hence 98, =0 by (4.2). Now we define 9=
37_o Bi; clearly dB = 0. For any (n + i)-form B (with df = 0) one has
B =30 B with B, € 3G*/(7) and 38, + DB, = 0. Hence, if & = D,
then 8 could be obtained from & by the above construction.
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Finally, assume there is a v, € 3, '(#) with Ddy, = a: By, . . ., B, are
still as above. Then D(dy, — B,) = 0, and hence there is a y, € IC, _,(7) such
that B, = dy, + Dy,. Similarly, one makes y, € IC;*}(7) with Dy, + 3y, =
B,, etc. Thendy = Bif y = 27_, v, This completes the proof.

Corollary (4.9). Ifi > 2, then

Ker(d: §'(m) » §'*!(7))/Im(d: §'~'(7) - §'(w)) =~ H"*'(E).

Proof of Theorem (4.2). For this we have to consider form-operators:

A p-form-operator of order k on R” is a linear map & assigning to each
smooth function f: R” - R a p-form 8(f) on R” such that §(f)(x) depends
(smoothly) only on the k-jet of f in x. Clearly, if § is a p-form-operator of
order k on R”, then (f — d8(f)) is a (p + 1)-form-operator of order k + 1 on
R".

Definition (4.10). A p-form-operator § on R” is said to be closed if:

for p < n, d8(f) = 0 for all smooth f,

for p = n, for each bounded oriented 4 C R", f, 8(f) depends only on the
germ of f along 9A4.

Note that the (p + 1)-form-operator dé is always closed.

Remark (4.11). We shall use the following conventions:

Apie ={Gn- i <G <jp <o <Jp<n, 0 <1<k}

ford =Gy, " i) ENnpy f =9, f= a’f/axjh”_,j,ale.
A p-form operator § of order k£ on R” can always be written in a unique
way as

8= S 8 (0 @GN -dy A - Adx,
IEA,,
1<i< - - <jp<n

The A-jet of such § in x is supposed to be determined by the h-jets of the

functions §/ . in x.
Lo Jp

Lemma (4.12). There is a linear map P which assigns to each closed
p-form-operator 8 of order k on R" a (p — 1)-form-operator P(8) of order
(k — 1) on R" such that d(P(8))(f) = 8(f) for each smooth function f: R* - R,
and that

(P(8))(N)(x) is determined by and depends smoothly on the (k — 1)-jet of f in
x and the h-jet of 8§ in x where h € N is some integer determined by p, k and n.

Proof. If p =0, 8(f) has to be a constant function for each f. But
(8(f))(x) depends only on the k-jet of f in x (in a linear way), hence 8(f) = 0
for each f. So P(6) = 0if p = 0.

If p=n, we may write 8(f) = 2,5 8'(x) - 3f(x) -dx, A+ - - Ndx

n*
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Then
as(jl’ s )
= 3 AP S0 dx A s,
v J)EAk Ji
+d( S (I (x) -8 f(x)
Ub D)€ Ak

.dxl/\. .. /\d)ej,/\' .. /\dx")

= §,(f) + dd,(f),

with 8, and §, as n— and (n — 1)-form-operators of order (k -- 1) respec-
tively. 9, is of course again closed, so we can aply the above construction
again on §,, and repeat until we have § = §, + db, with 8, and §, as n— and
(n — 1)-form-operators of orders 0 and (k — 1) on R”, respectively. By
assumption & is closed and hence §,. But it is easy to see that any closed
n-form-operator of order 0 on R” is identically 0, so 6§ = d8—2, and we define
P(8) in this case as 8, constructed in the above way. Notice that this
definition of P(8) even depends on the order of the coordinates; it is highly
not unique.
If 0 < p < n, we may write
8(f) = 2 aif,“-,.;,(x) : alf(x) : dxi, A /\dx,-p-

IEAn.k
n< e <y

For each summand with n € I and n = i, we perform the following (with
I'=(p- -0 ’

6,{,...,;():)- 8,f(x) - dx, A+ -+ Ndx,
= 8,,(8,{,...,5(x). 8y JOO)) dxy A Adx,
— (38, (D) (&, s N - dx A N,
— (3,87 .. )X (B N A Ny,
+ (-1Yd(8] ... (¥) @, ... )XY dx A Adxg
+ET D (8,0 (B, )

k(i .0}
dx Ndxg N /\dxg,,_.-

Applying this to each summand above, one finds that 8(f) = §,(f) + 48,(f)
with 8, of order < k — 1 and 8, of order k but such that the summands with
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dx, only contain derivatives of f of order < k — 1, with respect to x, - §, and
6, depend linearly on 8. Now we apply the same procedure over and over to
8,, and obtain 8 = &, + db, with §, of order < k — 1 and 8, of order < k but
such that in the summands with dx, no differentiation of f with respect to x,
occurs, 1.e.,
s(H= 3 51',-. 8f(x)-dx N - - - Ndx, with a‘{ =0,
IE€A,, v b
i< <y
whenever n € I and i, = n. Clearly ds, = 0; we shall use this fact to prove
also that &' = O whenever i, <n. The summand of dé‘ with dx;
N - /\dx N dx,,, h<<- <1 < n, equals

(—lran( 3 E e (a,f)(x)) cdx, A A, A dx,

+ S ()t (6{ G a,f(x)) de, A+ -+ Ads, A dx,

h=1,---,p
I1EA,

= 2 Lj(x) - 3,£(x) ax; N\ - - - /\dx.‘; N dx,,

J e/&n,k'l-l

where L7 is defined by the last equality.
For each J € A, ,,, L’ has to be zero. For J = (ji, * = * ,jj—p 1), Ji—,
< n, this means that

J — (—1)”{8,,5{!""‘1‘-" + 8‘{?,...’1}_‘} - O,
q'A.A,,-p ll,..,',p
forJ = (Jjy, - - -5 Ji—2 B, N),j;_5 < n, this means that
(—l)”{ 8" le""+8!| J:.n}=();
p

’I

etc. Thus
S = s n Si1—nfl = . . . =
8,' St = -9 81:. i +E),m8,;l o= =0
I’ ’ P
(we get zero when the number of superscripts exceeds k);
8_]’1 et = g 8" h-amn — g 81"1 Cdimpmmn = L= Q)
i i +ip

etc. Hence we have

8,(f) = > & (2 3f(x) dx, N/ Ndx,_ N dx,
JEA, 14 TP
0<i)<ip< + -+ <ip_1<n
Since this is a 1-parameter (namely x,) family of (p — 1)-form-operators of
degree k on R"!, this means that our lemma can be obtained by induction:



CALCULUS OF VARIATIONS 559

it holds for O-form-operators of degree k on R"77. If it holds for (p — 1)-
form-operators on R"~!, then it holds for p-form-operators on R”, since a
closed p-form-operator 8 can be written as § = 8, + db,, where §,, 5, depend
nicely on §, and 51 is as ‘constructed above, and since there is a smooth
1-parameter family of closed (p — 1)-form-operators 8—1,)‘" on R"~! such that
8 i(NCxy, - - -5 x,) = 8y, (S )x, - - -, x,_1) A dx,, where f, : R"'SR s
defined by f, (x5, -+ -, x,_) = f(xy, =+, x,).
One can now define P(8) by

((PEUNCxys - - -, x,)
= (P(S-l,xn))(fxn))(xl’ T Xe_) A dx, + (6-2(f))(x|, T X,

which completes the proof of the lemma.

Remark (4.13). The above lemma of course also applies to operators
which assign a k-form on R” to each smooth map f: R” — V, where V' is a
fixed finite dimensional vector space. We need even more:

We say that 6 is a p-multi-form-operator of order k and multiplicity [ if §
assigns a p-form on R” to each /-tuple of functions f}, - - - , fi: R* - V such
that 8(f;, - - - , f)(x) depends smoothly on and is determined by x and the
k-jets of fi,-- -, f, in x and such that 8(f;,- - -,f,) is multilinear and
antisymmetric in fj, - - - , f;. Also for these multi-form-operators the analogue
of (4.12) holds: such & is closed if for each f,, - - -, f;, the operator f; —
0(f1, fos - -+ fp) is closed. Applying Lemma (4.12) we find that for each
b+ -+, f; there is a form-operator P(8(—, f,, - - - , f)), which is linear in
8(— f - - -, f) and hence in f, - - -, f, satisfies d(P(6(f}, - - -, ) =
0(fy, fo - -+, fy) for each f;. Now define

(ﬁ(a))(fp T 7f1) = % gs ("l)lol(P(a(f;(z)» e ’fa(l))))(j;y(l))'
LA
Then we have d(ﬁ(&)) = § for each closed multi-form-operator.

Proof of (4.2). Let x;,- - -, x, be a local coordinate system on a neigh-
borhood of 7 (s) in W. We also use x; to denote x; ° m, which we shall use as
coordinate function on E in order to get a complete coordinate system on a
neighborhood of 72 (s) in E we add the coordinates y,,- - - ,y,. If w €
fKZf () then E_, restricted to the coordinate neighborhood, can be considered
as a map, assigning to each local section S (as far as its image is in the
coordinate neighborhood) an /-multi-form-operator of multiplicity & in the
following way:

Let f,, -, fi,: R" > R™ be k smooth functions: f(x) =
(fl(x), - - -, f(x)). One associates to each f; a vertical integrable vector field
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X, along Im S, such that X,(S(x)) = 27, f(x)3/dy;. E(S; Xy, - - -, X,) is
the corresponding /-form.

If the germ of w is as in the assumptions of (4.2) then, restricted to a
sufficiently small neighborhood of s, the corresponding multi-form-operators
E (S; - - - -, -)are closed, hence P of these operators is defined. So we can
define 7 (locally) by (—l)kI;(Ew(S; -, -)=E(S; -, - -,-)). From
the various constructions and definitions it follows that n is locally well-de-
fined and has the required properties.

S. The main results

Definition (5.1). A variational problem or Lagrangian on « is an element
£ e IC(m).

Indeed such £ assigns to each (local) section S and n-form E«S) on W
(see the introduction).

Lemma (5.2). Let A C W be a bounded open oriented subset of W, and
K C A some compact subset. Then, for each section S, of m, defined on A and
depending smoothly on t such that S(w) = So(w) whenever w € A \ K, and for
each Lagrangian £,

d —
Gl Ees)| = Eas D)

where X is a vertical symmetry of w such that for each w € A, X (S(w)) =
d/dtS,(w).

Proof. Clearly (d/dt) [4E(S)|;=0 = [4 EL,(So) where X is the vertical
integrable vector field corresponding to X. L, = d€(x,—, - - - , —) implies
the lemma.

Remark (5.3). Lemma (5.2) remains of course true if we add to df an
element which belongs to Im(D: IC._,(7) = IC.(7)). We shal use this free-
dom to associate to each Lagrangian £ a particularly nice form [[df €
JC:(7) such that d€ — [[ dL € Im(D). These forms [ £ will be called
source forms, to be defined below.

Definition (5.4). A form & € I(}(n) is called a source form, or source
equaton, if for each section S, x € Domain(S), and vertical symmetry X,
Eg(S; X)(x) depends only on &, S, x and X(S(x)) but not on the higher
derivatives of X in S(x).

Lemma (5.5). Each w € I(.(m) can be written uniquely as w = w; + w,
with w, a source form and w, € Im(D).

Proof. 1t is clear that if @ € Im(D) and w is a source form, then w = 0;
this also holds for w|U, U an open subset of J*(w). Hence it is enough to
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make, for given w, locally a source form w, such that w — w, € Im(D)

(locally). In order to perform the local construction, we take local coordi-

nates: x;,--:,x, on W and y,,---,y, on E such that x,,---,x,

Yu Y, form a set of local coordinates on E (if we identify x;m, with x,).

In these coordinates vertical integrable vector fields have the form X =
™1 Xi(x,)3/dy,, and

i=1

_ n kX (x, S(x
E(SD = S @S ul) oS
=1 Xjp "5 0%
1</)< -+ <jx<n
dxy A N,

where * means that the summation is locally finite. Now we define w, locally
by

E(SD0= % (0 g @)

Ji
1</;< -+ <jy<n

Xi(x, S(x)) - dx; A - - - Ndx,.

It is not difficult to see that this w, has the required properties.

Definition (5.6). For w € 3(}(7), Il @ € IC.(7) is the unique source form
with w — [ w € Im(D). Note that there is a 1-1 correspondence between
source forms and elements of §'().

Remark (5.7). If £ is a Lagrangian, its Euler equation is [I 4£. This
follows from Lemma (5.2) and Definition (5.6). A source equation & is
locally variational if D o 0FE = 0; namely, this implies by the 9 exactness
theorem (4.4) (see also Tonti [4]) that for each s € J*(7) there are a
neighborhood U of s in J®(7) and a Lagrangian £, defined on U, such that
Ide = &6|U,. & is globally variational if there is a globally defined
Lagrangian £ with & = [ d£. From the §-cohomology theorem (4.8)-we
have

Main theorem (5.8). FEach locally variational source equation is globally
variational provided H"*'(E; R) = 0. More precisely, the vector space of
locally variational source equations modulo globally variational source equations
is canonically isomorphic with H"*'(E; R).

Added in proof. The main results of this paper were obtained indepen-
dently by A. M. Vinogradov, Sov. Math. Dokl. 18 (1977) 1200-1204, 19
(1978) 144-148.
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