BLASCHKE'S THEOREM FOR CONVEX HYPERSURFACES

J. A. DELGADO

1. Introduction

The aim of this paper is to prove some generalizations of the following theorem.

Theorem A [6]. Let M and \tilde{M} be compact connected oriented hypersurfaces in R^{n} with positive curvatures. Assume that the second fundamental form of \tilde{M} at \tilde{m} is great than or equal to the second fundamental form of M at m whenever the Gauss' map of \tilde{M} at \tilde{m} is equal the Gauss' map of M at m. Then, up to a translation, \tilde{M} is included in the convex region bounded by M.

We will prove a similar theorem when M and \tilde{M} are complete rather than compact. Actually, with additional hypothesis on the curvatures of M and \tilde{M} our proof holds for hypersurfaces of a Hilbert space.

The author is grateful to Professor M. P. do Carmo for his suggestions and critical reading.

2. Notation and main results

Except when explicitly stated, M and \tilde{M} will denote complete connected oriented hypersurfaces in R^{n} with positive curvatures (that is, at each two-dimensional subspace σ of $T_{m} M$, the sectional curvature $K(\sigma)$ is strictly positive). Such manifolds are convex by Sacksteder's theorem [7]. We will denote the Gauss' normal map of M by N, its inverse (when it exists) by n, and the second fundamental form of M by $\tilde{I I}$, and we will consider M and \tilde{M} oriented by outward normals. We will also use \tilde{N}, \tilde{n} and \widetilde{I} to denote the corresponding objects in \tilde{M}.

Definition. We say that two hypersurfaces M and \tilde{M} are internally tangent at a point $m \in M \cap \tilde{M}$ if $N(m)=\tilde{N}(\tilde{m})$.

Now we can state the main result of our work.
Theorem 1. Let M and \tilde{M} be two complete hypersurfaces in R^{n} such that if $N(m)=\tilde{N}(\tilde{m})$ then

$$
I I_{m}(v) \leqslant \widetilde{I}_{\tilde{m}}(v)
$$

Received June 27, 1977.
for all $v \in T_{m} M \cong T_{\tilde{m}} \tilde{M}$. Assume that M and \tilde{M} are internally tangent at a point $m_{0} \in M \cap \tilde{M}$. Then \tilde{M} is included in the convex body of M.

Definition. We say that a convex hypersurface \tilde{M} rolls freely inside the convex hypersurface M if whenever \tilde{M} is internally tangent to M at a point, then \tilde{M} lies in the convex region bounded by M.

Corollary. Let M be a hypersurface in R^{n} such that its principal curvatures are bounded above. Then the sphere with radius equal to the inverse of the supremum of the principal curvatures of M rolls freely inside M. Moreover M is tangent to the sphere at a point or along a geodesic arc.

Remark 1. Assume that $N(M) \cap \tilde{N}(\tilde{M}) \neq \varnothing$. It is easy to see that M and \tilde{M} are internally tangent up to a translation. Therefore, if $N(M) \cap \tilde{N}(\tilde{M}) \neq$ \varnothing in Theorem 1, we can drop out the hypothesis "internally tangent" and replace its conclusion by "up to a translation \tilde{M} is included in the convex body of M ".

Historical comments. W. Blaschke [1, pp. 114-117] proved Theorem 1 for closed curves in R^{2}. H. Karcher [5] formulated and proved, for closed curves in the sphere, a proposition analogous to the corollary. D. Koutroufiotis [4] proved Theorem 1 for complete curves in R^{2} and complete hypersurfaces in R^{3} (but his proof is different from the one presented here). Finally J. Rauch [6], by using Blaschke's techniques, proved Theorem 1 for compact hypersurfaces in R^{n}. Our proof is inspired in [6] that in its turn was inspired in [1].

3. Proof of the main result

First a sketch of the proof. We know from H . Wu [8] that N is a diffeomorphism from M onto its image and that $N(M)$ is an open convex set in the unit sphere in R^{n}. On the other hand, we will prove (Lemma 2) that \tilde{M} is included in the convex body of M if and only if $h(x)=\langle n(x)-\tilde{n}(x), x\rangle$, $x \in N(M)$, does not change sign. By restricting h to an arc of great circle C, $C \subseteq N(M)$, we obtain a second order differential equation for h the solution of which has a constant sign on C. The result follows by convexity of $N(M)$.

We now start the proof. By defining $I I_{m}(v)=\left\langle d N_{m} \cdot v, v\right\rangle, m \in M, v \in$ $T_{m} M$, and by noting the previous orientation convention we have that the principal curvatures are positive.

Lemma 1. Let M and \tilde{M} satisfy the hypothesis of Theorem 1 . Then $N(M) \subseteq$ $\tilde{N}(\tilde{M})$.

Proof. Assume that \tilde{M} is bounded. Then $\tilde{N}(\tilde{M})=S^{n-1}$, and there is nothing to prove. Suppose that \tilde{M} is unbounded and that $N(M) \notin \tilde{N}(\tilde{M})$. Let $y \in N(M)-\tilde{N}(\tilde{M})$. It follows from the convexity of $N(M)$ and the fact that M and \tilde{M} are internally tangent at the point m_{0}, that there exists a minimal
geodesic $\underset{\tilde{N}}{\gamma}:[0, l] \rightarrow S^{n-1}$ with $\gamma([0, l]) \subseteq N(M), \gamma(l)=y$ and $\gamma(0)=m_{0}$. Since $\tilde{N}(\tilde{M})$ is connected, there exists a point $t_{0} \in(0, l)$ such that $\left(\gamma\left[0, t_{0}\right)\right) \subseteq$ $\tilde{N}(\tilde{M})$ and $\gamma\left(t_{0}\right)$ belongs to the boundary of $\tilde{N}(\tilde{M})$. Therefore we can define a curve $e:\left[0, t_{0}\right) \rightarrow \tilde{M}$ by setting $\tilde{e}(t)=\tilde{n}(\gamma(t))$. Since \tilde{M} is unbounded

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}} d(\tilde{e}(t), \tilde{e}(0))=\infty, \tag{1}
\end{equation*}
$$

where d denotes the distance function in \tilde{M}. We claim that there exists a sequence of points $\left(t_{n}\right) \subset(0, l)$ with $\lim _{n} t_{n}=t_{0}$, such that if $v_{n}=$ $\tilde{e}^{\prime}\left(t_{n}\right) /\left|\tilde{e}^{\prime}\left(t_{n}\right)\right|$ then

$$
\begin{equation*}
\lim _{n}\left\langle d \tilde{N}_{\tilde{e}\left(t_{n}\right)} \cdot v_{n}, v_{n}\right\rangle=0 \tag{2}
\end{equation*}
$$

In fact, since $\tilde{N}(\tilde{e})$ is a geodesic in S^{n-1} we have

$$
\int_{0}^{t_{0}}\left|d \tilde{N}_{\tilde{e}(t)} \cdot \tilde{e}(t)\right| d t \leqslant 2 \pi
$$

By using in succession the equality

$$
\int_{0}^{t_{0}}\left|d \tilde{N}_{\tilde{e}(t)} \cdot \tilde{e}^{\prime}(t)\right| d t=\int_{0}^{t_{0}}\left|d \tilde{N}_{\tilde{e}(t)} \cdot v\right|\left|\tilde{e}^{\prime}(t)\right| d t
$$

where $v=\tilde{e}^{\prime}(t) /\left|\tilde{e}^{\prime}(t)\right|$, and using Schwarz's inequality in the integrand, we obtain

$$
\begin{equation*}
\int_{0}^{t_{0}}\left|\tilde{e}^{\prime}(t)\right|\left\langle d \tilde{N}_{\tilde{e}(t)} \cdot v, v\right\rangle d t \leqslant 2 \pi . \tag{3}
\end{equation*}
$$

Our claims follows from (1) and (3). Now let $e:[0, l) \rightarrow M$ be defined by $e(t)=n(\gamma(t))$. Thus from the fact that $e\left(t_{0}\right)$ is in M and that the principal curvatures of M are positive, it follows that

$$
\begin{equation*}
\lim _{n}\left\langle d N_{e\left(t_{n}\right)} \cdot v_{n}, v_{n}\right\rangle>0, \tag{4}
\end{equation*}
$$

where $v_{n}=e^{\prime}\left(t_{n}\right) /\left|e^{\prime}\left(t_{n}\right)\right|$, and t_{n} is given by (2). Since by hypothesis $I I_{e\left(t_{n}\right)}\left(v_{n}\right)$ $\leqslant I I_{\tilde{e}\left(t_{n}\right)}\left(v_{n}\right)$ we have

$$
\begin{equation*}
\lim _{n}\left\langle d N_{e\left(t_{n}\right)} \cdot v_{n}, v_{n}\right\rangle \leqslant \lim _{n}\left\langle d \tilde{N}_{\tilde{e}\left(t_{n}\right)} \cdot v_{n}, v_{n}\right\rangle . \tag{5}
\end{equation*}
$$

But from (2) the second member of (5) is zero, which contradicts the inequality (4). Therefore $N(M) \subseteq \tilde{N}(\tilde{M})$, and this completes the proof of Lemma 1.

Remark 2. Let M and \tilde{M} be two hypersurfaces such that $N(m)=\tilde{N}(\tilde{m})$ implies that $I_{m}(v)=\widetilde{I}_{\tilde{m}}(v)$ for all $v \in T_{\tilde{m}} M \cong T_{\tilde{m}} M$. Then the above proof shows that up a rigid motion, $N(M)=\tilde{N}(\tilde{M})$.

Remark 3. It is interesting to notice the following fact which is contained in the above proof: let $e:(a, b) \rightarrow M$ (M complete hypersurface in R^{n}, noncompact and not necessarily convex) be a differentiable curve of infinite
length, such that $N \circ e:(a, b) \rightarrow S^{n-1}$ has finite length. Then either

$$
\lim _{t \rightarrow b}\left(\inf _{\substack{s>t \\ 1<i<n-1}} k_{i}(e(s))\right) \leqslant 0,
$$

or

$$
\lim _{t \rightarrow a}\left(\inf _{\substack{s<t \\ 1<i<n-1}} k_{i}(e(s))\right) \leqslant 0
$$

where $k_{i}(e(s))$ denotes the i th principal curvature at the point $e(s)$.
Since the Gauss' normal map is a diffeomorphism and $N(M)$ is included in $\tilde{N}(\tilde{M})$, we can define on $N(M)$ a map $h: N(M) \rightarrow R$ by setting $h(y)=\langle n(y)$ $-\tilde{n}(y), y\rangle, y \in N(M)$. The lemma below characterizes through the function h the fact that \tilde{M} is included in the convex body of M.

Lemma 2. Let M and \bar{M} satisfy the hypothesis of Theorem 1. Then h does not change sign if and only if \tilde{M} is included in the convex body of M.

Proof. Suppose that \tilde{M} is included in the convex body of M. The vector radius $\tilde{m} m$, for all $\tilde{m} \in M$ and all $m \in M$, points to the positive half-space determined by $T_{m} M$ and $N(m)$. Thus, if $y=N(m)$, we have $h(y) \geqslant 0$.

Conversely, suppose that $h \geqslant 0$, and denote by K the convex body of M. If $\tilde{M}-K \neq \varnothing$, we will show that there exists $y \in N(M)$ such that $h(y)<0$, which contradicts the hypothesis and concludes the proof. In fact, let $m_{1} \in M$ be a minimum for the function $\beta(m)=|m-\tilde{m}|$ for a fixed $\tilde{m} \in M-K$. Thus $\tilde{m}-m_{1}$ is parallel to a certain $y=N\left(m_{1}\right)$. We set $\tilde{m}-m_{1}=\lambda y$ where $|y|=1$, and observe that $\lambda>0$. Since \tilde{M} is convex, we have

$$
0 \leqslant\langle\tilde{n}(y)-\tilde{m}, y\rangle .
$$

Hence

$$
0 \leqslant\left\langle\tilde{n}(y)-m_{1}, y\right\rangle+\left\langle m_{1}-\tilde{m}, y\right\rangle=-h(y)-\lambda,
$$

implying $h(y)<0$.
The proof of the lemma below can be found in [6].
Lemma 3. Let T and S be two positive (invertible) operators in a hilbert space H. If $T \geqslant S$, then $T^{-1} \leqslant S^{-1}$.
Proof of Theorem 1. Let m_{0} be the point where M and \tilde{M} are internally tangent. Set $y_{0}=N\left(m_{0}\right)=\tilde{N}\left(m_{0}\right)$. Parametrize a great circle C passing through y_{0} by $\alpha(s)$, where s is the arc length in such a way that $\alpha(0)=y_{0}$. Set $h(s)=h(\alpha(s))$. We will show that

$$
h^{\prime \prime}+h=u,
$$

where $u \geqslant 0$ and

$$
\begin{equation*}
h^{\prime}(0)=h(0)=0 \tag{7}
\end{equation*}
$$

First we claim that the support function p restricted to C,

$$
p(s)=\langle n(\alpha(s)), \alpha(s)\rangle,
$$

satisfies the equation

$$
p^{\prime \prime}+p=\left\langle\alpha^{\prime}, n^{\prime}\right\rangle
$$

In fact

$$
p^{\prime}=\left\langle n^{\prime}, \alpha\right\rangle+\left\langle n, \alpha^{\prime}\right\rangle=\left\langle n, \alpha^{\prime}\right\rangle
$$

because $n^{\prime}=d n \cdot \alpha^{\prime}$ is orthogonal to α for all s. Since α is a parametrization by arc length we obtain, by derivation of the last equation,

$$
p^{\prime \prime}+p=\left\langle\alpha^{\prime}, n^{\prime}\right\rangle
$$

which was our claim. If we restrict \tilde{p} to α, we obtain similarly

$$
\tilde{p}^{\prime \prime}+\tilde{p}=\left\langle\alpha^{\prime}, \tilde{n}^{\prime}\right\rangle .
$$

It follows that

$$
h^{\prime \prime}+h=\left\langle\alpha^{\prime}, n^{\prime}-\tilde{n}^{\prime}\right\rangle
$$

By using Lemma 3, the fact that $n^{\prime}=d n \cdot \alpha^{\prime}, \tilde{n}^{\prime}=d \tilde{n} \cdot \alpha^{\prime}$, and the hypothesis of the second fundamental forms we obtain

$$
h^{\prime \prime}+h=u
$$

where u is a nonnegative function in s. Moreover from the fact that M and \tilde{M} are internally tangent at the point $m_{0}=n\left(y_{0}\right)=\tilde{n}\left(y_{0}\right)$ we have that the last equation satisfies the initial conditions

$$
h(0)=h^{\prime}(0)=0 .
$$

This proves (6) and (7). It is easy to see, by derivation, that

$$
h(s)=\int_{0}^{s} u(t) \operatorname{sen}(s-t) d t
$$

is the solution to (6) which satisfies (7). We notice that if $-\pi \leqslant s \leqslant \pi$, then $h(s) \geqslant 0$. Since $N(M)$ is included in a hemisphere [8] and s is the arc length of a geodesic in S^{n-1}, we obtain that h is nonnegative on α. But $N(M)$ is convex [8]. Therefore h is nonnegative on $N(M)$. By Lemma 2 this concludes the proof of Theorem 1.

Proof of corollary. The first part is an immediate consequence of Theorem 1. In fact, in this case M is complete and \tilde{M} is a sphere of radius $1 / a$, where a is an upper bound for the principal curvatures, in particular the supremum. The second claim follows immediately from the following facts:
(i) If $h\left(s_{0}\right)=0$ for any s_{0} then $h=0$ in $\left[0, s_{0}\right]$.
(ii) If two hypersurfaces M and \tilde{M} in R^{n} are tangent along a curve C, then the geodesic curvature of C is the same whether with respect to M or \tilde{M}. This concludes the proof of corollary.

At this point it is interesting to remark that the function $h(s)=$ $\int_{0}^{s} u(t) \operatorname{sen}(s-t) d t$ allows us to conclude that if the second fundamental forms are equal for all points then the hypersurfaces M and \tilde{M} coincide (see Remark 2).

4. Generalizations

A careful observation shows that the proof of Theorem 1 still holds for hypersurfaces in a Hilbert space once the following two facts are true: (i) the Gauss' normal map N is a diffeomorphism onto its image, (ii) $N(M)$ is convex.

By using a result of R. L. de Andrade [2] we can make sure of the two facts mentioned above if we assume that the hypersurfaces have sectional curvatures bounded away from zero (that is, for each point $m \in M$ there exists $\delta(m)>0$ such that $K(\sigma) \geqslant \delta(m)$ for all two-dimensional subspace $\sigma \subseteq T_{m} M$ where $K(\sigma)$ is the sectional curvature of the σ-plane). Therefore we can obtain

Theorem 1'. Let M and \tilde{M} be connected, convex, complete, oriented hypersurfaces in a Hilbert space H with sectional curvatures bounded away from zero and such that if $N(M)=\tilde{N}(\tilde{M})$ then

$$
\left\langle d N_{m} \cdot v, v\right\rangle \leqslant\left\langle d \tilde{N}_{\tilde{m}} \cdot v, v\right\rangle,
$$

for all $v \in T_{m} M \cong T_{\tilde{m}} \tilde{M}$. Assume that M and \tilde{M} are internally tangent at a point $m_{0} \in M \cap \tilde{M}$. Then \tilde{M} is included in the convex body of M.

The following corollaries are proved in a way similar to the corollary of Theorem 1.

Corollary 1. Let M and \tilde{M} be as in the Theorem 1^{\prime}, and assume that M is bounded. Then \tilde{M} is bounded.

Corollary 2. Let M be a connected, convex, complete, oriented hypersurface in a Hilbert space with sectional curvatures bounded away from zero and such that

$$
a=\operatorname{Sup}\left\{\left\langle d N_{m} \cdot v, v\right\rangle, v \in T_{m} M,|v|=1, m \in M\right\}
$$

is finite. Then the sphere with radius $1 / a$ rolls freely inside M, and is tangent to M at a point or along a geodesic arc.

Corollary 3. Let M be a connected, convex, complete, oriented hypersurface in a Hilbert space H with sectional curvatures bounded away from zero and such that

$$
a=\operatorname{Inf}\left\{\left\langle d N_{m} \cdot v, v\right\rangle, m \in M, v \in T_{m} M,|v|=1\right\}
$$

is not zero. Then the hypersurface M rolls freely inside the sphere of radius $1 / a$. Moreover, M is bounded with diameter smaller than $2 \pi / a$, and is tangent to the sphere at a point or along a geodesic arc.

A crucial point in the proof of Theorem 1 is the fact that the hypersurfaces have positive curvatures. A natural question is whether the same theorem would be true when we consider nonnegative rather than positive curvatures.

If two curves in R^{2} have subsets with zero curvatures, the theorem is not true as we see in the followng example.

Example. We consider two curves in R^{2} by given

$$
\begin{gathered}
\gamma_{1}(t)=\left(p t, t^{4}\right) t \in R \text { and } p>1, \\
\gamma_{2}(s)=\left\{\begin{array}{lll}
\left(s,(s-1)^{4}\right), & s \in R, \quad s \geqslant 1, \\
(s, 0), & s \in R, & |s| \leqslant 1, \\
\left(s,(s+1)^{4}\right), & s \in R, & s \leqslant-1 .
\end{array}\right.
\end{gathered}
$$

If $N_{1}\left(\right.$ resp. $\left.N_{2}\right)$ is the unit outward normal on γ_{1} (resp. γ_{2}), we have

$$
\begin{gathered}
N_{1}(t)=\frac{1}{\left(p^{2}+16 t^{6}\right)^{1 / 2}}\left(4 t^{3},-p\right), \\
N_{2}(s)= \begin{cases}(0,-1), & \text { if }|s| \leqslant 1, \\
\frac{1}{\left(1+16(s-1)^{6}\right)^{1 / 2}}\left(4(s-1)^{3},-1\right), & \text { if } s \geqslant 1, \\
\frac{1}{\left(1+16(s+1)^{6}\right)^{1 / 2}}\left(4(s+1)^{3},-1\right), & \text { if } s \leqslant-1 .\end{cases}
\end{gathered}
$$

Therefore $N_{1}(t)=N_{2}(s)$ if and only if $s \geqslant 1$ and $t=\sqrt[3]{p}(s-1)$ or $s \leqslant-1$ and $t=\sqrt[3]{p}(s+1)$. Since

$$
k\left(\gamma_{1}(t)\right)=\frac{12 t^{2}}{\left(p^{2}+16 t^{6}\right)^{1 / 2}}
$$

and

$$
k\left(\gamma_{2}(s)\right)= \begin{cases}0, & \text { if }|s| \leqslant 1 \\ \frac{12(s-1)^{2}}{\left(1+16(s-1)^{6}\right)^{1 / 2}}, & \text { if } s \geqslant 1 \\ \frac{12(s+1)^{2}}{\left(1+16(s+1)^{6}\right)^{1 / 2}}, & \text { if } s \leqslant-1\end{cases}
$$

we have that

$$
k\left(\gamma_{1}(t)\right) \geqslant k\left(\gamma_{2}(s)\right)
$$

whenever $N_{1}(t)=N_{2}(s)$. But the points $\left(p t, t^{4}\right)$ with $t>1 /(p-1)$ are not in
the convex region bounded by $\gamma_{2}(R)$. This example shows that the Koutroufiotis' result [4], for curves in R^{2}, is the best possible.

It would be interesting to prove or to find a counterexample for the following statement.

Let M and \tilde{M} be connected, complete, oriented, convex hypersurfaces in R^{n} such that if $N(m)=\tilde{N}(\tilde{m})$ then

$$
\widetilde{I}_{m}(v) \leqslant I_{\tilde{m}}(v)
$$

for all $v \in T_{m} M \approx T_{\tilde{m}} \tilde{M}$. Assume that M has nonnegative curvatures, \tilde{M} has positive curvatures, and M and \tilde{M} are internally tangent at a point $m_{0} \in M \cap$ \tilde{M}. Then \tilde{M} is included in the convex body of M.

We refer to [4] for a proof of this fact when M and \tilde{M} are curves in R^{2}.

References

[1] W. Blaschke, Kreis und Kugel, Verlag von Veit, Leipzig, 1966.
[2] R. L. de Andrade, Complete convex hypersurfaces of a hilbert space, J. Differential Geometry 10 (1975) 491-499.
[3] M. P. do Carmo, Differential geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976.
[4] D. Koutroufiotis, On Blaschke's rolling theorems, Arch. Math. 28 (1972) 655-660.
[5] H. Karcher, Unkreise und Inkreise Konvexer Kurven in der Sphärischen und Hyperbolischen Geometrie, Math. Ann. 177 (1968) 128-132.
[6] J. Rauch, An inclusion theorem for ovaloids with comparable second form, J. Differential Geometry 9 (1974) 501-505.
[7] R. Sacksteder, On hypersurfaces with non-negative sectional curvatures, Amer. J. Math. 82 (1960) 609-630.
[8] H. Wu, The Spherical images of convex hypersurfaces, J. Differential Geometry 9 (1974) 279-290.

Instituto de Matemática Pura e Aplicada Rio de Janeiro, Brazil

