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BLASCHKE'S THEOREM FOR CONVEX
HYPERSURFACES

J. A. DELGADO

1. Introduction

The aim of this paper is to prove some generalizations of the following

theorem.

Theorem A [6]. Let M and M be compact connected oriented hypersurfaces

in Rn with positive curvatures. Assume that the second fundamental form of M

at rh is great than or equal to the second fundamental form of M at m whenever

the Gauss' map of M at rh is equal the Gauss' map of M at m. Then, up to a

translation, M is included in the convex region bounded by M.

We will prove a similar theorem when M and M are complete rather than

compact. Actually, with additional hypothesis on the curvatures of M and M

our proof holds for hypersurfaces of a Hubert space.

The author is grateful to Professor M. P. do Carmo for his suggestions and

critical reading.

2. Notation and main results

Except when explicitly stated, M and M will denote complete connected

oriented hypersurfaces in Rn with positive curvatures (that is, at each two-di-

mensional subspace σ of TmM, the sectional curvature K(σ) is strictly posi-

tive). Such manifolds are convex by Sacksteder's theorem [7]. We will denote

the Gauss' normal map of M by N9 its inverse (when it exists) by n, and the

second fundamental form of M by //, and we will consider M and M

oriented by outward normals. We will also use N9 n and // to denote the

corresponding objects in M.

Definition. We say that two hypersurfaces M and M are internally tangent

at a point m G M n M if N(m) = N(m).

Now we can state the main result of our work.

Theorem 1. Let M and M be two complete hypersurfaces in Rn such that if

N(m) = N(m) then
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for all v E TmM = T^M. Assume that M and M are internally tangent at a

point m0 E M n M. Then M is included in the convex body of M.

Definition. We say that a convex hypersurface M rolls freely inside the

convex hypersurface M if whenever M is internally tangent to M at a point,

then M lies in the convex region bounded by M.

Corollary. Let M be a hypersurface in Rn such that its principal curvatures

are bounded above. Then the sphere with radius equal to the inverse of the

supremum of the principal curvatures of M rolls freely inside M. Moreover M is

tangent to the sphere at a point or along a geodesic arc.

Remark 1. Assume that N(M) n N(M) φ 0 . It is easy to see that M and

M are internally tangent up to a translation. Therefore, if N(M) n N(M) φ

0 in Theorem 1, we can drop out the hypothesis "internally tangent" and

replace its conclusion by "up to a translation M is included in the convex

body of M".

Historical comments. W. Blaschke [1, pp. 114-117] proved Theorem 1 for

closed curves in R 2. H. Karcher [5] formulated and proved, for closed curves

in the sphere, a proposition analogous to the corollary. D. Koutroufiotis [4]

proved Theorem 1 for complete curves in R2 and complete hypersurfaces in

R3 (but his proof is different from the one presented here). Finally J. Rauch

[6], by using Blaschke's techniques, proved Theorem 1 for compact hyper-

surfaces in Rn. Our proof is inspired in [6] that in its turn was inspired in [1].

3. Proof of the main result

First a sketch of the proof. We know from H. Wu [8] that N is a

diffeomorphism from M onto its image and that N(M) is an open convex set

in the unit sphere in Rn. On the other hand, we will prove (Lemma 2) that M

is included in the convex body of M if and only if h(x) = <«(x) — AΪ(JC), X},

x G N(M), does not change sign. By restricting h to an arc of great circle C,

C C N(M), we obtain a second order differential equation for h the solution

of which has a constant sign on C. The result follows by convexity of N(M).

We now start the proof. By defining IIm(v) = (dNm t>, u ) , m E M, v E

TmM, and by noting the previous orientation convention we have that the

principal curvatures are positive.

Lemma 1. Let M and M satisfy the hypothesis of Theorem 1. Then N(M) C

N(M).

Proof. Assume that M is bounded. Then N(M) = Sn~\ and there is

nothing to prove. Suppose that M is unbounded and that N(M) g N(M). Let

y E N(M) - N(M). It follows from the convexity of N(M) and the fact that

M and M are internally tangent at the point m0, that there exists a minimal
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geodesic γ: [0, /] -> Sn~ι with γ([0, /]) c N(M), γ(/) = y and γ(0) = m0.

Since N(M) is connected, there exists a point ί0 e (0, /) such that (γ[0, /0)) C

N(M) and γ(/0) belongs to the boundary of N(M). Therefore we can define a

curve e: [0, /0) —• M by setting e{t) = AΪ(Ϊ(0) Since M is unbounded

(1) lim d(e(ή,e(0)) = oo,

where d denotes the distance function in M. We claim that there exists a

sequence of points (/„) c (0, /) with limπ tn = t0, such that if vn =

eVn)/\eVn)\ then

(2) \im(dN-(ίnyvn,vn) = 0.

In fact, since N(e) is a geodesic in Sn~ι we have

f'0\dNM e(t)\dt<2ir.

By using in succession the equality

f'0\dNHl) • e'(ί)\ dt = ί'°\dNKt) • υ\ \e'(ή\ dt,

where v = e\t)/\e'(t% and using Schwarz's inequality in the integrand, we

obtain

(3) f'°\e'(ή\(dNHtyυ,v)dt<2π.

Our claims follows from (1) and (3). Now let e: [0, /) —» M be defined by

e(ί) = n(y(t)). Thus from the fact that e(ί0) is in M and that the principal

curvatures of M are positive, it follows that

(4) Hm(dNeiίnyvn,vn)>0,

where vn = e\tn)/\e\tn% and tn is given by (2). Since by hypothesis IIeio{υn)

(5) lim<dNe(tn) vn, vn}

But from (2) the second member of (5) is zero, which contradicts the

inequality (4). Therefore N(M) C N(M), and this completes the proof of

Lemma 1.

Remark 2. Let M and M be two hypersurfaces such that N(m) = N(fh)

implies that Hm(v) = Π^v) for all v G ΓmΛf ^ 7^M. Then the above proof

shows that up a rigid motion, N(M) = N(M).

Remark 3. It is interesting to notice the following fact which is contained

in the above proof: let e: (a,b)^>M (M complete hypersurface in Rn,

noncompact and not necessarily convex) be a differentiable curve of infinite
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length, such that N ° e: (a, b) -+ Sn~ι has finite length. Then either

lim ( inf kieis)) < 0,
s>t

1 </</i-l

OΓ

lim ( inf kt(e(s))) < 0,

where k^efjs)) denotes the ith principal curvature at the point e(s).
Since the Gauss' normal map is a diffeomorphism and N(M) is included in

N(M), we can define on N(M) a map h: N(M) —> R by setting h(y) = (n(y)
— n(y\y}>y ^ N(M). The lemma below characterizes through the function
h the fact that M is included in the convex body of M.

Lemma 2. Let M and M satisfy the hypothesis of Theorem 1. Then h does not
change sign if and only if M is included in the convex body of M.

Proof. Suppose that M is included in the convex body of M. The vector
radius mm, for all m e M and all m e Λf, points to the positive half-space
determined by TmM and N(m). Thus, if y = N(m\ we have h(y) > 0.

Conversely, suppose that h > 0, and denote by K the convex body of M. If
M - K φ 0, we will show that there exists y G N(M) such that h(y) < 0,
which contradicts the hypothesis and concludes the proof. In fact, let mλ G M
be a minimum for the function β(m) = \m — m\ for a fixed m G M — K.
Thus m — mx is parallel to a certain y = N(mx). We set m — mλ = λy where
|>>| = 1, and observe that λ > 0. Since M is convex, we have

0 < (n(y) - m,y).

Hence

0 < (n(y) - ml9yy + <m1 - m,>>> = -h(y) - λ,

implying A(>>) < 0.
The proof of the lemma below can be found in [6].
Lemma 3. Let T and S be two positive (invertible) operators in a hilbert

space H.IfT> S, then Tx < S~ι.
Proof of Theorem 1. Let m0 be the point where M and M are internally

tangent. Set y0 = N(m0) = N(m0). Parametrize a great circle C passing
through y0 by a(s), where s is the arc length in such a way that α(0) = y0. Set
h(s) = h(a(s)). We will show that

h" + h = M,

where u > 0 and

(7) Λ'(0) = A(0) = 0.



BLASCHKE'S THEOREM 493

First we claim that the support function p restricted to C,

p(s) = (n(a(s)),a(s)},

satisfies the equation

p" + p? = <α',/ι'>.

In fact

p' = (ri, a) + O, α'> = </i, α'>,

because n' = dn- a' is orthogonal to α for all s. Since α is a parametrization
by arc length we obtain, by derivation of the last equation,

p» +p = <«',*'>,

which was our claim. If we restrict/ to α, we obtain similarly

p» +β = (a',n'}.

It follows that

h" + h = <α', ri - Λ'>.

By using Lemma 3, the fact that ri = dn α', ri = dh- a', and the hypothesis
of the second fundamental forms we obtain

A" + h = u,

where u is a nonnegative function in s. Moreover from the fact that M and M
are internally tangent at the point m0 = n(y0) = ii(y0) we have that the last
equation satisfies the initial conditions

Λ(0) = A'(O) = 0.

This proves (6) and (7). It is easy to see, by derivation, that

h{s) = I u(t) sen(^ - t) dt

is the solution to (6) which satisfies (7). We notice that if -m < s < TΓ, then
h(s) > 0. Since N(M) is included in a hemisphere [8] and s is the arc length
of a geodesic in Sn~ι, we obtain that h is nonnegative on a. But N(M) is
convex [8]. Therefore h is nonnegative on N(M). By Lemma 2 this concludes
the proof of Theorem 1.

Proof of corollary. The first part is an immediate consequence of Theorem
1. In fact, in this case M is complete and M is a sphere of radius 1/α, where a
is an upper bound for the principal curvatures, in particular the supremum.
The second claim follows immediately from the following facts:

(i) If h(s0) = 0 for any s0 then h = 0 in [0, s0].
(ii) If two hypersurfaces M and M in Rn are tangent along a curve C, then

the geodesic curvature of C is the same whether with respect to M or M. This
concludes the proof of corollary.
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At this point it is interesting to remark that the function h(s) =

/o u(i) sen(j - /) dt allows us to conclude that if the second fundamental

forms are equal for all points then the hypersurfaces M and M coincide (see

Remark 2).

4. Generalizations

A careful observation shows that the proof of Theorem 1 still holds for

hypersurfaces in a Hubert space once the following two facts are true: (i) the

Gauss' normal map N is a diffeomorphism onto its image, (ii) N(M) is

convex.

By using a result of R. L. de Andrade [2] we can make sure of the two facts

mentioned above if we assume that the hypersurfaces have sectional curva-

tures bounded away from zero (that is, for each point m EL M there exists

δ(m) > 0 such that K(σ) > δ(m) for all two-dimensional subspace σ C TmM

where K(σ) is the sectional curvature of the σ-plane). Therefore we can obtain

Theorem Γ. Let M and M be connected, convex, complete, oriented hyper-

surfaces in a Hubert space H with sectional curvatures bounded away from zero

and such that if N(M) = N(M) then

(dNm - v, v} < <<flVΛ v, v},

for all v G TmM = T^M. Assume that M and M are internally tangent at a

point m0 G M π M. Then M is included in the convex body of M.

The following corollaries are proved in a way similar to the corollary of

Theorem 1.

Corollary 1. Let M and M be as in the Theorem Γ, and assume that M is

bounded. Then M is bounded.

Corollary 2. Let M be a connected, convex, complete, oriented hypersurface

in a Hubert space with sectional curvatures bounded away from zero and such

that

a = S u p « ^ m v, v), v G TmM, \v\ = 1, m G M}

is finite. Then the sphere with radius I/a rolls freely inside M, and is tangent to

M at a point or along a geodesic arc.

Corollary 3. Let M be a connected, convex, complete, oriented hypersurface

in a Hilbert space H with sectional curvatures bounded away from zero and such

that

a = Inf{{dNm - v, v}, m G M, v G TmM, \v\ = 1}

is not zero. Then the hypersurface M rolls freely inside the sphere of radius I/a.

Moreover, M is bounded with diameter smaller than 2m/a, and is tangent to the

sphere at a point or along a geodesic arc.
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A crucial point in the proof of Theorem 1 is the fact that the hypersurfaces

have positive curvatures. A natural question is whether the same theorem

would be true when we consider nonnegative rather than positive curvatures.

If two curves in R2 have subsets with zero curvatures, the theorem is not

true as we see in the followng example.

Example. We consider two curves in R 2 by given

γ,(/) = (pt9 t4)t e Randp > 1,

(s, (s - I)4), s e R, s > 1,

C?, 0), s G Λ , \S\ < 1,

(s, (s + I)4), s e R, s < - 1 .

If Nλ (resp. N^) is the unit outward normal on γj (resp. γ^, we have

1

(p2 + 16/6)1/2
(4/3, -P\

N2(s)

(0,-1), if |j| < 1,

1

(1 + Ϊ6(s - I)6)

1

,6\l/2
(4(s- I ) 3 , -1) , if J > 1,

- ( 4 ( J + I ) 3 , -1) , i f 5 < - l .

Therefore N^t) = N2(s) if and only if s > 1 and

and / = V/? (s + 1). Since

- 1) or s < -1

16/6)6 ) 1 / 2

and

*(γ2W) =

0,

12(5 - I)2

(1 + 16(5 - I) 6) 1

12(5 + I) 2

(1 + 16(5 + I) 6) '

if \s\ < 1,

, if 5 > 1,

•, i f 5 < - 1 ,

we have that

whenever Λ ,̂(0 = N2(s). But the points (/?/, tΛ) with ί > l / ( ^ - 1) are not in
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the convex region bounded by γ 2 ( ^ ) This example shows that the

Koutroufiotis' result [4], for curves in R2, is the best possible.

It would be interesting to prove or to find a counterexample for the

following statement.

Let M and M be connected, complete, oriented, convex hypersurfaces in R"

such that if N(m) = N(m) then

Πm(v) < IIΛ(v)

for all v E TmM « T^M. Assume that M has nonnegative curvatures, M has

positive curvatures, and M and M are internally tangent at a point m0 E M π

M. Then M is included in the convex body of M.

We refer to [4] for a proof of this fact when M and M are curves in R2.
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