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A PERMANENCE THEOREM FOR EXOTIC
CLASSES

CONNOR LAZAROV

The purpose of this paper is to prove a permanence formula for the
characteristic classes of an important class of foliations (see §1). This formula
relates certain characteristic classes of these foliations to characteristic classes
for an associated flat vector bundle.

More precisely, let F be a codimension-n foliation of the complement of
the zero section of a flat (n + 1)-dimensional vector bundle ¥ which arises
from the linear action of a group and an appropriate vector field commuting
with the action of this group. Let k¢, be a class in H*(WO,) (I and J both
multi-indices). This formula relates the characteristic class h,c,(F) to the
characteristic class #; ¢,(F) (i, is the smallest index in /) and the characteristic
classes A, (V) for the flat vector bundle V. Applications follow from the fact
that the h,(V) and the integral over the fiber of &; c,(F) lie in the image of the
relative Lie algebra cohomology.

We give two applications. The first is a (weak) independence result for
certain classes k,c; in H*(BI',) (for n odd). The second is a variation result
which shows that most non-rigid classes (in odd codimension) do vary. Slight
modification should yield the even codimension case.

The first permanence theorem of this type was proved by Kamber and
Tondeur (see [8, 7.59, 7.83] and [9, §7]) and Shulman and Tischler [5, 5.1].
These authors considered the case of locally homogeneous foliations. If we
take our vector field to be the radial field, we get a locally homogeneous
foliation and in particular the theorem of [5].

Our first application is already proved in [8, 7.93 and 7.95] and a special
case in [5, (5.1)]. This method, pushed a bit in an obvious way, shows some
further variation and independence results for the higher classes A,c;.

The author is grateful to Herb Schulman for many conversations.

1. Introduction

(1.1) Heitsch foliations. See [3] and also [4]. Let X be a vector field in
R"*1 with the following properties:
1. The one form w(~) = {(—, X > defines a codimension-one foliation on
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R"*!(singularities of X) with a compact leaf M ({, ) is the standard inner
product).

2. Each integral curve of X intersects M transversally and exactly once and
intersects S” transversally and exactly once.

Now suppose G C SL(n + 1) commutes with X. Let K be the maximal
compact subgroup of G, and I' a cocompact subgroup. We assume K
preserves M. We have the following objects.

(1.2) The flat vector bundle ¥ = G/K X R"*! with codimension-(n +
1) foliation F"*! coming from the flat structure.

(1.3) A codimension-n foliation F" of '\ G X, S". We obtain this by
starting with the codimension-n foliation of G/ K X (R"*'-singularities of X)
whose leaves are G/K X (integral curve of X). G and T preserve these
leaves giving a codimension-n foliation F" of G/K X (R"*!-singularities)
=T\ G X (R"*'-singularities). (The indicated diffeomorphism is given by
(8, v) > (g, g7'v).) The intersection of this foliation with I\ G X S" is a
codimension-n foliation which we call F". The same considerations applied to
M instead of S” yield a codimension-n foliation of I' \ G X , M. We will also
call this foliation F".

(1.4) Remark. We can describe the foliation F” as arising directly from a
flat Diff(S™) structure on '\ G X, S". Namely forg € Gand m € S" let y
be the integral curve of X through m, and let gm be the intersection of gy
with S”. This action gives us a flat Diff(S”) bundle G/K X S"=T/G
X g 8", and the foliation coming from the flat structure is F”. The same
considerations apply to '\ G X M.

(1.5) Example. We will be concerned with the case where n + 1 is even,
G = SL(k)) X - - - XSL(k,), K = SO(k,) X - - - XSL(k,) and

X = é A L + - 4+ _a
A Yoy o, )
1 G-H 9+k

J= J
where /; = ky + - - - +k;_,and A, - - -, A, are positive numbers.
(1.6) Connections. Let D be the globally flat connection on R"*! relative
to {9/0x,,- - -,9/3x,,,}. K C O(n + 1), and so D is K invariant. We can

construct a K-invariant connection D on R"*! which, away from the singu-
larities of X, is given by

<Y, X>

bz =5

[X,Z] + D,yZ,

where 7 is the orthogonal projection perpendicular to X. Let H and H be the
horizontal distributions on Frames(R"*!) corresponding to D and D.
Both H and H are K-invariant. On G/K X Frames(R"*') =
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I'\ G Xy Frames(R"*') we have the foliation F coming from the flat
structure. Then

T(F)® (T\ G X H) and T(F) ® (T\ G X, H)

are connections on I'\ G X . Frames(R"*"), and give covariant derivatives
V and V on I'\ G X, T(R"*') which can be identified with the normal
bundle to the foliation F”*', and both ¥ and V are Bott connections. Further
¥ is a flat connection and V is an X basic connection (Vys =[X, s]
appropriately interpreted, see [3] or [4, §2]). The standard innerproduct on
R"*! gives rise to an innerproduct on I'\ G Xz T(R"*"). Let =, and =, be
the projections perpendicular to and in the direction of X respectively (away
from the singularities of X). Let V! = #,V and V? = #,V. Then V' is easily
seen to be a Bott connection for F”".

(1.7) characteristic classes. For a treatment of characteristic classes for flat
bundles see [7, §4] and [8, §3].

Briefly, H*(si(n + 1), SO(n + 1)) yields characteristic classes for the flat
vector bundle ¥V = G/K X R"*! Namely, for n + 1 even, H*(sl(n +
1), SO(n + 1)) = A(hy, hs, - - - , h, x), dimh, =2i — 1, dimx =n + L.
Then let h(V) = Aq(f7 , D®) where D® is any Riemannian connection. Now
the zero section '\ G/K — G/ K X R™"*! pulls the h(V) to T\ G/K. x(V)
will be the Euler class of V. For F" we have the classes h,c,(F") coming from
H*(WO(n)). Finally, for an X basic connection V, A (V, D®)c)(Ky) is a
closed form fori + |[J|=n+ lon T\ G X R"*! (see [3] and also [4]).

(1.8) Gauss-Codazzi equation. Let V' and V° be two connections on any
vector bundle, and let ¢ be any invariant polynomial. Let p! and p° be local
connection matrices for V! and V% and let « = p! — p°% K, = dp® + p° A 0%,
and © = da + a A p° + p° A a. These quantities are tensorial, i.e., they
transform by Ad(a™!). A simple calculation yields

1 . .
AV, V) =Degp X f t'p(a N\ O A a¥ A\ KE) at,
i+j+k+1 70
=Dego

where [ is an integer function of i, j, k. a, K,, © are all tensorial.

2. Permanence theorem and applications
We use the notation of the first section. In addition, let D? be the
connection on I'\ G X x (X) which is globally flat relative to the framing X,
and D! any Riemannian connection on '\ G X  (X)*. Then D'+ D%isa
Riemannian connection on T'\ G X x T(R"*").
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(2.1) Technical theorem. Ifi + |J| > n + 1, then
A,(V, V' + Vg, (Kq) = 0,
A, (Y, D'+ D?) = Ac,,c,(Vl, D') + exact,
A, (V% D*)¢)(Ky1) = 0.

Ifi+|J|>n+ 1, then A (V, V)e,(Kq) = 0.

Proof. T is a discrete group of diffeomorphisms of G/K X R"*!. Thus
for a fixed point in G/K X R"*! we can find an open set W = W, X W,
such that W n yW = ¢ for y €T, y# 1. Choose Y,,- - -, Y, to be a
framing of T(W,). In W, choose local coorindates x,, - - - , x,,, such that
X =0/0x;, and let X; = 9/0x, fori =1,-- -, n + L. Let Y;, X; also denote
the images of these vector fields in G/K X R"*'. Then Y,, - - - , Y, locally
span T(F"*') and [Y;, X;] = 0. Let ' = {nX,,- - -, 7#X,,,} be the local
framing of I'\ G X x (X)* where 7 is the composite projection

T(W) S T(W)/T(F*™*") = G/K X T(R"*")
=T\ G X, T(R"™) 5T\ G X4 (X)*.

Similarly let 7? = (X} be the framing of I'\ G X4 (X). Then '\ G
XeX)E+T\G X (X)=T\G X, T(R™"), and 7' + n? is a local
framing for T'\ G X, T(R"*"). Let § be the local connection matrix of V
relative to 7' + 72 8! of V! relative to ', and 62 of V? relative to n2. Let
{Y*, X*} be the dual basis to { Y}, X;}. (XT, - - -, Xy, ) defines the leaves of
F"*! and so is a differential ideal. Away from the singularities of X,
(X%, - -, X* ) defines F" and so is a differential ideal. To compute 4, 4",
9 first notice that Vy7X; = »[Y}, X;] =0 and V, X, = »[Y, X;] =0, and
VxmX; = v[X,, X;] = 0 and V, X, = »[X,, X,] = O since V is X basic. Thus
6,0, 62 all lie in (X%, - -, X* ). Apply (1.4) with p' = 8, o = 9! + 42,
@ = ¢; to conclude that a, K, and © lie in (X3, - - -, X5, ), and so A (V, v!
+ V?) lies in (X3, - - -, X*,))". Also ¢,(Ky) is in (X%, - - -, X*, V|, and so
AV, V' + V?)¢,(Kg) =0 for dimension reasons when i+ |J| >n + 1.
Next A, (V% D?) = Youcddt N\ 0> + tdh?) = (constant) [g 1~ 'c(67 A\
(d6%~") dr, and so A (V?, D? lies in (X3, ---, X%, and thus
A, (V?, D?)c,(Ky1) = 0. Now Stokes’ theorem says

chl(V, D'+ D% + AQCJ(D' + D% V' + V?) + Ac,.c,(vl + V2 V) = exact.

The previous argument for A_(V, V' + V?) applied to A, (V, V' + V?) shows
A, (V, V! + V) =0 Now A (D'+ D% V' +V)=4_,(D,V)+

A, (D2 V? and the argument for A, (V2 D?)¢,(Ky) applied to V, (D2, V?)
shows A, (D% V?) =0. Thus A, (V,D'+ DY) =A_(V', D") + exact.

174
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Finally let § be the local connection matrix of V relative to n' + n2 Then

and § lie in (X}, ---,X* ) smce VyﬂX v[Y;, X;] =0 and \Y X1 =
v[Y;, X,] = 0. Apply (1 4) with p' =0, p° = 4§ to conclude a, K, @ he in
(X <+, Xy) and so A, (V, V) lies in (X}, -, X% )*VL Thus, if

i+ |J|>n+1,thenA (V,7)=0.
(2.2) Theorem (Permanence). Let I = (i, - ,i),i;,+ |J| >n+ 1. Then
hie,(F") = hi,( V). -- h.',( V)hich(F"),
and h, c,(F") is presented by A (V, D).
Proof.

II A, (v, D'+ D¥c,(Ky)
c,}_ J

Jj=1

||;:1~.

{A (V'+ V3 D'+ D?) + A, (V. V! + V?) + exact}c,(Kq)
J

{4, (V', DY) + A, (V% D% + A, (V, V' + V?) + exact}¢,(Kq1)

~.

l'r__'lw .I_l.mw

A, (V', D")c,(Ky) + exact, using (2.1).
Jj J

V'is a Bott connection for F”, so I[;_; A, (V', D")¢,(Kg1) = hyc,(F™). Now

Il A, (V, D'+ D¥)e,(Ky)
j=1 7

= A, (Y, D' + D}¢)(Ky) 'Hz {qu(? ,D'+ D? + A (Y, V) + exact}.
=

Since i; + |J| > n + 1forj > 2, ¢,(Kg)A, (Y, V) = 0forj > 2.So

H A (Y, D' + D?c,(Ky)
Jj=1

=A, (V,D'+ D)c,(Kg) II A, (V, D'+ D?) + exact.
1 j=2 i

Hence h;c,(F") = b (V) ... b (V)h; c,(F™).

Now it is well known that A, (V1 DY)e,(Ky) = A, (V' D) + exact,
when V' is a Bott connection for a codimension-7 fohatlon and ’1 +|J| >n
+ 1. Thus by (2.1) we have h; ¢,(F") = Aqch(V', = AC'_ICJ(V, D'+ DY +
exact.

(2.3) Corollary. Ifi, + |J| > n + 1, then hyc,(F") = 0

Proof. A, (V,D'+ DY) =4, (V,D'+ D% +4, (7, V)+ exact. By
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@1, 8,.,(V,V)=0 if i +|J|>n+ 1 Now (V D! +D2)
A, (V D + D?¥c,(Ks) + exact since V flat. But Kg = 0 and so A, (V D!
+ Dz) = 0. For the homogeneous case, this is in [8, (7.95)].

(2.4) Corollary.

f hic,(F™) = h(V). ..h,.(V))( A,.(V, D'+ D?).
sn T sn i

Proof. This is the usual permanence type theorem; it follows because the
cohomology classes h,(¥) come from H*(T \ G/ K).

Next we prove a theorem which is known. This theorem is one of the
applications of the general theory of Kamber-Tondeur; see [8, 7.93 and 7.95],
and also [5, 5.1] for a special case.

(2.5) Theorem. For fixed i, J with iy + |J| = n+ 1 and n + 1 even, the
classes h; b, . . . b, c; are independent in H*(BT,).

Proof. Let G = SL(n+ 1), K= SO(n + 1) and T be a co-compact sub-
group. We show that &; . .. h;c,(F") are independent in H*(I'\ G X x S"). It
is enough to show that the integral over the fiber S” of these classes are
independent. We will compute Ygn Ac‘_lcl(V, D' + D? and use (24). Let

=Up- s

(2.6) Lemma.

foantnote oY) ] e

where a is nonzero number independent of i, and J. For the homogeneous case
see [8, (7.95)].

The proof will appear at the end of the paper. Now the map H*(sl(n +
1), SO(n + 1)) »> H*(T' \ G/K) corresponding to the flat vector bundle V' =
G/K Xy R"*! is known to be injective. Injectivity is proven in [7, Theorem
4.19], [8, (4. 6)] and also in [6]. H*(sl(n + 1), SO(n + 1)) =
A(hy, hs, - - -, h,, x) with b, —> h(V), x — x(V). The independence of
h(V)...h(V)x(V) in H*T\ G/K) follows from the independence of
B, ... hxin H¥sl(n + 1), SO(n + 1)).

(2.7) Theorem. Letn + 1 be even.Ifi, <n— landi, + |J| = n + 1, then
ki ...hc, in H*(BT,) all vary.

Remark. With a little thought one should be able to eliminate i, <n — 1.

Proof. Let us consider G = SL(n — 1) X SL(2), K = SO(n — 1) X
SO(2), Sé(_?.)/XN-XSLQ) C SL(n — 1). One can choose a co-compact

(n—1)/2

subgroup I’} of SL(n — 1) whose intersection with SL(2) X - - - X SL(2) is
co-compact. Let I', be a co-compact subgroup of SL(2). ThenT'; X I', =T is
a co-compact subgroup of SL(n — 1) X SL(2) whose intersection I with
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SL(2) X - - - XSL(2) is co-compact. Let G’ = SL(2) X - . - XSL(2),
~—+h2 DAY R
K = SO(Q2)X - XSO(2).ThenG’ C G,K' C K.LetI" =T n G".
Let

3 3 8 :
wonfogr e g ) e g )

with A}, A, positive, X commutes with the action of G on R"*", and so we get
codimension-n foliations F” of '\ G X S" and F" of I\ G’ X 4. S". The
map I"\ G’ X . 8" 5T\ G X S” takes leaves of F'" to leaves of F".

We want to show fg. h;c,(F") is a nonzero varying class in H*(I'\ G/ K)
which is also in the image of relative Lie algebra cohomology. By (2.4),

fs» hic,(F") = h (V) ... h,.r(V));n AV, D' + D?),
in H*(T'\ G/K). First, we have the commutative diagram:
H*(T\G/K)

Iinjective
H*(sl(n + 1), 50(n + 1)) ———> H*(sl(n — 1) x sl(2), SO(n — 1) x SO(2)).

flat pund

Now H*(sl(n —1) X sl(2), SO(n — 1) X SOQ2)) = A(hs, hs, -+ =, hy_3, Xo—1)
® A(x,), and under the horizontal map h; — h; for i < n — 2 and the map
H*(sl(n + 1), SO(n + 1)) > H*(T'\ G/K) sends h, > h(V). Thus to show
that A (V) ... ~B(V) fsn 4, CJ(V D?+ D? is a nonzero class in
H*('\ G/K), it is enough to show that {5 A, (V, D' + D?)is in the image
of H*(sl(n — 1) X si(2), SO(n — 1) X SO(2)) and has a component which is
a nonzero multiple of the Euler class. To show that this class is in the image
we have to show that %g. A, (V, D' + D?) has a representative which, when
pulled up to G/K, is a left invariant form under the action of G. To show
that ¥s. A, (V, D' + D?) is nonzero and varies, we observe that by natural-
ity Yg» A, c(v D' + D?) pulls back to the ¥g. A, (V, D' + D?) for F and
I"\ G’ XK S”", and so it is enough to show that ¥s» B, (Y, D'+ D? in
H"*!(T"\ G’/ K’) varies with A, /A,. This has been done i in [3] also in [4]. We
will prove this here also. If g A, C(V D'+ D% #0in H"'(I"\ G’ /K)
it must be a nonzero multiple of the Euler class, and hence ¥s. A, o (V,D'+

D? in H"*(T'\ G/K), by naturality, has a component which i is a nonzero



482 CONNOR LAZAROV

multiple of the Euler class. Also, it follows from (2.6) that ¥¢. A_ CI(V, D!+
D?) is actually a nonzero multiple of the Euler class. Thus we are done once
we show

(28) Lemma. Y. A, . (V,D'+ D? + exact pulls up to a G-invariant
form on G/ K. '

(29) Lemma. Up to a fixed constant depending on the volume of
I'\G'/K,

)(S" A, (V. D'+ D?) = ¢, (Diag(\;, - - -, Ay M)A A

(t%_ t%) ( 1123 ) (’2 ’3+1) (t n+1)
. d ...d d|
fM x> \x? X |2 X |12

where M is the hypersurface \,(t? + ... +1>_)) + A (2 + 2, )= 1lin R"*",
Remark. When A, = A,,

fM= (constant)me(tf +8)...(2+2,)ay...d,,., >0
Hence for A, near A, the [,, > 0 and is independent of ; c,. Thus

f A, . (V, D' + D?) varies with A, /A,.
Sn el

3. Proofs of (2.6), (2.8), (2.9)

Let us take the case of a general G ¢ SL(n + 1), n + 1 even. On G/K
X R"*! we have

A, (V, D'+ D?) — A, (i'? D'+ DY)+ A, (V, V)= exact.

Now A, (V D'+ D?) + exact = A, (V D' + D¥c,(Kg) =0 since V is
flat. Thus Xsn A (Y, D'+ D% = )(S,. . CJ(V V). Now we have a G-equiv-
ariant map M — S " which takes a point m to the point m’ on S$” which is the
intersection of the unique integral curve of X through m with S”. Thus we
consider '\ G X M ->T'\ G X S" and we see that

£ 8oV 9 =L A7, ).

Let x,, - - -, x,,, be elements in g, x,(¢), - - - , x,,,(¢) their one-parameter
groups in G, and (X)) = d/dt(gx(1)K),_, (a tangent vector at gK in
T\ G/K). Let (X)) zm = d/dt(gx(t), m),_, which is a vector field in
I'\ G X g M defined along the fiber. Then

(£, 807 D)oxe - X = [ (F) AT )AL, D).

G Cr
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Let j,: M >T\G Xxg M be given by jg(Ln) (g, m) Then the fiber in
question is j,(M), and the restriction is Je X)) .. u( X, DAY, V)) Now let
p:T\NG XM->T\NG XM, and let X also denote d/dt(gx(t), m), .o in
'\ G X M and j, the inclusion of M inT'\ G X M. It is immediate that

fMj;(L()?,)... (X, )87, 7)) = fj;(t(il)...l()?,,_,_l)p*A v, 9)).

So we need only study L(/\7) X, w4 DAG(V, V) onI'\ G X M (omit the p).

First consider the Gauss- Codazz1 equatlon applied to A (V V) Let 6 and §
be local connection matrices for V and V. Let a = 6 — 0 O=da+aNnb
+ 0/\ a, K=df + § A\ §. Of course K = 0. Thus, for ¢ of degree n + 1, we
have

qu(V, 6) =(n+ 1) 2 A(i,j,k)(P(a N\ o N a¥ VAN Izk)
i+j+k=n
= 2 Aupe(e¥T' A ©).
i+j=n
Now we want to apply (X, D X, +l) FlI‘St we show that j(a) = j;(0©) =
0 on M. For, j;'(V) = D and j (V)= D are connections on the vector

bundle T(R"*!') which agree on vectors tangent to M. Thus jf(a) =0 and
hence j;(©) = 0.

Thus in expanding (X, D ed e 0P(@¥ ! A ©), an a or © without a uXx)
applied to it will restrict to zero on M, and the only terms which can occur
are those where 2j + 1 + i< n+ 1 and i +j = n and so j = 0. Therefore
the only terms which can be nonzero upon restriction come from

uX) ...u«X,, )p(a A\ O") where each « and © has an «(X) applied to it.
Thus

FX) -l X )A(Y, D))
=3 2o(UX)a A{X)O A ... A(X,,,)8),

[

(3.1)

where 2, denotes the sum with the permutation o applied to each index and
the sign (-1)°.

We have to now evaluate a(i)(gm) andj;@()?)@) ). InT\ G X R"*! et

Aﬁ(g my = (d/dt)(gx,(t), x(~)m),_o. Let x* be the (\fecztor field in R"*! given
by x*, = (d/dt)(x(t)ym),_,. Then X,(gm) X comy — Jg(X%). Now a is
tensorial which means that if X is any tangent vector in frame bundle of
I'\ G X R"*! which projects to /\7,., and if w and @ are the connection forms
for § and 6, then a()? ) = w(f ) — &:()f' ). But for )f we can choose
(d/ di)(gx,(1), x(=1)f),=o at a point (g, f) in I'\ G X Frames (TR"“) Now

this X is horizontal for both w and & by construction. So ¢(X,) = 0, and
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a(X, Ygmy = Ja(@gm)(X,). Let p and p be local connection matrices for D
and D relative to a framing s on T(R"*"). Then (X gy = S g ) (X) =
P — Pn (x,m) which is independent of g. If we take s =
{a/0¢t,,- - -,9/0t,,,}, then p =0, Dys = (Y, X ) /<X, XD)[X, s]. Thus, if
o(Y) =Y, X) then a(X,)(g,m) w(x*,) ® Ly(s),,/s, where Ly is the Lie
derivative and Ly(s)/s is the matrix of [X, s] relative to s. To study
j;(z(X )@ (&,m) We apply it to a vector field Y tangent to M to get da(X Y)+
[a, 0](X,, Y) Now a(Y) = j7(a)(Y) =0, and relative to the framing s we
have j} *@)=p=0 and therefore 6(Y) = 0. Moreover, da()?,-, Y)igm =

X,oa(Y)— Yo a(X) — a(lX;, Y]) and [X; » Y] =0 since they are vector
fields on different factors of a product, a(Y) = 0 as before, so

j;(l'(‘x-’i)e(g,m)) = _Y a(X )(g m) (w( ) ® X(s)m)
Again this is independent of g.

To summarize, let 8 be the one-form on R"*! given by B(Y) = w(Y) ®
Ly(s)/s, and let us consider the function on M given by m — B(x*),,. Then

f Aq:(V’ e)gK(Xl’ T Xn+l)
M

{Y..}.

CD =3 [ GBGDABCD A - AdB(L )

Now if we consider X A,(V, ¥) pulled up to G/K at the coset gK applied to
X+, X, where X, = d/dt(gx(t)K),— the result is, clearly from (3.2),
independent of g. Thus it follows that ¥,, A (V, V) on G/K is left invariant
and hence, on I' \ G/ K, represents an element in the image of H*(g, K). This
proves (2.8). Now take the case G = SL(n + 1), K= SO(n + 1),
n+1even, X =3/ 1,0/0t; and here M = S”". Then Ly(s) = -1, I being

J=1 J
the identity matrix. Thus

P(BOHAB(xF) N - - - NdB(x311))
= w(xP)d(@(x3) N - - - Nd(w(x3, 1)) e(1).
Nowifp =¢c; ..., then

o) = ¢, (De, (1) . . . c,(I) = ("* 1)(”?’ 1)...("“.“ ‘).

1 J] j_v
So

fS" Acilc‘,(v7 e)(XP T Xn+])
)
4 J1 Js

fs B(xNA(B(X)) A - - - Nd(B(x¥10)),
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where 4 is a constant independent of i, and J. In [5] it has been shown that
Jsn B (V, ¥) is a multiple of x(V) by a Lie algebra computation. Since
[s= BOXHA(BE) N - - - Nd(B(x}F,})) is independent of i, and J, Lemma
(2.6) follows.

Finally, for G’ = SL(2) X - - - XSL(2), K’ = SO(2) X ... XSO(2),

=A 0 9 + - A ti+t S
X = 1 tl’E"’ 12—872' (n+1)/2 "at,, n+latn+l ’

we can choose x,,- - ,xy, N=(n+1)/2, so that xp_, =( D, Xy
= (J4) in the ith s/(2) factor. Then x;,- - -, xy is a complementary basis
to Kk’ in g’ so that X; A\ - - - AXy is a well defined N-vector field on

I"\ G'/K’, and ¥, A . (Y, V)(X,, - - -, Xy) is a fixed nonzero constant times
Sar ch,(v’ ﬁ)[I‘ \ G/K]. A simple computation shows

X1 =y g — t2ii’ X3 = i
Oty 0ty 0ty _y

So
B(x3_y) = }‘i(t%i—l + t%,-)Diag()\l, Al A Ay,
B(x3;) = Nty 1ty Diag(\, Ap, - - -, Ay, Ay).

Let A = Diag(A;, Ay, - - - , Ay, Ay). Then from (3.2),
Yar Bee, (Vs ﬁ)gK(X 1+ Xy)is a constant depending on volume I" \ G’ /K’
times

(-18) ( 1,
;e (AAE - - - A2 d|
e N fM X2 \pxpe

13—1 - t3 (tn—ltn)
RN | (=L R . W
N N ( X 1? )/\ X2

and hence we have (2.9).
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