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A PERMANENCE THEOREM FOR EXOTIC
CLASSES

CONNOR LAZAROV

The purpose of this paper is to prove a permanence formula for the
characteristic classes of an important class of foliations (see §1). This formula
relates certain characteristic classes of these foliations to characteristic classes
for an associated flat vector bundle.

More precisely, let F b e a codimension-n foliation of the complement of
the zero section of a flat (n + l)-dimensional vector bundle V which arises
from the linear action of a group and an appropriate vector field commuting
with the action of this group. Let hjCj be a class in H*(WOn) (I and / both
multi-indices). This formula relates the characteristic class hjCj(F) to the
characteristic class hiχCj{F) (ix is the smallest index in /) and the characteristic
classes A,( V) for the flat vector bundle V. Applications follow from the fact
that the A,.( V) and the integral over the fiber of Λ, Cj(F) lie in the image of the
relative Lie algebra cohomology.

We give two applications. The first is a (weak) independence result for
certain classes hjCj in H*(BTn) (for n odd). The second is a variation result
which shows that most non-rigid classes (in odd codimension) do vary. Slight
modification should yield the even codimension case.

The first permanence theorem of this type was proved by Kamber and
Tondeur (see [8, 7.59, 7.83] and [9, §7]) and Shulman and Tischler [5, 5.1].
These authors considered the case of locally homogeneous foliations. If we
take our vector field to be the radial field, we get a locally homogeneous
foliation and in particular the theorem of [5].

Our first application is already proved in [8, 7.93 and 7.95] and a special
case in [5, (5.1)]. This method, pushed a bit in an obvious way, shows some
further variation and independence results for the higher classes hjCj.

The author is grateful to Herb Schulman for many conversations.

1. Introduction

(1.1) Heitsch foliations. See [3] and also [4]. Let I b e a vector field in
Rn+ι with the following properties:

1. The one form H>(-) = <-, Xs) defines a codimension-one foliation on
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Rn+ ^(singularities of X) with a compact leaf M « , > is the standard inner
product).

2. Each integral curve of X intersects M transversally and exactly once and
intersects Sn transversally and exactly once.

Now suppose G c SL(n + 1) commutes with X. Let K be the maximal
compact subgroup of G, and Γ a cocompact subgroup. We assume K
preserves Λf. We have the following objects.

(1.2) The flat vector bundle F = G/K XτR
n+ι with codimension-(/i +

1) foliation Fn+1 coming from the flat structure.
(1.3) A codimension-Λ foliation Fn of Γ \ G X κ Sn. We obtain this by

starting with the codimension-w foliation of G/K X (I?π +^singularities of X)
whose leaves are G/K X (integral curve of X). G and Γ preserve these
leaves giving a codimension-Λ foliation Fn of G/K XΓ (Rn*^singularities)
s*Γ \ G Xκ (Rn+ ^singularities). (The indicated diffeomorphism is given by
(g> v) —> (g> g~lv) ) The intersection of this foliation with Γ \ G Xκ Sn is a
codimension-tt foliation which we call Fn. The same considerations applied to
M instead of Sn yield a codimension-w foliation of Γ \ G X κ M, We will also
call this foliation Fn.

(1.4) Remark. We can describe the foliation Fn as arising directly from a
flat Όiϊf(Sn) structure on Γ \ G Xκ Sn. Namely for g G G and m G Sn let γ
be the integral curve of X through m, and let gm be the intersection of gy
with Sn. This action gives us a flat DiffίS"1) bundle G/K XΓ Sn s Γ/G
Xκ Sn, and the foliation coming from the flat structure is Fn. The same
considerations apply to Γ \ G X κ M.

(1.5) Example. We will be concerned with the case where n + 1 is even,
G = SL(kλ) X X SL(kp\ K = SO(kx) X X SL(kp) and

where Γ̂ = kλ + +&,_,, and λj, , λ̂  are positive numbers.
(1.6) Connections. Let D be the globally flat connection on Rn+ι relative

to {9/9^!, , d/dxn+ί}. K c O(n + 1), and so D is K invariant. We can
construct a ^-invariant connection D on Rn+ι which, away from the singu-
larities of X, is given by

where π is the orthogonal projection perpendicular to X. Let H and H be the
horizontal distributions on Frames(/?π+1) corresponding to D and D.
Both H and H are ^-invariant. On G//T XΓ Frames(JR

/I+1) a
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Γ \ G Xjr Frames(Λπ + 1) we have the foliation F coming from the flat
structure. Then

T(F) ®{T\G XκH)2inά T(F) ®(T\G XKH)

are connections on Γ\ G Xκ Frames(/?n+l), and give covariant derivatives
V and V on Γ\ G X^ T(Rn+ι) which can be identified with the normal
bundle to the foliation Fn+ι

9 and both V and V are Bott connections. Further
V is a flat connection and V is an X basic connection (Vxs = [X, s]
appropriately interpreted, see [3] or [4, §2]). The standard innerproduct on
Rn+ι gives rise to an innerproduct on Γ \ G Xκ T(Rn+ι). Let ττx and π2 be
the projections perpendicular to and in the direction of X respectively (away
from the singularities of X). Let V1 = TΓJV and V2 = ττ2V. Then V1 is easily
seen to be a Bott connection for Fn.

(1.7) characteristic classes. For a treatment of characteristic classes for flat
bundles see [7, §4] and [8, §3].

Briefly, H*(sl(n + 1), SO(n + 1)) yields characteristic classes for the flat
vector bundle V= G/K XτR

n+ι Namely, for « + 1 even, H*(sl(n +
1), SO(n + 1)) = Λ(A3, A5, , Art, χ), dim A,. = 2/ - 1, dim χ = n + 1.
Then let A,(F) = ΔC(V, DR) where DR is any Riemannian connection. Now
the zero section Γ \ G/K -> G/K XΓ Rn+1 pulls the A,( V) to Γ \ G/K. χ( V)
will be the Euler class of V. For Fn we have the classes hjCj(Fn) coming from
H*(WO(n)). Finally, for an X basic connection V, ΔC(V, DR)cj(Kv) is a
closed form for i + |/ | = n + 1 on Γ \ G XκR

n+ι (see [3] and also [4]).
(1.8) Gauss-Codazzi equation. Let V1 and V° be two connections on any

vector bundle, and let φ be any invariant polynomial. Let p1 and p° be local
connection matrices for V1 and V°, and let α = p1 - p°, Ko = dp0 + p° Λ P°>
and Θ = da 4- a A P° + P° Λ «• These quantities are tensorial, i.e., they
transform by Ad(α-1). A simple calculation yields

ΔφίV1, V°) = Degφ Σ f M<* Λ θ* Λ *2j A K*) dt,

= Degφ

where / is an integer function of ij, k. α, Ko, Θ are all tensorial.

2. Permanence theorem and applications

We use the notation of the first section. In addition, let D2 be the
connection o n Γ \ G X κ (X) which is globally flat relative to the framing X,
and Dι any Riemannian connection on Γ \ G Xκ (X)±- Then Dι + D2 is a
Riemannian connection on Γ \ G Xκ T(Rn+ι).
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(2.1) Technical theorem. If i\ + \J\ > n + 1, then

Δ ^ V ^ 1 ^ V 2 )c y (^ v ,) = 0,

ΔCCy(V, Dx + D2) = \iCj(V\Dι) + exact,

Δ ς(V 2,Z) 2)c y(tf v,) = 0.

/// + | / | > n + 1, ί*έτi ΔC(V, V)c,(ΛΓv.) ΞΞ 0.

/V00/. Γ is a discrete group of diffeomorphisms of G/K X Rn+ι. Thus

for a fixed point in G/K X JR
/ I + 1 we can find an open set W = Wι X W2

such that W n yW = ψ for γ E Γ, γ ^ 1. Choose Yx, - - - , YN to be a

framing of Π ^ ) . In W2 choose local coorindates xv , x r t + 1 such that

X = a/θjcj, and let Xt = Θ/ΘJC, for / = 1, , n + 1. Let YJ9 Xt also denote

the images of these vector fields in G / K X Γ R
n + ι. Then y1 ? , YN locally

span T(Fn + ι) and [Yp Xt] = 0. Let ηι = {πX2, , πXn + ι] be the local

framing of Γ \ G Xκ (X)1' where IT is the composite projection

ι) a G/K XΓ

s Γ \ G XκT(Rn+ι)^>T\G

S i m i l a r l y l e t η 2 = {X} b e t h e f r a m i n g o f T\GXK(X). T h e n Γ \ G

X ^ (X)1- +T\GXK(X) = T\GXK T(Rn+ι), and η 1 + η2 is a local

framing for Γ\ G x ^ Γ(Λ n + 1 ) . Let β be the local connection matrix of V

relative to ηι + η2, θι of V1 relative to η 1 , and β 2 of V2 relative to η2. Let

{ Yf, X?} be the dual basis to { YJ9 Xt). (X*, , X*+ι) defines the leaves of

Fn+ι and so is a differential ideal. Away from the singularities of X,

(X2*, * , X*+ι) defines Fn and so is a differential ideal. To compute θ, θ\

θ2 first notice that V ^ T Γ ^ = v[Yp Xt] = 0 and VγXι = ^[y;., Xx] = 0, and

V ^ ^ ^ = v[Xλ, Xf] = θ'and VxXλ = 4X 1 ? XJ = 0 since V is X basic. Thus

θ, θ\ θ2 all lie in (X*9 , X*+ 1). Apply (1.4) with pι = θ, p° = θι + θ2,

φ = cf to conclude that α, AΓ0, and θ lie in (XJ, , ̂ ^ . j ) , and so ΔC(V, V1

+ V2) lies in (X*, , X*+J. Also Cj(KΨ) is in (X*9 , X* + 1 ) | y | , and so

ΔC(V, V1 + V2)cy(^:vi) = 0 for dimension reasons when i + | / | > n + 1.

Next ΔC(V2, /) 2 ) = ^ j c X A Λ ^ 2 + ^ 2 ) = (constant)/* t'-tyθ2Λ

(dθ2y~ι) dt, and so ΔC(V2, D2) lies in (Xζ9 , X*+ι)9 and thus

ΔC(V2, D2)cj(Kvi) ΞΞ 0. Now Stokes' theorem says

ΔCCy(V, Dι + 2)2) + Δ ^ 1 + 2)2, V1 + V2) + Δ ^ V 1 + V2, V) = exact.

The previous argument for Δc(V, V1 + V2) applied to Δ c c (V, V1 + V2) shows

ΔCiCj(V> V1 + V2) Ξ 0. Now \iCj(Dι + Z)2, V1 + V2) = ΔCCy(Z)\ V1) 4-

ΔC^(Z)2, V2) and the argument for ΔC(V2, D2)Cj(KΨ) applied toVCCj(D2, V2)

shows ΔCCy(Z>2, V2) ΞΞ 0. Thus ΔcJy(V, Z)1 + D2) = ΔCCy(V!, D V + exact.
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Finally let θ be the local connection matrix of V relative to ηι + η2. Then θ

and θ lie in (X*, , X*+ι) since VγπXt = v[YJ9 Xt] = 0 and VYXX =

v[Yj> x\] = 0. Apply (1.4) with p\= θ, p° = θ to conclude α, i^0, ©'lie in

(Xt, ,X:+ι) and so Δcc/V, V) lies in (X*9 ,Xπ*+iy
+μi Thus, if

i + \JI > n + 1, then ΔCCy(V, V) == 0.
(2.2) Theorem (Permanence). Let I = (iί9 , ιΓ), ^ + | / | > Λ + 1.

and hiχCj{Fn) is presented by ΔCCy(V, DR).
Proof.

r

Π Δ C ( V , Z ) 1 + Z)2)C/(Λ:V,)
7 - 1 J

r

= Π {ΔC.(V + V2, Z)1 + Z)2) + Δ^(V, V1 + V2) + exact}c,(*:vl)

r

= Π { \ ( V , Z)1) + Δ^V2, Z)2) + ΔC.(V, V1 + V2) + exact}ς,(Jrv,)

r

= Π Δc(V',Z)1)c/(/:v,) +exact, using (2.1).
7=1 ''

V1 is a Bott connection for F", so ΠJ_, Δc (V, D !)cy(AΓvl) = h,Cj(Fn). Now

Π Δ ^ V . D ' + D 2 ) ^ ^ , )
1 J

= ΔC(V, Dι + D2)Cj(Kv,) Π (ΔS(V , Z)1 + D2) + Δ^V, V) + exact}.

Since /} + |7 | > « + 1 fory > 2, Cj(Kγ,)Δc. (V, V) = 0 fory > 2. So

Π ΔC/(V,Z>' + Z>2)c,(tfv,)

r

= ΔC(V, Z)1 + Z)2)cy(/s:vl) Π ΔĈ (V , Z)1 + Z)2) + exact.

Hence A/c/F") = h,2(V) . . . \(V)h,Cj(F»).
Now it is well known that Δc (V1, D')cy(Λ"vι) = ΔCCy(V', £>') +exact,

when V1 is a Bott connection for a codimension-/! foliation, and /, + |/ | > n
+ 1. Thus by (2.1) we have h,Cj(Fn) = \Cj(V\ Dι) = ΔC(Cy(V, £>' + D2) +
exact.

(23) Corollary. ///, + \J\ > n + 1, then hjC^F") = 0.
Proof. ΔCjC/y, D' + D2) = ΔC/C/(V , D' + D2) + ΔCjCj(V, V) + exact. By
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(2.1), ΔC/Cy(V, V) = 0 if /, + | / | >n + 1. Now ΔC/Cy(V , Dx + D2) =

Δc (V , Z)'1 + D2)cj(Kγ) + exact since V flat. But K$ = 0 and so Δc Cy(V , Dι

+ D 2 ) Ξ 0. For the homogeneous case, this is in [8, (7.95)].

(2.4) Corollary.

hlCj(F») = hi2( V) . . . A. (K)]f Δ ς Cy(V, D 1 + Z)2).

Proof. This is the usual permanence type theorem; it follows because the

cohomology classes A,(K) come from H*(T \ G/K).

Next we prove a theorem which is known. This theorem is one of the

applications of the general theory of Kamber-Tondeur; see [8, 7.93 and 7.95],

and also [5, 5.1] for a special case.

(2.5) Theorem. For fixed iv J with ix + \J\ = n + 1 and n + 1 even, the

classes hiχhi2. . . hirCj are independent in H*(BTn).

Proof. Let G = SL(n + 1), K = SO(n + 1) and Γ be a co-compact sub-

group. We show that hiχ . . . h^F") are independent in H*(T \ G Xκ Sn). It

is enough to show that the integral over the fiber Sn of these classes are

independent. We will compute fSn Δc.Cy(V, Dι + D2) and use (2.4). Let

J = Uv ' * * >Λ)
(2.6) Lemma.

where a is nonzero number independent of ix and J. For the homogeneous case

see [8, (7.95)].

The proof will appear at the end of the paper. Now the map H*(sl(n +

1), SO(n + 1)) -* H*(T \ G/K) corresponding to the flat vector bundle V =

G/K X Γ Rn+ί is known to be injective. Injectivity is proven in [7, Theorem

4.19], [8, (4.6)], and also in [6]. H*(sl(n + 1), SO{n + 1)) =

Λ(Λ3, Λ5, , hn, x) with ht -» ht( V), χ - ^ χ ( F ) . The independence of

hi2(V) . . . hir(V)χ(V) in H*(T\G/K) follows from the independence of

hh . . . hiX in H*(sl(n + 1), SO(n + 1)).

(2.7) Theorem. Let n + \ be even. If ir < n - 1 and ix + | 7 | = /i + 1, then

hiχ . . . hiCj in H*(BTn) all vary.

Remark. With a little thought one should be able to eliminate ir < n — 1.

Proof. Let us consider G = SL{n - 1) X 5L(2), # = SO(n - 1) X

SΌ(2), SX(2) X X 5*L(2) c 5L(w - 1). One can choose a co-compact

subgroup Γ, of SL(n - 1) whose intersection with SL(2) X X SL(2) is

co-compact. Let Γ2 be a co-compact subgroup of SL(2). Then Γj X Γ2 = Γ is

a co-compact subgroup of SL(n — 1) X SL(2) whose intersection Γ' with
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SL(2) X XSL(2) is co-compact. Let G' = SL(2) X XSL(2),

K' = SO{2) X xSΌ(2).ThenG' c G, K' c K. Let Γ = Γ n G'.
v—^Γ7T)72 '

Let

3 θ \ Λ / 3 3

with λ1? λ2 positive, X commutes with the action of G on Rn+ι, and so we get

codimension-« foliations Fn of Γ \ G Xκ Sn and Fm of Γ \ Gf Xκ, Sn. The

map Γ \ G' X ^ Sn -* Γ \ G X ̂  S"1 takes leaves of Ffn to leaves of Fn.

We want to show }Sn hjCj(Fn) is a nonzero varying class in H*(T \ G/K)

which is also in the image of relative Lie algebra cohomology. By (2.4),

jA ,2 ^ ΔCΛ(V, Dι + D2),

in H*(T \ G/K). First, we have the commutative diagram:

H*(sl(n + l),SO(n

Now H*{sl(n - 1) X sl{2), SO(n - 1) X SO(2)) β Λ(A3, A5, , An_2, χ , . ^

® Λ(χ2), and under the horizontal map Af —» A, for i < w — 2 and the map

H*(sl(n + 1), SO(n + 1)) -^ Z/*(Γ \ G/K) sends Λ#.-> A,.(K). Thus to show

that A/2(F) . . . A,(F) ^5n Δ (V, D2 + D2) is a nonzero class in

7/*(Γ \ G/K), it is enough to show that ls. Δc C/(V, Dι + Z)2) is in the image

of H*(sl(n - 1) X s/(2), 5Ό(« - 1) X 50(2)) and has a component which is

a nonzero multiple of the Euler class. To show that this class is in the image

we have to show that "fSn Δc c (V, Dx + D2) has a representative which, when

pulled up to G/K, is a left invariant form under the action of G. To show

that ^Sn Δc c (V, Dι + D2) is nonzero and varies, we observe that by natural-

ity }Sn Δc ^(V, Dx + D2) pulls back to the fs. Δc Cy(V, Z)J + D2) for i7"1 and

Γ \ G' X ^ S"1, and so it is enough to show that fs. Δc Cy(V, Z)1 + D2) in

^ Λ + 1(Γ/ \ G'/K') varies with λj/λj. This has been done in [3] also in [4]. We

will prove this here also. If ^ Δc Cy(V, Dι + D2) ψ 0 in Hn+\Γ \ G'/K'\

it must be a nonzero multiple of the Euler class, and hence % o* Δr . (V, Dι +

D2) in //Π + 1(Γ \ G/K), by naturality, has a component which is a nonzero
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multiple of the Euler class. Also, it follows from (2.6) that ^ Δ (V, Dι +

D 2) is actually a nonzero multiple of the Euler class. Thus we are done once

we show

(2.8) Lemma. J^- Δc (V, Dι + D2) + exact pulls up to a G-invariant

form on G/K.

(2.9) Lemma. Up to a fixed constant depending on the volume of

Γ \ G'

Δc<Cy(V, Dι + D2) - c^ΛDiagίλp , λ l f λ 2 ))λf-λ 2

l l * l l 2 \||X||2/ \ n^rii2 / \ ||*||2

where M is the hypersurface \x(t\ + . . . + t2_x) + λ 2 (/ 2 + t2

+ι) = 1 in Rn + ι .

Remark. When λx = λ2,

IM

= {comt*nί)fBnJ
t2*+ '*) ( ' » + ^ ώ i dt»^ > °

Hence for \x near λ2 the / M > 0 and is independent of c^Cj. Thus

jfi Δς C y(V, Dλ + D2) varies wi thλ^λ j .

3. Proofs of (2.6), (2.8), (2.9)

Let us take the case of a general G c SL(n + 1), n + 1 even. On G/A'

XΓR
n+ι we have

Δ,.iO(V, Z)1 + Z>2) - ΔCCy(V , Z)1 + Z)2) + ΔCCy(V , V) = exact.

Now Δ (V , Dι + D2) + exact = Δc (V , Dι + D2)cj(K^) = 0 since V is

flat. Thus fo* Δc Cy(V, Z) ! + Z)2) = ^ \ . Cy(V, V). Now we have a G-equiv-

ariant map M -» 5"1 which takes a point m to the point mf on Sn which is the

intersection of the unique integral curve of X through m with Sn. Thus we

consider Γ \ G Xκ M-*T\G Xκ Sn and we see that

Let xv - - , xn+ι be elements in g, xx{f), , x n + 1 ( 0 their one-parameter

groups in G, and (A^.)gJt = ί//Λ(gx |.(/)ϋΓ)/.o (a tangent vector at g/f in

T\G/K). Let (^/) ( g,m ) = d/dtigx^t), m)ίss0 which is a vector field in

Γ \ G X κ M defined along the fiber. Then

, X n + i ) = f ( t ( J 0 . . . < J n + 1 ) Δ φ ( V , V)|fiber).
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Let j g : M^>Γ\G Xκ M be given by jg(m) = (g,m). Then the fiber in
question is jg(M), and the restriction is J*(L(XX) . . . ι(Xn+ι)Δφ(V, V)). Now let
p: Γ \ G X M-* Γ \ G Xκ Λf, and let X also denote d/dt(gx(t), m), β 0 in
Γ \ G X M andyg the inclusion of M in Γ \ G X M. It is immediate that

M^) ' <*"« + i)VV> *)) = fjMϊi) ' <^+i>*Δφ(V, V)).

So we need only study ι(Xx) . . . <Γ r t + !)Δφ(V, V) on Γ \ G X M (omit the/?).
First consider the Gauss-Codazzi equation applied to Δφ(V, V). Let θ and 0

be local connection matrices for V and V . Let a = θ — θ, θ = da + a /\ θ
+ θ Λ «, K = dθ + £ Λ 0. Of course £ = 0. Thus, for φ of degree n + 1, we
have

Δφ(V, V) = (n + 1) 2 W ) Φ ( « Λ Θ' Λ «2y Λ ^ * )

= Σ

Now we want to apply ^Xj) . . . ι(Xn + ι). First, we show thaty^(α) = j*(Θ) =
0 on M. For, 7^(V) = D and y'^V) = ^ are connections on the vector
bundle T(Rn+1) which agree on vectors tangent to M. Thusy^(α) = 0 and
hence jg(&) = 0.

Thus in expanding ι{Xλ) . . . t(Xn+ι)φ(a2J+ι Λ Θ), an α or Θ without a ι(X)
applied to it will restrict to zero on M, and the only terms which can occur
are those where 2j + 1 4- / < n + 1 and i + j = n and so j = 0. Therefore
the only terms which can be nonzero upon restriction come from
ι(Xx) . . . ι(Xn+\)φ(oί Λ ΘΛ) where each a and Θ has an ι(X) applied to it.
Thus

( 3 J ) - Σ Jiψ{{xύ« Λ <*2)Θ Λ ... Λ«(^+i)θ),
σ

where Σσ denotes the sum with the permutation σ applied to each index and
the sign (-l)σ. _ _

We have to now evaluate α(X,.)(gm) andy£(<AV)Θ(gm)). In Γ \ G X Rn+ι let

*/,(*,«•) = (d/Λ)(gXi(0> ^/(-O^),=o L e t ** b e * e v e c t o r f i e l d i n Λ " + 1 S i v e n

by xln-id/ΛXxMm),^ Then X, ( g > m ) = X ( g > m ) - y ? (x^) . Now α is
tensorial which means that if Xt is any tangent vector in frame bundle of
Γ \ G X Rn+ι which projects to Xi9 and if ω and ώ are the connection forms
for θ and 0, then a(Xt) = ω(Xi) - ώ(^). But for X. we can choose
(d/dήigxtiή, Xi{-t)f)ί=0 at a point (g,/) in Γ \ G X Frames (TRn+ι). Now
this ^ is horizontal for both ω and ώ by construction. So σ(Xt) = 0, and
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( g m ) = j£(<X(gtm))(x*m) Let p and p be local connection matrices for D

and ΰ relative to a framing j on Γ(Λn + 1). Then α(^) ( ί r , m ) = j*(cc(gfm))(x^j =

(p — p)m(*?m), which is independent of g. If we take s =

/,, ,' d/dίn+ι}9 then p = 0, Z V = « 7 , * > / < * , * » [ * , 4 Thus, if

= <7, * > then a(Xs\gfm) = cφcJJ ® Lx(s)Js, where L^ is the Lie

derivative and Lx(s)/s is the matrix of [X, s] relative to s. To study

Jg(l(^i)®(g,m)) w e aPPty ^ t o a vector field Y tangent to M to get da(Xi9 Y) +

[α, £](*,, 7). Now a(Y) = j*(a)(Y) = 0, and relative to the framing s we

have j*(θ) = p = 0_and therefore Θ(Y) = 0. Moreover, da(Xi9 Y\gtfn) =

^ ° α ( y ) - y o α ( ^ ) - α ( [ ^ , y]) and [ ^ , y] = 0 since they are vector

fields on different factors of a product, α( Y) = 0 as before, so

Again this is independent of g.

To summarize, let β be the one-form on Λ n + ι given by β(Y) = ω(Y)

Lx(s)/s, and let us consider the function on M given by m -» β(x?)m. Then

(3*2) = Σ JMφ(β(xΐ)dβ(xi)Λ .

Now if we consider ^ Δφ(V, V) pulled up to G/K at the coset gK applied to

Xv , Xn+ι where Xt = d/dtigx^K)^^ the result is, clearly from (3.2),

independent of g. Thus it follows that }M Δφ(V, V) on G/K is left invariant

and hence, on Γ \ G/K, represents an element in the image of H*(Q, K). This

proves (2.8). Now take the case G = SL(n + 1 ) , K = SΌ(H + 1),

n + 1 even, X = Σ"*/ {,9/3/, and here M = Sn. Then L^(^) = -/, / being

the identity matrix. Thus

φ(β(χΐ)dβ(xϊ) Λ Λdβ(x:+X))

Now if φ = c , ^ . . . Cj, then

φ(7) = c, (/)c (/) . Cj (/) = 1 . 11 . I . . . I . I.
1 \ l\ J\ J\ ) \ Js J

So

• Γ β(xϊ)d(β(x;))Λ • • • Λd(β(χ:+ι)),
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where A is a constant independent of iλ and /. In [5] it has been shown that

fSn ΔCC(V, V) is a multiple of χ(V) by a Lie algebra computation. Since

fs» 0(**M/?(**)) Λ Ad(β(x*+ι)) is independent of ix and /, Lemma

(2.6) follows.

Finally, for G' = SL(2) X X 5L(2), K' = SΌ(2) X . . . X 5Ό(2),

we can choose xλ, , xN, N = (n + l)/2, so that x2i-\ = (J -?)> *2/

= (̂  o) in the ith ^/(2) factor. Then xv - - - 9 xN is a. complementary basis

to kf in Q' SO that Xx/\- - A^N ^S a w e u defined 7V-vector field on

F \ G'/K\ and ^ M Δ c c (V, V)(Λr

1, , Λ"̂ ) is a fixed nonzero constant times

SM \.C (^» ^)[Γ" \ ^ / ^ ] A simple computation shows

a . 3 . 9

So

, λN, λN),

β(x*i) = V a - i ' a Diag(λ,, λ,,

Let Λ = Diag(λ,, λ,, , λ^, λN). Then from (3.2),

> ^ΛT) i s a constant depending on volume Γ' \ G'/K'

times

« » "

• • • *

and hence we have (2.9).
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