PSEUDO-EINSTEIN REAL HYPERSURFACES IN COMPLEX SPACE FORMS

MASAHIRO KON

Introduction

The purpose of the present paper is to study real hypersurfaces in complex space forms with certain condition on the Ricci tensor. Cartan and Thomas [18], have shown that an Einstein hypersurface of Euclidean space is a hypersphere if its scalar curvature is positive, and Fialkow [2] classified Einstein hypersurfaces in spaces of constant curvature (see also [5] and [11]). We shall show that any real hypersurface of a complex projective space is not Einsteinian (Theorem 4.3). So we introduce the notion of pseudo-Einstein real hypersurfaces in a Kaehlerian manifold.

Let M be a real hypersurface of a Kaehlerian manifold \bar{M}. Denote by J the almost complex structure of \bar{M}, and by C a unit normal of M in \bar{M}. Put $J C=-U$. Then U is a unit vector field tangent to M. Let g be the Riemannian metric tensor field of \bar{M} as well as the one induced on M. Now we put $f(X)=g(X, U)$ for any vector field X tangent to M. If the Ricci tensor S of M is of the form $S(X, Y)=a g(X, Y)+b f(X) f(Y)$ for some constants a and b, then M is called a pseudo-Einstein real hypersurface of \bar{M}. If $b=0$, then M is Einsteinian. Pseudo-Einstein real hypersurfaces of a complex projective space $P^{n}(C)$ are studied also by Maeda [7]. Our aim is to determine all connected complete pseudo-Einstein real hypersurfaces in a complex projective space $P^{n}(C)(n \geqslant 3)$ and a complex number space C^{n} ($n \geqslant 3$).

In §1 we state basic formulas for real hypersurfaces in a complex space form. In $\S 2$ we prove some lemmas for real hypersurfaces in a complex space form. $\S 3$ is devoted to a study of examples of pseudo-Einstein real hypersurfaces in a complex projective space $P^{n}(C)$, and in $\S 4$ we determine connected complete pseudo-Einstein real hypersurfaces in $P^{n}(C)$. First of all, we prove that any connected pseudo-Einstein real hypersurfaces M of $P^{n}(C)$ has at most three constant prinipal curvatures (Proposition 4.1). On the other hand, Takagi [13], [14] classified connected complete real hypersurfaces in
$P^{n}(C)$ with two or three constant principal curvatures. Combining these results, we have our theorem (Theorem 4.1). In the last $\S 5$ we give some examples of pseudo-Einstein real hypersurfaces in a complex number space C^{n}, and determine all connected complete pseudo-Einstein real hypersurfaces in C^{n}.

The author would like to express his sincere thanks to Dr. R. Takagi for his valuable advice.

1. Preliminaries

Let \bar{M} be a Kaehlerian manifold of complex dimension n (real dimension $2 n$) with almost complex structure J, and M a connected Riemannian real hypersurface of \bar{M} with the induced metric. The Riemannian metric tensor field of \bar{M} will be denoted by g, that induced on M is also denoted by the same g, and all metric properties of M refer to this metric. We denote by C a unit normal of M in \bar{M}. For any vector field X tangent to M we put

$$
\begin{equation*}
J X=\phi X+f(X) C, \quad J C=-U \tag{1.1}
\end{equation*}
$$

where ϕX is the tangential part of $J X, \phi$ is a tensor field of type (1,1), f is a 1 -form, and U is a unit vector field on M. Then they satisfy

$$
\begin{equation*}
\phi^{2} X=-X+f(X) U, \quad \phi U=0, \quad f(\phi X)=0 \tag{1.2}
\end{equation*}
$$

for any vector field X tangent to M. Thus (ϕ, f) defines an almost contact structure on M. Moreover we have

$$
\begin{gather*}
g(\phi X, Y)+g(X, \phi Y)=0, \quad f(X)=g(X, U) \tag{1.3}\\
g(\phi X, \phi Y)=g(X, Y)-f(X) f(Y) .
\end{gather*}
$$

By $\bar{\nabla}$ we denote the operator of covariant differentiation in \bar{M}, and by ∇ the one in M determined by the induced metric. Then the Gauss and Weingarten formulas are given respectively by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) C, \quad \bar{\nabla}_{X} C=-A X
$$

for any vector fields X and Y tangent to M. We call A the second fundamental form of M, which can be considered as a symmetric ($2 n-1,2 n-$)-matrix. We recall that the rank of A at a point x of M is called the type number at x and is denoted by $t(x)$.

Now we assume that \bar{M} is of constant holomorphic sectional curvature $4 c$. Then \bar{M} is called a complex space form and is denoted by $\bar{M}^{n}(c)$. Let R
denote the Riemannian curvature tensor of M. Then we obtain (1.4)

$$
\begin{aligned}
R(X, Y) Z= & c(g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X \\
& -g(J X, Z) J Y+2 g(X, J Y) J Z)+g(A Y, Z) A X \\
& -g(A X, Z) A Y-g\left(\left(\nabla_{X} A\right) Y, Z\right) C+g\left(\left(\nabla_{Y} A\right) X, Z\right) C .
\end{aligned}
$$

Comparing the tangential and normal parts in (1.4), we have the following Gauss and Codazzi equations:

$$
\begin{align*}
R(X, Y) Z= & c(g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{1.5}\\
& +2 g(X, \phi Y) \phi Z)+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c(f(X) \phi Y-f(Y) \phi X+2 g(X, \phi Y) U) \tag{1.6}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) U, U\right)=g\left(\left(\nabla_{U} A\right) X, U\right) \tag{1.7}
\end{equation*}
$$

From (1.5) the Ricci tensor S of M is given by

$$
\begin{align*}
S(X, Y)= & (2 n+1) \operatorname{cg}(X, Y)-3 c f(X) f(Y) \\
& +H g(A X, Y)-g(A X, A Y) \tag{1.8}
\end{align*}
$$

where we have put $H=$ trace A. Therefore the scalar curvature k of M is given by

$$
\begin{equation*}
k=4\left(n^{2}-1\right) c+H^{2}-\operatorname{trace} A^{2} \tag{1.9}
\end{equation*}
$$

If H vanishes identically, then M is said to be minimal. If the Ricci tensor S of M is of the form $S(X, Y)=a g(X, Y)+b f(X) f(Y)$ for some constants a and b, then M is said to be pseudo-Einstein. When $b=0, M$ is an Einstein manifold. If the second fundamental form A of M is of the form $A X=\alpha X+$ $\beta f(X) U$, where α and β are functions on M, then M is said to be totally η-umbilical. When α and β are constant, totally η-umbilical real hypersurfaces of a complex space form are necessarily pseudo-Einstein. If $\beta=0$, then M is totally umbilical. But, if $c \neq 0$, by (1.6) we see that there exists no totally umbilical real hypersurfaces of $\bar{M}^{n}(c)$ (see Tashiro-Tachibana [16]).

2. Basic formulas and lemmas

In this section we prepare some basic formulas and lemmas for real hypersurfaces of a complex space form. Let M be a connected real hypersurface of a complex space form $\bar{M}^{n}(c)$ with constant holomorphic sectional curvature $4 c$. First of all, from (1.1) and Gauss and Weingarten formulas we
have

$$
\begin{gather*}
\nabla_{X} U=\phi A X \tag{2.1}\\
\left(\nabla_{X} \phi\right) Y=f(Y) A X-g(A X, Y) U \tag{2.2}
\end{gather*}
$$

for any vector fields X and Y tangent to M.
Now we assume that the vector U is an eigenvector of A, that is, $A U=\alpha U$. Then (2.1) implies that

$$
\left(\nabla_{X} A\right) U=(X \alpha) U+\alpha \phi A X-A \phi A X
$$

from which it follows that

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, U\right)=(X \alpha) f(Y)+\alpha g(Y, \phi A X)-g(Y, A \phi A X) \tag{2.3}
\end{equation*}
$$

By Codazzi equation (1.6) and (2.3) we have

$$
\begin{align*}
2 c g(X, \phi Y)= & (X \alpha) f(Y)-(Y \alpha) f(X)+\alpha g((\phi A+A \phi) X, Y) \\
& -2 g(A \phi A X, Y) . \tag{2.4}
\end{align*}
$$

Putting $X=U$ or $Y=U$ in (2.4), we see that $X \alpha=(U \alpha) f(X)$ and $Y \alpha=$ $(U \alpha) f(Y)$, and hence (2.4) reduces to

$$
\begin{equation*}
2 c g(X, \phi Y)=\alpha g((\phi A+A \phi) X, Y)-2 g(A \phi A X, Y) \tag{2.5}
\end{equation*}
$$

In the following we suppose that $\operatorname{dim} M=2 n-1 \geqslant 3$, i.e., $n \geqslant 2$.
Lemma 2.1. Let M be a real hypersurface of a complex space form $\bar{M}^{n}(c)$. If $\phi A+A \phi=0$, then $c \leqslant 0$. Moreover if $c=0$, then $t(x) \leqslant 1$ at all x.

Proof. Since $\phi A+A \phi=0$, we have $\phi A U=0$ and hence $A U=f(A U) U$. This means that the vector U is an eigenvector of A. We now put $\alpha=f(A U)$. Then (2.5) implies that

$$
c g(X, \phi Y)=-g(\phi A X, A Y)=g(A \phi X, A Y)
$$

From this we see that $\operatorname{cg}(\phi X, \phi X)=-g(A \phi X, A \phi X) \leqslant 0$. Since the rank of ϕ is $2 n-2$ and $n \geqslant 2$, we must have $c \leqslant 0$. Furthermore, if $c=0$ we have $g(A \phi X, A \phi X)=0$ and hence $A \phi X=-\phi A X=0$. Therefore we obtain $A X=$ $\alpha f(X) U$ for any vector field X tangent to M. Thus we have $t(x) \leqslant 1$ at each point x of M. This completes our assertion.

Lemma 2.2. Let M be a real hypersurface of a complex space form $\bar{M}^{n}(c)$ ($c>0$). If U is an eigenvector of A, then $\alpha=f(A U)$ is constant.

Proof. Since we have $X \alpha=(U \alpha) f(X)$, we see that $\nabla_{X} \operatorname{grad} \alpha=(X \beta) U+$ $\beta \phi A X$, where we have put $\beta=U \alpha$. From this we have

$$
\begin{equation*}
(Y \beta) f(X)-(X \beta) f(Y)=\beta g(\phi A X, Y)-\beta g(\phi A Y, X) \tag{2.6}
\end{equation*}
$$

because of the fact that $g\left(\nabla_{X} \operatorname{grad} \alpha, Y\right)=g\left(\nabla_{Y} \operatorname{grad} \alpha, X\right)$. Putting $X=U$ or $Y=U$ in (2.6), we obtain $X \beta=(U \beta) f(X)$ and $Y \beta=(U \beta) f(Y)$. Therefore we have $\beta g((\phi A+A \phi) X, Y)=0$. From this and Lemma 2.1, we have $\beta=0$ and hence α is constant.

Next we consider the type number of a real hypersurface of a complex space form, and have

Lemma 2.3. Let M be a real hypersurface of a complex space form $\bar{M}^{n}(c)$ $(c \neq 0)$. Then $t(x)>1$ at some point x of M.

Proof. Let us assume that the type number of M is $t(x) \leqslant 1$ at any point x of M. We can choose an orthonormal frame field of M for which the second fundamental form of M can be diagonal, that is, $A e_{i}=0, i=1, \cdots, 2 n-2$ and $A e_{2 n-1}=\lambda e_{2 n-1}$. Let $M^{\prime}=\left\{x \in M: \lambda_{x} \neq 0\right\}$. Then M^{\prime} is an open set of M. In the following our calculation is considered on M^{\prime}. Then we obtain

$$
g\left(\left(\nabla_{e_{i}} A\right) e_{j}, e_{k}\right)=0 \text { for } i, j, k=1, \cdots, 2 n-2
$$

From this and (1.6) we have

$$
f\left(e_{i}\right) g\left(\phi e_{j}, e_{k}\right)-f\left(e_{j}\right) g\left(\phi e_{i}, e_{k}\right)+2 f\left(e_{k}\right) g\left(e_{i}, \phi e_{j}\right)=0
$$

Putting $j=k$ in this equation, we see that

$$
\begin{equation*}
f\left(e_{j}\right) g\left(e_{i}, \phi e_{j}\right)=0, \tag{2.7}
\end{equation*}
$$

which implies that

$$
\begin{aligned}
& \sum_{i=1}^{2 n-2} f\left(e_{j}\right) g\left(e_{i}, \phi e_{j}\right) g\left(e_{i}, \phi e_{2 n-1}\right) \\
& \quad=f\left(e_{j}\right) g\left(\phi e_{j}, \phi e_{2 n-1}\right)=-f\left(e_{j}\right) f\left(e_{j}\right) f\left(e_{2 n-1}\right)=0 .
\end{aligned}
$$

Consequently we see that $f\left(e_{j}\right)=0$ for $j=1, \cdots, 2 n-2$ or $f\left(e_{2 n-1}\right)=0$. If $f\left(e_{j}\right)=0$ for $j=1, \cdots, 2 n-2$, then $f\left(e_{2 n-1}\right)=1$ and hence $e_{2 n-1}=U$. Since we have $g\left(\left(\nabla_{e_{i}} A\right) e_{j}, U\right)=0$ for $i, j=1, \cdots, 2 n-2$, (1.6) implies $g\left(e_{i}, \phi e_{j}\right)=0$. Thus we have that

$$
\sum_{i, j=1}^{2 n-2} g\left(e_{i}, \phi e_{j}\right) g\left(e_{i}, \phi e_{j}\right)=2 n-2=0
$$

or $n=1$. This is a contradiction. Next we suppose that $f\left(e_{2 n-1}\right)=0$. Then we have $A U=0$ and hence $\left(\nabla_{X} A\right) U+A \phi A X=0$. If $A X \neq 0$, we have $A \phi X=$ 0 . Thus we have $\left(\nabla_{X} A\right)=0$ for any vector field X tangent to M. From this and (1.6) we obtain $g(X, \phi Y)=0$ for any vectors X and Y. This is a contradiction. Therefore we see that M^{\prime} is empty, that is, M is totally geodesic. But this contradicts that M is not totally umbilical. Therefore we must have $t(x)>1$ at some point x of M.

Lemma 2.4. Let M be a real hypersurface of a complex space form $\bar{M}^{n}(c)$ $(c \neq 0)$. If $\phi A=A \phi$, then M has at most three constant principal curvatures.

Proof. From the assumption, we see that U is an eigenvector of A. From this and (2.6) we obtain $\beta g(\phi A X, Y)=0$. If $\beta \neq 0$ at some point x of M, then $\phi A X=0$ and hence (2.5) implies that $\operatorname{cg}(X, \phi Y)=0$. From this we get $c=0$.

This is a contradiction. Thus we have $\beta=0$ and hence β is constant. On the other hand, from (2.5) it follows that

$$
\begin{equation*}
\phi A^{2} X-\alpha \phi A X-c \phi X=0 \tag{2.8}
\end{equation*}
$$

Using (1.2) and (2.8) we obtain

$$
\begin{equation*}
A^{2} X-\alpha A X-c X+c f(X) U=0 \tag{2.9}
\end{equation*}
$$

Furthermore, we may assume that $A e_{i}=\lambda_{i} e_{i}, i=1, \cdots, 2 n-2$ and $A e_{2 n-1}$ $=\alpha e_{2 n-1}, e_{2 n-1}=U$. Then (2.9) implies that at most two λ_{i} are distinct, which will be denoted by λ and μ. Then $\lambda+\mu=\alpha$ and $\lambda \mu=-c$. Therefore λ and μ are constant. This proves our assertion.

If M is totally η-umbilical, that is, if the second fundamental form A of M is of the form $A X=a X+b f(X) U$ for some scalar functions a and b on M, then we have $\phi A=A \phi$. Therefore Lemma 2.4 implies that

Lemma 2.5. Let M be a totally η-umbilical real hypersurface of a complex space form $\bar{M}^{n}(c)(c \neq 0)$. Then M has two constant principal curvatures.

Proof. From the assumption on the second fundamental form, we see that M has two principal curvatures. From Lemma 2.4 these two principal curvatures are constant.

In the sequel, we study a real hypersurface M of a complex space form $\bar{M}^{n}(c)$ under the assumption that $A \phi+\phi A=k \phi$ for some constant $k \neq 0$. Then the vector U is an eigenvector of A. Therefore (2.5) implies

$$
\begin{equation*}
2 c g(X, \phi Y)=\alpha k g(\phi X, Y)-2 g(A \phi A X, Y) . \tag{2.10}
\end{equation*}
$$

On the other hand, in the proof of Lemma 2.2 we have already shown that $\beta g((\phi A+A \phi) X, Y)=0$ where $\beta=U \alpha$. Thus $\beta k g(\phi X, Y)=0$. Since $k \neq 0$, we obtain $\beta=0$ and hence α is constant. From the assumption and (2.10) we also have

$$
2 \phi A^{2} X-2 k \phi A X+\alpha k \phi X+2 c \phi X=0
$$

which implies that

$$
\begin{equation*}
2 A^{2} X-2 k A X+(\alpha k+2 c) X-2\left(\alpha^{2}+c\right) f(X) U+k \alpha f(X) U=0 \tag{2.11}
\end{equation*}
$$

From this the eigenvalues of A, which will be denoted by $\lambda_{i}(i=1, \cdots, 2 n$ -2), α satisfies the following quadratic equation

$$
2 t^{2}-2 k t+(\alpha k+2 c)=0
$$

Therefore at most two λ_{i} are distinct, and hence M has at most three principal curvatures λ, μ and α. Since α, k and c are constant, λ and μ are also constant. If $A X=\lambda X$, then $A \phi X=(k-\lambda) \phi X=\mu \phi X$. Therefore the multiplicities of λ and μ are equal to $n-1$. If $\lambda=\mu$, then $A \phi=\phi A$, and therefore $2 A \phi=2 \phi A=k \phi$ which implies that $-2 A X+2 \alpha f(X) U=-k X+k f(X) U$,
that is, we have $A X=\frac{1}{2} k X+\frac{1}{2}(k-2 \alpha) f(X) U$. Consequently M is totally η-umbilical.

Lemma 2.6. Let M be a real hypersurface of a complex space form $\bar{M}^{n}(c)$. If $\phi A+A \phi=k \phi$ for some constant $k \neq 0$, then M has at most three constant principal curvatures λ, μ and α. If $\lambda \neq \mu$, then the multiplicities of λ and μ are equal.

3. Examples

In this section we give examples of pseudo-Einstein real hypersurfaces in a complex projective space $P^{n}(C)$ with constant holomorphic sectional curvature 4. First of all, we describe real hypersurfaces in $P^{n}(C)$ with two or three constant principal curvatures (see Takagi [13], [14]).

Let C^{n+1} be the space of $(n+1)$-tuples of complex numbers $\left(z_{1}, \cdots, z_{n+1}\right)$. Put $S^{2 n+1}=\left\{\left(z_{1}, \cdots, z_{n+1}\right) \in C^{n+1}: \sum_{j=1}^{n+1}\left|z_{j}\right|^{2}=1\right\}$. For a positive number r we denote by $M_{0}^{\prime}(2 n, r)$ a hypersurface of $S^{2 n+1}$ defined by

$$
\begin{equation*}
\sum_{j=1}^{n}\left|z_{j}\right|^{2}=r\left|z_{n+1}\right|^{2}, \quad \sum_{j=1}^{n+1}\left|z_{j}\right|^{2}=1 \tag{3.1}
\end{equation*}
$$

For an integer $m(2 \leqslant m \leqslant n-1)$ and a positive number s, a hypersurface $M^{\prime}(2 n, m, s)$ of $S^{2 n+1}$ is defined by

$$
\begin{equation*}
\sum_{j=1}^{m}\left|z_{j}\right|^{2}=s \sum_{j=m+1}^{n+1}\left|z_{j}\right|^{2}, \quad \sum_{j=1}^{n+1}\left|z_{j}\right|^{2}=1 \tag{3.2}
\end{equation*}
$$

For a number $t(0<t<1)$ we denote by $M^{\prime}(2 n, t)$ a hypersurface of $S^{2 n+1}$ defined by

$$
\begin{equation*}
\left|\sum_{j=1}^{n+1} z_{j}^{2}\right|^{2}=t, \quad \sum_{j=1}^{n+1}\left|z_{j}\right|^{2}=1 \tag{3.3}
\end{equation*}
$$

Let π be the natural projection of $S^{2 n+1}$ onto $P^{n}(C)$. Then $M_{0}(2 n-1, r)$ $=\pi\left(M_{0}^{\prime}(2 n, r)\right)$ is a connected compact real hypersurface of $P^{n}(C)$ with two constant principal curvatures. We call $M_{0}(2 n-1, r)$ a geodesic hypersphere of $P^{n}(C)$. Moreover $M(2 n-1, m, s)=\pi\left(M^{\prime}(2 n, m, s)\right)(n \geqslant 3)$ and $M(2 n-$ $1, t)=\pi\left(M^{\prime}(2 n, t)\right)(n \geqslant 2)$ are connected compact real hypersurfaces in $P^{n}(C)$ with three constant principal curvatures. Then Takagi [13], [14] proved the following theorems.

Theorem A (Takagi [13]). If M is a connected complete real hypersurface in $P^{n}(C)(n \geqslant 2)$ with two constant principal curvatures, then M is a geodesic hypersphere.

Theorem B (Takagi [14]). If M is a connected complete real hypersurface in
$P^{n}(C)(n \geqslant 3)$ with three constant principal curvatures, then M is congruent to some $M(2 n-1, m, s)$ or $M(2 n-1, t)$.

Real hypersurfaces $M_{0}(2 n-1, r), M(2 n-1, m, s)$ and $M(2 n-1, t)$ are said to be of types A_{1}, A_{2} and B respectively in Takagi [13]. We denote by ξ_{1}, \cdots, ξ_{j} the principal curvatures of M in $P^{n}(C)$, and by $m\left(\xi_{1}\right), \cdots, m\left(\xi_{j}\right)$ their multiplicities. Then Takagi [13] gave the following table:

Table

	$\operatorname{dim} M$	j	ξ_{i}	$m\left(\xi_{i}\right)$
A_{1}	$2 n-1$ $(n \geqslant 2)$	2	$\xi_{1}=\cot \theta$ $\xi_{2}=2 \cot 2 \theta$	$m\left(\xi_{1}\right)=2(n-1)$ $m\left(\xi_{2}\right)=1$
A_{2}	$2(p+q)-3$ $(p \geqslant q \geqslant 2)$	3	$\xi_{1}=\cot \theta$ $\xi_{2}=-\tan \theta$ $\xi_{3}=2 \cot 2 \theta$	$m\left(\xi_{1}\right)=2(p-1)$ $m\left(\xi_{2}\right)=2(q-1)$ $m\left(\xi_{3}\right)=1$
B	$2 p-3$ $(p \geqslant 3)$ $3 \xi_{2}=-\tan (\theta-/ 4)$	$\xi_{1}=\cot (\theta-/ 4)$ $m\left(\xi_{2}\right)=p-2$ $\xi_{3}=2 \cot 2 \theta$	$m\left(\xi_{1}\right)=p-2$	
$m\left(\xi_{3}\right)=1$				

Here we notice that the vector U is an eigenvector of A with respect to ξ_{3}. Any geodesic hypersphere $M_{0}(2 n-1, r)$ is pseudo-Einsteinian. In the next place we show that $M(2 n-1, m,(m-1) /(n-m))$ and $M(2 n-1,1 /(n-$ 1)) are pseudo-Einsteinian. From (1.8) and Table we see that $M(2 n-1, m, s)$ is pseudo-Einsteinian if and only if

$$
\begin{equation*}
H \cot \theta-\cot ^{2} \theta=-H \tan \theta-\tan ^{2} \theta \tag{3.4}
\end{equation*}
$$

Since $H=p \cot \theta-(2 n-2-p) \tan \theta+2 \cot 2 \theta$, where p denotes the multiplicity of $\cot \theta$, (3.4) implies that $\sin ^{2} \theta=p /(2 n-2)$. On the other hand, a hypersurface $M^{\prime}(2 n, m, s)$ of $S^{2 n+1}$ has two principal curvatures $\cot \theta$ and $-\tan \theta$ with multiplicities $p+1$ and $2 n-1-p$ respectively (see Takagi [14, p. 515]). Thus $p=2 m-2$ and

$$
M^{\prime}=S^{2 m-1}\left(\frac{n-1}{m-1}\right) \times S^{2(n-m)+1}\left(\frac{n-1}{n-m}\right)
$$

where $(n-1) /(m-1)=\xi_{1}^{2}+1$ and $(n-1) /(n-m)=\xi_{2}^{2}+1$. From this and (3.2) we obtain $s=\frac{m-1}{n-m}$. Thus $M\left(2 n-1, m, \frac{m-1}{n-m}\right)$ is pseudoEinsteinian, and the Ricci tensor S of $M\left(2 n-1, m, \frac{m-1}{n-m}\right)$ is of the form $S(X, Y)=a g(X, Y)+b f(X) f(Y)$ for some constants a and b. Next we determine a and b. The constant a is given by $a=(2 n+1)+H \cot \theta-$ $\cot ^{2} \theta$ by (1.8). Since $\sin ^{2} \theta=p /(2 n-2), H \cot \theta-\cot ^{2} \theta=-1$ and hence
$a=2 n$. Moreover, from (1.8) it follows that b is given by $b=-2+$ $2 H \cot 2 \theta-4 \cot ^{2} 2 \theta$. By this we obtain $b=-2$. Thus the Ricci tensor S of $M(2 n-1, m,(m-1) /(n-m))$ is of the form $S(X, Y)=2 n g(X, Y)-$ $2 f(X) f(Y)$.

Furthermore, from (1.8) and Table we see that $M(2 n-1, t)$ is pseudoEinsteinian if and only if

$$
\begin{equation*}
H \cot \left(\theta-\frac{\pi}{4}\right)-\cot ^{2}\left(\theta-\frac{\pi}{4}\right)=-H \tan \left(\theta-\frac{\pi}{4}\right)-\tan ^{2}\left(\theta-\frac{\pi}{4}\right) \tag{3.5}
\end{equation*}
$$

which together with

$$
H=(n-1)\left[\cot \left(\theta-\frac{\pi}{4}\right)-\tan \left(\theta-\frac{\pi}{4}\right)\right]+2 \cot 2 \theta
$$

gives that $\sin ^{2} 2 \theta=1 /(n-1)$. On the other hand, from the results of Nomizu [9, Theorem 1, p. 1186] and Takagi [14, p. 515] it follows that a hypersurface $M^{\prime}(2 n, t)$ of $S^{2 n+1}$ has four constant principal curvatures $\cot (\theta-\pi / 4), \cot \theta, \cot (\theta+\pi / 4)=-\tan (\theta-\pi / 4)$ and $\cot (\theta+\pi / 2)$ with multiplicities $n-1,1, n-1$ and 1 respectively, and that t is given by $t=$ $\sin ^{2} 2 \theta$ (see also Takagi [15]). Consequently we obtain $t=1 /(n-1)$. Thus $M(2 n-1,1 /(n-1))$ is pseudo-Einsteinian. Moreover we have a $a=2 n$ and $b=2-4 n$, and hence the Ricci tensor S of $M(2 n-1,1 /(n-1))$ is given by $S(X, Y)=2 n g(X, Y)+(2-4 n) f(X) f(Y)$.

Next, in consequence of (3.4), $M(2 n-1, m,(m-1) /(n-m)$) is minimal if and only if $\sin ^{2} \theta=\cos ^{2} \theta, \sin ^{2} \theta=\frac{1}{2}$. Since $\sin ^{2} \theta=(m-1) /(n-1)$, we have $m=(n+1) / 2$. Thus $M(2 n-1,(n+1) / 2,1)$ is a pseudo-Einstein real minimal hypersurface in $P^{n}(C)$. In this case, n must be odd.

If we suppose that $M(2 n-1,1 /(n-1))$ is minimal, (3.5) implies that $\cot ^{2}(\theta-\pi / 4)=\tan ^{2}(\theta-\pi / 4)$. From this we have $\sin 2 \theta=0$. This is a contradiction to the fact that $\sin ^{2} 2 \theta=1 /(n-1)$. Therefore $M(2 n-1$, $1(n-1)$) is not minimal.

A geodesic hypersphere $M_{0}(2 n-1, r)$ is minimal if and only if $H=(2 n-$ 2) $\cot \theta+2 \cot 2 \theta=0$, i.e., $\cos ^{2} \theta=1 / 2 n$. Then we have (see Takagi [13, p. 51])

$$
M_{0}^{\prime}=S^{2 n-1}\left(\frac{2 n}{2 n-1}\right) \times S^{1}(2 n)
$$

where $2 n /(2 n-1)=\xi_{1}^{2}+1$ and $2 n=1 / \xi_{1}^{2}+1$. Thus from (3.1) we have $r=2 n-1$. Therefore a geodesic hypersphere $M_{0}(2 n-1,2 n-1)$ is minimal. For a constant a of $M_{0}(2 n-1, r)$ we obtain $a=2 n+(2 n-$ 2) $\cot ^{2} \theta$ by using (1.8). Thus we have $a>2 n$, and also $b=-2 n$.

From these considerations we see that $M_{0}(2 n-1, r), M(2 n-1, m,(m-$ $1) /(n-m))$ and $M(2 n-1,1 /(n-1))$ are not Einsteinian.
Now we summarize some results from the previous sections. First of all, we notice the following fact. Let λ, μ and α be principal curvatures of $M(2 n-$ $1, m, s)$ or $M(2 n-1, t)$, and let $T_{\lambda}=\{X: A X=\lambda X\}, T_{\mu}=\{X: A X=$ $\mu X\}$. Then $\phi T_{\lambda} \subset T_{\lambda}$ and $\phi T_{\mu} \subset T_{\mu}$ on $M(2 n-1, m, s)$, and $\phi T_{\lambda} \subset T_{\mu}$ and $\phi T_{\mu} \subset T_{\lambda}$ on $M(2 n-1, t)$ (see Takagi [14, Lemma 3.4, p. 513]). If $A \phi=\phi A$, then $\phi T_{\lambda} \subset T_{\lambda}$ and $\phi T_{\mu} \subset T_{\mu}$. Thus by Lemma 2.4 and Theorems A, B we obtain

Theorem 3.1 (Okumura [10]). Let M be a connected complete real hypersurface in $P^{n}(C)(n \geqslant 3)$. If $A \phi=\phi A$, then M is congruent to some $M_{0}(2 n-1, r)$ or $M(2 n-1, m, s)$.

From Lemma 2.5 and Theorem A we have
Theorem 3.2 (Takagi [13]). If M is a connected complete totally η-umbilical real hypersurface in $P^{n}(C)(n \geqslant 2)$, then M is a geodesic hypersphere $M_{0}(2 n-$ $1, r$).

Furthermore, by Lemma 2.6 and Theorems A, B we obtain
Theorem 3.3. Let M be a connected complete real hypersurface in $P^{n}(C)$ ($n \geqslant 3$). If $\phi A+A \phi=k \phi$ for some constant $k \neq 0$, then M is congruent to some $M_{0}(2 n-1, r)$ or $M(2 n-1, t)$.

Remark. In Theorem 3.3 if $k=0$, then by Lemma 2.1 there is no real hypersurface in $P^{n}(C)$.

4. Pseudo-Einstein real hypersurface in $P^{n}(C)$

Let M be a connected real hypersurface of a complex space form $\bar{M}^{n}(c)$ $(n \geqslant 3)$. We can choose a local field of orthonormal frames $e_{1}, \cdots, e_{2 n-1}$, $e_{2 n}$ in $\bar{M}^{n}(c)$ in such a way that, restricted to $M, e_{1}, \cdots, e_{2 n-1}$ are tangent to M, and $e_{2 n-1}=U, e_{2 n}=J e_{2 n-1}=C$. Then for a suitable choice of $e_{1}, \cdots, e_{2 \mathrm{n}-2}$, the second fundamental form A is represented by a matrix form

$$
A=\left(\begin{array}{cccc|c}
\lambda_{1} & & & 0 & h_{1} \tag{4.1}\\
& \ddots & & & \vdots \\
& & \ddots & & \vdots \\
0 & & & \lambda_{2 n-2} & h_{2 n-2} \\
\hline h_{1} & \cdots & \cdots & h_{2 n-2} & \alpha
\end{array}\right),
$$

where we have put $h_{i}=g\left(A e_{i}, U\right), i=1, \cdots, 2 n-2$, and $\alpha=g(A U, U)$.
In the following we assume that M is a pseudo-Einstein real hypersurface in $\bar{M}^{n}(c)$. Then (1.8) reduces to

$$
\begin{align*}
& a g(X, Y)+b f(X) f(Y) \tag{4.2}\\
& \quad=(2 n+1) c g(X, Y)-3 c f(X) f(Y)+H g(A X, Y)-g(A X, A Y)
\end{align*}
$$

for any vector fields X and Y tangent to M, where a and b are constants. From (4.1) and (4.2) we have the following equations:

$$
\begin{aligned}
g\left(A e_{i}, A e_{j}\right)=0 & \text { for } i \neq j, \quad i, j=1, \cdots, 2 n-2, \\
H g\left(A e_{i}, U\right)-g\left(A e_{i}, A U\right)=0 & \text { for } i=1, \cdots, 2 n-2
\end{aligned}
$$

By these equations we obtain

$$
\begin{gather*}
h_{i} h_{j}=0, i \neq j, i, j=1, \cdots, 2 n-2, \tag{4.3}\\
h_{i}\left(H-\lambda_{i}-\alpha\right)=0, i=1, \cdots, 2 n-2 . \tag{4.4}
\end{gather*}
$$

Equations (4.3) show that at most one h_{i} does not vanish. Thus we can assume $h_{i}=0$ for $i=2, \cdots, 2 n-2$. Then (4.4) implies

Lemma 4.1. Let M be a connected real hypersurface of a complex space form $\bar{M}^{n}(c)$. If M is pseudo-Einsteinian, then $H=\lambda_{1}+\alpha$ or $h_{1}=0$.

On the other hand, by (4.2) we obtain the following equations:

$$
\begin{align*}
& a=(2 n+1) c+H \lambda_{i}-\lambda_{i}^{2}, \quad i=, \cdots, 2 n-2 \tag{4.5}\\
& a=(2 n+1) c+H \lambda_{1}-\lambda_{1}^{2}-h_{1}^{2} \tag{4.6}\\
& a=(2 n-2) c-b+H \alpha-\alpha^{2}-h_{1}^{2} \tag{4.7}
\end{align*}
$$

In the sequel, we take $P^{n}(C)$ as an ambient manifold. Then we can have
Lemma 4.2. Let M be a connected pseudo-Einstein real hypersurface in $P^{n}(C)$. Then $h_{1}=0$.

Proof. Suppose that $H=\lambda_{1}+\alpha$. Then (4.6) and (4.7) imply $b=-3$. Therefore (4.2) can be rewritten as

$$
\begin{equation*}
a g(X, Y)=(2 n+1) g(X, Y)+H g(A X, Y)-g(A X, A Y) \tag{4.8}
\end{equation*}
$$

Here we take a new local field of orthonormal frames $e_{1}, \cdots, e_{2 n-1}$ of M for which the second fundamental form A can be represented by a diagonal matrix form, i.e., $A e_{i}=\beta_{i} e_{i}(i=1, \cdots, 2 n-1)$. Then (4.8) implies

$$
\begin{equation*}
\beta_{i}^{2}-H \beta_{i}+a-(2 n+1)=0 \tag{4.9}
\end{equation*}
$$

Therefore each principal curvatures β_{i} satisfies the quadratic equation

$$
\begin{equation*}
t^{2}-H t+a-(2 n+1)=0 \tag{4.10}
\end{equation*}
$$

Thus at most two principal curvatures can be distinct at each point. Let us denote them by λ and μ with $\lambda \geqslant \mu$. Since M is not totally umbilical, we may
suppose $\lambda \neq \mu$ at some point. Then from (4.10) we see

$$
\begin{equation*}
H=\lambda+\mu, \quad \lambda \mu=a-(2 n+1) \tag{4.11}
\end{equation*}
$$

Let p be the multiplicity of λ. Then we have $H=p \lambda+(2 n-1-p) \mu$. Combining this with (4.11) gives

$$
\begin{equation*}
(p-1) \lambda+(2 n-2-p) \mu=0 \tag{4.12}
\end{equation*}
$$

Suppose $a>(2 n+1)$. Then the second equation of (4.11) shows that λ and μ have the same sign at some point. Therefore (4.12) implies that $p=1$ and $n=3 / 2$, which is a contradiction. If $a<(2 n+1)$ and $\lambda=\mu$ at some point, then we have $(2 n-2) \lambda^{2}=a-(2 n+1)<0$ by (4.10). This is also a contradiction. Hence M has exactly two distinct principal curvatures $\lambda>\mu$ at each point. Then we see $1<p<2 n-2$ from (4.12), and

$$
\lambda_{2}=-\frac{(2 n-2-p)(a-2 n-1)}{(p-1)}, \quad \mu^{2}=-\frac{(p-1)(a-2 n-1)}{(2 n-2-p)}
$$

from (4.11) and (4.12). Therefore the two principal curvatures λ and μ are constant. Thus applying Lemma 3.3 of Takagi [13] we must have $p=1$ or $p=2 n-2$. This is also a contradiction. Next we assume that $a=(2 n+1)$. Then the product of two principal curvatures is zero, and (4.10) shows that $\lambda^{2}-H \lambda=0$, from which $(p-1) \lambda^{2}=0$. This gives $t(x) \leqslant 1$ at each point. This contradicts Lemma 2.3.

From Lemma 4.2 we see that the vector U is an eigenvector of A, i.e., $A U=\alpha U$. Therefore from (4.2) the principal curvatures λ_{i} satisfy

$$
\begin{equation*}
\lambda_{i}^{2}-H \lambda_{i}+a-(2 n+1)=0, \quad i=1, \cdots, 2 n-2 \tag{4.13}
\end{equation*}
$$

Thus each λ_{i} satisfies the quadratic equation (4.10). Therefore at most two λ_{i} can be distinct. Let us denote them by λ and μ with $\lambda \geqslant \mu$. Consequently M has at most three principal curvatures λ, μ and α.

Next we prove that λ, μ and α are constant. From Lemma 2.2 we have already seen that α is constant.

Proposition 4.1. Let M be a connected pseudo-Einstein real hypersurface in $P^{n}(C)(n \geqslant 3)$. Then M has at most three constant principal curvatures.

Proof. First of all, (4.2) gives

$$
\begin{equation*}
a=(2 n-2)-b+H \alpha-\alpha^{2} . \tag{4.14}
\end{equation*}
$$

If $\alpha \neq 0$, then H is constant by (1.14), and (4.13) implies that λ and μ are constant. Next we suppose that $\alpha=0$. Then we have $H=p \lambda+(2 n-2-$ $p) \mu$, where p denotes the multiplicity of λ.

Let $a>(2 n+1)$. If $\lambda \neq \mu$ at some point x of M, then from $H=\lambda+\mu$, we get $(p-1) \lambda+(2 n-3-p) \mu=0$. Since $\lambda \mu=a-(2 n+1)>0$, we conclude that $p=1$ and $2 n-3=p$ and hence $n=2$. This is a contradiction to
the assumption $n \geqslant 3$. Thus we must have $\lambda=\mu$ at each point. Then (4.13) implies that $(2 n-3) \lambda^{2}=a-(2 n+1)$ showing that λ is a constant.

Suppose $a<(2 n+1)$. If $\lambda=\mu$ at some point, then we have $(2 n-3) \lambda^{2}=$ $a-(2 n+1)<0$ by (4.13). This is a contradiction. Therefore $\lambda \neq \mu$ at each point, and using (4.10) we obtain $H=p \lambda+(2 n-2-p) \mu=\lambda+\mu$ and $\lambda \mu=a-(2 n+1)$ giving

$$
\lambda^{2}=-\frac{(2 n-3-p)(a-2 n-1)}{(p-1)}, \quad \mu^{2}=-\frac{(p-1)(a-2 n-1)}{(2 n-3-p)} .
$$

Consequently the principal curvatures λ and μ are constant.
Next we assume that $a=(2 n+1)$. In this case the product of two principal curvatures is zero. Thus if $\lambda \neq 0$, then $H=P \lambda$, and (4.13) implies $(p-1) \lambda^{2}=0$. Hence $p=1$, and $t(x) \leqslant 1$ at each point. This is a contradiction by Lemma 2.3. Consequently M has at most three constant principal curvatures.

From Theorems A, B of Takagi [13], [14] and Proposition 4.1 we have
Theorem 4.1. If M is a connected complete pseudo-Einstein real hypersurface in $P^{n}(C)(n \geqslant 3)$, then M is congruent to some geodesic hypersphere $M_{0}(2 n-1, r)$ or $M(2 n-1, m,(m-1) /(n-m))$ or $M(2 n-1,1 /(n-1))$.

From Theorem 4.1 and the argument in $\S 3$ we have
Theorem 4.2. If M is a connected complete pseudo-Einstein real minimal hypersurface in $P^{n}(C)(n \geqslant 3)$, then M is congruent to $M_{0}(2 n-1,2 n-1)$ or $M(2 n-1,(n+1) / 2,1)$. In the later case, n is odd.

If a real hypersurface M of $P^{n}(C)$ is Einsteinian, then it is obviously pseudo-Einsteinian and has at most three constant principal curvatures. From this and Theorem 4.1, the argument in $\S 3$ gives

Theorem 4.3. Let M be a connected complete real hypersurface in $P^{n}(C)$ ($n \geqslant 3$). Then M is not Einstein.

Corollary 4.1. Let M be a connected complete pseudo-Einstein real hypersurface in $P^{n}(C)(n \geqslant 3)$. Then we have $a \geqslant 2 n$. If $a \neq 2 n$, then M is congruent to some geodesic hypersphere $M_{0}(2 n-1, r)$. If $a=2 n$ and $b=-2$, then M is congruent to some $M(2 n-1, m,(m-1) /(n-m))$. If $a=2 n$ and $b=2-4 n$, then M is congruent to $M(2 n-1,1 /(n-1))$.

5. Pseudo-Einstein real hypersurfaces in C^{n}

In this section we study a connected complete pseudo-Einstein real hypersurface M in a complex number space $C^{n}(n \geqslant 3)$. First of all, we give some examples of connected complete pseudo-Einstein real hypersurfaces in C^{n} ($=R^{2 n}$).
(1) Hyperplanes: $M=R^{2 n-1}, A=0$.
(2) Spheres: $M=S^{2 n-1}(c)=\left\{\left(z_{1}, \cdots, z_{n}\right) \in C^{n}: \quad \sum_{j=1}^{n}\left|z_{j}\right|^{2}=1 / c\right\}$, $A=\sqrt{c} I$.
(3) Cylinders over $(2 n-2)$-spheres: $M=S^{2 n-2}(c) \times R, A=\sqrt{c} I_{2 n-2} \oplus$ 0.
(4) Cylinders over complete plane curves: $M=\gamma \times R^{2 n-2}$, where γ is a curve: $-\infty<s<\infty \rightarrow \gamma(s)$ in a plane R^{2} perpendicular to $R^{2 n-2}, A=\lambda I_{1} \oplus$ 0 for some scalar function λ on γ.

If M is an Einstein real hypersurface in C^{n}, then M is a sphere, a hyperplane, or a cylinder over a complete plane curve (cf. Ryan [11, Theorem 3.3, p. 376]).

From Lemma 4.1 we can consider two cases: (I) $H=\lambda_{1}+\alpha$, (II) $h_{1}=0$, and hence U is an eigenvector of A.

If $H=\lambda_{1}+\alpha$, then (4.6) and (4.7) imply $b=0$, and hence M is an Einstein manifold. Thus we have
Lemma 5.1. Let M be a connected pseudo-Einstein real hypersurface of C^{n}. If $H=\lambda_{1}+\alpha$, then M is an Einstein manifold.

Next we assume that $h_{1}=0$. Then we see that $A e_{i}=\lambda_{i} e_{i}(i=1, \cdots, 2 n$ -2), and $A U=\alpha U$. Moreover (4.5), (4.6) and (4.7) reduce to

$$
\begin{gather*}
a=H \lambda_{i}-\lambda_{i}^{2}, \quad i=1, \cdots, 2 n-2, \tag{5.1}\\
a+b=H \alpha-\alpha^{2} . \tag{5.2}
\end{gather*}
$$

Thus each λ_{i} satisfies the quadratic equation

$$
t^{2}-H t+a=0
$$

and hence we can have at most two distinct λ_{i}, which are denoted by λ and μ with $\lambda \geqslant \mu$. Consequently M has at most three principal curvatures λ, μ and α. Since U is an eigenvector of A, by the similar method like that in the proof of Lemma 2.2, we have $\beta g(\phi A X+A \phi X, Y)=0$. Therefore from Lemma 2.1 we have

Lemma 5.2. Let M be a connected pseudo-Einstein real hypersurface of C^{n}. If $h_{1}=0$, then $\phi A+A \phi=0$ or $\beta=0$. Moreover if $\phi A+A \phi=0$, then $t(x) \leqslant 1$ at any point x of M.

If $t(x) \leqslant 1$ at any point x of M, then M is locally isometric to $R^{2 n-1}$. Furthermore, if M is complete, by a theorem of Hartman-Nirenberg [4], M is a cylinder over a complete plane curve (for the proof of the theorem of Hartman-Nirenberg see also Nomizu [8]). If $t(x)=0$ for all x, then M is totally geodesic and is a hyperplane.

In the following we assume that $\beta=0$, that is, α is constant. Here we need the following theorem due to Cartan [1] (see also Gray [3]).

Theorem C (Cartan [1]). Let M be a hypersurface in C^{n} whose principal curvatures are constant. Then at most two of them are distinct.

Suppose $\alpha \neq 0$. Then (5.2) shows that H is also constant, and hence λ and μ are constant by (5.1). Therefore, from Theorem C, M has at most two distinct principal curvatures. If $\alpha=\lambda$ or $\alpha=\mu$, then (5.1) and (5.2) imply that $b=0$. Thus M is an Einstein manifold. Next we assume that $\lambda=\mu$ and $\lambda \neq \alpha$. Then the equation (1.5) of Gauss implies

$$
\begin{equation*}
g(X, R(X, Y) Y)=\lambda \alpha \quad \text { for } X \in T_{\lambda}, Y \in T_{\alpha} \tag{5.3}
\end{equation*}
$$

where we have put $T_{\lambda}=\{X: A X=\lambda X\}$ and $T_{\alpha}=\{X: A X=\alpha X\}$. Since λ and α are constant, both distributions T_{λ} and T_{α} are parallel (see Ryan [11, pp. 372-374]). Therefore $g(X, R(X, Y) Y)=0$ for $X \in T_{\lambda}, Y \in T_{\alpha}$, and hence $\lambda \alpha=0$. By the assumption, $\alpha \neq 0$ and hence $\lambda=0$. Consequently $t(x)=1$ on M.

Next suppose $\alpha=0$. Then (5.2) implies

$$
\begin{equation*}
a+b=0 \tag{5.4}
\end{equation*}
$$

Let $a>0$. If $\lambda \neq \mu$ at some point x of M, then $\lambda \mu=a>0$ and λ, μ have the same sign. On the other hand, $\lambda+\mu=H=p \lambda+q \mu$, where p and q denote the multiplicities of λ and μ respectively, from which $p=1$ and $q=1$. Since this contradicts the assumption $n \geqslant 3$, we have $\lambda=\mu$ at any point of M. Hence $a=(2 n-3) \lambda^{2}$, and λ is constant with multiplicity $p=2 n-2$.

Let $a<0$. Then $\lambda \mu<0$. If $\lambda=\mu$ at some point x of M, then we get a contradiction. Thus $\lambda \neq \mu$ at any point on M, and $H=\lambda+\mu=p \lambda+q \mu$, $\lambda \mu=a$, from which it follows that

$$
\lambda^{2}=\frac{-a(2 n-2-p)}{p}, \quad \mu^{2}=\frac{-a p}{(2 n-2-p)} .
$$

Therefore λ, μ and α are constant. This contradicts to Theorem C.
Suppose $a=0$. Then (5.1) implies $(p-1) \lambda^{2}=0$. If $\lambda \neq 0$, then $p=1$. Consequently $t(x) \leqslant 1$ on M. On the other hand, if $a=0$, then by (5.4) we have $b=0$, and M is Einsteinian.

When $a>0, M$ has two constant principal curvatures λ and $\alpha=0$ with multiplicities $2 n-2$ and 1 respectively. Then, if M is complete, M is congruent to a cylinder over $(2 n-2)$-sphere $S^{2 n-2}(c) \times R$. Indeed, the Riemannian curvature tensor R of M satisfies $R(X, Y) \cdot R=0$, and hence a theorem of Nomizu [8] implies our assertion. From these we get

Theorem 5.1. Let M be a connected complete pseudo-Einstein real hypersurface in $C^{n}(n \geqslant 3)$. Then M is congruent to a hyperplane $R^{2 n-1}$, a sphere $s^{2 n-1}(c)$, a cylinder over a $(2 n-2)$-sphere $S^{2 n-2}(c) \times R$, or a cylinder over a complete plane curve $\gamma \times R^{2 n-2}$.

References

[1] E. Cartan, Sur quelques familles remarquables d'hypersurfaces, C. R. Congrè. Math. Liege, 1939, 30-41; Oeuvres complétes Tome III, Vol. 2, p. 1481.
[2] A. Fialkow, Hypersurfaces of a space of constant curvature, Ann. of Math. 39 (1938) 762-785.
[3] A. Gray, Principal curvature forms, Duke Math. J. 36 (1969) 33-42.
[4] P. Hartman \& L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959) 901-920.
[5] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vo. II, Wiley-Interscience, New York, 1969.
[6] H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential Geometry 4 (1970) 349-357.
[7] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976) 529-540.
[8] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. 20 (1968) 46-59.
[9] __ Some results in E. Cartan's theory of isoparametric families of hypersurfaces, Bull. Amer. Math. Soc. 79 (1973) 1184-1188.
[10] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975) 355-364.
[11] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J. 21 (1969) 363-388.
[12] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973) 495-506.
[13] , Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975) 43-53.
[14] , Real hypersurfaces in a complex projective space with constant principal curvatures. II, J. Math. Soc. Japan 27 (1975) 507-516.
[15] __ A class of hypersurfaces with constant principal curvatures in a sphere, J. Differential Geometry 11 (1976) 225-233.
[16] Y. Tashiro \& S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math. Sem. Rep. 15 (1963) 176-183.
[17] T. Y. Thomas, On closed spaces of constant mean curvature, Amer. J. Math. 58 (1936) 702-704.
[18] ___ Extract from a letter by E. Cartan concerning my note: On closed spaces of constant mean curvature, Amer. J. Math. 59 (1937) 793-794.

Science University of Tokyo

