DEFORMATION THEORY FOR HOLOMORPHIC FOLIATIONS

T. DUCHAMP & M. KALKA

Introduction

In this paper we consider deformations of holomorphic foliations on compact manifolds. By a holomorphic foliation we mean a foliation given by local submersions $f_{\alpha}: U_{\alpha} \to R^{2q}$ which patch together via maps $\varphi_{\alpha\beta}: R^{2q} \to R^{2q}$, which are local biholomorphisms when R^{2q} is identified with \mathbb{C}^{q} .

For \mathcal{F} a holomorphic foliation on a manifold M, we show that the infinitesimal deformations of \mathcal{F} correspond to elements of $H^1(M, \theta_{\mathcal{F}})$, where $\theta_{\mathcal{F}}$ is the sheaf of germs of holomorphic vector fields on the normal bundle of \mathcal{F} which are constant on the leaves of \mathcal{F} . For example, if \mathcal{F} is given by the fibers of a submersion onto a complex manifold, then $\theta_{\mathcal{F}}$ is the pull-back of the sheaf θ_N of germs of holomorphic vector fields on the image. By constructing explicitly a resolution of $\theta_{\mathcal{F}}$ by an elliptic complex (E_Q^{**}, d_Q) we show that $H^{\bullet}(M, \theta_{\mathcal{F}})$ is finite dimensional.

Resolutions of the sheaf of sections of the normal bundle of a C^{∞} -foliation which are constant on leaves have appeared in the works of Hamilton [4], Heitsch [5], Kamber-Tondeur [6], Mostow [9] and Vaisman [15]. Also in the case where M is a complex manifold and the submersions f_{α} are holomorphic, Heitsch has constructed a resolution of the sheaf $\theta_{\mathcal{F}}$ and shown that its cohomology groups are finite dimensional. Our resolution is different from his and applies to the case where M is only a smooth manifold. Of course the general theory of pseudogroup structures on manifolds developed by Spencer [13] applies to the case of holomorphic foliations on smooth manifolds. However, the relevant pseudogroup is neither elliptic nor complex; hence the Spencer complex associated to such a foliation does not directly lead to finite dimensionality results and the theory of elliptic complexes does not apply to it.

Having constructed a resolution of $\theta_{\mathfrak{B}}$ we then show how to extend Kuranishi's theorem on the existence of a locally complete finite dimensional holomorphic family for complex structures close to a given complex structure,

Communicated by L. Nirenberg, August 25, 1977, and, in revised form, June 2, 1978.

to holomorphic foliations. In order to do this, it is necessary to define a bracket operation $[,]_Q: E_Q^{*r} \times E_Q^{*s} \to E_Q^{*r+s}$ with certain nice properties (2.11-2.14). In general we cannot do this. However, if we assume that there is a C^{∞} -foliation \mathfrak{F}^{\perp} transverse to the foliation \mathfrak{F} , then such a bracket can be defined. Distributions near the tangent bundle of \mathfrak{F} are given by elements of $\Gamma(E_Q^{*1})$, and the integrability condition in the complex Frobenius theorem takes the form $d_Q - [,]_Q = 0$. The operator d_Q is just the sum of the Dolbeaut operator in the holomorphic directions normal to \mathfrak{F} and the de Rham operator in directions parallel to \mathfrak{F} . Note that the transverse foliation \mathfrak{F}^{\perp} allows us to consider all bundles as sub-bundles of the complexified tangent bundle of M or its dual. The proof proceeds exactly as in Kuranishi [8], only the bundles and the operators have been changed. In fact Kuranishi's theorem is a special case of our theorem, where the leaves of the foliation are the points of M.

We then consider the problem of computing $H^1(M, \theta_{\mathfrak{F}})$. In particular, we consider the case where \mathfrak{F} is given by a fibration $M \to N$ with N a complex manifold and with fiber S. We show that if $H^1_{DR}(S) = 0$ and $H^1(N, \theta_N) = 0$, then $H^1(M, \theta_{\mathfrak{F}}) = 0$, where θ_N is the sheaf of germs of holomorphic vector fields on N. If the structure group of the fibration is discrete, this implies that there are no small deformations of \mathfrak{F} , up to equivalence. This should be compared with Hamilton's result [4] that if \mathfrak{F} is a C^{∞} -Hausdorff foliation with $H^1_{DR}(L) = 0$, where L is the generic leaf of \mathfrak{F} , then \mathfrak{F} is structurally stable.

The paper is organized as follows: In §1 we describe the relevant elliptic complexes and define the operator d_Q . In §2 we define the bracket operator $[,]_Q$ and derive the partial differential equation which is the integrability condition in the complex Frobenius theorem. In §3 we solve this equation and prove Kuranishi's theorem. In §4 we compute $H^1(M, \theta_{\oplus})$ in certain cases. The techniques of §4 are similar to those of Mostow [9]. The main results of this paper are Theorems 1.27, 2.4 and 3.1.

We will use the following notational conventions: Latin subscripts (or superscripts) will run from 1 to p, whereas Greek subscripts (or superscripts) will run from 1 to q where n = p + 2q. Also if B is a vector bundle over M, then we will denote by \underline{B} the sheaf of germs of sections of B. If \underline{S} is a sheaf, the space of global sections of \underline{S} will be denoted by $\Gamma(\underline{S})$. If B is a bundle, the space of its global sections will be denoted by $\Gamma(\underline{B})$. We will use the Einstein summation conventions.

1. Elliptic complexes associated to a holomorphic foliaton

Let M be an n-dimensional C^{∞} -manifold. We investigate here holomorphic

foliations on M close to a fixed holomorphic foliation. We recall that a (real) codimension-2q holomorphic foliation \mathcal{F} is given by an open cover $\{U_{\alpha}\}_{\alpha \in A}$ of M, a collection of submersions $f_{\alpha}: U_{\alpha} \to \mathbb{C}^{q}$, and associated maps $\varphi_{\alpha\beta}^{*}$ for each $x \in U_{\alpha} \cap U_{\beta}$, which are local biholomorphic maps and satisfy $f_{\beta}(y) = \varphi_{\beta\alpha}^{*} \circ f_{\alpha}(y)$ for y near x. For the foliation to be global it is necessary that the collection $\{\varphi_{\alpha\beta}^{*}\}_{\alpha,\beta\in A}$ satisfy the cocycle condition $\varphi_{\alpha\gamma}^{*} = \varphi_{\alpha\beta}^{*} \circ \varphi_{\beta\gamma}^{*}$ for al α , β , γ such that $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$ and for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. A collection $\{U_{\alpha}, f_{\alpha}, \{\varphi_{\alpha\beta}^{*}\}_{x\in U_{\alpha}\cap U_{\beta}}\}$ which is maximal with respect to the above properties is called a Haefliger cocycle with coefficients in Γ_{C}^{q} , the pseudogroup of local biholomorphisms of \mathbb{C}^{q} . We set $\mathcal{H}_{\mathfrak{F}} = \{f_{\alpha}: U_{\alpha} \to \mathbb{C}^{q}, \varphi_{\alpha\beta}^{*} \in \Gamma_{C}^{q}, \alpha, \beta \in A\}$.

Associated to a codimension -2q holomorphic foliation \mathcal{F} is its tangent bundle L. Set $p = \dim L_x = n - 2q$. The normal bundle of \mathcal{F} is the bundle Q = TM/L. There is an almost complex structure on Q obtained by lifting the standard complex structure on \mathbb{C}^q to Q via the submersions f_{α} . We recall that Q is locally representable as the pull-back, along f_{α} , of the tangent bundle of \mathbb{C}^q .

The almost complex structure on Q induces a splitting of the complexified normal bundle in the standard way

(1.1)
$$Q^{\mathbf{C}} = Q^{(1,0)} \oplus Q^{(0,1)}$$

We will need several short exact sequences of vector bundles associated to the foliation. Consider first the sequence defining Q:

(1.2)
$$0 \to L \xrightarrow{L} T_M \to \xrightarrow{\pi} Q \to 0.$$

Because of (1.1) we have an exact sequence of complex vector bundles

(1.3)
$$0 \to E \xrightarrow{i_E} T_M^{\mathbf{C}} \xrightarrow{\pi^{(1,0)}} Q^{(1,0)} \to 0,$$

where $\pi^{(1,0)}$ is defined to be the composition

$$T_M^{\mathbf{C}} \xrightarrow{\pi^{\mathbf{C}}} Q^{\mathbf{C}} \to Q^{(1,0)}$$

and $E = \text{Ker } \pi^{(1,0)}$. We note that there is a noncanonical isomorphism $E \simeq L^{\mathbb{C}} \oplus Q^{(0,1)}$. We also consider the exact sequence of real vector bundles

(1.4)
$$0 \to L \xrightarrow{\iota_L} T_M \xrightarrow{\tau} Q^{(1,0)} \to 0.$$

The map τ in (1.4) is the composition

$$T_M \to T_M^{\mathbf{C}} \stackrel{\pi^{(1,0)}}{\to} Q^{(1,0)}.$$

To check that (1.4) is exact we need to check that Ker $\tau = L$ and that τ is surjective. We do this in local coordinates. Let $U \subseteq M$ be open and let f:

T. DUCHAMP & M. KALKA

 $U \to \mathbb{C}^q$ be a submersion in $\mathcal{K}_{\mathfrak{F}}$. We can consider U to be contained in

$$\mathbf{R}^{p} \times \mathbf{C}^{q} = \{(x, z) | x = (x^{1}, \dots, x^{p}), z = (z^{p+1}, \dots, z^{n}) \},\$$

and f to be the map $(x, z) \rightarrow z$. Such a coordinate system is said to be adapted to the holomorphic foliation \mathcal{F} . Let $z^{\alpha} = u^{\alpha} + iv^{\alpha}$. Then T_M is spanned by the vector fields $\partial/\partial x^j$, $\partial/\partial u^{\alpha}$, $\partial/\partial v^{\alpha}$. Also $Q^{\mathbf{C}}$ is spanned by the vector fields

(1.5)
$$\left[\frac{\partial}{\partial z^{\alpha}}\right] = \frac{1}{2} \left[\frac{\partial}{\partial u^{\alpha}} - i\frac{\partial}{\partial v^{\alpha}}\right], \quad \left[\frac{\partial}{\partial \overline{z}^{\beta}}\right] = \frac{1}{2} \left[\frac{\partial}{\partial u^{\beta}} + i\frac{\partial}{\partial v^{\beta}}\right],$$

and $Q^{(1,0)}$ is spanned by the vector fields $[\partial/\partial z^{\alpha}]$. Finally *L* is spanned by the vector fields $\partial/\partial x^{\alpha}$. We write $[\partial/\partial z^{\alpha}]$ for the equivalence class of $\partial/\partial z^{\alpha}$ under the projection $T_M^{\mathbf{C}} \to Q^{\mathbf{C}}$. Then for $X = X^j \partial/\partial x^j + U^{\alpha} \partial/\partial u^{\alpha} + V^{\alpha} \partial/\partial v^{\alpha}$ we have

(1.6)
$$\tau(X) = (U^{\alpha} + iV^{\alpha}) \left[\frac{\partial}{\partial z^{\alpha}} \right] \in Q^{(1,0)}.$$

It is now clear that τ is surjective and Ker $\tau = L$.

If $B \subseteq T_M^{\mathbb{C}}$ is a complex vector sub-bundle, we will denote its complex conjugate bundle by \overline{B} . With this definition we see that

(1.7)
$$T_{\mathcal{M}}^{\mathbf{C}} = E + \overline{E}.$$

We will need the following version of the complex Frobenius theorem of Nirenberg [11].

Theorem 1.8. Let $E \subseteq T_M^C$ be a sub-bundle of T_M^C of complex codimension q with $E + \overline{E} = T_M^C$. Let $Q^{(1,0)} \equiv T_M^C / E$ so that $Q^{(1,0)*} \subseteq T_M^{C*}$. Then the following conditions are equivalent:

(1) $[\underline{E}, \underline{E}] \subseteq \underline{E}$.

(2) $d\tilde{Q}^{(\tilde{1},0)*\tilde{\Omega}_{M}^{p}} \subseteq \tilde{Q}^{(1,0)*\tilde{\Omega}_{M}^{p+1}}$ for all $p \ge 0$.

(3) \tilde{E} and $Q^{(1,0)}$ are obtained from a codimension -2q holomorphic foliation as in the above discussion.

Let $\rho: Q \to T_M$ be a splitting of (1.2). ρ induces a splitting of (1.3)

(1.9)
$$0 \to E \xrightarrow{i_{\mathbf{C}}}_{\varphi} T_{M} \xrightarrow{\pi^{(1,0)}}_{\rho^{(1,0)}} Q^{(1,0)} \to 0.$$

The splitting (1.9) allows us to define a one-one correspondence between distributions (a distribution will be used to mean a sub-bundle of the tangent bundle and not a generalized function) near E and the space $\operatorname{Hom}_{\mathbb{C}}(E, Q^{(1,0)})$ in the following way. For $\varphi \in \operatorname{Hom}_{\mathbb{C}}(E, Q^{(1,0)})$ let $E_{\varphi} \subseteq T_{\mathcal{M}}^{\mathbb{C}}$ be defined by $E_{\varphi} = \{i_{\varphi}(X) = i_{\mathbb{C}}(X) + \rho^{1,0} \circ \varphi(X) | X \in E\}$. Conversely let $E' \subseteq T_{\mathcal{M}}^{\mathbb{C}}$ be a

sub-bundle near E. Then the map

$$E' \subseteq T_M^{\mathbf{C}} \xrightarrow{\varphi} E$$

is an isomorphism. The inverse of this map is clearly of the form $X \mapsto i_{\mathbb{C}}(X) + \rho^{(1,0)} \circ \varphi(X)$ for a unique element $\varphi \in \text{Hom}(E, Q^{(1,0)})$.

Remark 1.10. For $\varphi \in \operatorname{Hom}_{\mathbb{C}}(E, Q^{(1,0)})$ we have $E_{\varphi} + \overline{E}_{\varphi} = T_{M}^{\mathbb{C}}$.

Hence by Theorem (1.8) there is a one-to-one correspondence between holomorphic foliations near \mathcal{F} and the set

(1.11)
$$\operatorname{Fol}(\mathfrak{F}) = \left\{ \varphi \in \operatorname{Hom}_{\mathbf{C}}(E, Q^{(1,0)}) | \left[\underbrace{E}_{\varphi}, \underbrace{E}_{\varphi} \right] \subseteq \underbrace{E}_{\varphi} \right\}.$$

We wish to characterize $Fol(\mathcal{F})$ as an analytic subspace of a neighborhood in the first cohomology group of a certain sheaf on M. In order to do this it is necessary to define this sheaf and to construct a resolution of it by an elliptic complex. This will enable us to use the theory of elliptic partial differential equations.

We have the following short exact sequence of sheaves

(1.12)
$$0 \to Q^{(1,0)*} \wedge \Omega^{s-1}_{\mathcal{M}} \to \Omega^{s}_{\mathcal{M}} \xrightarrow{i_{E}^{*}} E^{*s} \to 0$$

where E^{*s} is the sheaf of local sections of the bundle $\Lambda^s E^*$. So (1.12) is the exact sequence induced by the exact sequence

(1.13)
$$0 \to Q^{(1,0)*} \wedge \Lambda^{s-1}T_M^{\mathbf{C}} \to \Lambda^s T_M^{\mathbf{C}} \xrightarrow{i_{\mathbf{C}}^{\mathbf{i}_{\mathbf{C}}^{\mathbf{c}}}} \Lambda^s E^* \to 0.$$

By Theorem 1.8 (2) we can define $\tilde{d}: \mathcal{Q}^{(1,0)*} \wedge \mathfrak{Q}_M^s \to \mathcal{Q}^{(1,0)*} \wedge \mathfrak{Q}_M^{s+1}$ as the restriction of the exterior derivative operator. Hence we can define d_e as the unique operator which makes the diagram

2.

commute. For s = 0, let $\underline{E}^{*0} = \underline{C}_{\mathcal{M}}^{\infty}$, the sheaf of local complex-valued C^{∞} -functions and let

(1.15)
$$d_{\varepsilon} \colon \mathcal{C}_{M}^{\infty} \xrightarrow{d} \mathcal{Q}_{M}^{1} \xrightarrow{i_{\varepsilon}^{*}} E^{*1}.$$

In adapted coordinates $(x, z) = (x^1, \dots, x^p, z^{p+1}, \dots, z^n)$ the sheaf \underline{E}^{*s} can be identified with the sheaf generated by the forms

$$[dx^{i}], \cdots, [dx^{p}], [d\overline{z}^{p+1}], \cdots, [d\overline{z}^{n}].$$

For $\varphi = \varphi_{I}[dx^{i_{1}} \wedge \cdots \wedge dx^{i_{l}}] \wedge [d\overline{z}^{i_{l+1}} \wedge \cdots \wedge d\overline{z}^{i_{l}}]$ in $\underline{\mathcal{E}}^{*s}$ we have
(1.16) $d_{\varepsilon}\varphi = d_{\varepsilon}\varphi_{I} \wedge [dx^{I'}] \wedge [d\overline{z}^{I''}],$

where $I = (I'; I'') = (i_1, \dots, i_t; i_{t+1}, \dots, i_s)$ and

(1.17)
$$d_{\varepsilon}\varphi_{I} = \frac{\partial\varphi_{I}}{\partial x^{j}} \left[dx^{j} \right] + \frac{\partial\varphi_{I}}{\partial z^{\alpha}} \left[d\bar{z}^{\alpha} \right],$$

 $[dx^{I}]$ denoting the image of dx^{I} under i_{E}^{*} .

Let $\mathfrak{Q}_{\mathfrak{F}} \subset \mathfrak{C}_{\mathsf{M}}^{\infty}$ be the subsheaf of smooth complex-valued functions which are locally lifts, via the submersions in $\mathfrak{K}_{\mathfrak{F}}$, of holomorphic functions on \mathbb{C}^{q} . Specifically, let $f: U \to \mathbb{C}^{q}$ be a submersion in $\mathfrak{K}_{\mathfrak{F}}$ and define

(1.18) $\Gamma(U, \mathfrak{O}_{\mathfrak{F}}) = f^*\mathfrak{O}_{\mathbf{C}^q} = \{g \circ f | g \text{ is holomorphic on } f(U)\}.$

Lemma 1.19. The sequence

(1.20)
$$0 \to \mathfrak{O}_{\mathfrak{F}} \to C^{\infty}_{\mathcal{M}} \xrightarrow{d_{\epsilon}} E^{*1} \xrightarrow{d_{\epsilon}} E^{*2} \xrightarrow{d_{\epsilon}} \cdots$$

is a resolution of the sheaf $\mathfrak{O}_{\mathfrak{P}}$.

Proof. We work in adapted coordinates. Note that if $d_{\mathfrak{s}}f = 0$ for $f \in \mathcal{C}^{\infty}_{M}$; then $\partial f/\partial x_{j} = 0, j = 1, \dots, p$. Hence, if $\pi \colon \mathbb{R}^{p} \times \mathbb{C}^{q} \to \mathbb{C}^{q}$ is the projection onto the second factor, we get $f = g \circ \pi$ where $g \in C^{\infty}(\mathbb{C}^{q})$. Also $\partial g/\partial \overline{z}^{\alpha} =$ $\partial f/\partial \overline{z}^{\alpha} \circ \pi = 0$ for $\alpha = 1, \dots, q$. Hence g is holomorphic and $f \in \mathcal{O}_{\mathfrak{F}}$. So we have that $\mathcal{O}_{\mathfrak{F}} = \operatorname{Ker}(C^{\infty}_{\mathfrak{M}} \to \mathbb{E}^{*1})$.

The sheaves C_M^{∞} , E^{*s} being fine, our lemma will be proved once it is established that the complex (1.20) is exact.

The problem is local so we work on the open set $W = U \times V \subset \mathbb{R}^p \times \mathbb{C}^q$, where U is the unit ball and V is the unit polydisk. We assume that $\mathcal{F}|W$ is given by the fibers of the projection $U \times V \to V$ and we let (x, z) = $(x^1, \dots, x^p, z^{p+1}, \dots, z^n)$ be the local coordinate functions. The complex $(\Gamma(W, \underline{E}^{*\bullet}), d_e)$ is isomorphic to the double complex $(A^{s,t}, d_{\parallel} + \overline{\partial}), s, t \ge 0$, where $A^{s,t}$ is the space of s + t-forms on W of the form $\varphi = \varphi_{I,J}(x, z)[dx^I] \wedge [d\overline{z}^J], |I| = s, |J| = t$ and where

$$\begin{aligned} d_{\parallel}\varphi &= \frac{\partial \varphi_{I,J}}{\partial x^{i}} \Big[dx^{i} \wedge dx^{I} \Big] \wedge \Big[d\bar{z}^{J} \Big], \\ \bar{\partial}\varphi &= \frac{\partial}{\partial \bar{z}^{\alpha}} \varphi_{I,J} \Big[d\bar{z}^{\alpha} \Big] \wedge \Big[dx^{I} \Big] \wedge \Big[d\bar{z}^{J} \Big] = (-1)^{s} \frac{\partial \varphi_{I,J}}{\partial \bar{z}^{\alpha}} \Big[dx^{I} \Big] \wedge \Big[d\bar{z}^{\sigma} \Big] \wedge \Big[d\bar{z}^{J} \Big]. \end{aligned}$$

Consider the spectral sequence associated to the second filtration on A^{m} . Then

(1.21)
$$"E_2^{s,t} \simeq H^s \Big(H^t(A^{\cdot,\cdot}, d_{\parallel}), \bar{\partial} \Big) \Rightarrow H^{\bullet} \left(\Gamma(W, \underline{E}^*), d_{e} \right).$$

We must show that ${}^{"}E_2^{s,t} = 0$ for s + t > 0. If we consider A^{-t} as the de Rham complex of U parametrized by V, the proof of the Poincaré lemma [10] goes through to show that this sequence collapses to ${}^{"}E_2^{s,0} \cong H^s(V, \mathcal{O}_V)$,

where \mathcal{O}_{ν} is the sheaf of germs of holomorphic functions on \mathcal{V} . But by Dolbeaut's lemma [10], this cohomology group is trivial for s > 0, so we are done.

Lemma 1.22. The complex $(E^{*\bullet}, d_{\epsilon})$ is elliptic.

Proof. We show that if $x \in M$ and $\theta \in T^*_{M_x}$ is a co-vector at x, the symbol sequence

(1.23)
$$\mathbf{C} \xrightarrow{\sigma_{\theta}} E_x^* \xrightarrow{\sigma_{\theta}} \Lambda^2 E_x^* \xrightarrow{} \cdots$$

is exact. For $\beta \in \Lambda^s E_x^*$ let $\tilde{\beta} \in \Lambda^s(T_M^* \otimes \mathbb{C})$ be a form such that $i_E^*(\tilde{\beta}) = \beta$. It is easily seen that the symbol of d_e at $\theta \in T_{M_x}^*$ is given by

(1.24)
$$\sigma_{\theta}(\beta) = i_{E}^{*}(\theta \wedge \tilde{\beta}).$$

To prove exactness pick a basis for $T^*_{M_x} \otimes \mathbb{C}$ of the form θ , dz^1, \dots, dz^q , ξ_{q+2}, \dots, ξ_n , and let $\beta \in E^*_x$ be such that $\sigma_{\theta}(\beta) = 0$. We will find $\tilde{\alpha} \in \Lambda^{s-1}(T^*_{M_x} \otimes \mathbb{C})$ for which $i^*_E(\theta \wedge \tilde{\alpha}) = \beta$. We proceed as follows: since $i^*_E(\theta \wedge \tilde{\beta}) = 0$ we can write $\theta \wedge \tilde{\beta}$ in the form $\theta \wedge \tilde{\beta} = dz^{\alpha} \wedge \gamma_{\alpha}$ where γ_{α} can be written in terms of θ , $dz^{\alpha+1}, \dots, dz^q$, ξ_{q+2}, \dots, ξ_n for $j = 1, \dots, q$. Since $\theta \wedge \theta \wedge \tilde{\beta} = 0$ we have $0 = \theta \wedge dz^{\alpha} \wedge \gamma_{\alpha}$, and since $\theta, dz^{\alpha}, \dots$ is a basis it follows from the forms of the γ_{α} that $\theta \wedge \gamma_{\alpha} = 0$. Hence we can write $\gamma_{\alpha} = -\theta \wedge \delta_{\alpha}, \alpha = 1, \dots, q$. Let $\delta = dz^{\alpha} \wedge \delta_{\alpha}$, then $\theta \wedge \delta = \theta \wedge \tilde{\beta}$ so

(1.25)
$$\theta \wedge (\beta - \delta) = 0.$$

But $i_E^*(\delta) = 0$ hence

(1.26)
$$i_E^*(\hat{\beta} - \delta) = \beta.$$

By (1.25) there is an element $\tilde{\alpha} \in \Lambda^{s-1}(T^*_M \otimes \mathbb{C})$ for which $\theta \wedge \tilde{\alpha} = (\tilde{\beta} - \delta)$. Hence by (1.26) we have $\sigma_{\theta}(\alpha) = i^*_E(\theta \wedge \tilde{\alpha}) = i_E(\tilde{\beta} - \delta) = \beta$, where $\alpha = i^*_E(\tilde{\alpha})$. Thus the sequence is exact and the complex is elliptic. q.e.d.

We now define the notion of holomorphic vector field on a holomorphic foliation. Locally a holomorphic vector field is a lift, via a submersion in $\mathcal{K}_{\mathfrak{F}}$, of a holomorphic vector field on \mathbb{C}^q . More precisely let $U \subseteq M$ be an open set such that there is a submersion $f: U \to \mathbb{C}^q, f \in \mathcal{K}_{\mathfrak{F}}$. Then we define $\mathfrak{g}_{\mathfrak{F}|U}$ as the pull-back $f^*(\mathfrak{g}_{\mathbb{C}^q})$ of the sheaf of germs of holomorphic vector fields on \mathbb{C}^q .

Remark. By a holomorphic vector field on C^q we mean a holomorphic section of the holomorphic tangent bundle.

Theorem 1.27. The cohomology groups $H^{i}(M, \mathfrak{G}_{\mathfrak{F}})$ and $H^{i}(M, \mathfrak{g}_{\mathfrak{F}})$ are finite dimensional.

Proof. Since the resolution (1.20) is elliptic, it follows from the theory of elliptic complexes [14] that $H^i(M, \mathfrak{G}_{\mathfrak{F}})$ is finite dimensional. Similarly, to show that $H^i(M, \mathfrak{G}_{\mathfrak{F}})$ is finite dimensional we will construct a resolution of $\mathfrak{g}_{\mathfrak{F}}$ by an

elliptic complex. Let

(1.28)
$$E_Q^{*i} = E^{*i} \otimes_{\mathfrak{G}_{\mathfrak{F}}} \mathfrak{G}_{\mathfrak{F}} \cong E^{*i} \otimes_{\mathbf{C}} Q^{(1,0)},$$

and let $d_Q = d_E \otimes id$. Since d_E is elliptic, so is d_Q and the required resolution is

(1.29)
$$0 \to \theta_{\mathcal{F}} \to E_{\mathcal{Q}}^{*0} \xrightarrow{d_{\mathcal{Q}}} E_{\mathcal{Q}}^{*1} \to \cdots$$

This concludes the proof. q.e.d.

In adapted coordinates the operator d_o is given by the formula

(1.30)
$$d_{\mathcal{Q}}\left(\varphi^{\alpha}\otimes\left[\frac{\partial}{\partial z^{\alpha}}\right]\right) = d_{\varepsilon}\varphi^{\alpha}\otimes\left[\frac{\partial}{\partial z^{\alpha}}\right],$$

where φ^{α} is in E^{*s} .

Remarks. The above discussion is an adaptation to holomorphic foliations of cohomology theories for C^{∞} -foliations as presented in [9]. See also [4], [5] and [6]. We summarize here results of theirs which we will need in §4, as they apply to a holomorphic foliation \mathcal{F} , considered as a C^{∞} -foliation.

On the complex $\Lambda^{\bullet}L^{*}$ is a differential d_{\parallel} , which in adapted coordinates takes the form

(1.31)
$$d_{\parallel}\varphi = \frac{\partial \varphi_I}{\partial x^j} [dx^j] \wedge dx^I$$

where

(1.32)
$$\varphi = \varphi_I[dx^I].$$

Let $\mathcal{L}_{\mathcal{F}}^{\infty}$ be the sheaf of complex-valued C^{∞} -functions, which are locally constant along the leaves of \mathcal{F} . ($\Lambda^{\bullet} \mathcal{L}^{*}, d_{\parallel}$) is a resolution of this sheaf [9].

Let $Q_{\mathfrak{F}}$, $Q_{\mathfrak{F}}^{(1,0)}$, etc., denote the sheaves of sections of Q, $Q^{(1,0)}$, etc, which are locally constant along the leaves of \mathfrak{F} . These are all modules over $C_{\mathfrak{F}}^{\infty}$, and tensoring over $C_{\mathfrak{F}}^{\infty}$ with $(\Lambda^{\bullet} L^{*}, d_{\parallel})$ gives resolutions of these sheaves. In particular [9]

(1.33)

$$H^{\bullet}(M, Q^{(0,s)} \otimes Q_{\mathfrak{F}}^{(1,0)}) \cong H^{\bullet}(\Gamma(Q^{*(0,s)} \otimes Q_{\mathfrak{F}}^{(1,0)} \otimes_{C_{\mathfrak{F}}^{\mathfrak{G}}} \Lambda L^{*}), d_{Q\parallel}),$$

where $d_{Q\parallel} = \mathrm{id} \otimes d_{\parallel}$.

2. Infinitesimal deformations and the Spencer operator

As an application of Theorem (1.27) we will show that the space of infinitesimal deformations of a holomorphic foliation is finite dimensional. Let $\mathcal{P}_{\mathfrak{F}}$ be the pseudogroup of local diffeomorphisms of M which preserve the

DEFORMATION THEORY

holomorphic foliation \mathfrak{F} . Specifically, $g: U \to V$ is in $\mathfrak{P}_{\mathfrak{F}}$ if and only if for each submersion $f_{\alpha}: U_{\alpha} \to \mathbb{C}^{q}$ in $\mathfrak{K}_{\mathfrak{F}}$ with $V \cap U_{\alpha} \neq \emptyset$, the submersion $f_{\beta} = f_{\alpha} \circ g: U \to \mathbb{C}^{q}$ is in $\mathfrak{K}_{\mathfrak{F}}$, where $U_{\beta} = U_{\alpha} \cap g^{-1}(U_{\alpha})$. It follows from the definition of a Haefliger cocycle that near each point $x \in U_{\alpha} \cap U_{\beta}$ there is a unique local biholomorphism $\tilde{g}_{\beta\alpha}^{s}$ of \mathbb{C}^{q} with

(2.1)
$$f_{\alpha} \circ g = \tilde{g}_{\beta\alpha}^{x} \circ f_{\alpha}.$$

Now let $\eta_{\mathfrak{F}}$ be the sheaf of local vector fields whose flows lie in $\mathfrak{P}_{\mathfrak{F}}$, and let \underline{L} be the sheaf of local vector fields in $L \subseteq T_M$. The following lemma follows easily from (2.1).

Lemma 2.2. The exact sequence (1.4) induces an exact sequence

$$(2.3) 0 \to \underline{L} \to \eta_{\mathfrak{F}} \to \theta_{\mathfrak{F}} \to 0.$$

Theorem 2.4. The space of infinitesimal deformations of the pseudogroup $\mathfrak{P}_{\mathfrak{F}}$ is finite dimensional.

Proof. Since \underline{L} is a finite sheaf, it follows that $H^j(M, \underline{L}) = 0$ for $j \ge 1$. Using the long exact cohomology sequence associated to (2.3) we see that $H^1(M, \eta_{\mathfrak{F}}) \simeq H^1(M, \theta_{\mathfrak{F}})$. By Spencer [13] the space of infinitesimal deformations of $\mathfrak{P}_{\mathfrak{F}}$ is just $H^1(M, \eta_{\mathfrak{F}})$, which is finite dimensional by Theorem (1.27). q.e.d.

We will now define a nonlinear first order partial differential operator

$$D: \operatorname{Hom}(E, Q^{(1,0)}) \to \operatorname{Hom}(\Lambda^2 E, Q^{(1,0)})$$

whose linearization is d_Q . We will call this the Spencer operator associated to \mathcal{F} . This operator is defined in analogy with the operator $\overline{\partial} - [,]$ which is of fundamental importance in the study of deformations of complex structure on a complex manifold. For this see [8].

D will be of the form, $D = d_Q - [,]_Q$ where $[,]_Q$ is an operator to be defined below. We will show that

(2.5)
$$\operatorname{Fol}(\mathcal{F}) = \{ \varphi \in \operatorname{Hom}(E, Q^{(1,0)}) \colon D\varphi = 0 \}.$$

In §3 we will show how to realize Fol(\mathfrak{F}), via (2.5), as an analytic subspace of $H^{1}(M, \theta_{\mathfrak{F}})$.

Remark 2.6. Unfortunately, our techniques work only if we assume that the splitting (1.9) is induced by a foliation \mathfrak{T}^{\perp} transverse to \mathfrak{T} . The foliation \mathfrak{T}^{\perp} need not be holomorphic. We assume from this point on that \mathfrak{T}^{\perp} is fixed and that $\rho: Q \to T_M$ is the tangent bundle to \mathfrak{T}^{\perp} . We can therefore think of all bundles as sub-bundles of the tensor algebra bundle of T_M . An adapted coordinate system will now be a chart (x, z) in $\mathbb{R}^p \times \mathbb{C}^q$ such that the projections $\mathbb{R}^p \times \mathbb{C}^q \to \mathbb{C}^q$ are in $\mathcal{K}_{\mathfrak{T}}$ and such that the leaves \mathfrak{T}^{\perp} are locally given by the sets $\{x = \text{constant}\}$. In these coordinates $d_Q: E_Q^{*s} \to E_Q^{*s+1}$ is given by the formula

$$d_{Q}\left(\varphi_{JB}^{\alpha}dx^{J}\wedge d\bar{z}^{B}\otimes\frac{\partial}{dz^{\alpha}}\right)$$

$$=\left(\frac{\partial}{\partial x^{i}}\varphi_{JB}^{\alpha}dx^{i}+\frac{\partial}{\partial\bar{z}^{\beta}}\varphi_{JB}^{\alpha}d\bar{z}^{\beta}\right)\wedge dx^{J}\wedge d\bar{z}^{B}\otimes\frac{\partial}{\partial z^{\alpha}},$$

where, as usual, $dx^{J} = dx^{j_{1}} \wedge \cdots \wedge dx^{j_{l}}, d\bar{z}^{B} = d\bar{z}^{\beta_{1}} \wedge \cdots \wedge d\bar{z}^{\beta_{k}}$ and let l + k = s.

We now define $[,]_Q$, as a map $[,]_Q$: $E_q^{*r} \times E_Q^{*s} \to E_Q^{*r+s}$ as follows. Choose adapted coordinates, and let

$$\varphi = \varphi_{JB}^{\alpha} dx^{J} \wedge d\bar{z}^{B} \otimes \frac{\partial}{\partial z^{\alpha}} \in E_{Q}^{*r},$$
$$\psi = \psi_{KG}^{\alpha} dx^{K} \wedge d\bar{z}^{G} \otimes \frac{\partial}{\partial z^{\alpha}} \in E_{Q}^{*}.$$

Then

(2.8)
$$\begin{bmatrix} \varphi, \psi \end{bmatrix}_{\mathcal{Q}} = \frac{1}{2r!s!} \left(\varphi_{JB}^{\gamma} \frac{\partial}{\partial z^{\gamma}} \psi_{KG}^{\alpha} + (-1)^{rs+1} \psi_{KG}^{\gamma} \frac{\partial \varphi_{JB}^{\alpha}}{\partial z^{\gamma}} \right) dx^{J} \wedge d\bar{z}^{B} \wedge dx^{K} \wedge d\bar{z}^{G} \otimes \frac{\partial}{\partial z^{\alpha}}.$$

We now give a precise statement and proof of (2.5).

Proposition 2.9. Given $\varphi \in \text{Hom}(E, Q^{(1,0)})$, the distribution E_{φ} defines a holomorphic foliation if and only if $D\varphi = 0$.

Proof. By the complex Frobenius theorem we must show that $[E_{\varphi}, E_{\varphi}] \subseteq E_{\varphi}$ if and only if $D\varphi = 0$.

Again we work in adapted coordinates. Suppose $D\varphi = 0$. Then we see by the definition of E_{φ} that E_{φ} is generated by the vector fields

$$X_{i} = \frac{\partial}{\partial x^{i}} + \varphi_{i}^{\alpha} \frac{\partial}{\partial z^{\alpha}}, \qquad Y_{\overline{\beta}} = \frac{\partial}{\partial \overline{z}^{\beta}} + \varphi_{\beta}^{\alpha} \frac{\partial}{\partial z^{\alpha}},$$

where $\varphi = \varphi_i^{\alpha} dx^i \otimes \partial/\partial z^{\alpha} + \varphi_{\beta}^{\alpha} dz^{\beta} \otimes \partial/\partial z^{\alpha}$. We need only show that for all i, j, α, β the vector fields $[X_i, X_j], [X_i, Y_{\overline{\alpha}}], \text{ and } [Y_{\overline{\alpha}}, Y_{\overline{\beta}}]$ lie in E_{φ} .

It follows from (2.7) and (2.8) that

$$\begin{bmatrix} X_i, X_j \end{bmatrix} = (D\varphi)^{\alpha}_{ij} \frac{\partial}{\partial z^{\alpha}},$$

$$\begin{bmatrix} X_i, Y_{\bar{\beta}} \end{bmatrix} = (D\varphi)^{\alpha}_{i\bar{\beta}} \frac{\partial}{\partial z^{\alpha}},$$

$$\begin{bmatrix} Y_{\bar{\beta}}, Y_{\bar{\gamma}} \end{bmatrix} = (D\varphi)^{\alpha}_{\bar{\beta}\bar{\gamma}} \frac{\partial}{\partial z^{\alpha}},$$

where

$$\begin{split} D\varphi &= (D\varphi)^{\alpha}_{ij} \, dx^i \wedge dx^j \otimes \frac{\partial}{\partial z^{\alpha}} + (D\varphi)^{\alpha}_{i\bar{\beta}} \, dx^i \wedge d\bar{z}^{\beta} \otimes \frac{\partial}{\partial z^{\alpha}} \\ &+ (D\varphi)^{\alpha}_{\bar{\beta}\bar{\gamma}} \, d\bar{z}^{\beta} \wedge d\bar{z}^{\gamma} \otimes \frac{\partial}{\partial z^{\alpha}}. \end{split}$$

Hence all brackets are zero, and the distribution E_{φ} is involutive.

Conversely suppose E_{φ} is involutive. Then the brackets $[X_i, X_j]$, $[X_i, Y_{\overline{\alpha}}]$, $[Y_{\overline{\alpha}}, Y_{\overline{\beta}}]$ lie in E_{φ} . But by (2.10) this is impossible unless all brackets are zero. Again, by (2.10) this is impossible unless $D\varphi = 0$. q.e.d.

We conclude this section with a list of properties of $[,]_Q$ which will be needed in the construction of solutions of $D\varphi = 0$. They are easily verified.

(2.11)
$$[,]_Q$$
 is bilinear.

If $\varphi \in E_Q^{*r}$, $\psi \in E_Q^{*s}$ and $\tau \in E_Q^{*t}$, then (2.12) $[m, \psi] = (-1)^{rs} [\psi, q]$

(2.12)
$$\left[\varphi, \psi \right]_{\mathcal{Q}} = (-1)^{\prime s} \left[\psi, \varphi \right]_{\mathcal{Q}}$$

(2.13)
$$d_{Q}[\varphi,\psi]_{Q} = \left[d_{Q}\varphi,\psi\right]_{Q} + (-1)^{r}\left[\varphi,d_{Q}\psi\right]_{Q},$$
$$(-1)^{sr}\left[\varphi,d_{Q}\psi\right]_{Q} + (-1)^{rs}\left[\varphi,d_{Q}\psi\right]_{Q},$$

(2.14)
$$(-1)^{r} [\psi, [\psi, \tau]_{Q}]_{Q} + (-1)^{r} [\psi, [\tau, \varphi]_{Q}]_{Q} + (-1)^{rr} [\tau, [\varphi, \psi]_{Q}]_{Q} = 0.$$

3. The Kuranishi family of a holomorphic foliation

In this section we extend Kuranishi's theorem [8] on the existence of locally complete families of complex analytic structures to the case of a holomorphic foliation for which there is a transverse foliation. More specifically, we will prove the following theorem.

Theorem 3.1. Let \mathfrak{F}_0 be a holomorphic foliation on a compact C^{∞} -manifold M, and let \mathfrak{F}^{\perp} be a C^{∞} -foliation transverse to \mathfrak{F}_0 . Then there are a local analytic subset $B \subseteq H^1(M, \mathfrak{g}_{\mathfrak{F}_0})$ and a holomorphic map

$$(3.2) B \to \mathcal{F}ol(\mathcal{F}_0) \subseteq \operatorname{Hom}(E, Q^{(1,0)}): t \to \mathcal{F}_t,$$

which defines a locally complete family of holomorphic foliations in the sense that if $\tilde{\mathfrak{F}}$ is a holomorphic foliation sufficiently close to \mathfrak{F}_0 , then $\tilde{\mathfrak{F}}$ is conjugate to a foliation of the form \mathfrak{F}_t via a diffeomorphism of M close to the identity. Furthermore, given a Riemannian metric respecting the local product structure on M induced by \mathfrak{F}_0 and \mathfrak{F}^{\perp} this diffeomorphism can be unambiguously defined.

Remarks 3.3. This theorem is a generalization of Kuranishi's theorem in the following sense. A complex manifold M can be thought of as the

T. DUCHAMP & M. KALKA

holomorphic foliation on M given by points. The foliation \mathcal{F}^{\perp} is just the codimension -0 foliation of M whose single leaf is M itself.

The proof of Theorem 3.1 is an adaptation of Kuranishi's proof [8]. In fact, if the following substitutions are made, the proofs are almost identical: replace the Dolbault complex by (\underline{E}_Q^*, d_Q) and replace the bracket operation of Kuranishi by $[,]_Q$. In place of the operator $\overline{\partial} - [,]$ substitute the operator $D = d_Q - [,]_Q$. The proof of Theorem 3.1 proceeds in two steps. We first construct the family \mathcal{F}_t as solutions of a certain system of equations. Then we show that any holomorphic foliation close to \mathcal{F}_0 is conjugate to \mathcal{F}_t for some t.

Step 1. The construction of \mathcal{F}_i . We will now construct a map from elements of a certain analytic subset B of $H^1(M, \theta_{\mathcal{F}})$ near zero to solutions of the system of equations

(3.4)
$$d_Q \varphi = \left[\varphi, \varphi\right]_Q, \quad \delta_Q \varphi = 0$$

with $\varphi \in \Gamma(E_Q^{*1}) \cong \operatorname{Hom}(E, Q^{1,0})$ having small norm. Here δ_Q denotes the adjoint of the operator $d_Q: \Gamma(E_Q^{*s}) \to \Gamma(E_Q^{*s+1})$ with respect to the inner product induced by the Riemannian metric on M associated to an $SO(p) \times U(q)$ reduction of the tangent bundle of M which is compatible with the local product structure on M and the complex structure on Q.

Recall that, by the Hodge decomposition theorem for elliptic complexes [14], there is a Green's operator

(3.5)
$$G_Q: \Gamma(E_Q^{*r}) \to \Gamma(E_Q^{*r}), r \ge 0$$

with the property that

$$(3.6) I = H_Q + \Delta_Q \circ G_Q,$$

where $\Delta_Q = d_Q \delta_Q + \delta_Q d_Q$, and $H_Q: \Gamma(E_Q^{*r}) \to H'(M, \mathfrak{g}_{\mathfrak{F}})$ is projection onto Ker Δ_Q , which by Lemma 1.19 we can identify with $H'(M, \mathfrak{g}_{\mathfrak{F}})$.

Let $\| \|_s$ denote the Sobolov norm on $H^{\bullet}(M, \hat{\theta}_{\mathfrak{F}})$ induced by the metric on M. Pick a basis $\varphi_1, \varphi_2, \cdots, \varphi_m$ for $H^1(M, \hat{\theta}_{\mathfrak{F}})$. Given $\varphi_0 = \sum_{i=1}^m t_i \varphi_i \in H^1(M, \hat{\theta}_{\mathfrak{F}})$ with $\|\varphi_0\|_s$ small, say $< \epsilon$, we wish to solve the equation

(3.7)
$$\varphi = \varphi_0 + \varphi_Q G_Q [\varphi, \varphi]_Q,$$

and show that the solution $\varphi(t)$ depends holomorphically on $t = (t_1, \dots, t_m) \in \mathbb{C}^m$. To do this we need two estimates:

(3.8)
$$\| [\varphi_1, \varphi_2]_Q \|_s \leq C \| \varphi_1 \|_{s+1} \cdot \| \varphi_2 \|_{s+1},$$

and

$$\|\delta_Q G_Q \varphi\|_s \leq C \|\varphi\|_{s-1},$$

 $\|H_O\varphi\|_s \leq C \|\varphi\|_s.$

The first estimate follows trivially from the definition of $[,]_Q$, and the second

and third follow from the fact that the d_Q -complex is elliptic. The solution of (3.7) and its holomorphic dependence follow, verbatim as in [7] using the implicit function theorem or a power series expansion.

We can now solve the system (3.4) using the above result. Begin by assuming that φ is a solution of (3.7). We will soon see that for $\|\varphi\|_s$ sufficiently small this assumption is redundant. Note that, by the Hodge decomposition (3.6),

$$(3.11) \ \left[\varphi,\varphi\right]_{\mathcal{Q}} = H_{\mathcal{Q}}\left[\varphi,\varphi\right]_{\mathcal{Q}} + d_{\mathcal{Q}}\delta_{\mathcal{Q}}G_{\mathcal{Q}}\left[\varphi,\varphi\right]_{\mathcal{Q}} + \delta_{\mathcal{Q}}d_{\mathcal{Q}}G_{\mathcal{Q}}\left[\varphi,\varphi\right]_{\mathcal{Q}},$$

and that, since $d_Q \varphi_0 = 0$,

(3.12)
$$d_Q \varphi = d_Q \delta_Q G_Q [\varphi, \varphi]_Q$$

Combining (3.11) and (3.12) yields

$$-d_{\mathcal{Q}}\varphi + [\varphi,\varphi]_{\mathcal{Q}} = H_{\mathcal{Q}}[\varphi,\varphi]_{\mathcal{Q}} + \delta_{\mathcal{Q}}d_{\mathcal{Q}}G_{\mathcal{Q}}[\varphi,\varphi]_{\mathcal{Q}}$$

and therefore

$$(3.13) -d_{\varrho}\varphi + [\varphi, \varphi]_{\varrho} = H_{\varrho}[\varphi, \varphi]_{\varrho} + \delta_{\varrho}G_{\varrho}d_{\varrho}[\varphi, \varphi]_{\varrho},$$

since $d_Q G_Q = G_Q d_Q$. Since the terms on the right are orthogonal, φ is a solution of (3.4) if and only if the equations

(3.15)
$$\delta_Q G_Q d_Q [\varphi, \varphi]_Q = 0$$

are satisfied. However, (3.15) is a consequence of (3.14) by the following argument. First observe that

(3.16)
$$\delta_{Q}G_{Q}d_{Q}[\varphi,\varphi]_{Q} = 2\delta_{Q}G_{Q}[d_{Q}\varphi,\varphi]_{Q}$$

by (2.12) and (2.13). If $H_0[\varphi, \varphi]_0 = 0$, then by (3.13) we can write (3.16) as

$$\delta_{Q}G_{Q}d_{Q}[\varphi,\varphi]_{Q} = 2\delta_{Q}G_{Q}[[\varphi,\varphi]_{Q},\varphi]_{Q} - 2\delta_{Q}G_{Q}[\delta_{Q}G_{Q}d_{Q}[\varphi,\varphi]_{Q},\varphi]_{Q}$$

$$(3.17) = -2\delta_{Q}G_{Q}[\delta_{Q}G_{q}d_{Q}[\varphi,\varphi]_{Q},\varphi]_{Q}$$

by the Jacobi identity (2.14). Hence by (3.8) and (3.9) we have the inequality

$$\|\delta_{Q}G_{Q}d_{Q}[\varphi,\varphi]_{Q}\|_{s} \leq C\|\delta_{Q}G_{Q}d_{Q}[\varphi,\varphi]_{Q}\|_{s}\|\varphi\|_{s}.$$

So, for $\|\varphi\|_s$ sufficiently small, (3.15) holds.

We can now construct the space B of the theorem. Let

$$(3.18) \quad B = \left\{ \varphi_0 \in H^1(M, \, \underline{\theta}_{\mathcal{F}}) ||| \varphi_0 || < \varepsilon, \quad H_Q[\varphi(t), \varphi(t)]_Q = 0 \right\},$$

where ε is to be chosen as in Lemma 3.23. This is an analytic subset of $H^{1}(M, \theta_{\overline{\alpha}})$. Furthermore, by the above argument, the elements $\varphi(t)$ for

 $\sum t_i \varphi_i \in B$ are solutions of the equation $D\varphi \equiv d_Q \varphi - [\varphi, \varphi]_Q = 0$, and therefore define holomorphic foliations.

Note that if ψ is a solution of (3.4) of sufficiently small norm, then $\psi = \varphi(t)$ for a unique element $\varphi_0 = \sum t_i \varphi_i \in B$. To see this, notice that since $D\psi = 0$ and $\delta_0 \psi = 0$, we have

(3.19)
$$\Delta_{Q}\psi = \delta_{Q}[\psi,\psi]_{Q}.$$

Hence

(3.20)
$$\psi - H_Q \psi = G_Q \delta_Q [\psi, \psi]_Q.$$

Set $\varphi_0 = H_0 \psi$. Then from (3.20)

(3.21)
$$\psi = \varphi_0 + \delta_Q G_Q [\psi, \psi]_Q$$

By (3.10)

(3.22)
$$\|\varphi_0\|_s = \|H_0\psi\|_s \le c\|\varphi\|_s.$$

Therefore there is a number $\eta > 0$ with the property that if $\|\psi\|_s < \eta$, then $\|\varphi_0\|_s < \epsilon$. Hence $\psi = \varphi(t)$ for $\varphi_0 = \sum t_i \varphi_i \in B$ by the following lemma.

Lemma 3.23. The set $\{\varphi(t)|\Sigma t_i\varphi_i \in B\}$ comprises all solutions of (3.7) of small norm, and these solutions are unique.

Proof. Fix φ_0 with $\|\varphi_0\|_s$ small, and let $\varphi(t)$ be the solution obtained by power series. Suppose φ is another solution. Let $\omega = \varphi - \varphi(t)$. Then

$$\begin{split} \omega &= \delta_{\mathcal{Q}} G_{\mathcal{Q}} \big(\big[\varphi, \varphi \big]_{\mathcal{Q}} - \big[\varphi(t), \varphi(t) \big]_{\mathcal{Q}} \big) \\ &= \delta_{\mathcal{Q}} G_{\mathcal{Q}} \big(\big[\omega, \varphi(t) \big]_{\mathcal{Q}} + \big[\varphi(t), \omega \big]_{\mathcal{Q}} + \big[\omega, \omega \big]_{\mathcal{Q}} \big) \\ &= \delta_{\mathcal{Q}} G_{\mathcal{Q}} \big(2 \big[\omega, \varphi(t) \big]_{\mathcal{Q}} + \big[\omega, \omega \big]_{\mathcal{Q}} \big). \end{split}$$

Hence by (3.8)

$$\|\omega\|_{s} \leq c \|\omega\|_{s} (\|\varphi(t)\|_{s} + \|\omega\|_{s}).$$

For $\|\varphi(t)\|_s$ sufficiently small say $< \varepsilon$, this can only happen if $\omega = 0$. q.e.d.

At this point we have shown that every solution of the equations $D\varphi = 0$ and $\delta_O \varphi = 0$ is of the form $\varphi(t)$ for $\varphi_0 = \sum t_i \varphi_i \in B$.

Step 2. Suppose now that the norm of φ is small, and that $D\varphi = 0$, but that $\delta_Q \varphi \neq 0$. We wish to show that the corresponding foliation \mathcal{F}_{φ} is conjugate to one of the form $\mathcal{F}_{\varphi(t)}$ for $\Sigma t_i \varphi_i \in B$. As in Kuranishi [8], we do this using diffeomorphisms generated by geodesics.

We just examine the action of diffeomorphisms of M near the identity on holomorphic foliations, or more precisely their associated distributions. Let $\varphi \in \text{Hom}(E, Q^{(1,0)})$, and denote the distribution associated to φ by $E_{\varphi} \subseteq T_M^{\mathbb{C}}$. Let f be a diffeomorphism of M close to the identity in the C^{∞} -topology. Then the Jacobian map f_* maps E_{φ} to a bundle $f_*(E_{\varphi})$, and there is a unique

element $\psi \in \text{Hom}(E, Q^{(1,0)})$ with $E_{\psi} = f_*(E_{\varphi})$. Denote this element by $f_*\varphi$. We wish to find a formula for $f_*\varphi$ in terms of f and φ in adapted coordinates. Let $(x, z) = (x^1, \dots, x^p, z^{p+1}, \dots, z^n)$ be adapted coordinates. Then

(3.24)
$$\varphi = \varphi_i^{\alpha} dx^i \otimes \frac{\partial}{\partial z^{\alpha}} + \varphi_{\beta}^{\alpha} d\bar{z}^{\beta} \otimes \frac{\partial}{\partial z^{\alpha}},$$

and E_{φ} is spanned locally by the vector fields

(3.25)
$$X_i^{\varphi} = \frac{\partial}{\partial x^i} + \varphi_i^{\alpha} \frac{\partial}{\partial z^{\alpha}}, \qquad X_{\beta}^{\varphi} = \frac{\partial}{\partial \overline{z}^{\beta}} + \varphi_{\beta}^{\alpha} \frac{\partial}{\partial z^{\alpha}}.$$

Hence locally $f_*(E_{\varphi})$ is spanned by the entries of the $(p + q) \times 1$ matrix

$$(3.26) \qquad \begin{pmatrix} f_*(X_i^{\varphi}) \\ f_*(X_{\beta}^{\varphi}) \end{pmatrix} = \begin{pmatrix} M_{ij} & M_{i\alpha} \\ M_{\bar{\beta}j} & M_{\bar{\beta}\alpha} \end{pmatrix} \begin{vmatrix} \frac{\partial}{\partial x^j} \\ \frac{\partial}{\partial \bar{z}^{\alpha}} \end{vmatrix} + \begin{pmatrix} N_{i\alpha} \\ N_{\bar{\beta}\alpha} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial z^{\alpha}} \end{pmatrix},$$

where

$$M_{ij} = \left(\frac{\partial f^{j}}{\partial x^{i}} + \varphi_{i}^{\gamma}\frac{\partial f^{j}}{\partial z^{\gamma}}\right), \quad M_{i\alpha} = \left(\frac{\partial f^{\alpha}}{\partial x^{i}} + \varphi_{i}^{\gamma}\frac{\partial f^{\alpha}}{\partial z^{\gamma}}\right),$$

$$(3.27) \qquad M_{\bar{\beta}j} = \left(\frac{\partial f^{j}}{\partial \bar{z}^{\beta}} + \varphi_{\beta}^{\gamma}\frac{\partial f^{j}}{\partial z^{\gamma}}\right), \quad M_{\bar{\beta}\alpha} = \left(\frac{\partial f^{\alpha}}{\partial \bar{z}^{\beta}} + \varphi_{\beta}^{\gamma}\frac{\partial f^{\alpha}}{\partial z^{\gamma}}\right),$$

$$N_{i\alpha} = \left(\frac{\partial f^{\alpha}}{\partial x^{i}} + \varphi_{i}^{\gamma}\frac{\partial f^{\alpha}}{\partial z^{\gamma}}\right), \quad N_{\bar{\beta}\alpha} = \left(\frac{\partial f^{\alpha}}{\partial \bar{z}^{\beta}} + \varphi_{\beta}^{\gamma}\frac{\partial f^{\alpha}}{\partial z^{\gamma}}\right),$$

and $f = (f^1, \cdots, f^n)$. Setting

(3.28)
$$\psi = f_*(\varphi) = \psi_i^{\alpha} dx^i \otimes \frac{\partial}{\partial z^{\alpha}} + \psi_{\beta}^{\alpha} d\bar{z}^{\beta} \otimes \frac{\partial}{\partial z_{\alpha}},$$

we see that $f_*(E_{\varphi})$ is spanned locally by the vectors of the matrix

(3.29)
$$\begin{pmatrix} \frac{\partial}{\partial x^{i}} \\ \frac{\partial}{\partial \overline{z}^{\beta}} \end{pmatrix} + \begin{pmatrix} \psi_{i}^{\gamma} \\ \psi_{\beta}^{\gamma} \end{pmatrix} \left(\frac{\partial}{\partial z^{\gamma}} \right).$$

Since f is near the identity, the matrix

$$(3.30) M = \begin{pmatrix} M_{ij} & M_{i\alpha} \\ M_{\bar{\beta}j} & M_{\bar{\beta}\alpha} \end{pmatrix}$$

is invertible. Combining (3.26) and (3.29) we see that

(3.31)
$$\begin{pmatrix} \psi_i^{\gamma} \\ \psi_{\beta}^{\chi} \end{pmatrix} = M^{-1} \circ N,$$

where

$$(3.32) N = \begin{pmatrix} N_{i\alpha} \\ N_{\bar{\beta}\alpha} \end{pmatrix}.$$

We summarize our results in the following lemma.

Lemma 3.33. Let $\varphi \in \text{Hom}(E, Q^{(1,0)})$, and let f be a diffeomorphism of M near the identity in the Whitney C^{∞} -topology. Then in adapted coordinates $\psi = f_{\star}(\varphi)$ is given by (3.31).

We will now apply Lemma 3.33 to diffeomorphisms associated to geodesics. Considering $Q^{(1,0)}$ as a real vector bundle, we see that the map τ of (1.4) induces an isomorphism $Q \xrightarrow{\tau} Q^{(1,0)}$. Use τ to identity $Q^{(1,0)}$ with $Q \subseteq T_M$. See [26]. Let $X \in \Gamma(Q^{(1,0)}) \subseteq \Gamma(T_M)$ be a vector field close to zero in the C^{∞} topology. Since M is compact, it is complete in our metric. Consider the map $f(X, \cdot): M \to M$ defined by

(3.34)
$$f(X, y) \equiv \gamma(X, y, 1),$$

where $t \to \gamma(X, \gamma, t)$ is the geodesic with initial conditions

(3.35)
$$\gamma(X, y, 0) = y, \quad \gamma'(X, y, 0) = X(y).$$

For X small, $f(X, \cdot)$ is a diffeomorphism of M. We wish to express $f(X, \cdot)$ locally as a Taylor series in the components of X, and use this expansion to represent (3.31) in terms of the components of X. In adapted coordinates $f(X, x, z) = (f^{j}(X, x, z), f^{\alpha}(X, x, z))$ and since $f(tX, x, z) = \gamma(X, (x, z), t)$ the equations

$$X^{\alpha} \frac{\partial f^{i}}{\partial X^{\alpha}}(0, x, z) + \overline{X}^{\alpha} \frac{\partial f^{j}}{\partial \overline{X}^{\alpha}}(0, x, z) = \frac{d}{dt} \gamma^{j}(X, (x, z), 0) = 0,$$

$$X^{\alpha} \frac{\partial f^{\beta}}{\partial X^{\alpha}}(0, x, z) + \overline{X}^{\alpha} \frac{\partial f^{\beta}}{\partial \overline{X}^{\alpha}}(0, x, z) = \frac{d}{dt} \gamma^{\beta}(X, (x, z), 0) = X^{\beta}$$

are satisfied, where $X = X^{\alpha} \partial / \partial z^{\alpha}$. Therefore

0 01

(3.37)
$$\frac{\partial f^{j}}{\partial X^{\alpha}} = \frac{\partial f^{j}}{\partial \overline{X}^{\alpha}} = \frac{\partial f^{\beta}}{\partial \overline{X}^{\alpha}} = 0,$$

(3.38)
$$\frac{\partial f^{\beta}}{\partial X^{\alpha}} = \delta^{\beta}_{\alpha}$$

Hence f is of the form

(3.39)
$$\begin{aligned} f^{j}(X, x, z) &= x^{j} + X^{\alpha} X^{\beta} r^{j}_{\alpha\beta}(X, x, z), \\ f^{\alpha}(X, x, z) &= z^{\alpha} + X^{\alpha} + X^{\beta} X^{\gamma} r^{\alpha}_{\beta\gamma}(X, x, z). \end{aligned}$$

Now for X close to zero, the matrix M can be written in the form $I + A_{IX}$, where $A_{iX} = t\tilde{A}_{(X,i)}$, and $\tilde{A}_{(X,i)}$ is a matrix-valued C^{∞} -function in X^{α} ,

 $\partial X^{\alpha}/\partial x^{i}$, $\partial X^{\alpha}/\partial z^{\beta}$, $\partial X^{\alpha}/\partial \bar{z}^{\beta}$, φ_{i}^{α} , φ_{β}^{α} and t. Hence

(3.40)
$$M_{tX,\varphi}^{-1} = \sum_{l=0}^{\infty} (-1)^l A_{tX,\varphi}^l = I + H_{tX,\varphi}.$$

where H is C^{∞} in the variables X^{α} , $\partial X^{\alpha}/\partial x^{i}$, etc. Also N can be expressed in the form

(3.41)
$$N_{tX} = \begin{pmatrix} \varphi_i^{\alpha} \\ \varphi_{\beta}^{\alpha} \end{pmatrix} + t \begin{bmatrix} \frac{\partial X^{\alpha}}{\partial x^i} \\ \frac{\partial X^{\alpha}}{\partial \bar{z}^{\beta}} \end{bmatrix} + t K_{tX,\varphi},$$

where $K_{tX,\varphi}$ is C^{∞} in the variables X^{α} , $\partial X^{\alpha}/\partial x_i$, etc. (3.40) and (3.41) allow us to write (3.31) in the form:

(3.42)
$$\begin{pmatrix} \psi_i^{\alpha} \\ \psi_{\beta}^{\alpha} \end{pmatrix} = \begin{bmatrix} \frac{\partial}{\partial x^i} (X^{\alpha}) \\ \frac{\partial}{\partial \overline{z}^{\beta}} (X^{\alpha}) \end{bmatrix} + \begin{pmatrix} \varphi_i^{\alpha} \\ \varphi_{\beta}^{\alpha} \end{pmatrix} + R(X, \varphi),$$

where $R(tX, t\varphi) = t^2 R_1(X, \varphi, t)$, and R_1 is C^{∞} in t, φ, X and their derivatives. In invariant form, (3.42) reads

(3.43)
$$f_*\varphi = d_Q X + \varphi + R(\psi, X),$$

where $R(t\psi, tX) = t^2 R_1(\psi, X, t)$, and R_1 is C^{∞} in t, X, φ and their derivatives.

We will now use (3.43) to show that if $\varphi \in \text{Hom}(E, Q^{(1,0)})$ is a solution of the equation $D\varphi = 0$ with $\|\varphi\|_s$ sufficiently small, then there is a unique element $\varphi(t)$ with $\sum t_i \varphi_i \in B$ and a unique vector field $X \in \Gamma(Q^{(1,0)})$ with $f_*(X, \cdot)(\varphi(t)) = \varphi$. This will complete Step 2 and the proof of Theorem 3.1.

Proposition 3.44. Let H^{\perp} be the orthogonal complement of the space $\Gamma(\underline{\theta}_{\mathfrak{F}})$ of \mathfrak{F} -invariant holomorphic vector fields in $\Gamma(Q^{1,0})$. Then there is a neighborhood U of the origin of H^{\perp} and a neighborhood V_1 of the origin of $\Gamma(E_Q^{*1}) =$ $\operatorname{Hom}(E, Q^{(1,0)})$ such that for any element $\varphi \in V$ satisfying the equation $D\varphi =$ 0, there is a unique element $X \in U$ with $f_*(X, \cdot)\varphi = \varphi(t)$ for $\Sigma t_i\varphi_i \in B$.

Proof. Set $f = f(X, \cdot)$. Then $f_*\varphi$ is of the required form, provided only that $\delta_O(f_*\varphi) = 0$. This follows from Step 1. But $\delta_O(f_*\varphi) = 0$ if and only if

(3.45)
$$\delta_Q d_Q X + \delta_Q \varphi + \delta_Q R(\varphi, X) = 0$$

by (3.43). Since $X \in H^{\perp}$ it satisfies the equation

$$(3.46) X = G_Q \Delta_Q X \equiv G_Q \delta_Q d_Q X.$$

Hence $\delta_O(f_*\varphi) = 0$ if and only if

(3.47)
$$G_Q(\delta_Q d_Q X + \delta_Q \varphi + \delta_Q R(\varphi, X)) = 0,$$

or

(3.48)
$$X + G_Q \delta_Q \varphi + G_Q \delta_Q R(\varphi, x) = 0.$$

We will use the implicit function theorem to find such an X. Define a map

$$(3.49) h: U_1 \times V_1 \subseteq H^{\perp} \times \Gamma(E_Q^{*1}) \to H^{\perp}$$

by

$$h(X, \varphi) = X + G_Q \delta_Q + G_Q \delta_Q R(\varphi, X),$$

where U_1 and V_1 have been chosen so that R is defined. If U_1 , V_1 and H^{\perp} are given the topology induced by the Sobolev norm, then h is continuous and the Frechet derivative $\partial h/\partial X|_{(0,0)}$ is the identity map. Hence, by the implicit function theorem, there is a C^{∞} -function $g: V \to U$ such that (3.48) holds if and only if $X = g(\varphi)$ for $\varphi \in V$. To see that X is smooth, note that it satisfies the second order elliptic equation with C^{∞} coefficients

$$\Delta_O X + \delta_O R(\varphi, X) + \delta_O = 0.$$

Hence X is smooth by the regularity theorem.

4. Computation of $H^{\bullet}(M, \theta_{\mathfrak{R}})$

We now investigate the cohomology groups $H^{\bullet}(M, \theta_{\mathcal{B}})$. We begin by defining a filtration on the complex (1.28).

Let $Q^{(p,q)*}$ denote the sheaf of germs of sections of the bundle $\Lambda^p Q^{(1,0)*} \otimes \Lambda^q Q^{(1,0)*}$. Then the differential complex (1.28) is filtered as follows. For $s \ge 0$ let

Observe that $d_Q(F^s E_Q^{\bullet^*}) \subset F^s E_Q^{\bullet^*}$, as can easily be seen from the formulas (1.16) and (1.30) for d_e and d_Q . Associated to this filtration is a spectral sequence converging to $H^{\bullet}(M, \theta_{\mathcal{F}})$. The edge terms of this spectral sequence are of particular interest to us. Let $E_{Q,\mathcal{F}}^{*s}$ be the subsheaf of E_Q^{*s} consisting of sections which in adapted coordinates are of the form

(4.2)
$$\varphi = \varphi_{\beta,\alpha}(z) \ d\bar{z}^{\beta} \otimes \left[\frac{\partial}{\partial z^{\alpha}}\right]$$

Such sections are invariant under Lie differentiation with respect to vector fields tangent to \mathcal{F} and are therefore called \mathcal{F} -invariant sections. The restriction of d_0 to $E_{0,\mathcal{F}}^*$ is denoted by $\overline{\partial}$ and applied to a section φ as in (4.2) is of

 $\mathbf{334}$

the form

(4.3)
$$\bar{\partial}\varphi = \frac{\partial\varphi_{\beta,\alpha}}{\partial\bar{z}^{\gamma}} d\bar{z}^{\gamma} \wedge d\bar{z}^{\beta} \otimes \left[\frac{\partial}{\partial z^{\alpha}}\right].$$

Clearly $\bar{\partial}(E_{Q,\mathfrak{F}}^{\star\bullet}) \subseteq E_{Q,\mathfrak{F}}^{\star\bullet}$ and there is a complex

(4.4)
$$0 \to Q_{\mathfrak{G}}^{(1,0)} \to E_{\mathcal{Q},\mathfrak{F}}^{*0} \xrightarrow{\overline{\partial}} E_{\mathcal{Q},\mathfrak{F}}^{*1} \xrightarrow{\overline{\partial}} \cdots$$

Since $E = L^C \oplus Q^{(1,0)}$, there is an exact sequence

$$0 \to Q^{(0,1)*} \to E^* \to L^{\mathbf{C}_*} \to 0,$$

which induces exact sequences

$$(4.5) \qquad 0 \to F^{p+1} \mathcal{E}_{\mathcal{Q}}^{*\bullet} \to F^{p} \mathcal{E}_{\mathcal{Q}}^{*\bullet} \to \Lambda^{\bullet-p} \mathcal{L}^{C_{\bullet}} \otimes_{C_{F}^{\infty}} \mathcal{Q}^{(0,p)*} \otimes_{\mathfrak{F}} \mathcal{Q}^{(1,0)} \to 0.$$

Now $\tau \cdot d_Q = d_{Q\parallel} \cdot \tau$, hence by (1.33) we get the following result.

Lemma 4.6. $H^{\bullet}(gr^{p}(E_{O}^{*\bullet}), gr(d_{O})) \simeq H^{\bullet}(M, Q^{(0,p)*} \otimes Q_{\mathfrak{F}}^{(1,0)}).$

The next proposition follows from (4.4) and (4.6).

Proposition 4.7. The spectral sequence induced by the filtration F^{\bullet} of $E_Q^{\bullet\bullet}$ converges to $H^{\bullet}(M, \theta_{\mathfrak{F}})$. More specifically, $E_1^{s,t} = (H^t(M, Q_{\mathfrak{F}}^{(0,s)\bullet} \otimes Q_{\mathfrak{F}}^{(1,0)})) \Rightarrow H^{s+t}(M, Q_{\mathfrak{F}}^{(1,0)})$ and $E_2^{s,0} = H^s(\Gamma(E_{Q,\mathfrak{F}}^{*\bullet}), \overline{\partial})$.

Recall that a V-manifold is an analytic space which locally has the structure of the orbit space defined by a finite group action on an open disc in \mathbb{C}^q where the group acts by biholomorphisms. By [3], if \mathfrak{F} is a Hausdorff foliation, the leaf space M/\mathfrak{F} has the structure of a V-manifold of the complex dimension q of the normal bundle to \mathfrak{F} . For details concerning V-manifolds, see Satake [12]. In case \mathfrak{F} has no holonomy, then M/\mathfrak{F} is non-singular and $M \to M/\mathfrak{F}$ is a fibration. A V-manifold N has a Dolbeaut complex defined on it and a holomorphic tangent bundle θ_N . Bailey [1] has shown that the cohomology groups $H^{\bullet}(N, \theta_N)$ are finite dimensional. From the definition of the holomorphic tangent bundle of a V-manifold we have the following proposition.

Proposition 4.8. If \mathfrak{F} is Hausdorff, then $E_2^{s,0} \cong H^s(M/\mathfrak{F}, \theta_{M/\mathfrak{F}})$ and this space is finite dimensional. Furthermore, if S denotes the generic leaf of \mathfrak{F} and $H^1(S, \mathbf{R}) = 0$, then $H^1(M, \theta_{\mathfrak{F}}) \cong H^1(M/\mathfrak{F}, \theta_{M/\mathfrak{F}})$.

Proof. The first part of the proposition is immediate from the definitions. To prove the second part of the proposition observe that

$$E_1^{0,1} = H^1(M, Q_{\mathfrak{F}}^{(1,0)}) = H^1(M, Q_{\mathfrak{F}}),$$

since $Q \simeq Q^{(1,0)}$ by (1.2) and (1.4). Since Hamilton [4] has shown that $H^1(S, \mathbf{R}) = 0$ implies that $H^1(M, Q_{\text{F}}) = 0$, we have $E_2^{0,1} = 0$ and $E_2^{1,0} \simeq H^1(M/\mathcal{F}, \theta_{M/\mathcal{F}})$ from which the result follows.

At this point we wish to present some cases where the groups $H^{\bullet}(M, \theta_{\mathcal{F}})$ can be computed explicitly. The computations use standard techniques in sheaf theory and are quite similar to those of Mostow [9]. Therefore we will be brief.

We begin by considering the trivial example of a product foliation. Suppose that N is a complex manifold and that K is a compact C^{∞} -manifold with $\dim_{\mathbb{C}} N = q$, $\dim_{\mathbb{R}} K = p$. Now let $M = N \times K$ and define \mathfrak{F} to be the foliation on M given by the fibers of the projection $M \xrightarrow{\pi} N$. Then $\theta_{\mathfrak{F}} = \pi^*(\theta_N)$. By Bredon [2] we obtain the next lemma.

Lemma 4.9. $H^{\bullet}(M, \theta_{\mathcal{T}}) \cong H^{\bullet}(N, \theta_N) \otimes \mathbb{C} H^{\bullet}_{DR}(K; \mathbb{C})$. In particular, if N is Stein $H^{\bullet}(M, \theta_{\mathcal{T}}) \cong \Gamma(N, \theta_N) \otimes_{\mathbb{C}} H_{DR}(K, \mathbb{C})$.

If N is compact this implies the following corollary.

Corollary 4.10. The set of holomorphic foliations near the holomorphic foliation \mathcal{F} , given as above, is a local analytic subset of the complex vector space $H^1(N, \theta_N) \oplus H^1_{DR}(K, \mathbb{C}) \otimes \Gamma(N, \theta_N)$.

Assume that M is compact and that \mathfrak{F} is a Hausdorff holomorphic foliation transverse to the fibers of a fibration $N \to M \to X$. Then N is a compact complex manifold and $M \simeq \tilde{X} \times N/G$, where \tilde{X} is a finite cover of X and $\tilde{M} = \tilde{X} \times N$ is a G manifold for G a finite group of deck transformations of \tilde{M} which acts biholomorphically on N. Further, \mathfrak{F} is the foliation $\tilde{\mathfrak{F}}/G$ for $\tilde{\mathfrak{F}}$ the product foliation $\tilde{X} \times N \to N$. In this case G acts on $H^{\bullet}(N, \theta_N)$ and on $H_{DR}^{\bullet}(\tilde{X}, \mathbb{C})$ and we have the following proposition.

Proposition 4.11. $H^{\bullet}(M, \theta_{\mathcal{F}}) \cong H^{\bullet}_{DR}(\tilde{X}, \mathbb{C})^G \otimes_{\mathbb{C}} H^{\bullet}(N, \theta_N)^G$ where ()^G denotes the space of G-invariant elements.

Proof. Consider the resolution (1.29) applied to $\tilde{\mathcal{F}}$ on \tilde{X} , i.e.,

$$0 \to \tilde{Q}^{(1,0)} \to \tilde{E}_Q^0 \stackrel{d_{\tilde{Q}}}{\to} \tilde{E}_Q^1 \to \cdots$$

Then since G is finite $H^{\bullet}(\Gamma(\tilde{E}_Q)^G, d_{\tilde{Q}}) = H^{\bullet}(\Gamma(\tilde{E}_Q), d_{\tilde{Q}})^G$, and $\Gamma(\tilde{E}_Q)^G$ is isomorphic to the complex

$$0 \to \Gamma(\hat{\theta}_{\mathfrak{F}}) \to \Gamma(E_Q^0) \to \cdots$$

associated to the resolution of $\theta_{\mathcal{F}}$. Therefore

$$H^{\bullet}(M, \underline{\theta}_{\mathfrak{F}}) \cong H^{\bullet}\left(\Gamma\left(\tilde{E}_{Q}\right)^{G}, \tilde{d}_{\tilde{Q}}\right) \simeq H^{\bullet}(M, \underline{\theta}_{\mathfrak{F}})^{G}.$$

Note the above computation applies to the case where \mathcal{F} is given by the suspension via a biholomorphism $\varphi: N \to N$, where N is a compact complex manifold and φ has finite period.

DEFORMATION THEORY

References

- [1] W. Bailey, The decomposition theorem for V manifolds, Amer. J. Math. 78 (1956) 862-888.
- [2] G. Bredon, Sheaf theory, McGraw-Hill, New York, 1967.
- [3] D. B. A. Epstein, Foliations with all leaves compact, Dynamical Systems-Warwick, Lecture Notes in Math. Vol. 468, Springer, Berlin, 1974.
- [4] R. S. Hamilton, Deformation theory for foliations, preprint.
- [5] J. L. Heitsch, A cohomology for foliated manifolds, Comment. Math. Helv. 50 (1975) 197-218.
- [6] F. Kamber & Ph. Tondeur, Invariant differential operators and the cohomology of Lie algebra sheaves, Mem. Amer. Math. Soc. No. 113, 1971.
- [7] K. Kodaira, L. Nirenberg & D. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math. 68 (1958) 450-459.
- [8] M. Kuranishi, New proof for the existence of locally complete families of complex analytic structures, Proc. Conf. Complex Analysis (Minneapolis), Springer, Berlin, 1965, 142– 154.
- [9] M. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer. Math. Soc. 7 (1976) 1975.
- [10] R. Narasimhan, Analysis on real and complex manifolds, North Holland, Amsterdam, 1968.
- [11] L. Nirenberg, A complex Frobenius theorem, Seminar on Analytic Functions, Institute for Advanced Study, Princeton, 1957, 172-189.
- [12] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 359-363.
- [13] D. C. Spencer, Deformations of structures on manifolds defined by transitive continuous pseudogroups. I, II, Ann. of Math. 76 (1962) 306-445.
- [14] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall, Englewood Cliffs, N. J. 1973.
- [15] I. Vaisman, Variétés Riemannienne feuilletées, Czechoslovak Math. J. 21 (1971) 46-75.

UNIVERSITY OF UTAH