DEFORMATION THEORY FOR HOLOMORPHIC FOLIATIONS

T. DUCHAMP \& M. KALKA

Introduction

In this paper we consider deformations of holomorphic foliations on compact manifolds. By a holomorphic foliation we mean a foliation given by local submersions $f_{\alpha}: U_{\alpha} \rightarrow R^{2 q}$ which patch together via maps $\varphi_{\alpha \beta}: R^{2 q} \rightarrow$ $R^{2 q}$, which are local biholomorphisms when $R^{2 q}$ is identified with \mathbf{C}^{q}.

For \mathscr{F} a holomorphic foliation on a manifold M, we show that the infinitesimal deformations of \mathscr{F} correspond to elements of $H^{1}\left(M, \theta_{\mathscr{G}}\right)$, where $\boldsymbol{\theta}_{\sim}$ is the sheaf of germs of holomorphic vector fields on the normal bundle of \mathscr{F} which are constant on the leaves of \mathscr{F}. For example, if \mathscr{F} is given by the fibers of a submersion onto a complex manifold, then ${\underset{\sim}{\sigma}}^{\sigma}$ is the pull-back of the sheaf ${\underset{\sim}{N}}$ of germs of holomorphic vector fields on the image. By constructing explicitly a resolution of ${\underset{\sim}{G}}^{G}$ by an elliptic complex $\left(E_{Q}^{*}, d_{Q}\right)$ we show that $H^{\bullet}\left(M, \theta_{\mathscr{F}}\right)$ is finite dimensional.

Resolutions of the sheaf of sections of the normal bundle of a C^{∞}-foliation which are constant on leaves have appeared in the works of Hamilton [4], Heitsch [5], Kamber-Tondeur [6], Mostow [9] and Vaisman [15]. Also in the case where M is a complex manifold and the submersions f_{α} are holomorphic, Heitsch has constructed a resolution of the sheaf $\theta_{\sim \mathcal{F}}$ and shown that its cohomology groups are finite dimensional. Our resolution is different from his and applies to the case where M is only a smooth manifold. Of course the general theory of pseudogroup structures on manifolds developed by Spencer [13] applies to the case of holomorphic foliations on smooth manifolds. However, the relevant pseudogroup is neither elliptic nor complex; hence the Spencer complex associated to such a foliation does not directly lead to finite dimensionality results and the theory of elliptic complexes does not apply to it.

Having constructed a resolution of $\boldsymbol{\theta}_{\mathscr{F}}$ we then show how to extend Kuranishi's theorem on the existence of a locally complete finite dimensional holomorphic family for complex structures close to a given complex structure,
to holomorphic foliations. In order to do this, it is necessary to define a bracket operation $[,]_{Q}: \underset{\sim}{E}{ }_{Q}^{* r} \times \underset{\sim}{E}{ }_{Q}^{* s} \rightarrow \underset{\sim}{E}{ }_{Q}^{* r+s}$ with certain nice properties (2.11-2.14). In general we cannot do this. However, if we assume that there is a C^{∞}-foliation \mathscr{F}^{\perp} transverse to the foliation \mathscr{F}, then such a bracket can be defined. Distributions near the tangent bundle of \mathscr{F} are given by elements of $\Gamma\left(E_{Q}^{* 1}\right)$, and the integrability condition in the complex Frobenius theorem takes the form $d_{Q}-[,]_{Q}=0$. The operator d_{Q} is just the sum of the Dolbeaut operator in the holomorphic directions normal to \mathscr{F} and the de Rham operator in directions parallel to \mathscr{F}. Note that the transverse foliation \mathscr{F}^{\perp} allows us to consider all bundles as sub-bundles of the complexified tangent bundle of M or its dual. The proof proceeds exactly as in Kuranishi [8], only the bundles and the operators have been changed. In fact Kuranishi's theorem is a special case of our theorem, where the leaves of the foliation are the points of M.

We then consider the problem of computing $H^{1}\left(M, \theta_{\mathscr{F}}\right)$. In particular, we consider the case where \mathscr{F} is given by a fibration $M \xrightarrow{f} N$ with N a complex manifold and with fiber S. We show that if $H_{D R}^{1}(S)=0$ and $H^{1}\left(N, \theta_{N}\right)=0$, then $H^{1}\left(M, \theta_{\mathscr{F}}\right)=0$, where ${\underset{\sim}{N}}$ is the sheaf of germs of holomorphic vector fields on N. If the structure group of the fibration is discrete, this implies that there are no small deformations of \mathcal{F}, up to equivalence. This should be compared with Hamilton's result [4] that if \mathscr{F} is a C^{∞}-Hausdorff foliation with $H_{D R}^{1}(L)=0$, where L is the generic leaf of \mathscr{F}, then \mathscr{F} is structurally stable.

The paper is organized as follows: In §1 we describe the relevant elliptic complexes and define the operator d_{Q}. In $\S 2$ we define the bracket operator $[,]_{Q}$ and derive the partial differential equation which is the integrability condition in the complex Frobenius theorem. In $\S 3$ we solve this equation and prove Kuranishi's theorem. In $\S 4$ we compute $H^{1}\left(M,{\underset{\sigma}{\sigma})}^{\theta_{9}}\right.$ in certain cases. The techniques of $\S 4$ are similar to those of Mostow [9]. The main results of this paper are Theorems 1.27, 2.4 and 3.1.

We will use the following notational conventions: Latin subscripts (or superscripts) will run from 1 to p, whereas Greek subscripts (or superscripts) will run from 1 to q where $n=p+2 q$. Also if B is a vector bundle over M, then we will denote by $\underset{\sim}{B}$ the sheaf of germs of sections of B. If $\underset{\sim}{S}$ is a sheaf, the space of global sections of $\underset{\sim}{S}$ will be denoted by $\Gamma(\underset{\sim}{S})$. If B is a bundle, the space of its global sections will be denoted by $\Gamma(B)$. We will use the Einstein summation conventions.

1. Elliptic complexes associated to a holomorphic foliaton

Let M be an n-dimensional C^{∞}-manifold. We investigate here holomorphic
foliations on M close to a fixed holomorphic foliation. We recall that a (real) codimension- $2 q$ holomorphic foliation \mathscr{F} is given by an open cover $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of M, a collection of submersions $f_{\alpha}: U_{\alpha} \rightarrow \mathbf{C}^{q}$, and associated maps $\varphi_{\alpha \beta}^{x}$ for each $x \in U_{\alpha} \cap U_{\beta}$, which are local biholomorphic maps and satisfy $f_{\beta}(y)=$ $\varphi_{\beta \alpha}^{x} \circ f_{\alpha}(y)$ for y near x. For the foliation to be global it is necessary that the collection $\left\{\varphi_{\alpha \beta}^{x}\right\}_{\alpha, \beta \in A}$ satisfy the cocycle condition $\varphi_{\alpha \gamma}^{x}=\varphi_{\alpha \beta}^{x}{ }^{\circ} \varphi_{\beta \gamma}^{x}$ for al α, β, γ such that $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \varnothing$ and for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. A collection $\left\{U_{\alpha}, f_{\alpha},\left\{\varphi_{\alpha \beta}^{x}\right\}_{x \in U_{\alpha} \cap U_{\beta}}\right\}$ which is maximal with respect to the above properties is called a Haefliger cocycle with coefficients in Γ_{C}^{q}, the pseudogroup of local biholomorphisms of \mathbf{C}^{q}. We set $\mathscr{H}_{\mathscr{F}}=\left\{f_{\alpha}: U_{\alpha} \rightarrow \mathbf{C}^{q}, \varphi_{\alpha \beta}^{x} \in \Gamma_{\mathbf{C}}^{q}\right.$, $\alpha, \beta \in A\}$.

Associated to a codimension $-2 q$ holomorphic foliation \mathscr{F} is its tangent bundle L. Set $p=\operatorname{dim} L_{x}=n-2 q$. The normal bundle of \mathscr{F} is the bundle $Q=T M / L$. There is an almost complex structure on Q obtained by lifting the standard complex structure on \mathbf{C}^{q} to Q via the submersions f_{α}. We recall that Q is locally representable as the pull-back, along f_{α}, of the tangent bundle of \mathbf{C}^{q}.

The almost complex structure on Q induces a splitting of the complexified normal bundle in the standard way

$$
\begin{equation*}
Q^{\mathbf{C}}=Q^{(1,0)} \oplus Q^{(0,1)} \tag{1.1}
\end{equation*}
$$

We will need several short exact sequences of vector bundles associated to the foliation. Consider first the sequence defining Q :

$$
\begin{equation*}
0 \rightarrow L \xrightarrow{i_{L}} T_{M} \rightarrow \xrightarrow{\pi} Q \rightarrow 0 . \tag{1.2}
\end{equation*}
$$

Because of (1.1) we have an exact sequence of complex vector bundles

$$
\begin{equation*}
0 \rightarrow E \xrightarrow{i_{E}} T_{M}^{\mathbf{C}^{\pi^{(1,0)}}} Q^{(1,0)} \rightarrow 0, \tag{1.3}
\end{equation*}
$$

where $\pi^{(1,0)}$ is defined to be the composition

$$
T_{M}^{\mathbf{c}} \xrightarrow{\pi^{\mathbf{c}}} Q^{\mathbf{C}} \rightarrow Q^{(1,0)}
$$

and $E=\operatorname{Ker} \pi^{(1,0)}$. We note that there is a noncanonical isomorphism $E \simeq$ $L^{\mathbf{C}} \oplus Q^{(0,1)}$. We also consider the exact sequence of real vector bundles

$$
\begin{equation*}
0 \rightarrow L \xrightarrow{i_{L}} T_{M} \xrightarrow{\tau} Q^{(1,0)} \rightarrow 0 . \tag{1.4}
\end{equation*}
$$

The map τ in (1.4) is the composition

$$
T_{M} \rightarrow T_{M}^{\mathbf{c}^{\mathbf{T}^{(1,0)}}} Q^{(1,0)}
$$

To check that (1.4) is exact we need to check that $\operatorname{Ker} \tau=L$ and that τ is surjective. We do this in local coordinates. Let $U \subseteq M$ be open and let f :
$U \rightarrow \mathbf{C}^{q}$ be a submersion in $\mathscr{K}_{\mathscr{G}}$. We can consider U to be contained in

$$
\mathbf{R}^{p} \times \mathbf{C}^{q}=\left\{(x, z) \mid x=\left(x^{1}, \ldots, x^{p}\right), z=\left(z^{p+1}, \ldots, z^{n}\right)\right\}
$$

and f to be the map $(x, z) \rightarrow z$. Such a coordinate system is said to be adapted to the holomorphic foliation \mathscr{F}. Let $z^{\alpha}=u^{\alpha}+i v^{\alpha}$. Then T_{M} is spanned by the vector fields $\partial / \partial x^{j}, \partial / \partial u^{\alpha}, \partial / \partial v^{\alpha}$. Also $Q^{\mathbf{C}}$ is spanned by the vector fields

$$
\begin{equation*}
\left[\frac{\partial}{\partial z^{\alpha}}\right]=\frac{1}{2}\left[\frac{\partial}{\partial u^{\alpha}}-i \frac{\partial}{\partial v^{\alpha}}\right], \quad\left[\frac{\partial}{\partial \bar{z}^{\beta}}\right]=\frac{1}{2}\left[\frac{\partial}{\partial u^{\beta}}+i \frac{\partial}{\partial v^{\beta}}\right], \tag{1.5}
\end{equation*}
$$

and $Q^{(1,0)}$ is spanned by the vector fields $\left[\partial / \partial z^{\alpha}\right]$. Finally L is spanned by the vector fields $\partial / \partial x^{\alpha}$. We write $\left[\partial / \partial z^{\alpha}\right]$ for the equivalence class of $\partial / \partial z^{\alpha}$ under the projection $T_{M}^{\mathbf{C}} \rightarrow Q^{\mathbf{C}}$. Then for $X=X^{j} \partial / \partial x^{j}+U^{\alpha} \partial / \partial u^{\alpha}+$ $V^{\alpha} \partial / \partial v^{\alpha}$ we have

$$
\begin{equation*}
\tau(X)=\left(U^{\alpha}+i V^{\alpha}\right)\left[\frac{\partial}{\partial z^{\alpha}}\right] \in Q^{(1,0)} \tag{1.6}
\end{equation*}
$$

It is now clear that τ is surjective and $\operatorname{Ker} \tau=L$.
If $B \subseteq T_{M}^{\mathbf{C}}$ is a complex vector sub-bundle, we will denote its complex conjugate bundle by \bar{B}. With this definition we see that

$$
\begin{equation*}
T_{M}^{\mathrm{C}}=E+\bar{E} . \tag{1.7}
\end{equation*}
$$

We will need the following version of the complex Frobenius theorem of Nirenberg [11].

Theorem 1.8. Let $E \subseteq T_{M}^{\mathrm{C}}$ be a sub-bundle of T_{M}^{C} of complex codimension q with $E+\bar{E}=T_{M}^{C}$. Let $Q^{(1,0)} \equiv T_{M}^{C} / E$ so that $Q^{(1,0) *} \subseteq T_{M}^{\mathbf{C}^{*}}$. Then the following conditions are equivalent:
(1) $[\underset{\sim}{E}, \underset{\sim}{E}] \subseteq \underset{\sim}{E}$.

(3) \tilde{E} and $Q^{\tilde{(1,0)}}$ are obtained from a codimension $-2 q$ holomorphic foliation as in the above discussion.

Let $\rho: Q \rightarrow T_{M}$ be a splitting of (1.2). ρ induces a splitting of (1.3)

$$
\begin{equation*}
0 \rightarrow E \underset{\varphi}{\stackrel{i_{\mathbf{c}}}{\rightarrow}} T_{M}^{\mathrm{C}} \underset{\rho^{(1,0)}}{\stackrel{\pi^{(1,0)}}{\rightarrow}} Q^{(1,0)} \rightarrow 0 . \tag{1.9}
\end{equation*}
$$

The splitting (1.9) allows us to define a one-one correspondence between distributions (a distribution will be used to mean a sub-bundle of the tangent bundle and not a generalized function) near E and the space $\operatorname{Hom}_{\mathbf{C}}\left(E, Q^{(1,0)}\right)$ in the following way. For $\varphi \in \operatorname{Hom}_{\mathbf{C}}\left(E, Q^{(1,0))}\right.$ let $E_{\varphi} \subseteq T_{M}^{\mathbf{C}}$ be defined by $E_{\varphi}=\left\{i_{\varphi}(X)=i_{\mathbf{C}}(X)+\rho^{1,0} \circ \varphi(X) \mid X \in E\right\}$. Conversely let $E^{\prime} \subseteq T_{M}^{\mathrm{C}}$ be a
sub-bundle near E. Then the map

$$
E^{\prime} \subseteq T_{M}^{\mathbf{c}} \xrightarrow{\varphi} E
$$

is an isomorphism. The inverse of this map is clearly of the form $X \mapsto i_{\mathbf{C}}(X)$ $+\rho^{(1,0)} \circ \varphi(X)$ for a unique element $\varphi \in \operatorname{Hom}\left(E, Q^{(1,0)}\right)$.

Remark 1.10. For $\varphi \in \operatorname{Hom}_{\mathbf{C}}\left(E, Q^{(1,0)}\right)$ we have $E_{\varphi}+\bar{E}_{\varphi}=T_{M}^{\mathbf{C}}$.
Hence by Theorem (1.8) there is a one-to-one correspondence between holomorphic foliations near \mathscr{F} and the set

$$
\begin{equation*}
\operatorname{Fol}(\mathscr{F})=\left\{\varphi \in \operatorname{Hom}_{\mathbf{c}}\left(E, Q^{(1,0)}\right) \mid[\underset{\sim}{E}, \underset{\sim}{E} \underset{\varphi}{E}] \subseteq \underset{\sim}{E}\right\} \tag{1.11}
\end{equation*}
$$

We wish to characterize $\operatorname{Fol}(\mathscr{F})$ as an analytic subspace of a neighborhood in the first cohomology group of a certain sheaf on M. In order to do this it is necessary to define this sheaf and to construct a resolution of it by an elliptic complex. This will enable us to use the theory of elliptic partial differential equations.

We have the following short exact sequence of sheaves

$$
\begin{equation*}
0 \rightarrow{\underset{\sim}{Q}}^{(1,0) *} \wedge{\underset{\sim}{M}}_{\Omega_{M}^{s-1}} \rightarrow \underset{\sim}{\Omega_{M}^{s}} \xrightarrow{i_{t}^{*}} \underset{\sim}{E}{ }^{* s} \rightarrow 0 \tag{1.12}
\end{equation*}
$$

where $E^{* s}$ is the sheaf of local sections of the bundle $\Lambda^{s} E^{*}$. So (1.12) is the exact sequence induced by the exact sequence

$$
\begin{equation*}
0 \rightarrow Q^{(1,0) *} \wedge \Lambda^{s-1} T_{M}^{\mathbf{C}} \rightarrow \Lambda^{s} T_{M}^{\mathrm{C}} \xrightarrow{i \neq} \Lambda^{s} E^{*} \rightarrow 0 \tag{1.13}
\end{equation*}
$$

By Theorem 1.8 (2) we can define $\tilde{d}: \underset{\sim}{Q^{(1,0) *}} \wedge{\underset{\sim}{\Omega}}_{s}^{s} \rightarrow Q^{(1,0) *} \wedge{\underset{\sim}{\Omega}}_{M}^{s+1}$ as the restriction of the exterior derivative operator. Hence we can define d_{ε} as the unique operator which makes the diagram

$$
\begin{align*}
& 0 \rightarrow \underset{\sim}{Q^{(1,0) *}} \wedge \underset{\sim}{\Omega_{M}^{s}} \rightarrow{\underset{\sim}{\Omega}}_{\Omega_{M}^{s+1}}^{\rightarrow} \xrightarrow[\sim]{i_{*}^{*}}{\underset{\sim}{* s+1}}^{E^{* s+1}} 0 \tag{1.14}
\end{align*}
$$

commute. For $s=0$, let $\underset{\sim}{E^{* 0}}={\underset{\sim}{M}}_{\infty}^{\infty}$, the sheaf of local complex-valued C^{∞} functions and let

$$
\begin{equation*}
d_{\varepsilon}:{\underset{\sim}{M}}_{\infty}^{\infty} \xrightarrow{d} \Omega_{M}^{1} \xrightarrow{i_{E}^{*}} E^{* 1} \tag{1.15}
\end{equation*}
$$

In adapted coordinates $(x, z)=\left(x^{1}, \cdots, x^{p}, z^{p+1}, \cdots, z^{n}\right)$ the sheaf $\underset{\sim}{E^{* s}}$ can be identified with the sheaf generated by the forms

$$
\left[d x^{1}\right], \cdots,\left[d x^{p}\right],\left[d \bar{z}^{p+1}\right], \cdots,\left[d \bar{z}^{n}\right]
$$

For $\varphi=\varphi_{I}\left[d x^{i_{1}} \wedge \cdots \wedge d x^{i_{i}}\right] \wedge\left[d \bar{z}^{i_{+1}} \wedge \cdots \wedge d \bar{z}^{i_{i}}\right]$ in $\underset{\sim}{E}{ }^{* s}$ we have

$$
\begin{equation*}
d_{\varepsilon} \varphi=d_{\varepsilon} \varphi_{I} \wedge\left[d x^{I^{\prime}}\right] \wedge\left[d \bar{z}^{I^{\prime \prime}}\right] \tag{1.16}
\end{equation*}
$$

where $I=\left(I^{\prime} ; I^{\prime \prime}\right)=\left(i_{1}, \cdots, i_{t} ; i_{t+1}, \cdots, i_{s}\right)$ and

$$
\begin{equation*}
d_{\varepsilon} \varphi_{I}=\frac{\partial \varphi_{I}}{\partial x^{j}}\left[d x^{j}\right]+\frac{\partial \varphi_{I}}{\partial z^{\alpha}}\left[d \bar{z}^{\alpha}\right] \tag{1.17}
\end{equation*}
$$

[$d x^{I}$] denoting the image of $d x^{I}$ under i_{E}^{*}.
Let ${\underset{\sim}{G}}_{\mathscr{F}} \subset{\underset{\sim}{M}}_{\infty}^{\infty}$ be the subsheaf of smooth complex-valued functions which are locally lifts, via the submersions in $\mathscr{H}_{\mathscr{F}}$, of holomorphic functions on \mathbf{C}^{q}. Specifically, let $f: U \rightarrow \mathbf{C}^{q}$ be a submersion in $\mathcal{H}_{\mathscr{F}}$ and define
(1.18) $\Gamma\left(U, \Theta_{\mathscr{F}}\right)=f^{*} \Theta_{C^{q}}=\{g \circ f \mid g$ is holomorphic on $f(U)\}$.

Lemma 1.19. The sequence

$$
\begin{equation*}
0 \rightarrow \theta_{\mathscr{F}} \rightarrow{\underset{\sim}{M}}_{\infty}^{\infty} \xrightarrow[\sim]{d_{e}}{\underset{\sim}{*}}^{* 1} \xrightarrow{d_{e}} \underset{\sim}{E}{ }^{* 2} \xrightarrow{d_{e}} \cdots \tag{1.20}
\end{equation*}
$$

is a resolution of the sheaf $\mathcal{\vartheta}_{\mathscr{G}}$.
Proof. We work in adapted coordinates. Note that if $d_{s} f=0$ for $f \in \mathcal{C}_{M}^{\infty}$; then $\partial f / \partial x_{j}=0, j=1, \cdots, p$. Hence, if $\pi: \mathbf{R}^{p} \times \mathbf{C}^{q} \rightarrow \mathbf{C}^{q}$ is the projection onto the second factor, we get $f=g \circ \pi$ where $g \in C^{\infty}\left(\mathbf{C}^{q}\right)$. Also $\partial g / \partial \bar{z}^{\alpha}=$ $\partial f / \partial \bar{z}^{\alpha} \circ \pi=0$ for $\alpha=1, \cdots, q$. Hence g is holomorphic and $f \in \theta_{\mathscr{G}}$. So we have that $\vartheta_{\mathscr{F}}=\operatorname{Ker}\left({\underset{\sim}{M}}_{C_{M}^{\infty}}^{\xrightarrow{d_{e}}} \underset{\sim}{*}{ }^{* 1}\right)$.

The sheaves ${\underset{\sim}{M}}_{\infty}^{\infty}, \underset{\sim}{E}{ }^{* s}$ being fine, our lemma will be proved once it is established that the complex (1.20) is exact.

The problem is local so we work on the open set $W=U \times V \subset \mathbf{R}^{p} \times \mathbf{C}^{q}$, where U is the unit ball and V is the unit polydisk. We assume that $\mathscr{F} \mid W$ is given by the fibers of the projection $U \times V \rightarrow V$ and we let $(x, z)=$ ($x^{1}, \cdots, x^{p}, z^{p+1}, \cdots, z^{n}$) be the local coordinate functions. The complex ($\left.\Gamma\left(W, \underset{\sim}{E}{ }^{* \bullet}\right), d_{\varepsilon}\right)$ is isomorphic to the double complex $\left(A^{s, t}, d_{\|}+\bar{\partial}\right), s, t \geqslant 0$, where $\tilde{A}^{s, t}$ is the space of $s+t$-forms on W of the form $\varphi=\varphi_{I, J}(x, z)\left[d x^{I}\right] \wedge$ $\left[d \bar{z}^{J}\right],|I|=s,|J|=t$ and where

$$
\begin{aligned}
d_{\|} \varphi & =\frac{\partial \varphi_{I, J}}{\partial x^{i}}\left[d x^{i} \wedge d x^{I}\right] \wedge\left[d \bar{z}^{J}\right] \\
\bar{\partial} \varphi & =\frac{\partial}{\partial \bar{z}^{\alpha}} \varphi_{I, J}\left[d \bar{z}^{\alpha}\right] \wedge\left[d x^{I}\right] \wedge\left[d \bar{z}^{J}\right]=(-1)^{s} \frac{\partial \varphi_{I, J}}{\partial \bar{z}^{\alpha}}\left[d x^{I}\right] \wedge\left[d \bar{z}^{\alpha}\right] \wedge\left[d \bar{z}^{J}\right]
\end{aligned}
$$

Consider the spectral sequence associated to the second filtration on $A \cdots$. Then

$$
\begin{equation*}
" E_{2}^{s, t} \cong H^{s}\left(H^{t}\left(A^{\cdots}, d_{\|}\right), \bar{\partial}\right) \Rightarrow H^{\bullet}\left(\Gamma\left(W,{\underset{\sim}{*}}^{*}\right), d_{\varepsilon}\right) \tag{1.21}
\end{equation*}
$$

We must show that " $E_{2}^{s, t}=0$ for $s+t>0$. If we consider A^{n} as the de Rham complex of U parametrized by V, the proof of the Poincaré lemma [10] goes through to show that this sequence collapses to $" E_{2}^{s, 0} \simeq H^{s}\left(V,{\underset{\sim}{V}}_{V}\right)$,
where ${\underset{\sim}{V}}_{V}$ is the sheaf of germs of holomorphic functions on V. But by Dolbeaut's lemma [10], this cohomology group is trivial for $s>0$, so we are done.

Lemma 1.22. The complex ($E^{* \bullet}, d_{\varepsilon}$) is elliptic.
Proof. We show that if $x \in M$ and $\theta \in T_{M_{x}}^{*}$ is a co-vector at x, the symbol sequence

$$
\begin{equation*}
\mathbf{C} \xrightarrow{\boldsymbol{\sigma}_{\theta}} E_{x}^{*} \xrightarrow{\boldsymbol{\sigma}_{\theta}} \Lambda^{2} E_{x}^{*} \rightarrow \cdots \tag{1.23}
\end{equation*}
$$

is exact. For $\beta \in \Lambda^{s} E_{x}^{*}$ let $\tilde{\beta} \in \Lambda^{s}\left(T_{M}^{*} \otimes \mathbf{C}\right)$ be a form such that $i_{E}^{*}(\tilde{\beta})=\beta$. It is easily seen that the symbol of d_{ε} at $\theta \in T_{M_{x}}^{*}$ is given by

$$
\begin{equation*}
\sigma_{\theta}(\beta)=i_{E}^{*}(\theta \wedge \tilde{\beta}) \tag{1.24}
\end{equation*}
$$

To prove exactness pick a basis for $T_{M_{x}}^{*} \otimes \mathbf{C}$ of the form $\theta, d z^{1}, \cdots, d z^{q}$, $\xi_{q+2}, \cdots, \xi_{n}$, and let $\beta \in E_{x}^{*}$ be such that $\sigma_{\theta}(\beta)=0$. We will find $\tilde{\alpha} \in$ $\Lambda^{s-1}\left(T_{M_{x}}^{*} \otimes \mathbf{C}\right)$ for which $i_{E}^{*}(\theta \wedge \tilde{\alpha})=\beta$. We proceed as follows: since $i_{\tilde{E}}^{*}(\theta$ $\wedge \tilde{\beta})=0$ we can write $\theta \wedge \tilde{\beta}$ in the form $\theta \wedge \tilde{\beta}=d z^{\alpha} \wedge \gamma_{\alpha}$ where γ_{α} can be written in terms of $\theta, d z^{\alpha+1}, \cdots, d z^{q}, \xi_{q+2}, \cdots, \xi_{n}$ for $j=1, \cdots, q$. Since $\theta \wedge \theta \wedge \tilde{\beta}=0$ we have $0=\theta \wedge d z^{\alpha} \wedge \gamma_{\alpha}$, and since $\theta, d z^{\alpha}, \cdots$ is a basis it follows from the forms of the γ_{α} that $\theta \wedge \gamma_{\alpha}=0$. Hence we can write $\gamma_{\alpha}=-\theta \wedge \delta_{\alpha}, \alpha=1, \cdots, q$. Let $\delta=d z^{\alpha} \wedge \delta_{\alpha}$, then $\theta \wedge \delta=\theta \wedge \tilde{\beta}$ so

$$
\begin{equation*}
\theta \wedge(\tilde{\beta}-\delta)=0 \tag{1.25}
\end{equation*}
$$

But $i_{E}^{*}(\delta)=0$ hence

$$
\begin{equation*}
i_{E}^{*}(\tilde{\beta}-\delta)=\beta \tag{1.26}
\end{equation*}
$$

By (1.25) there is an element $\tilde{\alpha} \in \Lambda^{s-1}\left(T_{M}^{*} \otimes \mathbf{C}\right)$ for which $\theta \wedge \tilde{\alpha}=(\tilde{\beta}-\delta)$. Hence by (1.26) we have $\sigma_{\theta}(\alpha)=i_{E}^{*}(\theta \wedge \tilde{\alpha})=i_{E}(\tilde{\beta}-\delta)=\beta$, where $\alpha=$ $i_{E}^{*}(\tilde{\alpha})$. Thus the sequence is exact and the complex is elliptic. q.e.d.

We now define the notion of holomorphic vector field on a holomorphic foliation. Locally a holomorphic vector field is a lift, via a submersion in $\mathcal{H}_{\mathscr{F}}$, of a holomorphic vector field on \mathbf{C}^{q}. More precisely let $U \subseteq M$ be an open set such that there is a submersion $f: U \rightarrow \mathbf{C}^{q}, f \in \mathcal{H}_{\mathscr{G}}$. Then we define $\boldsymbol{\theta}_{\sim}$ 承 U as the pull-back $f^{*}\left({\underset{\sim}{\mathbf{C}^{q}}}\right)$ of the sheaf of germs of holomorphic vector fields on \mathbf{C}^{q}.

Remark. By a holomorphic vector field on \mathbf{C}^{q} we mean a holomorphic section of the holomorphic tangent bundle.

Theorem 1.27. The cohomology groups $H^{i}\left(M, \theta_{\mathscr{G}}\right)$ and $H^{i}\left(M, \theta_{\mathcal{F}}\right)$ are finite dimensional.

Proof. Since the resolution (1.20) is elliptic, it follows from the theory of elliptic complexes [14] that $H^{i}\left(M, \theta_{\mathscr{G}}\right)$ is finite dimensional. Similarly, to show that $H^{i}\left(M, \boldsymbol{\theta}_{\mathscr{G}}\right)$ is finite dimensional we will construct a resolution of $\boldsymbol{\theta}_{\widetilde{F}}$ by an
elliptic complex. Let

$$
\begin{equation*}
{\underset{\sim}{Q}}_{* i}^{* i}={\underset{\sim}{E}}^{* i} \otimes_{\mathcal{O}_{\mathscr{S}}}{\underset{\sim}{\mathcal{F}}}^{\underline{ } E^{* i} \otimes_{\mathbf{C}} Q^{(1,0)}, .} \tag{1.28}
\end{equation*}
$$

and let $d_{Q}=d_{E} \otimes \mathrm{id}$. Since d_{E} is elliptic, so is d_{Q} and the required resolution is

$$
\begin{equation*}
0 \rightarrow \underset{\sim}{\theta_{\mathscr{F}}} \rightarrow \underset{\sim}{E} \stackrel{*}{Q}^{d_{Q}}{\underset{\sim}{E}}_{Q}^{* 1} \rightarrow \cdots \tag{1.29}
\end{equation*}
$$

This concludes the proof. q.e.d.
In adapted coordinates the operator d_{Q} is given by the formula

$$
\begin{equation*}
d_{Q}\left(\varphi^{\alpha} \otimes\left[\frac{\partial}{\partial z^{\alpha}}\right]\right)=d_{\varepsilon} \varphi^{\alpha} \otimes\left[\frac{\partial}{\partial z^{\alpha}}\right] \tag{1.30}
\end{equation*}
$$

where φ^{α} is in $E^{* s}$.
Remarks. The above discussion is an adaptation to holomorphic foliations of cohomology theories for C^{∞}-foliations as presented in [9]. See also [4], [5] and [6]. We summarize here results of theirs which we will need in §4, as they apply to a holomorphic foliation \mathscr{F}, considered as a C^{∞}-foliation.

On the complex $\Lambda^{\bullet} L^{*}$ is a differential $d_{\|}$, which in adapted coordinates takes the form

$$
\begin{equation*}
d_{\|} \varphi=\frac{\partial \varphi_{I}}{\partial x^{j}}\left[d x^{j}\right] \wedge d x^{I} \tag{1.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi=\varphi_{I}\left[d x^{I}\right] . \tag{1.32}
\end{equation*}
$$

Let ${\underset{\sim}{G}}_{\infty}^{\infty}$ be the sheaf of complex-valued C^{∞}-functions, which are locally constant along the leaves of \mathscr{F}. $\left(\Lambda^{\bullet}{\underset{\sim}{L}}^{*}, d_{\|}\right)$is a resolution of this sheaf [9].

Let ${\underset{\sim}{F}}^{\mathscr{F}},{\underset{\sim}{g}}^{(1,0)}$, etc., denote the sheaves of sections of $Q, Q^{(1,0)}$, etc, which are locally constant along the leaves of \mathscr{F}. These are all modules over ${\underset{\sim}{c}}_{\underset{\xi}{\infty}}^{\infty}$, and tensoring over $C_{\mathscr{F}}^{\infty}$ with $\left(\Lambda^{\bullet}{\underset{\sim}{L}}^{*}, d_{\|}\right)$gives resolutions of these sheaves. In particular [9]

$$
\begin{equation*}
H^{\bullet}\left(M, Q^{(0, s)} \otimes Q_{\mathscr{F}}^{(1,0)}\right) \cong H^{\bullet}(\Gamma(\underbrace{Q^{*(0, s)} \otimes Q_{\mathscr{F}}^{(1,0)}} \otimes_{C_{\mathscr{F}}} \Lambda{\underset{\sim}{L}}^{*}), d_{Q \|}) \tag{1.33}
\end{equation*}
$$

where $d_{Q \|}=\mathrm{id} \otimes d_{\|}$.

2. Infinitesimal deformations and the Spencer operator

As an application of Theorem (1.27) we will show that the space of infinitesimal deformations of a holomorphic foliation is finite dimensional. Let $\mathscr{P}_{\mathscr{F}}$ be the pseudogroup of local diffeomorphisms of M which preserve the
holomorphic foliation \mathscr{F}. Specifically, $g: U \rightarrow V$ is in $\mathscr{P}_{\mathscr{F}}$ if and only if for each submersion $f_{\alpha}: U_{\alpha} \rightarrow \mathbf{C}^{q}$ in $\mathscr{H}_{\mathscr{F}}$ with $V \cap U_{\alpha} \neq \varnothing$, the submersion $f_{\beta}=f_{\alpha} \circ g: U \rightarrow \mathbf{C}^{q}$ is in $\mathscr{H}_{\mathscr{F}}$, where $U_{\beta}=U_{\alpha} \cap g^{-1}\left(U_{\alpha}\right)$. It follows from the definition of a Haefliger cocycle that near each point $x \in U_{\alpha} \cap U_{\beta}$ there is a unique local biholomorphism $\tilde{g}_{\beta \alpha}^{s}$ of \mathbf{C}^{q} with

$$
\begin{equation*}
f_{\alpha} \circ g=\tilde{g}_{\beta \alpha}^{x} \circ f_{\alpha} \tag{2.1}
\end{equation*}
$$

Now let $\eta_{\mathscr{F}}$ be the sheaf of local vector fields whose flows lie in $\mathscr{P}_{\mathscr{F}}$, and let $\underset{\sim}{L}$ be the sheaf of local vector fields in $L \subseteq T_{M}$. The following lemma follows easily from (2.1).

Lemma 2.2. The exact sequence (1.4) induces an exact sequence

$$
\begin{equation*}
0 \rightarrow \underset{\sim}{L} \rightarrow \eta_{\mathscr{F}} \xrightarrow{\tau} \underset{\sim}{\theta_{\mathscr{F}}} \rightarrow 0 \tag{2.3}
\end{equation*}
$$

Theorem 2.4. The space of infinitesimal deformations of the pseudogroup $\mathscr{P}_{\mathbb{F}_{5}}$ is finite dimensional.

Proof. Since $\underset{\sim}{L}$ is a finite sheaf, it follows that $H^{j}(M, \underset{\sim}{L})=0$ for $j \geqslant 1$. Using the long exact cohomology sequence associated to (2.3) we see that $H^{1}\left(M, \eta_{\mathscr{F}}\right) \simeq H^{1}\left(M, \theta_{\mathscr{G}}\right)$. By Spencer [13] the space of infinitesimal deformations of $\mathscr{P}_{\mathscr{F}}$ is just $H^{1}\left(M, \eta_{\mathscr{F}}\right)$, which is finite dimensional by Theorem (1.27). q.e.d.

We will now define a nonlinear first order partial differential operator

$$
D: \operatorname{Hom}\left(E, Q^{(1,0)}\right) \rightarrow \operatorname{Hom}\left(\Lambda^{2} E, Q^{(1,0)}\right)
$$

whose linearization is d_{Q}. We will call this the Spencer operator associated to \mathscr{F}. This operator is defined in analogy with the operator $\bar{\partial}-[$,$] which is of$ fundamental importance in the study of deformations of complex structure on a complex manifold. For this see [8].
D will be of the form, $D=d_{Q}-[,]_{Q}$ where $[,]_{Q}$ is an operator to be defined below. We will show that

$$
\begin{equation*}
\operatorname{Fol}(\mathscr{F})=\left\{\varphi \in \operatorname{Hom}\left(E, Q^{(1,0)}\right): D \varphi=0\right\} . \tag{2.5}
\end{equation*}
$$

In $\S 3$ we will show how to realize $\operatorname{Fol}(\mathscr{F})$, via (2.5), as an analytic subspace of $H^{1}\left(M, \theta_{\mathscr{F}}\right)$.

Remark 2.6. Unfortunately, our techniques work only if we assume that the splitting (1.9) is induced by a foliation \mathscr{F}^{\perp} transverse to \mathscr{F}. The foliation \mathscr{F}^{\perp} need not be holomorphic. We assume from this point on that \mathscr{F}^{\perp} is fixed and that $\rho: Q \rightarrow T_{M}$ is the tangent bundle to \mathscr{F}^{\perp}. We can therefore think of all bundles as sub-bundles of the tensor algebra bundle of T_{M}. An adapted coordinate system will now be a chart (x, z) in $\mathbf{R}^{p} \times \mathbf{C}^{q}$ such that the projections $\mathbf{R}^{p} \times \mathbf{C}^{q} \rightarrow \mathbf{C}^{q}$ are in $\mathscr{H}_{\mathscr{F}}$ and such that the leaves \mathscr{F}^{\perp} are locally given by the sets $\{x=$ constant $\}$.

In these coordinates $d_{Q}: E_{Q}^{* s} \rightarrow E_{Q}^{* s+1}$ is given by the formula

$$
\begin{align*}
d_{Q}\left(\varphi_{J B}^{\alpha} d x^{J} \wedge\right. & \left.d \bar{z}^{B} \otimes \frac{\partial}{d z^{\alpha}}\right) \\
& =\left(\frac{\partial}{\partial x^{i}} \varphi_{J B}^{\alpha} d x^{i}+\frac{\partial}{\partial \bar{z}^{\beta}} \varphi_{J B}^{\alpha} d \bar{z}^{\beta}\right) \wedge d x^{J} \wedge d \bar{z}^{B} \otimes \frac{\partial}{\partial z^{\alpha}} \tag{2.7}
\end{align*}
$$

where, as usual, $d x^{J}=d x^{j_{1}} \wedge \cdots \wedge d x^{j_{1}}, d \bar{z}^{B}=d \bar{z}^{\beta_{1}} \wedge \cdots \wedge d \bar{z}^{\beta_{k}}$ and let $l+k=s$.

We now define $[,]_{Q}$, as a map $[,]_{Q}: \underset{\sim}{E}{ }_{q}^{* r} \times \underset{\sim}{E}{ }_{Q}^{* s} \rightarrow \underset{\sim}{E}{ }_{Q}^{* r+s}$ as follows. Choose adapted coordinates, and let

$$
\begin{aligned}
& \varphi=\varphi_{J B}^{\alpha} d x^{J} \wedge d \bar{z}^{B} \otimes \frac{\partial}{\partial z^{\alpha}} \in E_{Q}^{* r} \\
& \psi=\psi_{K G}^{\alpha} d x^{K} \wedge d \bar{z}^{G} \otimes \frac{\partial}{\partial z^{\alpha}} \in E_{Q}^{*}
\end{aligned}
$$

Then

$$
\begin{align*}
{[\varphi, \psi]_{Q}=} & \frac{1}{2 r!s!}\left(\varphi_{J B}^{\gamma} \frac{\partial}{\partial z^{\gamma}} \psi_{K G}^{\alpha}\right. \\
& \left.+(-1)^{r s+1} \psi_{K G}^{\gamma} \frac{\partial \varphi_{J B}^{\alpha}}{\partial z^{\gamma}}\right) d x^{J} \wedge d \bar{z}^{B} \wedge d x^{K} \wedge d \bar{z}^{G} \otimes \frac{\partial}{\partial z^{\alpha}} \tag{2.8}
\end{align*}
$$

We now give a precise statement and proof of (2.5).
Proposition 2.9. Given $\varphi \in \operatorname{Hom}\left(E, Q^{(1,0)}\right)$, the distribution E_{φ} defines a holomorphic foliation if and only if $D \varphi=0$.

Proof. By the complex Frobenius theorem we must show that $\left[E_{\varphi}, E_{\varphi}\right] \subseteq$ E_{φ} if and only if $D \varphi=0$.

Again we work in adapted coordinates. Suppose $D \varphi=0$. Then we see by the definition of E_{φ} that E_{φ} is generated by the vector fields

$$
X_{i}=\frac{\partial}{\partial x^{i}}+\varphi_{i}^{\alpha} \frac{\partial}{\partial z^{\alpha}}, \quad Y_{\bar{\beta}}=\frac{\partial}{\partial \bar{z}^{\beta}}+\varphi_{\beta}^{\alpha} \frac{\partial}{\partial z^{\alpha}}
$$

where $\varphi=\varphi_{i}^{\alpha} d x^{i} \otimes \partial / \partial z^{\alpha}+\varphi_{\beta}^{\alpha} d z^{\beta} \otimes \partial / \partial z^{\alpha}$. We need only show that for all i, j, α, β the vector fields $\left[X_{i}, X_{j}\right],\left[X_{i}, Y_{\bar{\alpha}}\right]$, and $\left[Y_{\bar{\alpha}}, Y_{\bar{\beta}}\right]$ lie in E_{φ}.

It follows from (2.7) and (2.8) that

$$
\begin{align*}
{\left[X_{i}, X_{j}\right] } & =(D \varphi)_{i j}^{\alpha} \frac{\partial}{\partial z^{\alpha}} \\
{\left[X_{i}, Y_{\bar{\beta}}\right] } & =(D \varphi)_{i \bar{\beta}}^{\alpha} \frac{\partial}{\partial z^{\alpha}} \tag{2.10}\\
{\left[Y_{\bar{\beta}}, Y_{\bar{\gamma}}\right] } & =(D \varphi)_{\bar{\beta} \bar{\gamma}}^{\alpha} \frac{\partial}{\partial z^{\alpha}}
\end{align*}
$$

where

$$
\begin{aligned}
D \varphi= & (D \varphi)_{i j}^{\alpha} d x^{i} \wedge d x^{j} \otimes \frac{\partial}{\partial z^{\alpha}}+(D \varphi)_{i \bar{\beta}}^{\alpha} d x^{i} \wedge d \bar{z}^{\beta} \otimes \frac{\partial}{\partial z^{\alpha}} \\
& +(D \varphi)_{\bar{\beta} \bar{\gamma}}^{\alpha} d \bar{z}^{\beta} \wedge d \bar{z}^{\gamma} \otimes \frac{\partial}{\partial z^{\alpha}}
\end{aligned}
$$

Hence all brackets are zero, and the distribution E_{φ} is involutive.
Conversely suppose E_{φ} is involutive. Then the brackets [$\left.X_{i}, X_{j}\right],\left[X_{i}, Y_{\bar{\alpha}}\right]$, [$Y_{\bar{\alpha}}, Y_{\bar{\beta}}$] lie in E_{φ}. But by (2.10) this is impossible unless all brackets are zero. Again, by (2.10) this is impossible unless $D \varphi=0$. q.e.d.

We conclude this section with a list of properties of $[,]_{Q}$ which will be needed in the construction of solutions of $D \varphi=0$. They are easily verified.

$$
\begin{equation*}
[,]_{Q} \text { is bilinear. } \tag{2.11}
\end{equation*}
$$

If $\varphi \in \underset{\sim}{E}{ }_{Q}^{* r}, \psi \in \underset{\sim}{E}{ }_{Q}^{* s}$ and $\tau \in \underset{\sim}{E_{Q}^{* t}}$, then

$$
\begin{align*}
& {[\varphi, \psi]_{Q} }=(-1)^{r s}[\psi, \varphi]_{Q} \tag{2.12}\\
& d_{Q}[\varphi, \psi]_{Q}=\left[d_{Q} \varphi, \psi\right]_{Q}+(-1)^{r}\left[\varphi, d_{Q} \psi\right]_{Q} \tag{2.13}\\
&(-1)^{s t}\left[\varphi,[\psi, \tau]_{Q}\right]_{Q}+(-1)^{r s}\left[\psi,[\tau, \varphi]_{Q}\right]_{Q} \\
&+(-1)^{r t}\left[\tau,[\varphi, \psi]_{Q}\right]_{Q}=0 \tag{2.14}
\end{align*}
$$

3. The Kuranishi family of a holomorphic foliation

In this section we extend Kuranishi's theorem [8] on the existence of locally complete families of complex analytic structures to the case of a holomorphic foliation for which there is a transverse foliation. More specifically, we will prove the following theorem.

Theorem 3.1. Let \mathscr{F}_{0} be a holomorphic foliation on a compact C^{∞}-manifold M, and let \mathscr{F}^{\perp} be a C^{∞}-foliation transverse to \mathscr{F}_{0}. Then there are a local analytic subset $B \subseteq H^{1}\left(M,{\underset{\sim}{\sigma_{0}}}\right)$ and a holomorphic map

$$
\begin{equation*}
B \rightarrow \mathscr{F} \operatorname{ol}\left(\mathscr{F}_{0}\right) \subseteq \operatorname{Hom}\left(E, Q^{(1,0)}\right): t \rightarrow \mathscr{F}_{t} \tag{3.2}
\end{equation*}
$$

which defines a locally complete family of holomorphic foliations in the sense that if $\tilde{\mathscr{F}}$ is a holomorphic foliation sufficiently close to \mathscr{F}_{0}, then $\tilde{\mathscr{F}}$ is conjugate to a foliation of the form \mathscr{F}_{t} via a diffeomorphism of M close to the identity. Furthermore, given a Riemannian metric respecting the local product structure on M induced by \mathscr{F}_{0} and \mathscr{F}^{\perp} this diffeomorphism can be unambiguously defined.

Remarks 3.3. This theorem is a generalization of Kuranishi's theorem in the following sense. A complex manifold M can be thought of as the
holomorphic foliation on M given by points. The foliation \mathscr{F}^{\perp} is just the codimension -0 foliation of M whose single leaf is M itself.

The proof of Theorem 3.1 is an adaptation of Kuranishi's proof [8]. In fact, if the following substitutions are made, the proofs are almost identical: replace the Dolbault complex by ($\underset{\sim}{E}, d_{Q}^{*}$) and replace the bracket operation of Kuranishi by $[,]_{Q}$. In place of the operator $\bar{\partial}-[$,$] substitute the operator$ $D=d_{Q}-[,]_{Q}$. The proof of Theorem 3.1 proceeds in two steps. We first construct the family \mathscr{F}_{t} as solutions of a certain system of equations. Then we show that any holomorphic foliation close to \mathscr{F}_{0} is conjugate to \mathscr{F}_{t} for some t.

Step 1. The construction of \mathscr{F}_{t}. We will now construct a map from elements of a certain analytic subset B of $H^{1}\left(M, \theta_{\sigma}\right)$ near zero to solutions of the system of equations

$$
\begin{equation*}
d_{Q} \varphi=[\varphi, \varphi]_{Q}, \quad \delta_{Q} \varphi=0 \tag{3.4}
\end{equation*}
$$

with $\varphi \in \Gamma\left(E_{Q}^{* 1}\right) \cong \operatorname{Hom}\left(E, Q^{1,0}\right)$ having small norm. Here δ_{Q} denotes the adjoint of the operator $d_{Q}: \Gamma\left(E_{Q}^{* s}\right) \rightarrow \Gamma\left(E_{Q}^{* s+1}\right)$ with respect to the inner product induced by the Riemannian metric on M associated to an $S O(p) \times$ $U(q)$ reduction of the tangent bundle of M which is compatible with the local product structure on M and the complex structure on Q.

Recall that, by the Hodge decomposition theorem for elliptic complexes [14], there is a Green's operator

$$
\begin{equation*}
G_{Q}: \Gamma\left(E_{Q}^{* r}\right) \rightarrow \Gamma\left(E_{Q}^{* r}\right), r \geqslant 0 \tag{3.5}
\end{equation*}
$$

with the property that

$$
\begin{equation*}
I=H_{Q}+\Delta_{Q} \circ G_{Q} \tag{3.6}
\end{equation*}
$$

where $\Delta_{Q}=d_{Q} \delta_{Q}+\delta_{Q} d_{Q}$, and $H_{Q}: \Gamma\left(E_{Q}^{* r}\right) \rightarrow H^{r}\left(M, \theta_{\mathcal{G}}\right)$ is projection onto Ker Δ_{Q}, which by Lemma 1.19 we can identify with $H^{r}\left(M, \theta_{\mathscr{F}}\right)$.

Let $\left\|\|_{s}\right.$ denote the Sobolov norm on $H^{\bullet}\left(M, \boldsymbol{\theta}_{\mathscr{F}}\right)$ induced by the metric on M. Pick a basis $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{m}$ for $H^{1}\left(M, \theta_{\sigma}\right)$. Given $\varphi_{0}=\sum_{i=1}^{m} t_{i} \varphi_{i} \in$ $H^{1}(M,{\underset{\sim}{G}})$ with $\left\|\varphi_{0}\right\|_{s}$ small, say $<\varepsilon$, we wish to solve the equation

$$
\begin{equation*}
\varphi=\varphi_{0}+\varphi_{Q} G_{Q}[\varphi, \varphi]_{Q} \tag{3.7}
\end{equation*}
$$

and show that the solution $\varphi(t)$ depends holomorphically on $t=\left(t_{1}, \cdots, t_{m}\right)$ $\in \mathbf{C}^{m}$. To do this we need two estimates:

$$
\begin{equation*}
\left\|\left[\varphi_{1}, \varphi_{2}\right]_{Q}\right\|_{s} \leqslant C\left\|\varphi_{1}\right\|_{s+1} \cdot\left\|\varphi_{2}\right\|_{s+1} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{gather*}
\left\|\delta_{Q} G_{Q} \varphi\right\|_{s} \leqslant C\|\varphi\|_{s-1} \tag{3.9}\\
\left\|H_{Q} \varphi\right\|_{s} \leqslant C\|\varphi\|_{s} \tag{3.10}
\end{gather*}
$$

The first estimate follows trivially from the definition of $[,]_{Q}$, and the second
and third follow from the fact that the d_{Q}-complex is elliptic. The solution of (3.7) and its holomorphic dependence follow, verbatim as in [7] using the implicit function theorem or a power series expansion.

We can now solve the system (3.4) using the above result. Begin by assuming that φ is a solution of (3.7). We will soon see that for $\|\varphi\|_{s}$ sufficiently small this assumption is redundant. Note that, by the Hodge decomposition (3.6),

$$
\begin{equation*}
[\varphi, \varphi]_{Q}=H_{Q}[\varphi, \varphi]_{Q}+d_{Q} \delta_{Q} G_{Q}[\varphi, \varphi]_{Q}+\delta_{Q} d_{Q} G_{Q}[\varphi, \varphi]_{Q} \tag{3.11}
\end{equation*}
$$

and that, since $d_{Q} \varphi_{0}=0$,

$$
\begin{equation*}
d_{Q} \varphi=d_{Q} \delta_{Q} G_{Q}[\varphi, \varphi]_{Q} \tag{3.12}
\end{equation*}
$$

Combining (3.11) and (3.12) yields

$$
-d_{Q} \varphi+[\varphi, \varphi]_{Q}=H_{Q}[\varphi, \varphi]_{Q}+\delta_{Q} d_{Q} G_{Q}[\varphi, \varphi]_{Q}
$$

and therefore

$$
\begin{equation*}
-d_{Q} \varphi+[\varphi, \varphi]_{Q}=H_{Q}[\varphi, \varphi]_{Q}+\delta_{Q} G_{Q} d_{Q}[\varphi, \varphi]_{Q} \tag{3.13}
\end{equation*}
$$

since $d_{Q} G_{Q}=G_{Q} d_{Q}$. Since the terms on the right are orthogonal, φ is a solution of (3.4) if and only if the equations

$$
\begin{gather*}
H_{Q}[\varphi, \varphi]_{Q}=0, \tag{3.14}\\
\delta_{Q} G_{Q} d_{Q}[\varphi, \varphi]_{Q}=0 \tag{3.15}
\end{gather*}
$$

are satisfied. However, (3.15) is a consequence of (3.14) by the following argument. First observe that

$$
\begin{equation*}
\delta_{Q} G_{Q} d_{Q}[\varphi, \varphi]_{Q}=2 \delta_{Q} G_{Q}\left[d_{Q} \varphi, \varphi\right]_{Q} \tag{3.16}
\end{equation*}
$$

by (2.12) and (2.13). If $H_{Q}[\varphi, \varphi]_{Q}=0$, then by (3.13) we can write (3.16) as

$$
\begin{align*}
\delta_{Q} G_{Q} d_{Q}[\varphi, \varphi]_{Q} & =2 \delta_{Q} G_{Q}\left[[\varphi, \varphi]_{Q}, \varphi\right]_{Q}-2 \delta_{Q} G_{Q}\left[\delta_{Q} G_{Q} d_{Q}[\varphi, \varphi]_{Q}, \varphi\right]_{Q} \\
& =-2 \delta_{Q} G_{Q}\left[\delta_{Q} G_{q} d_{Q}[\varphi, \varphi]_{Q}, \varphi\right]_{Q} \tag{3.17}
\end{align*}
$$

by the Jacobi identity (2.14). Hence by (3.8) and (3.9) we have the inequality

$$
\left\|\delta_{Q} G_{Q} d_{Q}[\varphi, \varphi]_{Q}\right\|_{s} \leqslant C\left\|\delta_{Q} G_{Q} d_{Q}[\varphi, \varphi]_{Q}\right\|_{s}\|\varphi\|_{s}
$$

So, for $\|\varphi\|_{s}$ sufficiently small, (3.15) holds.
We can now construct the space B of the theorem. Let

$$
\begin{equation*}
B=\left\{\varphi_{0} \in H^{1}\left(M,{\underset{\sigma}{F}}^{\mathscr{F}}\right)\left\|\varphi_{0}\right\|<\varepsilon, \quad H_{Q}[\varphi(t), \varphi(t)]_{Q}=0\right\} \tag{3.18}
\end{equation*}
$$

where ε is to be chosen as in Lemma 3.23. This is an analytic subset of $H^{1}\left(M, \theta_{\mathcal{F}}\right)$. Furthermore, by the above argument, the elements $\varphi(t)$ for
$\sum t_{i} \varphi_{i} \in B$ are solutions of the equation $D \varphi \equiv d_{Q} \varphi-[\varphi, \varphi]_{Q}=0$, and therefore define holomorphic foliations.

Note that if ψ is a solution of (3.4) of sufficiently small norm, then $\psi=\varphi(t)$ for a unique element $\varphi_{0}=\Sigma t_{i} \varphi_{i} \in B$. To see this, notice that since $D \psi=0$ and $\delta_{Q} \psi=0$, we have

$$
\begin{equation*}
\Delta_{Q} \psi=\delta_{Q}[\psi, \psi]_{Q} \tag{3.19}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\psi-H_{Q} \psi=G_{Q} \delta_{Q}[\psi, \psi]_{Q} \tag{3.20}
\end{equation*}
$$

Set $\varphi_{0}=H_{Q} \psi$. Then from (3.20)

$$
\begin{equation*}
\psi=\varphi_{0}+\delta_{Q} G_{Q}[\psi, \psi]_{Q} \tag{3.21}
\end{equation*}
$$

By (3.10)

$$
\begin{equation*}
\left\|\varphi_{0}\right\|_{s}=\left\|H_{Q} \psi\right\|_{s} \leqslant c\|\varphi\|_{s} . \tag{3.22}
\end{equation*}
$$

Therefore there is a number $\eta>0$ with the property that if $\|\psi\|_{s}<\eta$, then $\left\|\varphi_{0}\right\|_{s}<\varepsilon$. Hence $\psi=\varphi(t)$ for $\varphi_{0}=\Sigma t_{i} \varphi_{i} \in B$ by the following lemma.

Lemma 3.23. The set $\left\{\varphi(t) \mid \sum t_{i} \varphi_{i} \in B\right\}$ comprises all solutions of (3.7) of small norm, and these solutions are unique.

Proof. Fix φ_{0} with $\left\|\varphi_{0}\right\|_{s}$ small, and let $\varphi(t)$ be the solution obtained by power series. Suppose φ is another solution. Let $\omega=\varphi-\varphi(t)$. Then

$$
\begin{aligned}
\omega & =\delta_{Q} G_{Q}\left([\varphi, \varphi]_{Q}-[\varphi(t), \varphi(t)]_{Q}\right) \\
& =\delta_{Q} G_{Q}\left([\omega, \varphi(t)]_{Q}+[\varphi(t), \omega]_{Q}+[\omega, \omega]_{Q}\right) \\
& =\delta_{Q} G_{Q}\left(2[\omega, \varphi(t)]_{Q}+[\omega, \omega]_{Q}\right)
\end{aligned}
$$

Hence by (3.8)

$$
\|\omega\|_{s} \leqslant c\|\omega\|_{s}\left(\|\varphi(t)\|_{s}+\|\omega\|_{s}\right) .
$$

For $\|\varphi(t)\|_{s}$ sufficiently small say $<\varepsilon$, this can only happen if $\omega=0$. q.e.d.
At this point we have shown that every solution of the equations $D \varphi=0$ and $\delta_{Q} \varphi=0$ is of the form $\varphi(t)$ for $\varphi_{0}=\sum t_{i} \varphi_{i} \in B$.

Step 2. Suppose now that the norm of φ is small, and that $D \varphi=0$, but that $\delta_{Q} \varphi \neq 0$. We wish to show that the corresponding foliation \mathscr{F}_{φ} is conjugate to one of the form $\mathscr{F}_{\varphi(t)}$ for $\sum t_{i} \varphi_{i} \in B$. As in Kuranishi [8], we do this using diffeomorphisms generated by geodesics.

We just examine the action of diffeomorphisms of M near the identity on holomorphic foliations, or more precisely their associated distributions. Let $\varphi \in \operatorname{Hom}\left(E, Q^{(1,0)}\right)$, and denote the distribution associated to φ by $E_{\varphi} \subseteq T_{M}^{\mathrm{c}}$. Let f be a diffeomorphism of M close to the identity in the C^{∞}-topology. Then the Jacobian map f_{*} maps E_{φ} to a bundle $f_{*}\left(E_{\varphi}\right)$, and there is a unique
element $\psi \in \operatorname{Hom}\left(E, Q^{(1,0)}\right)$ with $E_{\psi}=f_{*}\left(E_{\varphi}\right)$. Denote this element by $f_{*} \varphi$.
We wish to find a formula for $f_{*} \varphi$ in terms of f and φ in adapted coordinates. Let $(x, z)=\left(x^{1}, \cdots, x^{p}, z^{p+1}, \cdots, z^{n}\right)$ be adapted coordinates. Then

$$
\begin{equation*}
\varphi=\varphi_{i}^{\alpha} d x^{i} \otimes \frac{\partial}{\partial z^{\alpha}}+\varphi_{\beta}^{\alpha} d \bar{z}^{\beta} \otimes \frac{\partial}{\partial z^{\alpha}} \tag{3.24}
\end{equation*}
$$

and E_{φ} is spanned locally by the vector fields

$$
\begin{equation*}
X_{i}^{\varphi}=\frac{\partial}{\partial x^{i}}+\varphi_{i}^{\alpha} \frac{\partial}{\partial z^{\alpha}}, \quad X_{\beta}^{\varphi}=\frac{\partial}{\partial \bar{z}^{\beta}}+\varphi_{\beta}^{\alpha} \frac{\partial}{\partial z^{\alpha}} . \tag{3.25}
\end{equation*}
$$

Hence locally $f_{*}\left(E_{\varphi}\right)$ is spanned by the entries of the $(p+q) \times 1$ matrix

$$
\left[\begin{array}{c}
f_{*}\left(X_{i}^{\varphi}\right) \tag{3.26}\\
f_{*}\left(X_{\bar{\beta}}^{q}\right)
\end{array}\right)=\left(\begin{array}{cc}
M_{i j} & M_{i \alpha} \\
M_{\bar{\beta} j} & M_{\bar{\beta} \alpha}
\end{array}\right)\binom{\frac{\partial}{\partial x^{j}}}{\frac{\partial}{\partial \bar{z}^{\alpha}}}+\binom{N_{i \alpha}}{N_{\bar{\beta} \alpha}}\left(\frac{\partial}{\partial z^{\alpha}}\right)
$$

where

$$
\begin{array}{ll}
M_{i j}=\left(\frac{\partial f^{j}}{\partial x^{i}}+\varphi_{i}^{\gamma} \frac{\partial f^{j}}{\partial z^{\gamma}}\right), & M_{i \alpha}=\left(\frac{\partial f^{\alpha}}{\partial x^{i}}+\varphi_{i}^{\gamma} \frac{\partial f^{\alpha}}{\partial z^{\gamma}}\right), \\
M_{\bar{\beta} j}=\left(\frac{\partial f^{j}}{\partial \bar{z}^{\beta}}+\varphi_{\beta}^{\gamma} \frac{\partial f^{j}}{\partial z^{\gamma}}\right), & M_{\bar{\beta} \alpha}=\left(\frac{\partial f^{\alpha}}{\partial \bar{z}^{\beta}}+\varphi_{\beta}^{\gamma} \frac{\partial f^{\alpha}}{\partial z^{\gamma}}\right), \tag{3.27}\\
N_{i \alpha}=\left(\frac{\partial f^{\alpha}}{\partial x^{i}}+\varphi_{i}^{\gamma} \frac{\partial f^{\alpha}}{\partial z^{\gamma}}\right), \quad N_{\bar{\beta} \alpha}=\left(\frac{\partial f^{\alpha}}{\partial \bar{z}^{\beta}}+\varphi_{\beta}^{\gamma} \frac{\partial f^{\alpha}}{\partial z^{\gamma}}\right),
\end{array}
$$

and $f=\left(f^{1}, \cdots, f^{n}\right)$. Setting

$$
\begin{equation*}
\psi=f_{*}(\varphi)=\psi_{i}^{\alpha} d x^{i} \otimes \frac{\partial}{\partial z^{\alpha}}+\psi_{\bar{\beta}}^{\alpha} d \bar{z}^{\beta} \otimes \frac{\partial}{\partial z_{\alpha}} \tag{3.28}
\end{equation*}
$$

we see that $f_{*}\left(E_{\varphi}\right)$ is spanned locally by the vectors of the matrix

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x^{i}} \tag{3.29}\\
\frac{\partial}{\partial \bar{z}^{\beta}}
\end{array}\right)+\binom{\psi_{i}^{\gamma}}{\psi_{\beta}^{\gamma}}\left(\frac{\partial}{\partial z^{\gamma}}\right) .
$$

Since f is near the identity, the matrix

$$
M=\left(\begin{array}{cc}
M_{i j} & M_{i \alpha} \tag{3.30}\\
M_{\bar{\beta} j} & M_{\bar{\beta} \alpha}
\end{array}\right)
$$

is invertible. Combining (3.26) and (3.29) we see that

$$
\begin{equation*}
\binom{\psi_{i}^{\gamma}}{\psi_{\beta}^{\gamma}}=M^{-1} \circ N, \tag{3.31}
\end{equation*}
$$

where

$$
\begin{equation*}
N=\binom{N_{i \alpha}}{N_{\bar{\beta} \alpha}} . \tag{3.32}
\end{equation*}
$$

We summarize our results in the following lemma.
Lemma 3.33. Let $\varphi \in \operatorname{Hom}\left(E, Q^{(1,0)}\right)$, and let f be a diffeomorphism of M near the identity in the Whitney C^{∞}-topology. Then in adapted coordinates $\psi=f_{*}(\varphi)$ is given by (3.31).

We will now apply Lemma 3.33 to diffeomorphisms associated to geodesics. Considering $Q^{(1,0)}$ as a real vector bundle, we see that the map τ of (1.4) induces an isomorphism $Q \xrightarrow{\tau} Q^{(1,0)}$. Use τ to identity $Q^{(1,0)}$ with $Q \subseteq T_{M}$. See [26]. Let $X \in \Gamma\left(Q^{(1,0)}\right) \subseteq \Gamma\left(T_{M}\right)$ be a vector field close to zero in the C^{∞} topology. Since M is compact, it is complete in our metric. Consider the map $f(X, \cdot): M \rightarrow M$ defined by

$$
\begin{equation*}
f(X, y) \equiv \gamma(X, y, 1) \tag{3.34}
\end{equation*}
$$

where $t \rightarrow \gamma(X, \gamma, t)$ is the geodesic with initial conditions

$$
\begin{equation*}
\gamma(X, y, 0)=y, \quad \gamma^{\prime}(X, y, 0)=X(y) \tag{3.35}
\end{equation*}
$$

For X small, $f(X, \cdot)$ is a diffeomorphism of M. We wish to express $f(X, \cdot)$ locally as a Taylor series in the components of X, and use this expansion to represent (3.31) in terms of the components of X. In adapted coordinates $f(X, x, z)=\left(f^{j}(X, x, z), f^{\alpha}(X, x, z)\right)$ and since $f(t X, x, z)=\gamma(X,(x, z), t)$ the equations

$$
\begin{align*}
& X^{\alpha} \frac{\partial f^{i}}{\partial X^{\alpha}}(0, x, z)+\bar{X}^{\alpha} \frac{\partial f^{j}}{\partial \bar{X}^{\alpha}}(0, x, z)=\frac{d}{d t} \gamma^{j}(X,(x, z), 0)=0 \\
& X^{\alpha} \frac{\partial f^{\beta}}{\partial X^{\alpha}}(0, x, z)+\bar{X}^{\alpha} \frac{\partial f^{\beta}}{\partial \bar{X}^{\alpha}}(0, x, z)=\frac{d}{d t} \gamma^{\beta}(X,(x, z), 0)=X^{\beta} \tag{3.36}
\end{align*}
$$

are satisfied, where $X=X^{\alpha} \partial / \partial z^{\alpha}$. Therefore

$$
\begin{gather*}
\frac{\partial f^{j}}{\partial X^{\alpha}}=\frac{\partial f^{j}}{\partial \bar{X}^{\alpha}}=\frac{\partial f^{\beta}}{\partial \bar{X}^{\alpha}}=0 \tag{3.37}\\
\frac{\partial f^{\beta}}{\partial X^{\alpha}}=\delta_{\alpha}^{\beta} \tag{3.38}
\end{gather*}
$$

Hence f is of the form

$$
\begin{align*}
f^{j}(X, x, z) & =x^{j}+X^{\alpha} X^{\beta} r_{\alpha \beta}^{j}(X, x, z) \tag{3.39}\\
f^{\alpha}(X, x, z) & =z^{\alpha}+X^{\alpha}+X^{\beta} X^{\gamma} r_{\beta \gamma}^{\alpha}(X, x, z)
\end{align*}
$$

Now for X close to zero, the matrix M can be written in the form $I+A_{t X}$, where $A_{t X}=t \tilde{A}_{(X, t)}$, and $\tilde{A}_{(X, t)}$ is a matrix-valued C^{∞}-function in X^{α},
$\partial X^{\alpha} / \partial x^{i}, \partial X^{\alpha} / \partial z^{\beta}, \partial X^{\alpha} / \partial \bar{z}^{\beta}, \varphi_{i}^{\alpha}, \varphi_{\beta}^{\alpha}$ and t. Hence

$$
\begin{equation*}
M_{t X, \varphi}^{-1}=\sum_{l=0}^{\infty}(-1)^{l} A_{t X, \varphi}^{l}=I+H_{t X, \varphi} \tag{3.40}
\end{equation*}
$$

where H is C^{∞} in the variables $X^{\alpha}, \partial X^{\alpha} / \partial x^{i}$, etc. Also N can be expressed in the form

$$
\begin{equation*}
N_{t X}=\binom{\varphi_{i}^{\alpha}}{\varphi_{\beta}^{\alpha}}+t\binom{\frac{\partial X^{\alpha}}{\partial x^{i}}}{\frac{\partial X^{\alpha}}{\partial \bar{z}^{\beta}}}+t K_{t X, \varphi}, \tag{3.41}
\end{equation*}
$$

where $K_{t X, \varphi}$ is C^{∞} in the variables $X^{\alpha}, \partial X^{\alpha} / \partial x_{i}$, etc. (3.40) and (3.41) allow us to write (3.31) in the form:

$$
\binom{\psi_{i}^{\alpha}}{\psi_{\beta}^{\alpha}}=\left[\begin{array}{l}
\frac{\partial}{\partial x^{i}}\left(X^{\alpha}\right) \tag{3.42}\\
\frac{\partial}{\partial \bar{z}^{\beta}}\left(X^{\alpha}\right)
\end{array}\right)+\binom{\varphi_{i}^{\alpha}}{\varphi_{\beta}^{\alpha}}+R(X, \varphi)
$$

where $R(t X, t \varphi)=t^{2} R_{1}(X, \varphi, t)$, and R_{1} is C^{∞} in t, φ, X and their derivatives. In invariant form, (3.42) reads

$$
\begin{equation*}
f_{*} \varphi=d_{Q} X+\varphi+R(\psi, X) \tag{3.43}
\end{equation*}
$$

where $R(t \psi, t X)=t^{2} R_{1}(\psi, X, t)$, and R_{1} is C^{∞} in t, X, φ and their derivatives.

We will now use (3.43) to show that if $\varphi \in \operatorname{Hom}\left(E, Q^{(1,0)}\right)$ is a solution of the equation $D \varphi=0$ with $\|\varphi\|_{s}$ sufficiently small, then there is a unique element $\varphi(t)$ with $\Sigma t_{i} \varphi_{i} \in B$ and a unique vector field $X \in \Gamma\left(Q^{(1,0)}\right)$ with $f_{*}(X, \cdot)(\varphi(t))=\varphi$. This will complete Step 2 and the proof of Theorem 3.1.

Proposition 3.44. Let H^{\perp} be the orthogonal complement of the space $\Gamma\left(\theta_{\sim}{ }_{\sigma}\right)$ of \mathscr{F}-invariant holomorphic vector fields in $\Gamma\left(Q^{1,0}\right)$. Then there is a neighborhood U of the origin of H^{\perp} and a neighborhood V_{1} of the origin of $\Gamma\left(E_{Q}^{* 1}\right)=$ $\operatorname{Hom}\left(E, Q^{(1,0)}\right)$ such that for any element $\varphi \in V$ satisfying the equation $D \varphi=$ 0 , there is a unique element $X \in U$ with $f_{*}(X, \cdot) \varphi=\varphi(t)$ for $\sum t_{i} \varphi_{i} \in B$.

Proof. Set $f=f(X, \cdot)$. Then $f_{*} \varphi$ is of the required form, provided only that $\delta_{Q}\left(f_{*} \varphi\right)=0$. This follows from Step 1. But $\delta_{Q}\left(f_{*} \varphi\right)=0$ if and only if

$$
\begin{equation*}
\delta_{Q} d_{Q} X+\delta_{Q} \varphi+\delta_{Q} R(\varphi, X)=0 \tag{3.45}
\end{equation*}
$$

by (3.43). Since $X \in H^{\perp}$ it satisfies the equation

$$
\begin{equation*}
X=G_{Q} \Delta_{Q} X \equiv G_{Q} \delta_{Q} d_{Q} X \tag{3.46}
\end{equation*}
$$

Hence $\delta_{Q}\left(f_{*} \varphi\right)=0$ if and only if

$$
\begin{equation*}
G_{Q}\left(\delta_{Q} d_{Q} X+\delta_{Q} \varphi+\delta_{Q} R(\varphi, X)\right)=0 \tag{3.47}
\end{equation*}
$$

or

$$
\begin{equation*}
X+G_{Q} \delta_{Q} \varphi+G_{Q} \delta_{Q} R(\varphi, x)=0 \tag{3.48}
\end{equation*}
$$

We will use the implicit function theorem to find such an X. Define a map

$$
\begin{equation*}
h: U_{1} \times V_{1} \subseteq H^{\perp} \times \Gamma\left(E_{Q}^{* 1}\right) \rightarrow H^{\perp} \tag{3.49}
\end{equation*}
$$

by

$$
h(X, \varphi)=X+G_{Q} \delta_{Q}+G_{Q} \delta_{Q} R(\varphi, X)
$$

where U_{1} and V_{1} have been chosen so that R is defined. If U_{1}, V_{1} and H^{\perp} are given the topology induced by the Sobolev norm, then h is continuous and the Frechet derivative $\partial h /\left.\partial X\right|_{(0,0)}$ is the identity map. Hence, by the implicit function theorem, there is a C^{∞}-function $g: V \rightarrow U$ such that (3.48) holds if and only if $X=g(\varphi)$ for $\varphi \in V$. To see that X is smooth, note that it satisfies the second order elliptic equation with C^{∞} coefficients

$$
\Delta_{Q} X+\delta_{Q} R(\varphi, X)+\delta_{Q}=0
$$

Hence X is smooth by the regularity theorem.

4. Computation of $H^{\bullet}\left(M, \theta_{\mathcal{F}}\right)$

We now investigate the cohomology groups $H^{\bullet}\left(M,{\underset{\sim}{G}}^{\mathcal{G}}\right)$. We begin by defining a filtration on the complex (1.28).

Let $Q^{(p, q) *}$ denote the sheaf of germs of sections of the bundle $\Lambda^{p} Q^{(1,0) *} \otimes$ $\Lambda^{q} Q^{(1, \boldsymbol{\sigma} *}$. Then the differential complex (1.28) is filtered as follows. For $s \geqslant 0$ let

$$
\begin{equation*}
F^{s}{\underset{\sim}{e}}_{* *}^{* *}=\underset{\sim}{Q^{(0, s) *}} \wedge \underset{\sim}{E}{ }_{Q}^{* 0^{-s}} \tag{4.1}
\end{equation*}
$$

Observe that $d_{Q}\left(F^{s}{\underset{\sim}{e}}_{Q}^{* \bullet}\right) \subset F^{s} E_{Q}^{* \bullet}$, as can easily be seen from the formulas (1.16) and (1.30) for d_{e} and d_{Q}. Associated to this filtration is a spectral sequence converging to $H^{\bullet}\left(M,{\underset{\sigma}{G})}^{\theta_{G}}\right.$. The edge terms of this spectral sequence are of particular interest to us. Let $E_{Q, \mathscr{F}}^{* s}$ be the subsheaf of $\underset{\sim}{E}{ }_{Q}^{* s}$ consisting of sections which in adapted coordinates are of the form

$$
\begin{equation*}
\varphi=\varphi_{\beta, \alpha}(z) d \bar{z}^{\beta} \otimes\left[\frac{\partial}{\partial z^{\alpha}}\right] \tag{4.2}
\end{equation*}
$$

Such sections are invariant under Lie differentiation with respect to vector fields tangent to \mathscr{F} and are therefore called \mathscr{F}-invariant sections. The restriction of d_{Q} to $E_{Q, \text { G/ }}^{*}$ is denoted by $\bar{\partial}$ and applied to a section φ as in (4.2) is of
the form

$$
\begin{equation*}
\bar{\partial} \varphi=\frac{\partial \varphi_{\beta, \alpha}}{\partial \bar{z}^{\gamma}} d \bar{z}^{\gamma} \wedge d \bar{z}^{\beta} \otimes\left[\frac{\partial}{\partial z^{\alpha}}\right] \tag{4.3}
\end{equation*}
$$

Clearly $\bar{\partial}\left(E_{Q, \mathscr{F}}^{*}\right) \subseteq E_{Q, \mathscr{F}}^{* \cdot}$ and there is a complex

$$
\begin{equation*}
0 \rightarrow{\underset{\sim}{Q}}_{\hat{Q}}^{(1,0)} \rightarrow E_{Q, \mathscr{F}}^{* 0} \xrightarrow{\bar{\jmath}} E_{Q, \mathscr{F}}^{*} \xrightarrow{\bar{\jmath}} \cdots \tag{4.4}
\end{equation*}
$$

Since $E=L^{c} \oplus Q^{(1,0)}$, there is an exact sequence

$$
0 \rightarrow Q^{(0,1) *} \rightarrow E^{*} \rightarrow L^{\mathbf{c} *} \rightarrow 0
$$

which induces exact sequences

$$
\begin{equation*}
0 \rightarrow F^{p+1}{\underset{\sim}{Q}}_{Q}^{* \bullet} \rightarrow F^{p}{\underset{\sim}{2}}_{Q}^{* \bullet} \xrightarrow{\tau} \Lambda^{\bullet-p}{\underset{\sim}{L}}^{C *} \otimes_{C_{F}^{\infty}} Q^{(0, p) *} \otimes_{\mathscr{F}} Q^{(1,0)} \rightarrow 0 \tag{4.5}
\end{equation*}
$$

Now $\tau^{\bullet} d_{Q}=d_{Q \|}{ }^{\bullet} \tau$, hence by (1.33) we get the following result.
Lemma 4.6. $H^{\bullet}\left(g r^{p}\left(\underset{\sim}{E}{ }_{Q}^{* \bullet}\right), g r\left(d_{Q}\right)\right) \simeq H^{\bullet}\left(M, Q^{(0, p) *} \otimes Q_{\mathcal{F}}^{(1,0)}\right)$.
The next proposition follows from (4.4) and (4.6).
Proposition 4.7. The spectral sequence induced by the filtration F^{\bullet} of $E_{Q}^{* \bullet}$ converges to $H^{\bullet}\left(M,{\underset{\sigma}{G 5}}^{5}\right.$. More specifically, $E_{1}^{s, t}=\left(H^{t}\left(M, Q^{\left.(0, s) * \otimes Q_{\mathcal{G}}^{(1,0)}\right)}\right) \Rightarrow\right.$ $H^{s+t}\left(M, \underset{\sim}{Q_{G}^{(1,0)}}\right)$ and $E_{2}^{s, 0}=H^{s}\left(\Gamma\left(\underset{\sim}{E_{Q, \mathscr{F}}^{*}}\right), \bar{\partial}\right)$.

Recall that a V-manifold is an analytic space which locally has the structure of the orbit space defined by a finite group action on an open disc in \mathbf{C}^{q} where the group acts by biholomorphisms. By [3], if \mathscr{F} is a Hausdorff foliation, the leaf space M / \mathscr{F} has the structure of a V-manifold of the complex dimension q of the normal bundle to \mathscr{F}. For details concerning V-manifolds, see Satake [12]. In case \mathscr{F} has no holonomy, then M / \mathscr{F} is non-singular and $M \rightarrow M / \mathscr{F}$ is a fibration. A V-manifold N has a Dolbeaut complex defined on it and a holomorphic tangent bundle ${\underset{\sim}{*}}_{\boldsymbol{N}}$. Bailey [1] has shown that the cohomology groups $H^{\bullet}\left(N, \theta_{N}\right)$ are finite dimensional. From the definition of the holomorphic tangent bundle of a V-manifold we have the following proposition.

Proposition 4.8. If \mathscr{F} is Hausdorff, then $E_{2}^{s, 0} \cong H^{s}(M / \mathscr{F},{\underset{\sim}{M} / \mathscr{F}})$ and this space is finite dimensional. Furthermore, if S denotes the generic leaf of \mathscr{F} and

Proof. The first part of the proposition is immediate from the definitions.
To prove the second part of the proposition observe that

$$
E_{1}^{0,1}=H^{1}\left(M,{\underset{\sim}{G}}_{(1,0)}^{(1,0)}\right)=H^{1}\left(M, \underset{\sim}{Q_{\mathcal{F}}}\right),
$$

since $Q \cong Q^{(1,0)}$ by (1.2) and (1.4). Since Hamilton [4] has shown that $H^{1}(S, \mathbf{R})=0$ implies that $H^{1}\left(M, Q_{\mathscr{G}}\right)=0$, we have $E_{2}^{0,1}=0$ and $E_{2}^{1,0} \cong$ $H^{1}\left(M / \mathscr{F}, \theta_{M / \mathscr{G}}\right)$ from which the result follows.

At this point we wish to present some cases where the groups $H^{\bullet}\left(M, \boldsymbol{\theta}_{\mathcal{G}}\right)$ can be computed explicitly. The computations use standard techniques in sheaf theory and are quite similar to those of Mostow [9]. Therefore we will be brief.

We begin by considering the trivial example of a product foliation. Suppose that N is a complex manifold and that K is a compact C^{∞}-manifold with $\operatorname{dim}_{\mathbf{C}} N=q, \operatorname{dim}_{\mathbf{R}} K=p$. Now let $M=N \times K$ and define \mathscr{F} to be the foliation on M given by the fibers of the projection $M \xrightarrow{\pi} N$. Then ${\underset{\sim}{\theta}}_{\mathscr{F}}=$ $\pi^{*}\left(\theta_{N}\right)$. By Bredon [2] we obtain the next lemma.

Lemma 4.9. $H^{\bullet}\left(M,{\underset{\sigma}{G}}^{\mathcal{F}}\right) \cong H^{\bullet}\left(N,{\underset{\sim}{\theta}}^{\prime}\right) \otimes \mathbf{C} H_{D R}^{\bullet}(K: \mathbf{C})$. In particular, if N is Stein $H^{\bullet}\left(M, \theta_{\sim}\right) \cong \Gamma\left(N, \theta_{N}\right) \otimes_{\mathbf{C}} H_{D R}(K, \mathbf{C})$.

If N is compact this implies the following corollary.
Corollary 4.10. The set of holomorphic foliations near the holomorphic foliation \mathscr{F}, given as above, is a local analytic subset of the complex vector space $H^{1}\left(N,{\underset{\sim}{N}}^{\prime}\right) \oplus H_{D R}^{1}(K, \mathbf{C}) \otimes \Gamma\left(N,{\underset{\sim}{N}}_{N}\right)$.

Assume that M is compact and that \mathscr{F} is a Hausdorff holomorphic foliation transverse to the fibers of a fibration $N \rightarrow M \rightarrow X$. Then N is a compact complex manifold and $M \simeq \tilde{X} \times N / G$, where \tilde{X} is a finite cover of X and $\tilde{M}=\tilde{X} \times N$ is a G manifold for G a finite group of deck transformations of \tilde{M} which acts biholomorphically on N. Further, \mathscr{F} is the foliation $\tilde{\mathscr{F}} / G$ for $\tilde{\mathscr{F}}$ the product foliation $\tilde{X} \times N \rightarrow N$. In this case G acts on $H^{\bullet}\left(N, \theta_{N}\right)$ and on $H_{D R}^{\bullet}(\tilde{X}, \mathrm{C})$ and we have the following proposition.

Proposition 4.11. $H^{\bullet}(M, \underset{\sim}{\theta}) \cong H_{D R}^{\bullet}(\tilde{X}, \mathbf{C})^{G} \otimes_{\mathrm{C}} H^{\bullet}\left(N,{\underset{\sim}{\theta}}^{*}\right)^{G}$ where ()G denotes the space of G-invariant elements.

Proof. Consider the resolution (1.29) applied to $\tilde{\mathscr{F}}$ on \tilde{X}, i.e.,

$$
0 \rightarrow \underset{\sim}{Q^{(1,0)}} \rightarrow \underset{\sim}{\underset{\sim}{\underset{E}{0}}} \stackrel{d^{d_{\tilde{Q}}}}{\rightarrow} \underset{\sim}{\tilde{E}_{Q}^{1}} \rightarrow \cdots
$$

Then since G is finite $H^{\bullet}\left(\Gamma\left(\tilde{E}_{Q}\right)^{G}, d_{\tilde{Q}}\right)=H^{\bullet}\left(\Gamma\left(\tilde{E}_{Q}\right), d_{\tilde{Q}}\right)^{G}$, and $\Gamma\left(\tilde{E}_{Q}\right)^{G}$ is isomorphic to the complex

$$
0 \rightarrow \Gamma\left(\underset{\sim}{\boldsymbol{\theta}_{\mathscr{F}}}\right) \rightarrow \Gamma\left(E_{Q}^{0}\right) \rightarrow \cdots
$$

associated to the resolution of $\boldsymbol{\theta}_{\underset{\mathcal{F}}{ }}$. Therefore

$$
H^{\bullet}(M,{\underset{\sigma}{\mathcal{F}}}) \cong H^{\bullet}\left(\Gamma\left(\tilde{E}_{Q}\right)^{G}, \tilde{d}_{\tilde{Q}}\right) \simeq H^{\bullet}\left(M, \theta_{\sigma_{\mathcal{F}}}\right)^{G}
$$

Note the above computation applies to the case where \mathscr{F} is given by the suspension via a biholomorphism $\varphi: N \rightarrow N$, where N is a compact complex manifold and φ has finite period.

References

[1] W. Bailey, The decomposition theorem for V manifolds, Amer. J. Math. 78 (1956) 862-888.
[2] G. Bredon, Sheaf theory, McGraw-Hill, New York, 1967.
[3] D. B. A. Epstein, Foliations with all leaves compact, Dynamical Systems-Warwick, Lecture Notes in Math. Vol. 468, Springer, Berlin, 1974.
[4] R. S. Hamilton, Deformation theory for foliations, preprint.
[5] J. L. Heitsch, A cohomology for foliated manifolds, Comment. Math. Helv. 50 (1975) 197-218.
[6] F. Kamber \& Ph. Tondeur, Invariant differential operators and the cohomology of Lie algebra sheaves, Mem. Amer. Math. Soc. No. 113, 1971.
[7] K. Kodaira, L. Nirenberg \& D. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math. 68 (1958) 450-459.
[8] M. Kuranishi, New proof for the existence of locally complete families of complex analytic structures, Proc. Conf. Complex Analysis (Minneapolis), Springer, Berlin, 1965, 142154.
[9] M. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer. Math. Soc. 7 (1976) 1975.
[10] R. Narasimhan, Analysis on real and complex manifolds, North Holland, Amsterdam, 1968.
[11] L. Nirenberg, A complex Frobenius theorem, Seminar on Analytic Functions, Institute for Advanced Study, Princeton, 1957, 172-189.
[12] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 359-363.
[13] D. C. Spencer, Deformations of structures on manifolds defined by transitive continuous pseudogroups. I, II, Ann. of Math. 76 (1962) 306-445.
[14] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall, Englewood Cliffs, N. J. 1973.
[15] I. Vaisman, Variétés Riemannienne feuilletées, Czechoslovak Math. J. 21 (1971) 46-75.

University of Utah

