
J. DIFFERENTIAL GEOMETRY
14(1979), 317-337

DEFORMATION THEORY FOR HOLOMORPHIC
FOLIATIONS

T. DUCHAMP & M. KALKA

Introduction

In this paper we consider deformations of holomorphic foliations on

compact manifolds. By a holomorphic foliation we mean a foliation given by

local submersions fa: ί/α —> R2q which patch together via maps φaβ: R2q —•

R 2q, which are local biholomorphisms when R 2q is identified with C7.

For ^ a holomoφhic foliation on a manifold M, we show that the

infinitesimal deformations of ^ correspond to elements of Hι(M, θ<£), where

θ<$ is the sheaf of germs of holomoφhic vector fields on the normal bundle of

<$ which are constant on the leaves of <S. For example, if <$ is given by the

fibers of a submersion onto a complex manifold, then 9<% is the pull-back of

the sheaf ΘN of germs of holomoφhic vector fields on the image. By

constructing explicitly a resolution of 9% by an elliptic complex (E£ #, dQ) we

show that H9(M, 0$) is finite dimensional.

Resolutions of the sheaf of sections of the normal bundle of a C °°-foliation

which are constant on leaves have appeared in the works of Hamilton [4],

Heitsch [5], Kamber-Tondeur [6], Mostow [9] and Vaisman [15]. Also in the

case where M is a complex manifold and the submersions^ are holomoφhic,

Heitsch has constructed a resolution of the sheaf θ<$ and shown that its

cohomology groups are finite dimensional. Our resolution is different from

his and applies to the case where M is only a smooth manifold. Of course the

general theory of pseudogroup structures on manifolds developed by Spencer

[13] applies to the case of holomoφhic foliations on smooth manifolds.

However, the relevant pseudogroup is neither elliptic nor complex; hence the

Spencer complex associated to such a foliation does not directly lead to finite

dimensionality results and the theory of elliptic complexes does not apply to

it.

Having constructed a resolution of 9^ we then show how to extend

Kuranishi's theorem on the existence of a locally complete finite dimensional

holomoφhic family for complex structures close to a given complex structure,
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to holomorphic foliations. In order to do this, it is necessary to define a

bracket operation [ , ]Q: E£r X Eζs -» E£r+S with certain nice properties

(2.11-2.14). In general we cannot do this. However, if we assume that there is

a C °°-foliation <&•*- transverse to the foliation <•?, then such a bracket can be

defined. Distributions near the tangent bundle of ξF are given by elements of

T(E£ι), and the integrability condition in the complex Frobenius theorem

takes the form dQ - [ , ]Q = 0. The operator dQ is just the sum of the

Dolbeaut operator in the holomorphic directions normal to <$ and the de

Rham operator in directions parallel to S\ Note that the transverse foliation

^ allows us to consider all bundles as sub-bundles of the complexified

tangent bundle of M or its dual. The proof proceeds exactly as in Kuranishi

[8], only the bundles and the operators have been changed. In fact

Kuranishi's theorem is a special case of our theorem, where the leaves of the

foliation are the points of M.

We then consider the problem of computing H\M, θ^). In particular, we

consider the case where ίF is given by a fibration M —»N with TV a complex

manifold and with fiber S. We show that if H^R(S) = 0 and H\N, ΘN) = 0,

then Hι(M, θ^) = 0, where ΘN is the sheaf of germs of holomorphic vector

fields on N. If the structure group of the fibration is discrete, this implies that

there are no small deformations of ?F, up to equivalence. This should be

compared with Hamilton's result [4] that if ^ is a C°°-Hausdorff foliation

with H^R(L) = 0, where L is the generic leaf of <3', then ¥ is structurally

stable.

The paper is organized as follows: In §1 we describe the relevant elliptic

complexes and define the operator dQ. In §2 we define the bracket operator

[, ]Q and derive the partial differential equation which is the integrability

condition in the complex Frobenius theorem. In §3 we solve this equation

and prove Kuranishi's theorem. In §4 we compute Hι(M, θ^) in certain cases.

The techniques of §4 are similar to those of Mostow [9]. The main results of

this paper are Theorems 1.27, 2.4 and 3.1.

We will use the following notational conventions: Latin subscripts (or

superscripts) will run from 1 to p, whereas Greek subscripts (or superscripts)

will run from 1 to q where n = p + 2q. Also if B is a vector bundle over M,

then we will denote by B the sheaf of germs of sections of B. If S is a sheaf,

the space of global sections of S will be denoted by Γ(5). If B is a bundle, the

space of its global sections will be denoted by T(B). We will use the Einstein

summation conventions.

1. Elliptic complexes associated to a holomorphic foliaton

Let M be an ^-dimensional C °°-manifold. We investigate here holomorphic
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foliations on M close to a fixed holomorphic foliation. We recall that a (real)

codimension-2^ holomorphic foliation ^ is given by an open cover { Ua}a&A

of M, a collection of submersions fa: C/α —> C*, and associated maps φ*β for

each x E Ua Π Uβ, which are local biholomorphic maps and satisfy fβ(y) =

Ψβa ° ΛOO t°τ y n e a r *• For t n e foliation to be global it is necessary that the

collection {φ*β}ajβ(ΞA satisfy the cocycle condition φ*γ = φ ^ ° ψβy for al α,

β, γ such that Ua Γ) Uβ Π Uy =£ 0 and for all x E ί/α Π Uβ Π £/γ. A collec-

tion {Ua,fa, {ψaβ}x^u nu } which is maximal with respect to the above

properties is called a Haefliger cocycle with coefficients in Γ£, the pseudo-

group of local biholomorphisms of C7. We set %% = [fa: Ua-^C1, φ£β E Γ^,

a,β <ΞA).

Associated to a codimension -2q holomoφhic foliation ®i is its tangent

bundle L. Set p = dimLJC = n — 2q. The normal bundle of <$ is the bundle

Q = TM/L. There is an almost complex structure on Q obtained by lifting

the standard complex structure on C 7 to Q via the submersions fa. We recall

that Q is locally representable as the pull-back, along fa, of the tangent

bundle of C

The almost complex structure on Q induces a splitting of the complexified

normal bundle in the standard way

(1.1) QC = ρ α 0 ) θ ρ ( α i ) .

We will need several short exact sequences of vector bundles associated to

the foliation. Consider first the sequence defining Q:

(1.2) ô zΛ r^Λe^o.
Because of (1.1) we have an exact sequence of complex vector bundles

(1.3) o ^ ^ ^

where π ( 1 ' 0 ) is defined to be the composition

and E = Ker π ( 1 ' 0 ) . We note that there is a noncanonical isomorphism E

Lc Θ Q(0Λ\ We also consider the exact sequence of real vector bundles

(1.4) O^L^Γ^β^UO.

The map r in (1.4) is the composition

To check that (1.4) is exact we need to check that Ker r = L and that T is

surjective. We do this in local coordinates. Let U C M be open and let /:
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U —> Cq be a submersion in %<$. We can consider U to be contained in

R'xσ= {(*, z)\x = (x\ . . ., * ') , z = (z'+1, . . ., zΛ)},

and / to be the map (x, z) —» z. Such a coordinate system is said to be

adapted to the holomorphic foliation 5'. Let za = ua + iυa. Then 7^ is

spanned by the vector fields d/dxJ, 9/9wα, 9/9t>α. Also β c is spanned by the

vector fields

(1 5) [ ^ ] " i
and Q(h0) is spanned by the vector fields [9/3zα]. Finally L is spanned by the

vector fields 9/9* α . We write [9/9zα] for the equivalence class of θ/9zα

under the projection T£-*QC. Then for X = XJd/dxJ^+ Uad/dua +

Fα9/9ϋαwehave

(1.6) )0>0)

It is now clear that T is surjective and Ker τ — L.

If 5 C 7^ is a complex vector sub-bundle, we will denote its complex

conjugate bundle by B. With this definition we see that

(1.7) T£ = E+E.

We will need the following version of the complex Frobenius theorem of

Nirenberg[ll].

Theorem 1.8. Let E QT^be a sub-bundle of T£ of complex codimension q

with E + Έ = T£. Let Qih0) = T£/E so that ρ ( 1 ' 0 )* C 7£*. Then the follow-

ing conditions are equivalent:

(1) [E, E] C E.

(2) dQV>0)*"ψM c Q(m*WM+lforallp > 0.

(3) E and Q(l>°) are obtained from a codimension -2q holomorphic foliation as

in the above discussion.

Let p: Q -> TM be a splitting of (1.2). p induces a splitting of (1.3)

(1.9) 0 £

The splitting (1.9) allows us to define a one-one correspondence between

distributions (a distribution will be used to mean a sub-bundle of the tangent

bundle and not a generalized function) near E and the space Homc(E, β ( 1 '0 ))

in the following way. For φ G Hoπ^iE, Qim) let Eφ C T£ be defined by

Eφ = {iφ(X) = ic(X) + p 1 ' 0 o 9(X)|X e E). Conversely let E' C T<~ be a
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sub-bundle near E. Then the map

E''Q T<~^>E

is an isomorphism. The inverse of this map is clearly of the form X H» ic(X)

+ pW o φ(χ) for a unique element φ E Hom(£, Q(1'0)).

Remark 1.10. For φ e H o r n ^ , Qim) we have Eφ + Eφ = Γ£.

Hence by Theorem (1.8) there is a one-to-one correspondence between

holomorphic foliations near <$ and the set

(1.11) Fol(5) = (φ e H o m c l ^ Q<m)\[Eφ, Eφ] C Eφ}.

We wish to characterize F o l ^ ) as an analytic subspace of a neighborhood

in the first cohomology group of a certain sheaf on M. In order to do this it is

necessary to define this sheaf and to construct a resolution of it by an elliptic

complex. This will enable us to use the theory of elliptic partial differential

equations.

We have the following short exact sequence of sheaves

(1.12) O ^

where E*s is the sheaf of local sections of the bundle AΈ*. So (1.12) is the

exact sequence induced by the exact sequence

(1.13) 0 ^

By Theorem 1.8 (2) we can define d: ρ ( 1 ' 0 )* Λ ψM -> C?(1'0)* Λ Ω^"1 as the

restriction of the exterior derivative operator. Hence we can define de as the

unique operator which makes the diagram

(10)* 5-1 s '*

(1.14) id U fa

ft ^> nO'0)* Λ Qs -^ O J + 1 -!f. τr*s+ι ^ π

commute. For Λ = 0, let E*° = C^, the sheaf of local complex-valued C°°-

functions and let

(1.15) ^.CS^&U'XE*1.

In adapted coordinates (x, z) = (x\ , xp, zp+\ , zrt) the sheaf ^ * 5

can be identified with the sheaf generated by the forms

For φ = ψ,[dx'' /\ • • /\dx' \ Λ [<£"**' Λ /\dz' \ in E*s we have

(1.16) deΨ = d.ψiA[dxr] Λ[dzr],
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where / = (/'; / " ) = (/„ , /,; i,+ 1, •••,/,) and

[dx1] denoting the image of dx1 under /|.

Let Θ<$ c C^ be the subsheaf of smooth complex-valued functions which

are locally lifts, via the submersions in %$, of holomorphic functions on C*.

Specifically, let/: U -+ Cq be a submersion in %<$ and define

(1.18) Γ(C/, 6^) = / | c 0 c ^ = {g °/|g is holomorphic on/(£/)}•

Lemma 1.19. 77*e sequence

(1.20) O^Θ^C^^*1^*2^

is a resolution of the sheaf Θ<g.

Proof We work in adapted coordinates. Note that if dj = 0 for/ E βJJ;

then 3//3JC, = 0,/ = 1, ,/?. Hence, if TΓ: R^ X C* -> C is the projection

onto the second factor, we get/ = g ° 77 where g e C°°(C*). Also 3g/3zα =

3//3zα ° 7r = 0 for α = 1, , #. Hence g is holomorphic and / G Θgr. So

we have that Θ^ = Ker(C^ -4 is*1).

The sheaves C^, E*s being fine, our lemma will be proved once it is

established that the complex (1.20) is exact.

The problem is local so we work on the open set W = U X V C Rp X C7,

where U is the unit ball and V is the unit poly disk. We assume that ¥\ W is

given by the fibers of the projection U X V ^> V and we let (x, z) =

(JC1, , xp, zp+λ, - - , zn) be the local coordinate functions. The complex

(T(W, £*•), dε) is isomorphic to the double complex (As'*, d{{ + 9), s, t > 0,

where Λ5'' is the space of s + ί-forms on W of the form φ = φIrJ(x, z)[dxJ] Λ

[oΊJ], \I\ = s,\J\ = / a n d where

Consider the spectral sequence associated to the second filtration on A".

Then

(1.21) "E? » HS(H<(A", d{]), 3) => 7/ (Γ(fF, E*)9 de).

We must show that " E^ = 0 for s + / > 0, If we consider Λ*'7 as the de

Rham complex of U parametrized by V, the proof of the Poincare lemma [10]

goes through to show that this sequence collapses to "is| '0 s HS(V, Θκ),
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where Θv is the sheaf of germs of holomorphic functions on V. But by
Dolbeaut's lemma [10], this cohomology group is trivial for s > 0, so we are
done.

Lemma 1.22. The complex (E*9, dε) is elliptic.

Proof. We show that if x G M and θ G T^ is a co-vector at x, the

symbol sequence

(1.23) C^>E*^A2E*^'

is exact. For β G ASE* let β E Λ ^ ® Q be a form such that i*(β) = β.

It is easily seen that the symbol of dε&tθ G T^ is given by

(1.24)

To prove exactness pick a basis for 7 ^ ® C of the form θ, dz\ , dzq,

ίi+2> •••>£«> a n d l e t β e Eχ b e s u c h * t h a t <**(£) = 0. We will find a G
^S~\TMX ® Q for which /*(0 /\ά) = β. We proceed as follows: since /*(0
Λ β) = 0 we can write θ /\ β m the form θ f\ β = dza /\ γα where γα can
be written in terms of 0, ί/zα + 1, , dzq, ^ + 2 , •••,!„ fory = 1, , q.

Since θ/\θ/\β = 0we have 0 = « Λ ^ α Λ ϊ«> and since 0, </zα, is a
basis it follows from the forms of the γα that θ /\ya = Q. Hence we can write
Y« = -θ A δa9 a = 1, , q. Let δ = dza /\ δα, then θ Λ δ = θ Λ i§ so

(1.25) 0Λ(i8-δ)=O.

But ι|(δ) = 0 hence

(1.26) i*(β-δ) = β.

By (1.25) there is an element ά G AS~\T^ ® C) for which 0 Λ « = (β - δ).

Hence by (1.26) we have σ^(α) = i|(ff Λ «) = iE(β ~~ 8) = ^ where α =

/|(ά). Thus the sequence is exact and the complex is elliptic, q.e.d.

We now define the notion of holomorphic vector field on a holomorphic

foliation. Locally a holomorphic vector field is a lift, via a submersion in %<$,

of a holomorphic vector field on Cq. More precisely let U C M be an open

set such that there is a submersion/: U^Cq,f G %$. Then we define θ^σ as

the pull-back f*(θc«) °f t n e sheaf of germs of holomorphic vector fields on C7.

Remark. By a holomorphic vector field on C* we mean a holomorphic

section of the holomorphic tangent bundle.

Theorem 1.27. The cohomology groups H\M, 0^) and H\M, θj$) are finite

dimensional.

Proof. Since the resolution (1.20) is elliptic, it follows from the theory of

elliptic complexes [14] that H\M, Θ )̂ is finite dimensional. Similarly, to show

that H\M, θ<£) is finite dimensional we will construct a resolution of ̂ b y an
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elliptic complex. Let

(1.28) £*' = £*' ® ^ θ9 = E*' ® c Q(h0\

and let dQ = dE ® id. Since dE is elliptic, so is t/β and the required resolution

is

(1.29) 0->^->£* 0ί>£* ι-+ - .

This concludes the proof, q.e.d.

In adapted coordinates the operator dQ is given by the formula

where φa is in E*s.

Remarks. The above discussion is an adaptation to holomorphic foliations

of cohomology theories for C °°-foliations as presented in [9]. See also [4], [5]

and [6]. We summarize here results of theirs which we will need in §4, as they

apply to a holomorphic foliation $", considered as a C °°-foliation.

On the complex Λ*L* is a differential d^ which in adapted coordinates

takes the form

(1.31) ^-yWΛώ',

where

(1.32) φ=φ/[^/].

Let Cψ be the sheaf of complex-valued C00-functions, which are locally

constant along the leaves of9\ (Λ*L*, d^) is a resolution of this sheaf [9].

Let Qφ Q$'°\ etc., denote the sheaves of sections of Q, Q(l'°\ etc, which

are locally constant along the leaves of S\ These are all modules over CJ°,

and tensoring over CJ° with (Λ*L*, d^) gives resolutions of these sheaves. In

particular [9]

(1.33)

H' (M, β<«W ® QSm) « H*

where dQ^ = id ® d^.

2. Infinitesimal deformations and the Spencer operator

As an application of Theorem (1.27) we will show that the space of

infinitesimal deformations of a holomorphic foliation is finite dimensional.

Let 9% be the pseudogroup of local diffeomorphisms of M which preserve the
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holomorphic foliation <#. Specifically, g: U-> V is in 99 if and only if for

each submersion fa: ί/α -> Cq in %^ with V n Ua φ 0 , the submersion

fβ = fa° S' U->Cq is in ϋCy, where Uβ = Ua n g~\Ua). It follows from the

definition of a Haefliger cocycle that near each point x G Ua π Uβ there is a

unique local biholomorphism gβa of C* with

(2 i) fa°g-§£.*/..

Now let rjgr be the sheaf of local vector fields whose flows lie in 9$, and let L

be the sheaf of local vector fields in L C TM. The following lemma follows

easily from (2.1).

Lemma 2.2. The exact sequence (1.4) induces an exact sequence

(2.3) O^L^T^Λ^O.

Theorem 2.4. 7/ιe space of infinitesimal deformations of the pseudogroup 9$

is finite dimensional.

Proof. Since L is a finite sheaf, it follows that HJ(M, L) = 0 for j > 1.

Using the long exact cohomology sequence associated to (2.3) we see that

H\M, η<$) ^ H\M, 0g). By Spencer [13] the space of infinitesimal deforma-

tions of P̂̂ r is just H\M, ηgr), which is finite dimensional by Theorem (1.27).

q.e.d.

We will now define a nonlinear first order partial differential operator

D: Hom(£, ρ ( 1 ' 0 ) ) -> Hom(Λ2£, ρ* 1 ^),

whose linearization is dQ. We will call this the Spencer operator associated to
(5. This operator is defined in analogy with the operator 3 — [, ] which is of

fundamental importance in the study of deformations of complex structure

on a complex manifold. For this see [8].

D will be of the form, D = dQ — [, ]Q where [, ]Q is an operator to be

defined below. We will show that

(2.5) Έo\(<5) = {φ e Hom(£, β ( 1 '0>): Dψ - 0}.

In §3 we will show how to realize F o l ^ ) , via (2.5), as an analytic subspace of

Remark 2.6. Unfortunately, our techniques work only if we assume that

the splitting (1.9) is induced by a foliation <3ΓJ- transverse to <5. The foliation

ty1- need not be holomorphic. We assume from this point on that Φ1- is fixed

and that p: Q -» TM is the tangent bundle to <^±. We can therefore think of

all bundles as sub-bundles of the tensor algebra bundle of TM. An adapted

coordinate system will now be a chart (x, z) in R* X C 7 such that the

projections Rp X C 7 -> C 7 are in %$ and such that the leaves 3F1 are locally

given by the sets {x = constant}.
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In these coordinates dQ: Eξs —> E£s+ι is given by the formula

( 2 J )

where, as usual, dxJ = dxJι Λ ' * * ΛdxJι, dzB = dzβι Λ * * /\dzβk and let
/ + k = s.

We now define [, ]Q, as a map [ , ]Q: E*r X Eg -± E£r+S as follows.
Choose adapted coordinates, and let

Then

(2.8)

We now give a precise statement and proof of (2.5).
Proposition 2.9. Given φ G Hom(E, <2(1'0)), /Ae distribution Eφ defines a

holomorphic foliation if and only if Dtp = 0.
Proof. By the complex Frobenius theorem we must show that [Eφ9 Eφ] C

Eφ if and only if Dφ = 0.
Again we work in adapted coordinates. Suppose Dφ = 0. Then we see by

the definition of Eφ that Eφ is generated by the vector fields

where φ = φ/* dxi ® θ/θzα + φ | dzβ ® θ/θzα. We need only show that for
all /,y, α, ̂  the vector fields [Xi9 Xj\ [Xi9 Ys], and [ Ys, Yβ] lie in Eφ.

It follows from (2.7) and (2.8) that
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where

Dφ = {Dφfi dx' Λ dxJ ®JΓa + (Dφ)% dx> Λ dz" ® - ^

Hence all brackets are zero, and the distribution E is involutive.

Conversely suppose Eφ is involutive. Then the brackets [Xi9 Xj], [Xi9 Ys],

[Y-, Yβ] lie in Eφ. But by (2.10) this is impossible unless all brackets are zero.

Again, by (2.10) this is impossible unless Dφ = 0. q.e.d.

We conclude this section with a list of properties of [, ]Q which will be

needed in the construction of solutions of Dφ = 0. They are easily verified.

(2.11) [ , ]Q is bilinear.

If φ G E*r, ψ G E*s and r G Eg, then

(2.12) [φ,ψ] ρ = (-lΓ[ψ,φ] ρ,

(2.13) dQ[φ, ψ] β = [dQφ, ψ] β + (-ir[φ, d^]Q9

( 2 * 1 4 )

3. The Kuranishi family of a holomorphic foliation

In this section we extend Kuranishi's theorem [8] on the existence of locally

complete families of complex analytic structures to the case of a holomorphic

foliation for which there is a transverse foliation. More specifically, we will

prove the following theorem.

Theorem 3.1. Let ^ be a holomorphic foliation on a compact Coc'-manifold

M, and let ^ be a C™-foliation transverse to %. Then there are a local

analytic subset B Q H ι(M, θ^ and a holomorphic map

(3.2) B -> ^ol(%) c Hom(£, β ( 1 ' 0 ) ) : / ̂  %

which defines a locally complete family of holomorphic foliations in the sense

that if & is a holomorphic foliation sufficiently close to %, then ^ is conjugate to

a foliation of the form ®it via a diffeomorphism of M close to the identity.

Furthermore, given a Riemannian metric respecting the local product structure

on M induced by % and ^ this diffeomorphism can be unambiguously defined.

Remarks 3.3. This theorem is a generalization of Kuranishi's theorem in

the following sense. A complex manifold M can be thought of as the
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holomorphic foliation on M given by points. The foliation Φ1- is just the

codimension -0 foliation of M whose single leaf is M itself.

The proof of Theorem 3.1 is an adaptation of Kuranishi's proof [8]. In fact,

if the following substitutions are made, the proofs are almost identical:

replace the Dolbault complex by (E£, dQ) and replace the bracket operation

of Kuranishi by [, }Q. In place of the operator 3 — [, ] substitute the operator

D = dQ — [, ]Q. The proof of Theorem 3.1 proceeds in two steps. We first

construct the family f, as solutions of a certain system of equations. Then we

show that any holomorphic foliation close to % is conjugate to % for some /.

Step 1. The construction of %. We will now construct a map from

elements of a certain analytic subset B of H ι(M, θ^) near zero to solutions of

the system of equations

(3.4) dQφ = [φ, φ ] ρ , SQφ = 0

with φ G Γ(Eξι) = Hom(E9 Q !'°) having small norm. Here δQ denotes the
adjoint of the operator dQ\ T(E£s)^>Γ(Eζs+1) with respect to the inner
product induced by the Riemannian metric on M associated to an SO(p) X
U(q) reduction of the tangent bundle of M which is compatible with the local
product structure on M and the complex structure on Q.

Recall that, by the Hodge decomposition theorem for elliptic complexes
[14], there is a Green's operator

(3.5) GQ:T(Eg)-+T(E$),r>0

with the property that

(3.6) / = HQ + Δ β o GQ9

where AQ = dQδQ + δQdQ, and HQ: T(E*r) -» H\M, θ$) is projection onto

Ker Δρ, which by Lemma 1.19 we can identify with Hr(M, θ^.

Let || \\s denote the Sobolov norm on HΦ(M, θ<£> induced by the metric on

M. Pick a basis φ p φ2, , φm for Hι(M, θ<$). Given φ 0 = Σ?Li ^φ, E

H\M, θ$) with ||φolL small, say < ε, we wish to solve the equation

(3.7) φ = φ 0 4- ψQGQ[φ, <p]Q,

and show that the solution φ(ί) depends holomorphically on t = (/,, , tm)
E Cm. To do this we need two estimates:

and

(3.9) HββGβΦll, <

(3.10) HJΪβΦll, <C||φ||,.

The first estimate follows trivially from the definition of [, ]Q, and the second
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and third follow from the fact that the dQ -complex is elliptic. The solution of

(3.7) and its holomorphic dependence follow, verbatim as in [7] using the

implicit function theorem or a power series expansion.

We can now solve the system (3.4) using the above result. Begin by

assuming that φ is a solution of (3.7). We will soon see that for \\φ\\s

sufficiently small this assumption is redundant. Note that, by the Hodge

decomposition (3.6),

(3.11) [φ, φ]Q = HQ[ψ9 ψ]Q + dQ8QGQ[ψ9 φ]Q + δQdQGQ[φ, φ]Q,

and that, since dQφQ = 0,

(3.12) dQψ = dQδQGQ[φ, φ]Q.

Combining (3.11) and (3.12) yields

-dQφ + [φ, ψ]Q = HQ[ψ,φ]Q + δQdQGQ[φ, φ ] ρ ,

and therefore

(3.13) -dQψ + [ φ , φ]Q = HQ[φ,φ]Q + δQGQdQ[φ, φ]Q,

since dQGQ = GQdQ. Since the terms on the right are orthogonal, φ is a
solution of (3.4) if and only if the equations

(3.14)

(3.15)

are satisfied. However, (3.15) is a consequence of (3.14) by the following

argument. First observe that

(3.16) 8QGQdQ[ψ9 φ]Q = 2δQGQ[dQφ, φ]Q

by (2.12) and (2.13). If HQ[φ9 ψ]Q = 0, then by (3.13) we can write (3.16) as

SQGQdQ[φ, φ]Q = 2δQGQ[[ψ9 φ]Q9 φ]Q - 2δQGQ[δQGQdQ[φ9 φ]Q, φ]Q

(3.17) =-2δQGQ[δQGqdQ[ψ,φ]Q9ψ]Q

by the Jacobi identity (2.14). Hence by (3.8) and (3.9) we have the inequality

\\8QGQdQ[φ9φ]Q\\s < C\\δQGedQ[φ9φ]Q\\s\\φ\\M.

So, for | |φ| | , sufficiently small, (3.15) holds.

We can now construct the space B of the theorem. Let

(3.18) B = ( φ 0 G H\M9 ?y)|||φo|| < e, HQ[φ(t), φ(t)]Q = θ},

where ε is to be chosen as in Lemma 3.23. This is an analytic subset of

Hι(M,θφ). Furthermore, by the above argument, the elements φ(ί) for
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Σ t^ E B are solutions of the equation Dφ = dQφ — [φ, φ]Q = 0, and there-

fore define holomorphic foliations.

Note that if ψ is a solution of (3.4) of sufficiently small norm, then ψ = φ(/)

for a unique element φ 0 = Σ *,<# G B. To see this, notice that since Dψ = 0

and δgψ = 0, we have

(3.19)

Hence

(3.20) ψ-//ρψ

Set φ 0 = 7/ρψ. Then from (3.20)

(3.21) Ψ = Φ o

By (3.10)

(3.22) | |φo |L = | β

Therefore there is a number η > 0 with the property that if HψH, < η, then

||φol|5 < ε. Hence ψ = φ(ί) for φ 0 = Σ ί/φ, E B by the following lemma.

Lemma 3.23. The set {φ(0|Σ /,-φ,- E 5} comprises all solutions of (3.7) t?/

jwα// norm, and these solutions are unique.

Proof. Fix φ 0 with \\φo\\s small, and let φ(t) be the solution obtained by

power series. Suppose φ is another solution. Let ω = φ — φ(t). Then

« = SQGQ([ψ9 φ]Q ~

-β β σ β (2[«,φ(/)] β +[ω,ω] β ).

Hence by (3.8)

INI, < e|l«L(llφ(0ll, + ll«ll,)
For ||φ(0IL sufficiently small say < ε, this can only happen if ω = 0. q.e.d.

At this point we have shown that every solution of the equations Dφ = 0

and δQφ = 0 is of the form φ(t) for φ 0 = Σ /,-φ,- G B.

Step 2. Suppose now that the norm of φ is small, and that Dφ = 0, but

that 8Qφ Φ 0. We wish to show that the corresponding foliation Wφ is

conjugate to one of the form ^ ^ for Σ ^φ, £ B. As in Kuranishi [8], we do

this using diffeomorphisms generated by geodesies.

We just examine the action of diffeomorphisms of M near the identity on

holomorphic foliations, or more precisely their associated distributions. Let

φ e Hom(£r, β ( l f 0 ) ) , and denote the distribution associated to φ by Eφ C T£.

Let / be a diffeomorphism of M close to the identity in the C °°-topology.

Then the Jacobian map /* maps Eφ to a bundle f*(Eφ), and there is a unique
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element ψ G Hom(£, Q(m) with Eφ = f+(Eφ). Denote this element by/^φ.

We wish to find a formula for / + φ in terms of / and φ in adapted

coordinates. Let (x, z) = (x\ , xp, zp + \ , z") be adapted coordi-

nates. Then

θz<
(3.24)

and Eφ is spanned locally by the vector fields

^J.ZjJ Ay — "Γ φ — , Λo = ~Γ φ;τ — .

Hence locally f*{Eψ) is spanned by the entries of the (p + q) X 1 matrix

ί/ W)'
(3.26)

where

a n d / = ( / ' , - , / " ) . Setting

(3.28) ψ = /„(<?) = ψ,

we see that /»(£,,) is spanned locally by the vectors of the matrix

3

(3.29)

Since / is near the identity, the matrix

M- M-

is invertible. Combining (3.26) and (3.29) we see that

(3.31) I \\\ = M-χoN,
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where

(3.32) N -

We summarize our results in the following lemma.

Lemma 333. Let φ G Hom(£, £?(1'0)), and let f be a diffeomorphism of M

near the identity in the Whitney C°°-topology. Then in adapted coordinates

Ψ = /*(φ) is given by (3.31).

We will now apply Lemma 3.33 to diffeomorphisms associated to geodes-

ies. Considering ρ ( 1 0 ) as a real vector bundle, we see that the map T of (1.4)

induces an isomorphism Q Λ Q{h°\ Use τ to identity Q i m with Q C TM. See

[26]. Let X e Γ ( ρ ( 1 0 ) ) c T(TM) be a vector field close to zero in the C 0 0 -

topology. Since M is compact, it is complete in our metric. Consider the map

f(X, -):M->M defined by

(3.34) J(X9y)=γ(X9y9l)9

where / —» y(X, γ, /) is the geodesic with initial conditions

(3.35) γ(X,y,0)-y, y'(X, y, 0) = X(y).

For X small, /(X, •) is a dif f eomorphism of M. We wish to express f(X, •)

locally as a Taylor series in the components of X, and use this expansion to

represent (3.31) in terms of the components of X. In adapted coordinates

f(X, x, z) = (fJ(X, x, z),fa(X, x, z)) and since f(tX, x, z) = γ ^ , (x, z), /) the

equations

χa~dX^i0' X' z ) + Γ " - ^ ( ° ' x> z> = -%AX, (X, Z), 0) = 0,

( 3 3 6 ) df - 7f d Λova \u» x9 z) -r Λ [\j, Λ, z) — γ yΛ, yx, zj, \j) — Λ
OX dχa dt

are satisfied, where X = Xad/dza. Therefore

(3.37, it_Jf._j£_ft
OΛ. C\ Y& 7\ Y&

(3-38) - ^ = e

Hence/is of the form

f(X, x, z) = x> + Xα^^(X, x, z\
(3.39)

/α(X, x, z) = z α + X α + XβX^y(X9 x, z).

Now for X close to zero, the matrix M can be written in the form / + AίX,

where AtX = tA(Xί), and A^Xt) is a matrix-valued C°°-function in I a ,
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dXa/dxi, dXa/dzβ, dXa/dzβ, φ°, φβ and t. Hence

(3.40) M-X\ψ = 5 (-l)'Λ,^ = / + Htx<p,
1 = 0

where H is C°° in the variables Xa> dXa/dxι

9 etc. Also N can be expressed in
the form

(3.41) N,IX + t
dxi

dXa + tκftX,φ>

where KtXtf> is C°° in the variables Xa, dXa/dxi9 etc. (3.40) and (3.41) allow us

to write (3.31) in the form:

(3.42) , φ),

where R(ίX, tψ) = t2Rλ(X, φ, t), and Λ, is C°° in /, φ, X and their derivatives.
In invariant form, (3.42) reads

(3.43) Λ φ = dQX + φ + Λ(ψ, X),

where Λ(/ψ, /A') = ^R^ψ, X, t), and Λ, is C 0 0 in ί, X, φ and their deriva-

tives.

We will now use (3.43) to show that if φ e Hom(£, <2°'0)) is a solution of

the equation Dψ = 0 with Hφl̂  sufficiently small, then there is a unique

element φ(ί) with Σ ί,φ, e 5 and a unique vector field X e Γ(β ( l > 0 )) with

/•(*>*Xφ(0) = <P This will complete Step 2 and the proof of Theorem 3.1.

Proposition 3.44. Let Hx be the orthogonal complement of the space Γ(0g)

of ^-invariant holomorphic vector fields in T(Q1>0). Then there is a neighbor-

hood U of the origin of Hx and a neighborhood F, of the origin of Y(E£) =

Hom(£, <2(1>0)) such that for any element φ E V satisfying the equation Dφ =

0, there is a unique element X e Uwithf,.(X, )φ = φ(t)for Σ ί,φ, ε B.

Proof. Set/ = /(Ar, ). Then/^φ is of the required form, provided only that

δβ(Λ<p) = 0. This follows from Step 1. But δ g (/,φ) = 0 if and only if

(3.45) 8QdQX + SQφ + δQR(φ, X) = 0

by (3.43). Since X e H x it satisfies the equation

(3.46) = GQ8QdQX.
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Hence δQ{f^ψ) = 0 if and only if

(3.47) GQ{8QdQX + δQφ + 8QR(φ, X)) = 0,

or

(3.48) X + GQδQφ + GQδQR(ψ, x) = 0.

We will use the implicit function theorem to find such an X. Define a map

(3.49) h:UxX VXCH± X T(E*1) -> H^

by

Λ(*, φ) = X + G β δ β + GQδQR(φ, X),

where ί/j and Vx have been chosen so that R is defined. If Ul9 Vx a,ndH± are
given the topology induced by the Sobolev norm, then h is continuous and
the Frechet derivative dh/dX]^ is the identity map. Hence, by the implicit
function theorem, there is a C00-function g: F—» U such that (3.48) holds if
and only if X = g(φ) for φ £ V. To see that X is smooth, note that it satisfies
the second order elliptic equation with C °° coefficients

ΔQX + δQR(φ, X) + δQ = 0.

Hence X is smooth by the regularity theorem.

4. Computation of Hm (M, θ9)

We now investigate the cohomology groups H*(M, θ^. We begin by
defining a filtration on the complex (1.28).

Let Q^'rt* denote the sheaf of germs of sections of the bundle ApQ(m* ®

Λ ? ρ (i,φ* xhen the differential complex (1.28) is filtered as follows. For s > 0

let

(4.1) FSE* = ρ ( 0 ' 5 )* Λ £ρ ~s.

Observe that dQ(FsE£m) c FsE^m, as can easily be seen from the formulas
(1.16) and (1.30) for dε and dQ. Associated to this filtration is a spectral
sequence converging to H*{M, θ<^. The edge terms of this spectral sequence
are of particular interest to us. Let Eζs<$ be the subsheaf of JEg5 consisting of
sections which in adapted coordinates are of the form

(4-2) φ = φ / 8 »

Such sections are invariant under Lie differentiation with respect to vector
fields tangent to *% and are therefore called ^-invariant sections. The restric-
tion of dQ to Eζ$ is denoted by 3 and applied to a section φ as in (4.2) is of
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the form

(4.3) θφ = — dzΎ /

Clearly d(Eξ m

9) C Eζ'<$ and there is a complex

(4.4) O^gr^E^E^X---.

Since E = Lc θ β ( 1 ' 0 ) , there is an exact sequence

0 -+ QW* -+E*^> LC* -H> 0,

which induces exact sequences

(4.5) 0 -> Fp + 1E* ^> FpE* Λ A—pLc* ®C / D ρ(0'*>* ® f f g* 1 ^ -+ 0.

Now τ*ί/ρ = ^ρn*'ϊ"? hence by (1.33) we get the following result.

Lemma 4.6. H'(grp(E* ), gr(dQ)) ~ 7/ (M, β ^ ® Qψ\
The next proposition follows from (4.4) and (4.6).

Proposition 4.7. The spectral sequence induced by the filtration Fm of

converges to H9(M, $<$). More specifically, E? = (H'(M,

Hs+t(M, Q$V) and Ef = Hs(Γ{Eg9)9 9).

Recall that a F-manifold is an analytic space which locally has the

structure of the orbit space defined by a finite group action on an open disc

in Cq where the group acts by biholomorphisms. By [3], if 5" is a Hausdorff

foliation, the leaf space M/^ has the structure of a K-manifold of the

complex dimension q of the normal bundle to φ. For details concerning

F-manifolds, see Satake [12]. In case <$ has no holonomy, then M/% is

non-singular and M -^ M/^ is a fibration. A F-manifold N has a Dolbeaut

complex defined on it and a holomorphic tangent bundle ΘN. Bailey [1] has

shown that the cohomology groups H9(N, ΘN) are finite dimensional. From

the definition of the holomorphic tangent bundle of a K-manifold we have

the following proposition.

Proposition 4.8. // ^ is Hausdorff, then Ef « Hs(M/<$, θM/<^) and this

space is finite dimensional. Furthermore, if S denotes the generic leaf of ^ and

H\S, R) = 0, then H\M, 9$) = Hι(M/Φ, ΘM/$).

Proof. The first part of the proposition is immediate from the definitions.

To prove the second part of the proposition observe that

|1 0>) = H\M, Qv\

since Q = <2(1'0) by (1.2) and (1.4). Since Hamilton [4] has shown that

H\S, R) = 0 implies that Hι(M, Q<£ = 0, we have E%Λ = 0 and E£° =

, ΘM/^ from which the result follows.
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At this point we wish to present some cases where the groups H9(M, θ<^)

can be computed explicitly. The computations use standard techniques in

sheaf theory and are quite similar to those of Mostow [9]. Therefore we will

be brief.

We begin by considering the trivial example of a product foliation. Suppose

that N is a complex manifold and that A' is a compact C°°-manifold with

dime N = <1> d ί m R κ = P' N o w l e t M = N X K and define § to be the

foliation on M given by the fibers of the projection M-±N. Then B^ —
7Γ*(^W) By Bredon [2] we obtain the next lemma.

Lemma 4.9. H*(M, ΘJ) s HΦ(N, ΘN) ® C H%k(K: C). In particular, if N

is Stein H\M9 θ9) » T(N, ΘN) ®C H~DR(K9 Q.

If Λ̂  is compact this implies the following corollary.

Corollary 4.10. The set of holomorphic foliations near the holomorphic

foliation SΓ, given as above, is a local analytic subset of the complex vector space

H\N9 ΘN) Φ H£Λ(K, C) ® T(N, ΘN).

Assume that M is compact and that f is a Hausdorff holomorphic

foliation transverse to the fibers of a fibration N -+ M -* X. Then N is SL

compact complex manifold and M ~ X X N/G, where X is a finite cover of

X and M = X X N is a G manifold for G a finite group of deck transforma-

tions of M which acts biholomorphically on TV. Further, <$ is the foliation

Φ/G for #" the product foliation X X N -• N. In this case G acts on

H*(N, ΘN) and on H£R(X9 C) and we have the following proposition.

Proposition 4.11. H*(M, θw) » H*DR(X9 Cf ® c H9(N9 ΘN)G where ( ) G

denotes the space of G-invariant elements.

Proof. Consider the resolution (1.29) applied to *5 on X9 i.e.,

Then since G is finite H\T(EQ)G, d£ = H\T(EQ)9 d^f, and T(EQ)G is

isomorphic to the complex

associated to the resolution of θ<$. Therefore

H* (M, θ9) « //• (r(i ρ ) G , Jό) ̂  H* (M, ^ ) σ .

Note the above computation applies to the case where <$ is given by the

suspension via a biholomorphism <p: N-> N9 where N is a compact complex

manifold and φ has finite period.
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