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NONNEGATIVE CURVATURE OPERATORS:
SOME NONTRΓVΊAL EXAMPLES

STANLEY M.ZOLTEK

1. Introduction

The object of this paper is to study the pointwise behavior of the Rieman-
nian sectional curvature function.

More specifically, the Riemannian sectional curvature of a Riemannian
manifold M is a real valued function σ on the Grassmann bundle of tangent
2-ρlanes of M. Although there exist many theorems relating the curvature of
M to various topological and geometric properties of M, there is little known
of a general nature about the behavior of σ itself. In fact the critical point
behavior of σ has been analyzed only in very special cases [1], [4].

Let G denote the Grassmann manifold of oriented tangent 2-ρlanes at
m E M. G can be made, in a natural way, a submanifold of the vector space
Λ2 of 2-vectors at m. Furthermore, since G is a 2-fold covering space of the
manifold of (unoriented) 2-planes at m, we may regard σ as a function on G.
We will be interested in the description of the minimum and maximum sets of
σ and in the question of characterizing positive sectional curvature in terms of
the curvature tensor.

Since we are interested in the pointwise behavior of σ, we shall work in the
setting of an arbitrary inner product space V. G is then the Grassmann
manifold of oriented 2-ρlanes in V. A curvature operator R is a self-adjoint
linear transformation of A2(V) (e.g., the curvature tensor R of a Riemannian
manifold M acting on Λ2(Λfm), where Mm is the tangent space to M at m).
For a curvature operator R, its sectional curvature σR: G —»R is given by
aR(P) = (RP9 py for P in G.

For dimension V < 4, Thorpe has shown [3] that the minimum and
maximum sets of σR are intersections with G of linear subspaces of Λ2(F),
and he has given [2] a simple characterization of positive sectional curvature
in terms of the curvature tensor. In fact, Thorpe [3] claimed that this
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description of the minimum and maximum sets of oR was true for all
dimensions.

In what follows, we shall show that these results do not hold for higher
dimensions. More specifically, for dimension V > 5 we exhibit a family of
curvature operators with nonnegative sectional curvature each of whose
members does not conform to the characterization suggested by Thorpe's
result [2] for lower dimensions. Furthermore, it is shown that one member of
this family has a zero set which is not the intersection with G of a linear
subspace of Λ2( V) and so contradicts Thorpe's result in [3].

The author thanks Professor John Thorpe for acting as his thesis advisor
during this work.

2. Preliminaries

Let V be an ^-dimensional real vector space with inner product < , ), and
for υ E V set |i?| = V<t>, v} . Forp an integer, 1 < p < n, by AP(V) or Ap

we mean the space of /^-vectors of V. If {ev , en) is a basis for V, then
{£/, Λ Λ^L I'Ί < * * * */>} i s a basis for Ap, and it follows that Ap has
dimension Q). A/?-vector ω is said to be decomposable if ω = υx Λ ' * # Λ ^
where υv , vp E V. Hence Λ^ has a basis of decomposable vectors. Thus
when defining an inner product on Ap it suffices to specify its values on
decomposable /7-vectors. We set («, A /\up, υx Λ * Λt^> =
det[<i/,., Vj)] where i/f , vy E F. For ξ E Λ2 we set ||ζ|| = V<f, f> . It follows
that if {βj, , en} is an orthonormal basis for V, then {efi Λ * # ' Λ^LII#I

< < ip) is an orthonormal basis for Ap. Let G denote the Grassmann
manifold of oriented 2-dimensional subspaces of V; we identify G with the
submanifold of Λ2 consisting of decomposable 2-vectors of length 1 by
p -* u /\v where {w, v} is any oriented orthonormal basis for P.

Let V be an Λ-dimensional real inner product space. A curvature operator
R is a self-adjoint linear transformation of Λ2(F). The space 91 of all
curvature operators has dimension [Q)2 -I- G)]/2 and inner product given by
(R,T) = trace R ° T where R, T E <3l. Given U 6 d its sectional curva-
ture is the function σR: G->R defined by σR(P) = < φ , ? ) , P 6 C. We
define the zero set of R by Z(Λ) = {P E Glσ^P) = 0}.

Let {ev , eΛ} be an oriented orthonormal basis for V. We define the
operator

by
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where a E: Kp and β G An~p. It is easily checked that this definition is
independent of the choice of oriented orthonoπnal basis for V. It is also
easily checked that *2 = (_iy*n-*) (identity) and so * is nonsingular (see [5]).

If dimension V = 4 and/? = 2, then *: Λ2 -> Λ2, and since a Λ β — β Λ oc
for a, β G Λ2, it follows that • is symmetric.

By R we denote the set of all real numbers.

3. The Bianchi identity and the Grassmann quadratic 2-relations

In this section we examine the space S complementary in 51 to the
subspace φ = {R G <Sl\R satisfies the Bianchi identity). We recall that § is
naturally isomorphic to Λ4, and we exhibit the relationship between S and
the Grassmann quadratic 2-relations which are necessary and sufficient
conditions for decomposability of elements in Λ2. These results are well-
known and detailed proofs can be found in [3],

Given R G <3l we associate a 2-f orm on V with values in the vector space
of skew symmetric endomorphisms of V by

(R(u, Ϊ>)(H>), X) = (Ru Λ v, w Λ *>, "> Ό9W9X G V.

It is easily checked that this "association" is a vector space isomorphism.

Using this identification we define the Bianchi map b: <3l -> <3l. Given
Λeiwe set

[b(R)](u, v)(w) = R(u, v)(w) + R(v, w)(u) + R(w, u)(v).

It is easily checked that b is a linear map, and so its kernel is a linear
subspace of tfl which we will denote by %.

Let S = $"L, the orthogonal compliment of % in <3l. For each ε G Λ4 we
associate 5e G 31 by <5eα, β} = (ε,a /\ β}, where α,]8 6 Λ2.

Proposition 3.1. 7%e m φ ε -^ 5e w αw isomorphism of Λ4 on/o S. In fact
ε -^> Se/Vό is an isometry.

Proposition 3.2. Let {ev , en) be an orthonormal basis for V. For
I <i <j <n, set Sijkι = SeiAejΛekΛer a G Λ2 is decomposable if and only if
(SiJkιa, α> = 0, 1 < i <j < k < I < n.

Corollary 33. a G Λ2 is decomposable if and only ifa/\a = 0 .
Proof. Let {ev , en] be an orthonormal basis for K. Then

« - Σ v Λ ey

α Λ « = 2 2 K«w ~ %αy/ + aiiajk)*i Λ ̂  Λ «* Λ e,
Uί</<jt</<n
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and so by Proposition 3.2 if and only if α is decomposable.

Remark 1. The conditions (Sijkla, α> = 0, 1 < i <j <k < I < n, are

known as the Grassmann quadratic 2-relations.

Remark 2. In view of Proposition 3.2 it is clear that each curvature

operator S G S has sectional curvature σs identically zero. Conversely, it is

easily checked that this property characterizes S.

4. Two results of Thorpe

In this section we restrict ourselves to the case where dimension V = 4, and

state the two results of Thorpe which form the main concern of this paper.

Let <3l+ {R G <3l: (RX, X) > O V I 6 Λ2} and ® + = {R G ® : σR >

0). By definition of S and φ , <3l = % ® S, where θ means orthogonal

direct sum. We define m as orthogonal projection from <3l into $ . Since
σ/? = σ £ + s = σB> it follows that ττ(Sl+) C ® + , and so we can consider π as a

map of <&+ into® + .

Theorem 4.1. If dimension V = 4, /Λen /Λe

w onto.

Theorem 4.2. Let dimension V = 4, α^J suppose R G $1 is such that

σR > 0 am/ Z(Λ) =^ 0 . ΓΛen ίΛere exwί^ a unique S G S jwcλ /Λaί Z(Λ) = G

Π kernel(/? + S).

Proofs of these theorems appear in [2] and [3] respectively.

Corollary 43. Let dimension V = 4 ΛAW/ R G <3l, #«</ fe/ λ JeAWte ίAe

minimum {or maximum) value of σR. Then there exists a unique S G S JWCA

ίλtfί {P G G|σΛ(P) = λ} = G Π ker(# - λ/ - S).

Proof. This corollary follows from Theorem 4.2 by replacing R in that

theorem by R — XI (or, when λ is the maximum value of σR9 by XI — R).

5. Dense subsets of G

In this section dimension V = 5. We describe a collection of dense subsets

of the Grassmann manifold G of oriented two-dimensional subspaces of V.

Specifically, given P G G, we construct a dense subset of G which contains

P. In the following sections this tool will greatly simplify our calculations.

Theorem 5.1. Given P G G, let {eγ, , e5} fee 0/2 orthonormal basis of V

such that P = ex Λ 2̂- // /or A:1? , x5 G R we set (xl9 x2, x3, x4, x5) —
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Σ / _ i .x, e, , then

(l, o, x3, x4, x5) Λ (o, hy^

(h0,x3,x4,x5)A(0,hy3,y4,y5)\\' 3 ' 4> 5 ' ' 3 '

is a dense subset of G which contains P.
To prove Theorem 5.1 we will need the following lemma.
Lemma 5.2. G - β = ( P G <7|<Λ *i Λ e2} = 0}.
Proof (Using the notation of Theorem 5.1.)

(x x x x x } Λ (vp ~, p V *Ί> Λ2> Λ3» -^4' Λ 5 / /\ \^

IK^!, X2, X3, X4, X5) Λ (>

Now if

\\(xl9 x2, x3, x4, x5)

where for i = 2, , 5 we abusively denote xjxx by xt. Replacing yt by

Λ "" x ^ i w e S e t

^ (l, x2, Λ:3, x φ χ5) Λ (0, yv y3, y4, y5)

||(1, x2, x3, x4, x5) Λ (0,72^3^4^5)11 '

then either xx φ 0 or >Ί φ 0. We can assume xx φ 0 (by interchanging c's
and^'s if necessary). Dividing each Λ:, by xx we get

(1, x2, x3, x4, x5)
P =

11(1, x2, x3,

where for i = 2, , 5 we abusively denote^, — xyx byy^ Since 0 φ <P, ex

Λ ^2) = ^2 (^e new^2) we can divide each.y, by> 2̂ to get

(1, x2, x3, x4, x5) Λ (0, 1, y3, y4, y5)

1, x2, x3, x4, x5) Λ (0, 1,73^4^5)11 '

where for / = 2, , 5 we abusively denote yjy i byyr Finally by replacing

*, by χι - ytx2 we get

(l, 0, χ3>
 χ4> ^5) Λ (o, 1, .

" 1, 0, x3, x4, x5) Λ (0, 1,73

where for i == 3, 4, 5 we abusively denote xt - ytx2 by xr Hence we have
shown G - ρ c { P E G\(P, ex Λ e2> - 0}.

It is clear that if JP e Q=*(P,eλ/\ e2) φ 0, and so

{P <E G\(P, ex Λ e2) = 0} C G - Q.
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Proof of Theorem 5.1. Lemma 5.2 shows that the complement of Q in G is

G - Q = {P e G|</>, ex Λ e2>
 β °} S i n c e t h e function P -> (P, eλ Λ *2>

is a smooth function on G, it follows by the implicit function theorem that

G — Q has codimension one in G, and therefore Q is dense in G.

6. The curvature operator Rk

In this section we discuss the possibility of extending Theorems 4.1 and 4.2

to the case dimension V > 5.

Two claims are made and an example is presented. It will be the analysis of

this example which occupies most of the remaining sections and results in a

verification of these claims.

Claim 6.1. When the dimension V > 5, the zero set of a curvature operator

with nonnegative sectional curvature need not be the intersection with G of a

linear subspace of Λ2.

Claim 6.2. The map π, defined in §4, need not be onto. Indeed for dimension

V > 5, there exist curvature operators with nonnegative sectional curvature

which cannot be made positive semi-definite by adding an element of A4.

Until further notice, dimension V = 5. Let {eu - , e5) be an orthonor-

mal basis for V, and k a real number. Set e0 = e( Λ ,̂ and consider the

following example.

Let Rk: A
2 -* A2 be defined by

Rkel2 = ^12 - *15 ~ *34> Rke24 = Rke35 = °> Rke23 = ^23>

Rkel5 = *15 ~ e\2 ~ *3Φ Rkel3 = k e \ * Rke25 = ^ 2 5 ,

Rke34 = *34 ~ *12 ~ *15, Rkel4 = ^14> ***45 = Λ ί ?45

It is easily checked that Rk is self-adjoint. Let a = e 1 2 + e1 5 + £34. Then

Λα = -a.

In the next section it will be shown that Rk has nonnegative sectional

curvature.

7. The sectional curvature of Rk

In this section we will analyze sectional curvature on a dense subset of G

containing the zero e24 of Rk. The sectional curvature of Rk will be shown to

be nonnegative on this subset and so on all of G.

By Theorem 5.1

is a dense subset of G containing e2 4.
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Let ξ be a typical element of Q. Since our goal is to show σ^ > 0, we can

disregard the normalization factor. Let ξ = | |? | |? Then

ξ = [aeι + e2 + βe3 + ye5] Λ [ & i + ε<?3 + <>4 + 0<?5]

= -δe 1 2 + (αε — βδ)el3 + αe 1 4 + (aθ — yδ)el5

+ /fe34 + εe23 + &?25 + <?24 + (βθ - γε)έ?35 - γe4 5,
ΛA:έ β (~δ - α^ + γδ - /J)e12 + (δ + aθ - γδ - 0)ί?1 5

+ (δ - aθ + γδ + β ) e 3 4

+ fc[(αe - βδ)eι3 + αe 1 4 + εe^ + θe25 - γe 4 5 ] ,

</^£ £> = (δ + ^8)2 - 2γδ 2 + 2δαβ - laθβ

+ 2)8γδ - 2α^γδ + γ 2 δ 2 + α 2 ^ 2

+ A:[(αε - βδ)2 + α 2 + ε2 + 0 2 + γ 2 ] = (*).

For A: > 2, we will write (•) as the sum of squares of rational functions and

hence conclude it is nonnegative.

Theorem 7.1.

- δ 2 + α ε - αflδ'

1 + δ 2

| 2(α + θδf | 2ε2

 | 2(α + ε ) 2 δ 2

 { 2g 2

1 + δ 2 1 + δ 2 1 + δ 2 + l + δ 2

+ (αε - βδ - γ) 2 + (k - 2)[(αε - βδ)2 + α 2 + ε2 + θ2 + γ 2 ] .

Proof. Expand the right-hand side and simplify to obtain (•). It suffices to

check this for k = 2 since

<Rk£, {> = <«2& i> + ( * - 2)[(αe - βδ)2 + α 2 + ε2 + θ2 + γ 2 ] .

Remark. From the above expression of <#*£, O as the sum of squares of

rational functions it follows that (R2ξ, 0 = 0 if and only i f α = ε = β = 0

and γ = δ 2 / ( l + δ 2), ̂ 8 = - δ / ( l + δ 2 ). Normalizing, this gives a curve of

zeroes, parametrized by δ, through e24.

8. Some zeroes of R2

In this section it is our goal to find two curves of zeroes of R2 through the

zero (el2 + el5)/V2 . We will begin by examining a subset Q of G and

finding a polynomial expression for (R2ξ, ξ) for ξ G Q where {/||£|| G G. Let

β = { f e Λ2 |f = (1, γ, α, β, -γ) Λ (0, 1 + θ, δ, ε, 1 - θ);

a9β,y,δ,e,θ G R}.
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Remark. It can be shown that normalizing makes Q into a dense subset of
G. However, for what follows we only need to know that it contains en + el5,
which is obvious. Let

{ = (1, γ, a, β, -y) Λ (<U + #, δ, ε, 1 - θ)

= (1 + θ)en + δel3 + εeH + (1 - θ)el5

+ (-a -aθ + yδ)e23 + (-0 - βθ + yε)eu

+ 2γe25 + (αε - βδ)e34 + (a - aθ + yδ)e35

+ (β-βθ + yε)e45,

Rkξ = (2Θ - aε + β8)en + (-2Θ - αε + βδ)ei5

+ (-2 + αε - βδ)eM + k(-a - aθ + yδ)e23

+ k(2y)e25 + k(β- βθ + yε)e45

+ kδel3 + kεel4,

(Rkξ, ξ> = Aθ2 - 4(αε - βδ) + (αε - βδ)2

+ k[(-a - aθ + yδ)2 + (β - βθ + γε)2

+ 5 2 + ε 2 + 4γ 2] = ( * ) .

Set a = γ = ε = 0 and k = 2. Then

<*2$, {> = 4Θ2 + 4βδ + β2δ2 + 2jS2(l - θf + 2δ2.

For fixed B set

f(θ, δ) = Aθ2 + 4βδ + β2δ2 + 2β\\ - θf + 2δ2.

Now σRi > 0 => <Λ2|, ί> > 0 =»/(#, δ) > 0. Thus a zero of/is a minimum of
/. But, at a minimum off,

= 4(β + 2)θ- 4β2, 0 = J£ = 2(j82 + 2)δ + 4)8.

Hence β = β2/(β2 + 2) and δ = -2β/(β2 + 2). It is easily checked that for
these values of θ and δ,f(θ, δ) = 0.
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Set

e = (β2 + 2)ξ = (2β2 + 2)el2 + (-2β)eu + 2el5

+ (-β)(2β2 + 2)e24 + ( 2 / ϊ 2 ) ^ + (2β)e45.

Then <Λ2i
!, ξ 1 ) = 0. Thus β-+ξι(β)/\\ξ\β)\\ is a curve of zeroes through

If in (•) we set k = 2 and δ = 0 = γ = 0, we get (R2ξ, ξ> = 4Θ2 - 4<xε +

α 2ε 2 + 2(α + α0)2 + ε2. Following an approach identical to that above gives

ξ2 = 2en + (2α)e 1 4 + (2α2 + 2)el5

- (2a)e23 + (2α 2 )e 3 4 + (α)(2α 2 + 2)<?35.

It is easily checked that £ 2 / | | ξ 2 | | is decomposable and that σR2(ξ2/\\i2\\) = 0.
Then α -> ξ 2 (α)/ | | ξ 2 (α) | | is another curve of zeroes through (e 1 2 + el5)/V2 .

9. The zero set of Rk

In this section we prove Claims 6.1 and 6.2, and for each k > 2 we

explicitly describe the zero set of Rk. Until further notice we set k = 2.

Consider the following vectors.

«i = €!(1) = 4e12 - 2eu + 2e15 - 4e24 + 2^34 + 2^45,

«2 = € ! ( - l ) = 4e12 + 2e13 + 2e15 + 4e24 + 2e34 - 2e45,

«3 = ^2(1) = 2e12 + 2el4 + 4e15 - 2e23 + 2e34 + 4e35,

~ 2el4 + 4e15 + 2e>23

«5 = " 15

It is clear from the above construction of ξ 1 and ξ2 that <Λ2α |5 α,) = 0,

i = 1, , 5, and thus βi = αyilα,!! e Z(R2) for / = 1, , 5. Let β =

ΣSi-ι Of. It is easily checked that β = 8e 3 4 and so ]8/8 6 G. Now

<R2β/S, β/S} = <e3 4 - el2 - el5, e34> = 1.

We have found five zeros of R2 whose linear span contains a 2-plane in G

with nonzero sectional curvature. Let L2 = ^(Λj). (To verify Claim 6.1 we

need an example which satisfies the Bianchi identity.) Now by the remark at

the end of §3, σLi = σR^ and so Claim 6.1 of §6 is verified.

Claim 6.2 is now easily verified. If there existed S e Λ4 such that L2 + S

were positive semi-definite, then each x E Z{L^ would be a minimum of

<(L2 + S % £> on the unit sphere in Λ2, and so would be an eigenvector of

L2 + S with zero eigenvalue. It would then follow that Z{L^ was the

intersection with G of a linear subspace of Λ2, namely the null space of

L2 + S. However, we have shown that this is not the case.
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Lemma 9.1. //

||(α, 1, /?, 0, γ) Λ (δ, 0, ε, 1, θ)\\

then

G - Q = {P G G|P = (α, 0, A 0, γ) Λ (8, μ, ε, η, θ);

α, β, γ, δ, μ, ε, η, 0 G R}.

PAΌO/. Replacing eλ Λ e2 by e2 Λ e4 i n Lemma 5.2 shows that G — β =
{P G G|<P, e2 Λ e4} = 0). Since

0 = <Λ e2 Λ e4} = -<P, *(e! Λ ^ 3 Λ *5)> => ̂  Λ 1̂ Λ e3 Λ 5̂ - 0,
considering P as a 2-dimensional subspace of V and eγ /\e3 /\ e5 as a
3-dimensional subspace of V, we see that P Γ\ (eι /\ e3 /\ e5) φ (0), and so
there exists v G P such that |t>| = 1 and v = (α, 0, Ŝ, 0, γ). Choosing w EL P
such that |H>| = 1 and <H>, U> = 0 we have that

P = v Λ H; = (α> 0, β, 0, γ) Λ(8, μ, ε, η, β); α, ̂ 8, γ, δ, μ, ε , τ , , ί 6 R.
Next we analyze the sectional curvature of Rk(k > 2) on G - Q. Our goal

being to explicitly describe Z(Rk)(k > 2) we can desregard the normalization
factor.

Let
ξ = (α, 0, β, 0, γ) Λ (δ, μ, ε, η, 0)

(«c - βδ)el3 + aηel4 + (aθ -

ΛΛξ = (αμ - aθ + γδ - jβτθέ>12 + (α« - γδ - αμ -

+ (βη-aθ+yδ-aμ)e34

+ /c[(αε - jSδ)e13 + aηel4 - βμe23 - γμe25 - γr?e45],

(Rkξ9 O = α2μ2 ~ 2α2μβ + 2αμγδ - 2aμβη

+ (αβ - γδ)2 - laθβη + 2γδ̂ Sη + βV

+ k[(ae - βδ)2 + « V + )82μ2 + γ V + ϊ V ] - (•)•
For k > 2 we will write (*) as the sum of squares of polynomial functions.

Theorem 9.2. For k > land ξ G G - Q,

<R£ O = (-βη + aθ-yδ- aμf + 2(0μ - aη)2

+ fc[(αε - /?δ)2 + γ2μ2 + γ ^ 2 ] + (k - 2)(αV + β2μ2).

Theorem 93. For k > 2, Z(Rk) = { ±(e 1 2 + el5)/Vl ,±e1A>± e35).
Proof. For k > 2 Theorem 7.1 implies that the only zeroes of Rk in Q are

± e24. For A: > 2 and ξ G G - β, an analysis of the polynomial expression
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for (Rkξ, ξ) given by Theorem 9.2 shows that (Rkξ, £> = 0 only if α V •+
β2μ2 = 0. It is easily checked that this happens only when ξ = ± e3S or

V
Proposition 9.4. For k > 2, Lk is not the projection under π of a positive

semi-definite operator on Λ2.
Proof. Suppose it is. Then for some S E Λ4, Rk + S is a positive semi-

definite operator on Λ2. Let a = en + el5 + e^. Then Rka = -a and
(Rka, α> = -3. Thus <(ΛΛ + s)a, α> > 0 implies that <5α, α> > 3. Now
since S G Λ4, it follows from Proposition 3.1 that

Thus (Sa, α ) = 2λ1 2 3 4 + 2λ1 3 4 5, and since (Sa, α ) > 3 it follows that λ 1 2 3 4

+ λ 1 3 4 5 > 3/2.
Letting w, = el3 + fce24 and w2 = e 1 4 + /ce35 we get ((Rk + 5)>v,, Wj> = -

Λλ1234 and <(ΛΛ + S)>v2, w2> = -*λ 1 3 4 5. But this together with λ 1 2 3 4 + λ 1 3 4 5

> 3/2 implies that <(Rk + 5)wi, w2) < 0 or <(ΛΛ + 5)w2, w2> < 0, thus
contradicting the assumption that Rk + S is positive semi-definite.

Theorem 9.5. 77iere exwί curvature operators which satisfy the Bianchi
identity y have nonnegative sectional curvature, and each of whose zero sets is the
intersection with G of a linear subspace of Λ2, but which are not the projection
under IT of a positive semi-definite operator on A2.

Proof. We claim that for k > 2, each curvature operator Lk is of this type.
It follows by Theorem 9.4 that Lk is not the projection of a positive
semi-definite operator, and by Theorem 7.1 that σ^ > 0. By Theorem 9.3, for
k > 2 we see that

Z(Lk) = [±(en + el5)/V2 , ±e 2 4 , ±e35).

To complete the proof we verify that (for k > 2) Z(Lk) = span Z(Lk) π G.
That Z(Lk) c span Z(Lk) n G is clear. If ξ E span Z(L*), then

ξ = a(eι2 + el5)/V2 + 6e24 + ce35, α, 6, c,ER

By Corollary 3.3, the following are equivalent:

(1) £ is decomposable.

( 2 ) 0 -

T7=

2αc

A

2αZ?
Λ ^2 Λ e3 Λ ^5

 + —F~ e i Λ ^2 Λ *4 Λ
V2

eλ Λ ^2 Λ e3 Λ ^5

 + F
V2 V2
+ 2bce2/\eΛ/\e3/\e5.
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(3) ab = ac = be = 0 =Φ a = b = 0 or b = c = 0 or a = c = 0.
(4)ξ = ± e35 or £ = ± (e12 + e15)/V2 orξ = ± e24.
Theorem 9.6. 7/ dimension V = n > 5, ίAew ίAere &*«* curvature operators

L£ which satisfy the Bianchi identity and have the following properties:

1. For k > 2, σ£ > 0.
2. i w A: = 2, Z(L£) is not the intersection with G of a linear subspace of A2.

3. For k > 2, L£ is not the projection under π of a positive semi-definite
operator on Λ2.

Proof. For n > 5 let {ev , en) be an orthonormal basis for V, and let
^ = span{elf e2, e3, e4, e5}. Since W c V, K\W) c Λ2(K). We define the
linear map πλ: Λ

2( V) ->" Λ2( PΓ) by

^i(0 = Σ ayev
\<i<J<5

for ξ = Σ 1 < I < / < Λ α̂  ̂  GΛ 2(F). Note that if ξ is decomposable, then π^ξ) is
decomposable.

For k a real number and dimension V = n > 5, consider the following
example: Let R£: Λ2( F) -» Λ2( F) be defined by

= el5 — el2 — e 3 4,

= e34 ~ e12 "" e15>

R^βy = A:eiy for remaining eiy

Note that for A: > 0, (R£ξ, ξ) > </^w1(β, /^^(O) for aU ξ e Λ2(F).
Let L^ = -τr(^). Then L̂ 1 satisfies the Bianchi identity, and for k > 2

0.

Thus L^ has Property 1.
To see that L£ has Property 2, It /?,(/ = 1, , 5) and β be defined as

above. Taking advantage of the natural inclusion of Λ2( W) in Λ2( F) we can
consider β and βt as elements of Λ2( F). Then

oL,(ββ) = oRi{ββ) = %(0/8) = 1.

Thus we have found five zeroes of L2 whose linear span contains a 2-plane in
G with nonzero sectional curvature, and so Z(L£) is not the intersection with
G of a linear subspace of Λ2( F).

Following an approach similar to that in the proof of Proposition 9.4 one
can show that L£ has Property 3.
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