NONNEGATIVE CURVATURE OPERATORS: SOME NONTRIVIAL EXAMPLES

STANLEY M. ZOLTEK

1. Introduction

The object of this paper is to study the pointwise behavior of the Riemannian sectional curvature function.

More specifically, the Riemannian sectional curvature of a Riemannian manifold M is a real valued function σ on the Grassmann bundle of tangent 2-planes of M. Although there exist many theorems relating the curvature of M to various topological and geometric properties of M, there is little known of a general nature about the behavior of σ itself. In fact the critical point behavior of σ has been analyzed only in very special cases [1], [4].

Let G denote the Grassmann manifold of oriented tangent 2-planes at $m \in M . G$ can be made, in a natural way, a submanifold of the vector space Λ^{2} of 2 -vectors at m. Furthermore, since G is a 2 -fold covering space of the manifold of (unoriented) 2-planes at m, we may regard σ as a function on G. We will be interested in the description of the minimum and maximum sets of σ and in the question of characterizing positive sectional curvature in terms of the curvature tensor.

Since we are interested in the pointwise behavior of σ, we shall work in the setting of an arbitrary inner product space $V . G$ is then the Grassmann manifold of oriented 2-planes in V. A curvature operator R is a self-adjoint linear transformation of $\Lambda^{2}(V)$ (e.g., the curvature tensor R of a Riemannian manifold M acting on $\Lambda^{2}\left(M_{m}\right)$, where M_{m} is the tangent space to M at m). For a curvature operator R, its sectional curvature $\sigma_{R}: G \rightarrow \mathbf{R}$ is given by $\sigma_{R}(P)=\langle R P, P\rangle$ for P in G.

For dimension $V \leqslant 4$, Thorpe has shown [3] that the minimum and maximum sets of σ_{R} are intersections with G of linear subspaces of $\Lambda^{2}(V)$, and he has given [2] a simple characterization of positive sectional curvature in terms of the curvature tensor. In fact, Thorpe [3] claimed that this

[^0]description of the minimum and maximum sets of σ_{R} was true for all dimensions.

In what follows, we shall show that these results do not hold for higher dimensions. More specifically, for dimension $V \geqslant 5$ we exhibit a family of curvature operators with nonnegative sectional curvature each of whose members does not conform to the characterization suggested by Thorpe's result [2] for lower dimensions. Furthermore, it is shown that one member of this family has a zero set which is not the intersection with G of a linear subspace of $\Lambda^{2}(V)$ and so contradicts Thorpe's result in [3].

The author thanks Professor John Thorpe for acting as his thesis advisor during this work.

2. Preliminaries

Let V be an n-dimensional real vector space with inner product \langle,\rangle , and for $v \in V$ set $|v|=\sqrt{\langle v, v\rangle}$. For p an integer, $1 \leqslant p \leqslant n$, by $\Lambda^{p}(V)$ or Λ^{p} we mean the space of p-vectors of V. If $\left\{e_{1}, \cdots, e_{n}\right\}$ is a basis for V, then $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{i}} \mid i_{1}<\cdots i_{p}\right\}$ is a basis for Λ^{p}, and it follows that Λ^{p} has dimension $\binom{n}{p}$. A p-vector ω is said to be decomposable if $\omega=v_{1} \wedge \cdots \wedge v_{p}$ where $v_{1}, \cdots, v_{p} \in V$. Hence Λ^{p} has a basis of decomposable vectors. Thus when defining an inner product on Λ^{p} it suffices to specify its values on decomposable p-vectors. We set $\left\langle u_{1} \wedge \cdots \wedge u_{p}, v_{1} \wedge \cdots \wedge v_{p}\right\rangle=$ $\operatorname{det}\left[\left\langle u_{i}, v_{j}\right\rangle\right]$ where $u_{i}, v_{j} \in V$. For $\xi \in \Lambda^{2}$ we set $\|\xi\|=\sqrt{\langle\xi, \xi\rangle}$. It follows that if $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal basis for V, then $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i j} \mid i_{1}\right.$ $\left.<\cdots<i_{p}\right\}$ is an orthonormal basis for Λ^{p}. Let G denote the Grassmann manifold of oriented 2-dimensional subspaces of V; we identify G with the submanifold of Λ^{2} consisting of decomposable 2 -vectors of length 1 by $p \rightarrow u \wedge v$ where $\{u, v\}$ is any oriented orthonormal basis for P.

Let V be an n-dimensional real inner product space. A curvature operator R is a self-adjoint linear transformation of $\Lambda^{2}(V)$. The space \Re of all curvature operators has dimension $\left.\left[\begin{array}{l}n \\ 2\end{array}\right)^{2}+\binom{n}{2}\right] / 2$ and inner product given by $\langle R, T\rangle=\operatorname{trace} R \circ T$ where $R, T \in \Re$. Given $R \in \Re$ its sectional curvature is the function $\sigma_{R}: G \rightarrow \mathbf{R}$ defined by $\sigma_{R}(P)=\langle R p, P\rangle, P \in G$. We define the zero set of R by $Z(R)=\left\{P \in G \mid \sigma_{R}(P)=0\right\}$.

Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an oriented orthonormal basis for V. We define the star operator

$$
*: \Lambda^{p} \rightarrow \Lambda^{n-p}
$$

by

$$
\langle * \alpha, \beta\rangle=\left\langle\alpha \wedge \beta, e_{1} \wedge \cdots \wedge e_{n}\right\rangle
$$

where $\alpha \in \Lambda^{p}$ and $\beta \in \Lambda^{n-p}$. It is easily checked that this definition is independent of the choice of oriented orthonormal basis for V. It is also easily checked that ${ }^{2}=(-1)^{p(n-p)}$ (identity) and so *is nonsingular (see [5]).

If dimension $V=4$ and $p=2$, then $*: \Lambda^{2} \rightarrow \Lambda^{2}$, and since $\alpha \wedge \beta=\beta \wedge \alpha$ for $\alpha, \beta \in \Lambda^{2}$, it follows that $*$ is symmetric.

By \mathbf{R} we denote the set of all real numbers.

3. The Bianchi identity and the Grassmann quadratic 2 -relations

In this section we examine the space δ complementary in \Re to the subspace $\mathscr{B}=\{R \in \mathscr{R} \mid R$ satisfies the Bianchi identity $\}$. We recall that \mathscr{S} is naturally isomorphic to Λ^{4}, and we exhibit the relationship between \mathcal{S} and the Grassmann quadratic 2 -relations which are necessary and sufficient conditions for decomposability of elements in Λ^{2}. These results are wellknown and detailed proofs can be found in [3].

Given $R \in \Re$ we associate a 2 -form on V with values in the vector space of skew symmetric endomorphisms of V by

$$
\langle R(u, v)(w), x\rangle=\langle R u \wedge v, w \wedge x\rangle, u, v, w, x \in V
$$

It is easily checked that this "association" is a vector space isomorphism.
Using this identification we define the Bianchi map $b: \Re \rightarrow \Re$. Given $R \in \mathscr{R}$ we set

$$
[b(R)](u, v)(w)=R(u, v)(w)+R(v, w)(u)+R(w, u)(v)
$$

It is easily checked that b is a linear map, and so its kernel is a linear subspace of \Re which we will denote by \mathscr{B}.

Let $\mathcal{S}=\mathscr{B}^{\perp}$, the orthogonal compliment of \mathscr{B} in \Re. For each $\varepsilon \in \Lambda^{4}$ we associate $S_{\varepsilon} \in \Re$ by $\left\langle S_{\varepsilon} \alpha, \beta\right\rangle=\langle\varepsilon, \alpha \wedge \beta\rangle$, where $\alpha, \beta \in \Lambda^{2}$.

Proposition 3.1. The map $\varepsilon \rightarrow S_{\varepsilon}$ is an isomorphism of Λ^{4} onto δ. In fact $\varepsilon \rightarrow S_{\varepsilon} / \sqrt{6}$ is an isometry.

Proposition 3.2. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis for V. For $1 \leqslant i \leqslant j \leqslant n$, set $S_{i j k l}=S_{e_{i} \wedge e_{j} \wedge e_{k} \wedge e_{i}} \alpha \in \Lambda^{2}$ is decomposable if and only if $\left\langle S_{i j k l} \alpha, \alpha\right\rangle=0,1 \leqslant i<j<k<l \leqslant n$.

Corollary 3.3. $\alpha \in \Lambda^{2}$ is decomposable if and only if $\alpha \wedge \alpha=0$.
Proof. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis for V. Then

$$
\begin{aligned}
\alpha & =\sum_{1<i<j<n} a_{i j} e_{i} \wedge e_{j}, \\
\alpha \wedge \alpha & =2 \sum_{1<i<j<k<l<n}\left(a_{i j} a_{k l}-a_{i k} a_{j l}+a_{i l} a_{j k}\right) e_{i} \wedge e_{j} \wedge e_{k} \wedge e_{l} \\
& =\sum_{1<i<j<k<l<n}\left\langle S_{i j k l} \alpha, \alpha\right\rangle=0,
\end{aligned}
$$

and so by Proposition 3.2 if and only if α is decomposable.
Remark 1. The conditions $\left\langle S_{i j k l} \alpha, \alpha\right\rangle=0,1 \leqslant i<j<k<l \leqslant n$, are known as the Grassmann quadratic 2 -relations.

Remark 2. In view of Proposition 3.2 it is clear that each curvature operator $S \in \mathcal{S}$ has sectional curvature σ_{S} identically zero. Conversely, it is easily checked that this property characterizes δ.

4. Two results of Thorpe

In this section we restrict ourselves to the case where dimension $V=4$, and state the two results of Thorpe which form the main concern of this paper.

Let $\Re^{+}\left\{R \in \mathscr{R}:\langle R X, X\rangle \geqslant 0 \forall X \in \Lambda^{2}\right\}$ and $\mathscr{B}^{+}=\left\{R \in \mathscr{B}: \sigma_{\mathrm{R}} \geqslant\right.$ $0\}$. By definition of \mathcal{S} and $\mathscr{B}, \Re=\mathscr{B} \otimes \delta$, where \oplus means orthogonal direct sum. We define π as orthogonal projection from \mathscr{R} into \mathscr{B}. Since $\sigma_{R}=\sigma_{B+S}=\sigma_{B}$, it follows that $\pi\left(\Re^{+}\right) \subseteq \mathscr{B}^{+}$, and so we can consider π as a map of \mathscr{R}^{+}into \mathfrak{B}^{+}.

Theorem 4.1. If dimension $V=4$, then the map

$$
\pi: \Re^{+} \rightarrow \mathscr{B}^{+}
$$

is onto.
Theorem 4.2. Let dimension $V=4$, and suppose $R \in \Re$ is such that $\sigma_{R} \geqslant 0$ and $Z(R) \neq \varnothing$. Then there exists a unique $S \in \mathcal{S}$ such that $Z(R)=G$ $\cap \operatorname{kernel}(R+S)$.
Proofs of these theorems appear in [2] and [3] respectively.
Corollary 4.3. Let dimension $V=4$ and $R \in \Re$, and let λ denote the minimum (or maximum) value of σ_{R}. Then there exists a unique $S \in \mathcal{S}$ such that $\left\{P \in G \mid \sigma_{R}(P)=\lambda\right\}=G \cap \operatorname{ker}(R-\lambda I-S)$.

Proof. This corollary follows from Theorem 4.2 by replacing R in that theorem by $R-\lambda I$ (or, when λ is the maximum value of σ_{R}, by $\lambda I-R$).

5. Dense subsets of G

In this section dimension $V=5$. We describe a collection of dense subsets of the Grassmann manifold G of oriented two-dimensional subspaces of V. Specifically, given $P \in G$, we construct a dense subset of G which contains P. In the following sections this tool will greatly simplify our calculations.

Theorem 5.1. Given $P \in G$, let $\left\{e_{1}, \cdots, e_{5}\right\}$ be an orthonormal basis of V such that $P=e_{1} \wedge e_{2}$. If for $x_{1}, \cdots, x_{5} \in \mathbf{R}$ we set $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=$
$\sum_{i=1}^{5} x_{i} e_{i}$, then

$$
Q=\left\{\frac{\left(1,0, x_{3}, x_{4}, x_{5}\right) \wedge\left(0,1, y_{3}, y_{4}, y_{5}\right)}{\left\|\left(1,0, x_{3}, x_{4}, x_{5}\right) \wedge\left(0,1, y_{3}, y_{4}, y_{5}\right)\right\|}: x_{3}, x_{4}, x_{5}, y_{3}, y_{4}, y_{5} \in R\right\}
$$

is a dense subset of G which contains P.
To prove Theorem 5.1 we will need the following lemma.
Lemma 5.2. $G-Q=\left\{P \in G \mid\left\langle P, e_{1} \wedge e_{2}\right\rangle=0\right\}$.
Proof. (Using the notation of Theorem 5.1.)

$$
P \in G \Rightarrow P=\frac{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)}{\left\|\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\right\|} .
$$

Now if

$$
\left\langle P, e_{1} \wedge e_{2}\right\rangle=\frac{x_{1} y_{2}-x_{2} y_{1}}{\left\|\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\right\|} \neq 0,
$$

where for $i=2, \cdots, 5$ we abusively denote x_{i} / x_{1} by x_{i}. Replacing y_{i} by $y_{i}-x_{i} y_{1}$ we get

$$
P=\frac{\left(1, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(0, y_{2}, y_{3}, y_{4}, y_{5}\right)}{\left\|\left(1, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(0, y_{2}, y_{3}, y_{4}, y_{5}\right)\right\|}
$$

then either $x_{1} \neq 0$ or $y_{1} \neq 0$. We can assume $x_{1} \neq 0$ (by interchanging x 's and y 's if necessary). Dividing each x_{i} by x_{1} we get

$$
P=\frac{\left(1, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)}{\left\|\left(1, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\right\|}
$$

where for $i=2, \cdots, 5$ we abusively denote $y_{i}-x_{i} y_{1}$ by y_{i}. Since $0 \neq\left\langle P, e_{1}\right.$ $\left.\wedge e_{2}\right\rangle=y_{2}$ (the new y_{2}) we can divide each y_{i} by y_{2} to get

$$
P=\frac{\left(1, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(0,1, y_{3}, y_{4}, y_{5}\right)}{\left\|\left(1, x_{2}, x_{3}, x_{4}, x_{5}\right) \wedge\left(0,1, y_{3}, y_{4}, y_{5}\right)\right\|}
$$

where for $i=2, \cdots, 5$ we abusively denote y_{i} / y_{2} by y_{i}. Finally by replacing x_{i} by $x_{i}-y_{i} x_{2}$ we get

$$
P=\frac{\left(1,0, x_{3}, x_{4}, x_{5}\right) \wedge\left(0,1, y_{3}, y_{4}, y_{5}\right)}{\left\|\left(1,0, x_{3}, x_{4}, x_{5}\right) \wedge\left(0,1, y_{3}, y_{4}, y_{5}\right)\right\|}
$$

where for $i=3,4,5$ we abusively denote $x_{i}-y_{i} x_{2}$ by x_{i}. Hence we have shown $G-Q \subset\left\{P \in G \mid\left\langle P, e_{1} \wedge e_{2}\right\rangle=0\right\}$.

It is clear that if $P \in Q \Rightarrow\left\langle P, e_{1} \wedge e_{2}\right\rangle \neq 0$, and so

$$
\left\{P \in G \mid\left\langle P, e_{1} \wedge e_{2}\right\rangle=0\right\} \subset G-Q
$$

Proof of Theorem 5.1. Lemma 5.2 shows that the complement of Q in G is $G-Q=\left\{P \in G \mid\left\langle P, e_{1} \wedge e_{2}\right\rangle=0\right\}$. Since the function $P \rightarrow\left\langle P, e_{1} \wedge e_{2}\right\rangle$ is a smooth function on G, it follows by the implicit function theorem that $G-Q$ has codimension one in G, and therefore Q is dense in G.

6. The curvature operator R_{k}

In this section we discuss the possibility of extending Theorems 4.1 and 4.2 to the case dimension $V \geqslant 5$.

Two claims are made and an example is presented. It will be the analysis of this example which occupies most of the remaining sections and results in a verification of these claims.

Claim 6.1. When the dimension $V \geqslant 5$, the zero set of a curvature operator with nonnegative sectional curvature need not be the intersection with G of a linear subspace of Λ^{2}.

Claim 6.2. The map π, defined in $\S 4$, need not be onto. Indeed for dimension $V \geqslant 5$, there exist curvature operators with nonnegative sectional curvature which cannot be made positive semi-definite by adding an element of Λ^{4}.

Until further notice, dimension $V=5$. Let $\left\{e_{1}, \cdots, e_{5}\right\}$ be an orthonormal basis for V, and k a real number. Set $e_{i j}=e_{i} \wedge e_{j}$ and consider the following example.

Let $R_{k}: \Lambda^{2} \rightarrow \Lambda^{2}$ be defined by

$$
\begin{array}{lll}
R_{k} e_{12}=e_{12}-e_{15}-e_{34}, & R_{k} e_{24}=R_{k} e_{35}=0, & R_{k} e_{23}=k e_{23}, \\
R_{k} e_{15}=e_{15}-e_{12}-e_{34}, & R_{k} e_{13}=k e_{13}, & R_{k} e_{25}=k e_{25}, \\
R_{k} e_{34}=e_{34}-e_{12}-e_{15}, & R_{k} e_{14}=k e_{14}, & R_{k} e_{45}=k e_{45}
\end{array}
$$

It is easily checked that R_{k} is self-adjoint. Let $\alpha=e_{12}+e_{15}+e_{34}$. Then $R \alpha=-\alpha$.

In the next section it will be shown that R_{k} has nonnegative sectional curvature.

7. The sectional curvature of R_{k}

In this section we will analyze sectional curvature on a dense subset of G containing the zero e_{24} of R_{k}. The sectional curvature of R_{k} will be shown to be nonnegative on this subset and so on all of G.

By Theorem 5.1

$$
Q=\left\{\frac{(\alpha, 1, \beta, 0, \gamma) \wedge(\delta, 0, \varepsilon, 1, \theta)}{\|(\alpha, 1, \beta, 0, \gamma) \wedge(\delta, 0, \varepsilon, 1, \theta)\|}: \alpha, \beta, \gamma, \delta, \varepsilon, \theta \in \mathbf{R}\right\}
$$

is a dense subset of G containing e_{24}.

Let ζ be a typical element of Q. Since our goal is to show $\sigma_{R_{*}} \geqslant 0$, we can disregard the normalization factor. Let $\xi=\|\zeta\| \zeta$. Then

$$
\begin{aligned}
\xi= & {\left[\alpha e_{1}+e_{2}+\beta e_{3}+\gamma e_{5}\right] \wedge\left[\delta e_{1}+\varepsilon e_{3}+e_{4}+\theta e_{5}\right] } \\
= & -\delta e_{12}+(\alpha \varepsilon-\beta \delta) e_{13}+\alpha e_{14}+(\alpha \theta-\gamma \delta) e_{15} \\
& +\beta e_{34}+\varepsilon e_{23}+\theta e_{25}+e_{24}+(\beta \theta-\gamma \varepsilon) e_{35}-\gamma e_{45}, \\
R_{k} \xi= & (-\delta-\alpha \theta+\gamma \delta-\beta) e_{12}+(\delta+\alpha \theta-\gamma \delta-\beta) e_{15} \\
& +(\delta-\alpha \theta+\gamma \delta+\beta) e_{34} \\
& +k\left[(\alpha \varepsilon-\beta \delta) e_{13}+\alpha e_{14}+\varepsilon e_{23}+\theta e_{25}-\gamma e_{45}\right], \\
\left\langle R_{k} \xi, \xi\right\rangle= & (\delta+\beta)^{2}-2 \gamma \delta^{2}+2 \delta \alpha \theta-2 \alpha \theta \beta \\
& +2 \beta \gamma \delta-2 \alpha \theta \gamma \delta+\gamma^{2} \delta^{2}+\alpha^{2} \theta^{2} \\
& +k\left[(\alpha \varepsilon-\beta \delta)^{2}+\alpha^{2}+\varepsilon^{2}+\theta^{2}+\gamma^{2}\right]=(*) .
\end{aligned}
$$

For $k \geqslant 2$, we will write (*) as the sum of squares of rational functions and hence conclude it is nonnegative.
Theorem 7.1.

$$
\begin{aligned}
\left\langle R_{k} \xi, \xi\right\rangle= & \left(1+\delta^{2}\right)\left[\left(\gamma+\frac{-\delta^{2}+\alpha \varepsilon-\alpha \theta \delta}{1+\delta^{2}}\right)^{2}+\left(\beta+\frac{\delta-\alpha \varepsilon \delta-\alpha \theta}{1+\delta^{2}}\right)^{2}\right] \\
& +\frac{2(\alpha+\theta \delta)^{2}}{1+\delta^{2}}+\frac{2 \varepsilon^{2}}{1+\delta^{2}}+\frac{2(\alpha+\varepsilon)^{2} \delta^{2}}{1+\delta^{2}}+\frac{2 \theta^{2}}{1+\delta^{2}} \\
& +(\alpha \varepsilon-\beta \delta-\gamma)^{2}+(k-2)\left[(\alpha \varepsilon-\beta \delta)^{2}+\alpha^{2}+\varepsilon^{2}+\theta^{2}+\gamma^{2}\right]
\end{aligned}
$$

Proof. Expand the right-hand side and simplify to obtain (*). It suffices to check this for $k=2$ since

$$
\left\langle R_{k} \xi, \xi\right\rangle=\left\langle R_{2} \xi, \xi\right\rangle+(k-2)\left[(\alpha \varepsilon-\beta \delta)^{2}+\alpha^{2}+\varepsilon^{2}+\theta^{2}+\gamma^{2}\right] .
$$

Remark. From the above expression of $\left\langle R_{k} \xi, \xi\right\rangle$ as the sum of squares of rational functions it follows that $\left\langle R_{2} \xi, \xi\right\rangle=0$ if and only if $\alpha=\varepsilon=\theta=0$ and $\gamma=\delta^{2} /\left(1+\delta^{2}\right), \beta=-\delta /\left(1+\delta^{2}\right)$. Normalizing, this gives a curve of zeroes, parametrized by δ, through e_{24}.

8. Some zeroes of $\mathbf{R}_{\mathbf{2}}$

In this section it is our goal to find two curves of zeroes of R_{2} through the zero $\left(e_{12}+e_{15}\right) / \sqrt{2}$. We will begin by examining a subset Q of G and finding a polynomial expression for $\left\langle R_{2} \xi, \xi\right\rangle$ for $\xi \in Q$ where $\xi /\|\xi\| \in G$. Let

$$
\begin{gathered}
Q=\left\{\zeta \in \Lambda^{2} \mid \zeta=(1, \gamma, \alpha, \beta,-\gamma) \wedge(0,1+\theta, \delta, \varepsilon, 1-\theta)\right. \\
\alpha, \beta, \gamma, \delta, \varepsilon, \theta \in \mathbf{R}\}
\end{gathered}
$$

Remark. It can be shown that normalizing makes Q into a dense subset of G. However, for what follows we only need to know that it contains $e_{12}+e_{15}$, which is obvious. Let

$$
\begin{aligned}
\xi= & (1, \gamma, \alpha, \beta,-\gamma) \wedge(0,1+\theta, \delta, \varepsilon, 1-\theta) \\
= & (1+\theta) e_{12}+\delta e_{13}+\varepsilon e_{14}+(1-\theta) e_{15} \\
& +(-\alpha-\alpha \theta+\gamma \delta) e_{23}+(-\beta-\beta \theta+\gamma \varepsilon) e_{24} \\
& +2 \gamma e_{25}+(\alpha \varepsilon-\beta \delta) e_{34}+(\alpha-\alpha \theta+\gamma \delta) e_{35} \\
& +(\beta-\beta \theta+\gamma \varepsilon) e_{45}, \\
R_{k} \xi= & (2 \theta-\alpha \varepsilon+\beta \delta) e_{12}+(-2 \theta-\alpha \varepsilon+\beta \delta) e_{15} \\
& +(-2+\alpha \varepsilon-\beta \delta) e_{34}+k(-\alpha-\alpha \theta+\gamma \delta) e_{23} \\
& +k(2 \gamma) e_{25}+k(\beta-\beta \theta+\gamma \varepsilon) e_{45} \\
& +k \delta e_{13}+k \varepsilon e_{14}, \\
\left\langle R_{k} \xi, \xi\right\rangle= & 4 \theta^{2}-4(\alpha \varepsilon-\beta \delta)+(\alpha \varepsilon-\beta \delta)^{2} \\
& +k\left[(-\alpha-\alpha \theta+\gamma \delta)^{2}+(\beta-\beta \theta+\gamma \varepsilon)^{2}\right. \\
& \left.+\delta^{2}+\varepsilon^{2}+4 \gamma^{2}\right]=(*) .
\end{aligned}
$$

Set $\alpha=\gamma=\varepsilon=0$ and $k=2$. Then

$$
\left\langle R_{2} \xi, \xi\right\rangle=4 \theta^{2}+4 \beta \delta+\beta^{2} \delta^{2}+2 \beta^{2}(1-\theta)^{2}+2 \delta^{2}
$$

For fixed B set

$$
f(\theta, \delta)=4 \theta^{2}+4 \beta \delta+\beta^{2} \delta^{2}+2 \beta^{2}(1-\theta)^{2}+2 \delta^{2}
$$

Now $\sigma_{R_{2}} \geqslant 0 \Rightarrow\left\langle R_{2} \xi, \xi\right\rangle \geqslant 0 \Rightarrow f(\theta, \delta) \geqslant 0$. Thus a zero of f is a minimum of f. But, at a minimum of f,

$$
0=\frac{\partial f}{\partial \theta}=4\left(\beta^{2}+2\right) \theta-4 \beta^{2}, \quad 0=\frac{\partial f}{\partial \delta}=2\left(\beta^{2}+2\right) \delta+4 \beta
$$

Hence $\theta=\beta^{2} /\left(\beta^{2}+2\right)$ and $\delta=-2 \beta /\left(\beta^{2}+2\right)$. It is easily checked that for these values of θ and $\delta, f(\theta, \delta)=0$.

Thus $\left\langle R_{2} \xi, \xi\right\rangle=0$ if

$$
\begin{aligned}
\xi= & \left(1+\frac{\beta^{2}}{\beta^{2}+2}\right) e_{12}+\left(\frac{-2 \beta}{\beta^{2}+2}\right) e_{13}+\left(1-\frac{\beta^{2}}{\beta^{2}+2}\right) e_{15} \\
& +(-\beta)\left(1+\frac{\beta^{2}}{\beta^{2}+2}\right) e_{24}+\left(\frac{2 \beta^{2}}{\beta^{2}+2}\right) e_{34}+(\beta)\left(1-\frac{\beta^{2}}{\beta^{2}+2}\right) e_{45}
\end{aligned}
$$

Set

$$
\begin{aligned}
\xi^{1}=\left(\beta^{2}+2\right) \xi & =\left(2 \beta^{2}+2\right) e_{12}+(-2 \beta) e_{13}+2 e_{15} \\
+ & (-\beta)\left(2 \beta^{2}+2\right) e_{24}+\left(2 \beta^{2}\right) e_{34}+(2 \beta) e_{45}
\end{aligned}
$$

Then $\left\langle R_{2} \xi^{1}, \xi^{1}\right\rangle=0$. Thus $\beta \rightarrow \xi^{1}(\beta) /\left\|\xi^{1}(\beta)\right\|$ is a curve of zeroes through $\left(e_{12}+e_{15}\right) / \sqrt{2}$.

If in (*) we set $k=2$ and $\delta=\beta=\gamma=0$, we get $\left\langle R_{2} \xi, \xi\right\rangle=4 \theta^{2}-4 \alpha \varepsilon+$ $\alpha^{2} \varepsilon^{2}+2(\alpha+\alpha \theta)^{2}+\varepsilon^{2}$. Following an approach identical to that above gives

$$
\begin{aligned}
\xi^{2}= & 2 e_{12}+(2 \alpha) e_{14}+\left(2 \alpha^{2}+2\right) e_{15} \\
& -(2 \alpha) e_{23}+\left(2 \alpha^{2}\right) e_{34}+(\alpha)\left(2 \alpha^{2}+2\right) e_{35}
\end{aligned}
$$

It is easily checked that $\xi^{2} /\left\|\xi^{2}\right\|$ is decomposable and that $\sigma_{R_{2}}\left(\xi^{2} /\left\|\xi^{2}\right\|\right)=0$. Then $\alpha \rightarrow \xi^{2}(\alpha) /\left\|\xi^{2}(\alpha)\right\|$ is another curve of zeroes through $\left(e_{12}+e_{15}\right) / \sqrt{2}$.

9. The zero set of $\boldsymbol{R}_{\boldsymbol{k}}$

In this section we prove Claims 6.1 and 6.2 , and for each $k>2$ we explicitly describe the zero set of R_{k}. Until further notice we set $k=2$. Consider the following vectors.

$$
\begin{aligned}
& \alpha_{1}=\xi^{1}(1)=4 e_{12}-2 e_{13}+2 e_{15}-4 e_{24}+2 e_{34}+2 e_{45}, \\
& \alpha_{2}=\xi^{1}(-1)=4 e_{12}+2 e_{13}+2 e_{15}+4 e_{24}+2 e_{34}-2 e_{45}, \\
& \alpha_{3}=\xi^{2}(1)=2 e_{12}+2 e_{14}+4 e_{15}-2 e_{23}+2 e_{34}+4 e_{35}, \\
& \alpha_{4}=\xi^{2}(-1)=2 e_{12}-2 e_{14}+4 e_{15}+2 e_{23}+2 e_{34}-4 e_{35}, \\
& \alpha_{5}=-12 e_{12}-12 e_{15} .
\end{aligned}
$$

It is clear from the above construction of ξ^{1} and ξ^{2} that $\left\langle R_{2} \alpha_{i}, \alpha_{i}\right\rangle=0$, $i=1, \cdots, 5$, and thus $\beta_{i}=\alpha_{i} /\left\|\alpha_{i}\right\| \in Z\left(R_{2}\right)$ for $i=1, \cdots, 5$. Let $\beta=$ $\sum_{i=1}^{5} \alpha_{i}$. It is easily checked that $\beta=8 e_{34}$ and so $\beta / 8 \in G$. Now $\left\langle R_{2} \beta / 8, \beta / 8\right\rangle=\left\langle e_{34}-e_{12}-e_{15}, e_{34}\right\rangle=1$.

We have found five zeros of R_{2} whose linear span contains a 2-plane in G with nonzero sectional curvature. Let $L_{2}=\pi\left(R_{2}\right)$. (To verify Claim 6.1 we need an example which satisfies the Bianchi identity.) Now by the remark at the end of $\S 3, \sigma_{L_{2}}=\sigma_{R_{2}}$, and so Claim 6.1 of $\S 6$ is verified.

Claim 6.2 is now easily verified. If there existed $S \in \Lambda^{4}$ such that $L_{2}+S$ were positive semi-definite, then each $x \in Z\left(L_{2}\right)$ would be a minimum of $\left\langle\left(L_{2}+S\right) \xi, \xi\right\rangle$ on the unit sphere in Λ^{2}, and so would be an eigenvector of $L_{2}+S$ with zero eigenvalue. It would then follow that $Z\left(L_{2}\right)$ was the intersection with G of a linear subspace of Λ^{2}, namely the null space of $L_{2}+S$. However, we have shown that this is not the case.

Lemma 9.1. If
$Q=\left\{P \in G \left\lvert\, P=\frac{(\alpha, 1, \beta, 0, \gamma) \wedge(\delta, 0, \varepsilon, 1, \theta)}{\|(\alpha, 1, \beta, 0, \gamma) \wedge(\delta, 0, \varepsilon, 1, \theta)\|}\right.: \alpha, \beta, \gamma, \delta, \varepsilon, \theta \in \mathbf{R}\right\}$,
then

$$
\begin{gathered}
G-Q=\{P \in G \mid P=(\alpha, 0, \beta, 0, \gamma) \wedge(\delta, \mu, \varepsilon, \eta, \theta) \\
\alpha, \beta, \gamma, \delta, \mu, \varepsilon, \eta, \theta \in \mathbf{R}\}
\end{gathered}
$$

Proof. Replacing $e_{1} \wedge e_{2}$ by $e_{2} \wedge e_{4}$ in Lemma 5.2 shows that $G-Q=$ $\left\{P \in G \mid\left\langle P, e_{2} \wedge e_{4}\right\rangle=0\right\}$. Since

$$
0=\left\langle P, e_{2} \wedge e_{4}\right\rangle=-\left\langle P, *\left(e_{1} \wedge e_{3} \wedge e_{5}\right)\right\rangle \Rightarrow P \wedge e_{1} \wedge e_{3} \wedge e_{5}=0
$$

considering P as a 2-dimensional subspace of V and $e_{1} \wedge e_{3} \wedge e_{5}$ as a 3-dimensional subspace of V, we see that $P \cap\left(e_{1} \wedge e_{3} \wedge e_{5}\right) \neq(0)$, and so there exists $v \in P$ such that $|v|=1$ and $v=(\alpha, 0, \beta, 0, \gamma)$. Choosing $w \in P$ such that $|w|=1$ and $\langle w, v\rangle=0$ we have that

$$
P=v \wedge w=(\alpha, 0, \beta, 0, \gamma) \wedge(\delta, \mu, \varepsilon, \eta, \theta) ; \alpha, \beta, \gamma, \delta, \mu, \varepsilon, \eta, \theta \in \mathbf{R}
$$

Next we analyze the sectional curvature of $R_{k}(k \geqslant 2)$ on $G-Q$. Our goal being to explicitly describe $Z\left(R_{k}\right)(k>2)$ we can desregard the normalization factor.

Let

$$
\begin{aligned}
\xi= & (\alpha, 0, \beta, 0, \gamma) \wedge(\delta, \mu, \varepsilon, \eta, \theta) \\
= & \alpha \mu e_{12}+(\alpha \varepsilon-\beta \delta) e_{13}+\alpha \eta e_{14}+(\alpha \theta-\gamma \delta) e_{15} \\
& -\beta \mu e_{23}-\gamma \mu e_{25}+\beta \eta e_{34}+(\beta \theta-\gamma \varepsilon) e_{35}-\gamma \eta e_{45} \\
R_{k} \xi= & (\alpha \mu-\alpha \theta+\gamma \delta-\beta \eta) e_{12}+(\alpha \theta-\gamma \delta-\alpha \mu-\beta \eta) e_{15} \\
& +(\beta \eta-\alpha \theta+\gamma \delta-\alpha \mu) e_{34} \\
& +k\left[(\alpha \varepsilon-\beta \delta) e_{13}+\alpha \eta e_{14}-\beta \mu e_{23}-\gamma \mu e_{25}-\gamma \eta e_{45}\right] \\
\left\langle R_{k} \xi, \xi\right\rangle= & \alpha^{2} \mu^{2}-2 \alpha^{2} \mu \theta+2 \alpha \mu \gamma \delta-2 \alpha \mu \beta \eta \\
& +(\alpha \theta-\gamma \delta)^{2}-2 \alpha \theta \beta \eta+2 \gamma \delta \beta \eta+\beta^{2} \eta^{2} \\
& +k\left[(\alpha \varepsilon-\beta \delta)^{2}+\alpha^{2} \eta^{2}+\beta^{2} \mu^{2}+\gamma^{2} \mu^{2}+\gamma^{2} \eta^{2}\right]=(*) .
\end{aligned}
$$

For $k \geqslant 2$ we will write (*) as the sum of squares of polynomial functions.
Theorem 9.2. For $k \geqslant 2$ and $\xi \in G-Q$,

$$
\begin{aligned}
\left\langle R_{k} \xi, \xi\right\rangle= & (-\beta \eta+\alpha \theta-\gamma \delta-\alpha \mu)^{2}+2(\beta \mu-\alpha \eta)^{2} \\
& +k\left[(\alpha \varepsilon-\beta \delta)^{2}+\gamma^{2} \mu^{2}+\gamma^{2} \eta^{2}\right]+(k-2)\left(\alpha^{2} \eta^{2}+\beta^{2} \mu^{2}\right)
\end{aligned}
$$

Theorem 9.3. For $k>2, Z\left(R_{k}\right)=\left\{ \pm\left(e_{12}+e_{15}\right) / \sqrt{2}, \pm e_{24}, \pm e_{35}\right\}$.
Proof. For $k>2$ Theorem 7.1 implies that the only zeroes of R_{k} in Q are $\pm e_{24}$. For $k>2$ and $\xi \in G-Q$, an analysis of the polynomial expression
for $\left\langle R_{k} \xi, \xi\right\rangle$ given by Theorem 9.2 shows that $\left\langle R_{k} \xi, \xi\right\rangle=0$ only if $\alpha^{2} \eta^{2}+$ $\beta^{2} \mu^{2}=0$. It is easily checked that this happens only when $\xi= \pm e_{35}$ or $\xi= \pm\left(e_{12}+e_{15} / \sqrt{2}\right)$.

Proposition 9.4. For $k \geqslant 2, L_{k}$ is not the projection under π of a positive semi-definite operator on Λ^{2}.

Proof. Suppose it is. Then for some $S \in \Lambda^{4}, R_{k}+S$ is a positive semidefinite operator on Λ^{2}. Let $\alpha=e_{12}+e_{15}+e_{34}$. Then $R_{k} \alpha=-\alpha$ and $\left\langle R_{k} \alpha, \alpha\right\rangle=-3$. Thus $\left\langle\left(R_{k}+s\right) \alpha, \alpha\right\rangle \geqslant 0$ implies that $\langle S \alpha, \alpha\rangle \geqslant 3$. Now since $S \in \Lambda^{4}$, it follows from Proposition 3.1 that

$$
S=\sum_{1<i<j<k<l<5} \lambda_{i j k l} S_{i j k l}, \quad \lambda_{i j k l} \in \mathbf{R}
$$

Thus $\langle S \alpha, \alpha\rangle=2 \lambda_{1234}+2 \lambda_{1345}$, and since $\langle S \alpha, \alpha\rangle \geqslant 3$ it follows that λ_{1234} $+\lambda_{1345} \geqslant 3 / 2$.
Letting $w_{1}=e_{13}+k e_{24}$ and $w_{2}=e_{14}+k e_{35}$ we get $\left\langle\left(R_{k}+S\right) w_{1}, w_{1}\right\rangle=-$ $k \lambda_{1234}$ and $\left\langle\left(R_{k}+S\right) w_{2}, w_{2}\right\rangle=-k \lambda_{1345}$. But this together with $\lambda_{1234}+\lambda_{1345}$ $\geqslant 3 / 2$ implies that $\left\langle\left(R_{k}+S\right) w_{1}, w_{2}\right\rangle<0$ or $\left\langle\left(R_{k}+S\right) w_{2}, w_{2}\right\rangle<0$, thus contradicting the assumption that $R_{k}+S$ is positive semi-definite.

Theorem 9.5. There exist curvature operators which satisfy the Bianchi identity, have nonnegative sectional curvature, and each of whose zero sets is the intersection with G of a linear subspace of Λ^{2}, but which are not the projection under π of a positive semi-definite operator on Λ^{2}.

Proof. We claim that for $k>2$, each curvature operator L_{k} is of this type. It follows by Theorem 9.4 that L_{k} is not the projection of a positive semi-definite operator, and by Theorem 7.1 that $\sigma_{L_{k}} \geqslant 0$. By Theorem 9.3, for $k>2$ we see that

$$
Z\left(L_{k}\right)=\left\{ \pm\left(e_{12}+e_{15}\right) / \sqrt{2}, \pm e_{24}, \pm e_{35}\right\}
$$

To complete the proof we verify that (for $k>2$) $Z\left(L_{k}\right)=\operatorname{span} Z\left(L_{k}\right) \cap G$.
That $Z\left(L_{k}\right) \subset \operatorname{span} Z\left(L_{k}\right) \cap G$ is clear. If $\xi \in \operatorname{span} Z\left(L_{k}\right)$, then

$$
\xi=a\left(e_{12}+e_{15}\right) / \sqrt{2}+b e_{24}+c e_{35}, \quad a, b, c, \in \mathbf{R} .
$$

By Corollary 3.3, the following are equivalent:
(1) ξ is decomposable.
(2) $0=\xi \wedge \xi$

$$
\begin{aligned}
= & {\left[\frac{a}{\sqrt{2}}\left(e_{12}+e_{15}\right)+b e_{24}+c e_{35}\right] \wedge\left[\frac{a}{\sqrt{2}}\left(e_{12}+e_{15}\right)+b e_{24}+c e_{35}\right] } \\
= & \frac{2 a c}{\sqrt{2}} e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{5}+\frac{2 a b}{\sqrt{2}} e_{1} \wedge e_{2} \wedge e_{4} \wedge e_{5} \\
& +2 b c e_{2} \wedge e_{4} \wedge e_{3} \wedge e_{5} .
\end{aligned}
$$

(3) $a b=a c=b c=0 \Rightarrow a=b=0$ or $b=c=0$ or $a=c=0$.
(4) $\xi= \pm e_{35}$ or $\xi= \pm\left(e_{12}+e_{15}\right) / \sqrt{2}$ or $\xi= \pm e_{24}$.

Theorem 9.6. If dimension $V=n \geqslant 5$, then there exist curvature operators L_{k}^{n} which satisfy the Bianchi identity and have the following properties:

1. For $k \geqslant 2, \sigma_{L_{k}}^{n} \geqslant 0$.
2. For $k=2, Z\left(L_{k}^{n}\right)$ is not the intersection with G of a linear subspace of Λ^{2}.
3. For $k \geqslant 2, L_{k}^{n}$ is not the projection under π of a positive semi-definite operator on Λ^{2}.

Proof. For $n \geqslant 5$ let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis for V, and let $W=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$. Since $W \subset V, \Lambda^{2}(W) \subset \Lambda^{2}(V)$. We define the linear map $\pi_{1}: \Lambda^{2}(V) \rightarrow \Lambda^{2}(W)$ by

$$
\pi_{1}(\xi)=\sum_{1<i<j<5} a_{i j} e_{i j}
$$

for $\xi=\Sigma_{1 \leqslant i<j \leqslant n} a_{i j} e_{i j} \in \Lambda^{2}(V)$. Note that if ξ is decomposable, then $\pi_{1}(\xi)$ is decomposable.

For k a real number and dimension $V=n \geqslant 5$, consider the following example: Let $R_{k}^{n}: \Lambda^{2}(V) \rightarrow \Lambda^{2}(V)$ be defined by

$$
\begin{aligned}
R_{k}^{n} e_{12} & =e_{12}-e_{15}-e_{34}, \\
R_{k}^{n} e_{15} & =e_{15}-e_{12}-e_{34}, \\
R_{k}^{n} e_{34} & =e_{34}-e_{12}-e_{15}, \\
R_{k}^{n} e_{24} & =R_{k}^{n} e_{35}=0, \\
R_{k}^{n} e_{i j} & =k e_{i j} \quad \text { for remaining } e_{i j} .
\end{aligned}
$$

Note that for $k>0,\left\langle R_{k}^{n} \xi, \xi\right\rangle \geqslant\left\langle R_{k} \pi_{1}(\xi), R_{k} \pi_{1}(\xi)\right\rangle$ for all $\xi \in \Lambda^{2}(V)$.
Let $L_{k}^{n}=\pi\left(R_{k}^{n}\right)$. Then L_{k}^{n} satisfies the Bianchi identity, and for $k \geqslant 2$

$$
\sigma_{L_{k}^{n}}(\xi)=\sigma_{R_{k}^{n}}(\xi)=\left\langle R_{k}^{n} \xi, \xi\right\rangle \geqslant\left\langle R_{k} \pi_{1}(\xi), R_{k} \pi_{1}(\xi)\right\rangle \geqslant 0 .
$$

Thus L_{k}^{n} has Property 1.
To see that L_{k}^{n} has Property 2 , lt $\beta_{i}(i=1, \cdots, 5)$ and β be defined as above. Taking advantage of the natural inclusion of $\Lambda^{2}(W)$ in $\Lambda^{2}(V)$ we can consider β and β_{i} as elements of $\Lambda^{2}(V)$. Then

$$
\begin{aligned}
\sigma_{L_{2}^{n}}\left(\beta_{i}\right) & =\sigma_{R_{2}^{n}}\left(\beta_{i}\right)=\sigma_{R_{2}}\left(\beta_{i}\right)=0, \\
\sigma_{L_{2}^{n}}(\beta / 8) & =\sigma_{R_{2}^{n}}(\beta / 8)=\sigma_{R_{2}}(\beta / 8)=1 .
\end{aligned}
$$

Thus we have found five zeroes of L_{2}^{n} whose linear span contains a 2-plane in G with nonzero sectional curvature, and so $Z\left(L_{2}^{n}\right)$ is not the intersection with G of a linear subspace of $\Lambda^{2}(V)$.

Following an approach similar to that in the proof of Proposition 9.4 one can show that L_{k}^{n} has Property 3.

References

[1] I. M. Singer \& J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, Global analysis, Papers in Honor of K. Kodaira, Princeton University Press, Princeton, 1969, 355-365.
[2] J. A. Thorpe, On the curvature tensor of a positively curved 4-manifold, Proc. 13th Biennial Sem. Canad. Math. Congress, Vol. 2, 1971, 156-159.
[3] ___ The zeroes of nonnegative curvature operators, J. Differential Geometry 5 (1971) 113-125.
[4] , Curvature and the Petrov canonical forms, J. Math. Phys. 10 (1969) 1-7.
[5] F. W. Warner, Foundations of differentiable manifold and Lie groups, Scott, Foresman and Co., Glenview, IL, 1971.

[^0]: Communicated by J. Simons, May 13, 1977. This work was a partial fulfillment of the requirements for the degree of doctor of philosophy at the State University of New York at Stony Brook.

