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NONNEGATIVE CURVATURE OPERATORS:
SOME NONTRIVIAL EXAMPLES

STANLEY M. ZOLTEK

1. Introduction

The object of this paper is to study the pointwise behavior of the Rieman-
nian sectional curvature function.

More specifically, the Riemannian sectional curvature of a Riemannian
manifold M is a real valued function o on the Grassmann bundle of tangent
2-planes of M. Although there exist many theorems relating the curvature of
M to various topological and geometric properties of M, there is little known
of a general nature about the behavior of o itself. In fact the critical point
behavior of o has been analyzed only in very special cases [1], [4].

Let G denote the Grassmann manifold of oriented tangent 2-planes at
m € M. G can be made, in a natural way, a submanifold of the vector space
A? of 2-vectors at m. Furthermore, since G is a 2-fold covering space of the
manifold of (unoriented) 2-planes at m, we may regard ¢ as a function on G.
We will be interested in the description of the minimum and maximum sets of
o and in the question of characterizing positive sectional curvature in terms of
the curvature tensor.

Since we are interested in the pointwise behavior of o, we shall work in the
setting of an arbitrary inner product space V. G is then the Grassmann
manifold of oriented 2-planes in V. A curvature operator R is a self-adjoint
linear transformation of A%(V) (e.g., the curvature tensor R of a Riemannian
manifold M acting on A%(M,,), where M,, is the tangent space to M at m).
For a curvature operator R, its sectional curvature oz: G — R is given by
ox(P) = (RP, P) for Pin G.

For dimension V < 4, Thorpe has shown [3] that the minimum and
maximum sets of og are intersections with G of linear subspaces of AX(V),
and he has given [2] a simple characterization of positive sectional curvature
in terms of the curvature tensor. In fact, Thorpe [3] claimed that this
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description of the minimum and maximum sets of o, was true for all
dimensions.

In what follows, we shall show that these results do not hold for higher
dimensions. More specifically, for dimension ¥ > 5 we exhibit a family of
curvature operators with nonnegative sectional curvature each of whose
members does not conform to the characterization suggested by Thorpe’s
result [2] for lower dimensions. Furthermore, it is shown that one member of
this family has a zero set which is not the intersection with G of a linear
subspace of A%(V) and so contradicts Thorpe’s result in [3].

The author thanks Professor John Thorpe for acting as his thesis advisor
during this work.

2. Preliminaries

Let V be an n-dimensional real vector space with inner product {, >, and
for v € V set |[v| = Vv, v) . For p an integer, 1 < p < n, by A?(V) or A?
we mean the space of p-vectors of V. If {e,,- - - , e,} is a basis for ¥, then
{e, N\ - Neliy <-4} is a basis for A?, and it follows that A? has
dimension (7). A p-vector w is said to be decomposable if w = v; A - - - Ay,
where v, - - -, v, € V. Hence A” has a basis of decomposable vectors. Thus
when defining an inner product on A? it suffices to specify its values on
decomposable p-vectors. We set {uy A\ - Ath, 0, A - A\ =
det[<w;, v;>] where u, v; € V. For £ € A> we set ||£| =V (& &) . It follows
that if {e,,- - -, e,} is an orthonormal basis for V, then {e A - - - /\e,.’lil
< -+ <1} is an orthonormal basis for A?. Let G denote the Grassmann
manifold of oriented 2-dimensional subspaces of V; we identify G with the
submanifold of A? consisting of decomposable 2-vectors of length 1 by
p — u /\ v where {u, v} is any oriented orthonormal basis for P.

Let V be an n-dimensional real inner product space. A curvature operator
R is a self-adjoint linear transformation of A%(V). The space R of all
curvature operators has dimension [(3)* + (3)]/2 and inner product given by
(R, T) =trace R o T where R, T € A. Given R € @ its sectional curva-
ture is the function 6z: G — R defined by oix(P) = (Rp, P), P € G. We
define the zero set of R by Z(R) = {P € G|ogz(P) = 0}.

Let {e),- - -, e,} be an oriented orthonormal basis for V. We define the
star operator

*: AP 5 A"P
by
(ra, By =Ca N B,ey A\ Nep,
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where a € A? and B € A"7?. It is easily checked that this definition is
independent of the choice of oriented orthonormal basis for V. It is also
easily checked that *2 = (1)~ (identity) and so # is nonsingular (see [5]).
If dimension ¥ = 4 and p = 2, then +: A2 > A% and sincea A 8= B A a
for a, B € A2 it follows that * is symmetric.
By R we denote the set of all real numbers.

3. The Bianchi identity and the Grassmann quadratic 2-relations

In this section we examine the space & complementary in R to the
subspace B = {R € R |R satisfies the Bianchi identity}. We recall that S is
naturally isomorphic to A% and we exhibit the relationship between S and
the Grassmann quadratic 2-relations which are necessary and sufficient
conditions for decomposability of elements in A2 These results are well-
known and detailed proofs can be found in [3].

Given R € R we associate a 2-form on ¥V with values in the vector space
of skew symmetric endomorphisms of ¥ by

{R(u, v)(w), x) =<Ru AN o,w A x), u,o,w,x €V.
It is easily checked that this “association” is a vector space isomorphism.

Using this identification we define the Bianchi map b: R — ®. Given
R € R we set

[6(R)](u, v)(w) = R(u, v)(w) + R(v, w)(u) + R(w, u)(v).
It is easily checked that b is a linear map, and so its kernel is a linear
subspace of & which we will denote by B .

Let S = %, the orthogonal compliment of % in R.. For each ¢ € A* we
associate S, € R by (S,a, 8> = (e, a A B), where a, 8 € A%

Proposition 3.1. The map € — S, is an isomorphism of A* onto S . In fact
e— S,/ V6 is an isometry.

Proposition 3.2. Let {e,,- - - ,e,} be an orthonormal basis for V. For
1<i<j<n, set Sy, = S,nonene @ € A? is decomposable if and only if
(S, a) =0,1 <i<j<k<I<n

Corollary 3.3. a € A?is decomposable if and only if a \ a = 0.

Proof. Let{e,,- - -, e,} be an orthonormal basis for V. Then

a= X ae/Ne;,

1<i<j<n

aNa=2 > (a;a, — aya; + ailajk)ei NegNe/N\e
1<i<j<k<iI<n

= > (S ay =0,
1<i<j<k<I<n
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and so by Proposition 3.2 if and only if a is decomposable.

Remark 1. The conditions {(Sy,a,a)> =0, 1 <i<j<k<I<n, are
known as the Grassmann quadratic 2-relations.

Remark 2. In view of Proposition 3.2 it is clear that each curvature
operator S € $ has sectional curvature o identically zero. Conversely, it is
easily checked that this property characterizes S .

4. Two results of Thorpe

In this section we restrict ourselves to the case where dimension ¥V = 4, and
state the two results of Thorpe which form the main concern of this paper.

Let R*{R € R: (RX,X) >0VX € A’} and B* = (R € B: oy >
0}. By definition of S and %, R = B ® S, where ® means orthogonal
direct sum. We define 7 as orthogonal projection from R into %. Since
Og = Op,s = Op, it follows that #(R*) C B*, and so we can consider 7 as a
map of R* into B*.

Theorem 4.1. If dimension V = 4, then the map

m R > BT
is onto.

Theorem 4.2. Let dimension V =4, and suppose R € R is such that
or > 0and Z(R) # . Then there exists a unique S € & such that Z(R) = G
N kernel(R + S).

Proofs of these theorems appear in [2] and [3] respectively.

Corollary 4.3. Let dimension V =4 and R € R, and let \ denote the
minimum (or maximum) value of og. Then there exists a unique S € & such
that {P € G|og(P) =A} = G Nnker(R — Al — §).

Proof. This corollary follows from Theorem 4.2 by replacing R in that
theorem by R — AI (or, when A is the maximum value of oz, by Al — R).

5. Dense subsets of G
In this section dimension V' = 5. We describe a collection of dense subsets
of the Grassmann manifold G of oriented two-dimensional subspaces of V.
Specifically, given P € G, we construct a dense subset of G which contains
P. In the following sections this tool will greatly simplify our calculations.

Theorem 5.1. Given P € G, let {e,, - - - , es} be an orthonormal basis of V
such that P = e N\ e, If for x,,- -+, x5 ER we set (x,, X3, X3, X4 X5) =
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3.1 x;e,, then

0= [ (1,0, x3, x4 x5) A (0, 1, y3, y4 ¥5)
I(1, 0, x5, x4, x5) A (0, 1, 33,74 ¥s5)ll
is a dense subset of G which contains P.
To prove Theorem 5.1 we will need the following lemma.
Lemma52. G- Q= {P € GKP,e; \ e,y =0}.
Proof. (Using the notation of Theorem 5.1.)

D X3, X4y X5, V3, Vgr Vs € R }

(x5 X3, X35 X4s X5) A\ (V15 Y25 Y3 Yar ¥5)

PeG=>P= .
1(x1s X35 X35 X4 X5) A\ (P15 Y2 Y3 Yoo Y
Now if
X1Y2 — X3y
Poe, N\eyy = #* 0,
< ! 2 ”(x’l’ x29 X3, x4’ xS) /\ (yl’ y2’ y3’ )’4, ys)”

where for i =2, - -, 5 we abusively denote x;/x, by x;. Replacing y, by
Yi — %y, we get
— (1, x5, X3, X4 X5) N\ (0, Y2, V3 Y ¥'5)

”(1, x29 x3’ x47 xS) /\ (0’ yz,J’3,)’4»)’s)|| ’

then either x, #+ 0 or y, # 0. We can assume x, 7 0 (by interchanging x’s
and y’s if necessary). Dividing each x; by x, we get

P

_ (1, x, x3, X X5) N\ (V1 Y2 Y3 Yo ¥'s)

P = s
(1, x5 X3, X4 X5) A\ (P15 Y2 V3 Vao o)l

where fori = 2, - - -, 5 we abusively denote y; — x;y, by y;. Since 0 # (P, ¢,
/\ €,) = y, (the new y,) we can divide each y; by y, to get

_ (1, x5, X3, X4 x5) A\ (O, L, Y3 Ve s)

P = s
(1, X2, X3, X4 X5) A (0, 1, ¥3, 74 ¥5)l

where for i = 2, - - + , 5 we abusively denote y,/y, by y,. Finally by replacing
x; by x; — y;x, we get
_ (1, O; X3, X4, xs) /\ (0; 1: y3’ }’4’ yS)
”(l’ O, X3, X4 XS) /\ (0’ 1’ y3’y4’ yS)" ’

where for i = 3, 4, 5 we abusively denote x; — y;x, by x;. Hence we have
shown G — Q C {P € GKP, e; \ ;) = 0}.
It is clear thatif P € Q@ = (P, e; )\ ;) # 0, and so

{P € GKP,ey,\N ey =0} C G- Q.
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Proof of Theorem 5.1. Lemma 5.2 shows that the complement of Q in G is
G — Q= {P € G|{P,e; \ e,) = 0}. Since the function P — (P, e, A\ e,)
is a smooth function on G, it follows by the implicit function theorem that
G — Q has codimension one in G, and therefore Q is dense in G.

6. The curvature operator R,

In this section we discuss the possibility of extending Theorems 4.1 and 4.2
to the case dimension V' > 5.

Two claims are made and an example is presented. It will be the analysis of
this example which occupies most of the remaining sections and results in a
verification of these claims.

Claim 6.1. When the dimension V > 5, the zero set of a curvature operator
with nonnegative sectional curvature need not be the intersection with G of a
linear subspace of A2

Claim 6.2. The map , defined in §4, need not be onto. Indeed for dimension
V > 5, there exist curvature operators with nonnegative sectional curvature
which cannot be made positive semi-definite by adding an element of A*.

Until further notice, dimension ¥V = 5. Let {e,, - - - , es} be an orthonor-
mal basis for ¥, and k a real number. Set ¢; = ¢; /\ ¢; and consider the
following example.

Let R,: A> > A? be defined by

Rie; = e, — €5 — ey, Ryeyy= Rieys =0, Rieyy = kep,
Ries=es— e — €3, Riey = key, Rie,s = keys,
Riesy= €33 — €y — €15, Ryewy = keyy, Ryeqs = keys.

It is easily checked that R, is self-adjoint. Let a = e, + €;5 + €3, Then
Ra = —a.

In the next section it will be shown that R, has nonnegative sectional
curvature.

7. The sectional curvature of R,

In this section we will analyze sectional curvature on a dense subset of G
containing the zero e,, of R,. The sectional curvature of R, will be shown to
be nonnegative on this subset and so on all of G.

By Theorem 5.1

0= { (0, 1,B,0,Y) A(5,0,¢1,8)
(e, 1, B, 0, Y) A8, 0, 1,0)| °

is a dense subset of G containing e,,.

a,ﬁ,‘)’,s 8,0€R}
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Let { be a typical element of Q. Since our goal is to show o, > 0, we can
disregard the normalization factor. Let £ = ||{||{. Then
§=[ae; + e, + PBey + ves] /\[de; + ee; + e, + fes)
= —0e); + (ac — Bd)e;; + aeyy + (af — y8)eys
+ Bey, + eey3 + Oeys + €34 + (BI — Ye)e3s — veys,
RéE=(-6—af + y0— Bley + (6 + af — v8 — Bes
+ (80— ab + v6 + B)ey, ,
+k[(ae — Bd)ej; + aeq + eey; + Beys — veus ],
(RE £ = (8 + B)* — 2y82 + 2600 — 2008

+2By8 — 2a0y8 + vy + a%9?
+k[(ae — B8)’ + a® + &2 + 0% + ¥*] = (»).

For k > 2, we will write (*) as the sum of squares of rational functions and
hence conclude it is nonnegative.
Theorem 7.1.

2
R ® = (1 + sz)[(H Sk o) (5, 0o e a0)2]

1+ 82 1+ 82
2 2 202 2
+2(a+08) + 2¢ +2(a+£)8 + 26
1+ 6?2 1+ 62 1+ 82 1+ 82
+ (ae — B8 — v)* + (k — 2)[ (o — B8)’ + a® + 2 + 02 + y2].

Proof. Expand the right-hand side and simplify to obtain (). It suffices to
check this for k = 2 since

(R &) = (Ryt, &) + (k — 2)[(ae — B8)’ + a® + €2 + 02 + y2].
Remark. From the above expression of {R.§, £) as the sum of squares of
rational functions it follows that (R, §) =0 if andonly if a =e =80 =0

and y = 8§%2/(1 + 8%, B = -8/(1 + 8?). Normalizing, this gives a curve of
zeroes, parametrized by 8, through e,,.

8. Some zeroes of R,

In this section it is our goal to find two curves of zeroes of R, through the
zero (e, + e;5)/ V2 . We will begin by examining a subset Q of G and
finding a polynomial expression for (R, £) for £ € Q where £/||£|| € G. Let

O0={teA=(01v,aB -Y)AN@O,1+0,5¢1-20);
a,B,Y,8,6,0 ER}.
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Remark. It can be shown that normalizing makes Q into a dense subset of
G. However, for what follows we only need to know that it contains e,, + e;s,
which is obvious. Let

E=(v,0,8,Y)ANO,1+8,8,¢1—80)
= (14 0)e, + de;; + ey + (1 — B)eys
+ (—a — af + y8)ey, + (-B — BO + ve)ey,
+2veys + (ae — B8)ey, + (a — af + yb)ess
+ (B — BI + ve)eys,
R = (20 — ae + Bd)e;, + (-20 — ac + Bd)e;s

+ (-2 + ae — B8)eyy + k(—a — af + yd)ey
+k(2y)eys + k(B — B8 + ve)eys

_ + kbe,; + keeyy,

(RE, &) = 407 — 4(ae — BB) + (aec — B8)’
+k[(-a — af + v8)* + (B — BO + ve)®
+82 + &% + 4y = (»).

Seta = y=¢=0and k = 2. Then

(Rt &) = 402 + 485 + B2 + 2B%(1 — 6)* + 282
For fixed B set
18, 8) = 40% + 485 + B%2 + 2B%(1 — 0)* + 252
Now oz, > 0= <Ry, §) > 0= f(0, §) > 0. Thus a zero of f is a minimum of

f. But, at a minimum of f,

_y_ _ - _
0= =5 =4(B +2)0 — 487, 25 = 2B +2)8 + 4B.

Hence § = B2/(B% + 2) and 8 = -28/(B2 + 2). It is easily checked that for
these values of # and 8, f(0, 8§) = 0.
Thus (R, &) = 0 if

2 _ 2
= (l ¥ B_’BTZ)"” * ( B’zfz)e" * (1 - Bzﬂ+ 2)e”

2 2 2
+ (‘B)(l + zf_+—2)e24 + ('33[: 2)934 + (B)(l - .32'8"' 2)945-
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Set
¢ = (B*+2)t= (2B + 2)e), + (-2B)ey3 + 2¢s
+ (=B)(2B? + 2)eys + (2B%)ess + (2B)eys.
Then (R,¢', ¢'> = 0. Thus B — £'(B)/|1£'(B)]| is a curve of zeroes through
(e + €15)/ V2.
Ifin (s) wesetk =2and 8 = B =y =0, we get (R,¢, §) =402 — dae +
a%? + 2(a + af)? + &2 Following an approach identical to that above gives
£2=2e, + (2a)ey, + 2a% + 2)e;s
—(2a)ey + (2a¥)ey, + (a)(2a? + 2)ess.
It is easily checked that £2/||£?|| is decomposable and that o, (£2/]16%|]) = 0.
Then « — £%(a)/||£%(@)|| is another curve of zeroes through (e;, + e;5)/ V2 .

9. The zero set of R,

In this section we prove Claims 6.1 and 6.2, and for each k > 2 we
explicitly describe the zero set of R,. Until further notice we set k = 2.
Consider the following vectors.

ay = £1(1) = de, — 2e5 + 2e5 — dey, + 2y, + 2e,4,
a, = £1(=1) = de;, + 2e;5 + 2e,5 + dey, + 2ey, — 2e4s,
az = £3(1) = 2ep, + 2y, + des — 2ey + 2e5, + ey,
a, = £X(-1) = 2e,, — 2e,, + 4es + 2e53 + 2e5, — 4eys,
as = —12e;, — 12e;s.

It is clear from the above construction of ' and £? that (R,a, ;> =0,
i=1,---,5 and thus B, = o;/||eg)| € Z(R) for i=1,---,5. Let B =
3.1 9. It is easily checked that B = 8e;, and so B/8 € G. Now
CRyB/8, B/8) = ez — €3 — €15, €300 = 1.

We have found five zeros of R, whose linear span contains a 2-plane in G
with nonzero sectional curvature. Let L, = w(R,). (To verify Claim 6.1 we
need an example which satisfies the Bianchi identity.) Now by the remark at
the end of §3, 0y, = Og, and so Claim 6.1 of §6 is verified.

Claim 6.2 is now easily verified. If there existed S € A* such that L, + §
were positive semi-definite, then each x € Z(L,) would be a minimum of
Ly + S)& &) on the unit sphere in A% and so would be an eigenvector of
L, + S with zero eigenvalue. It would then follow that Z(L,) was the
intersection with G of a linear subspace of A2 namely the null space of
L, + S. However, we have shown that this is not the case.
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Lemma 9.1, If

(a’ 1, ,B, 0, Y) AN (8, 0,¢ 1, 0)
={P eEG|P= :
0= {reor = AT T

a,fB,v,0,¢e,0 € R},
then
G-Q=(PEG|IP=(a,0,8,0,7) A(8 p &, 0);
a,B,v,0,p¢em,0 ER}.

Proof. Replacing e; A e, by e, A\ ¢, in Lemma 5.2 shows that G — Q =

{P € G|{P, e, \ e,) = 0}. Since
0=C(P,e; Neyp=—<P,*(e;Nes/\es))=>P/NeNesN\es=0,

considering P as a 2-dimensional subspace of ¥V and e, Ae;A\es as a
3-dimensional subspace of V, we see that P N (e; A\ e3 A es) # (0), and so

there exists v € P such that |[v| =1 and v = (a, 0, 8, 0, y). Choosing w € P
such that |w| = 1 and {w, v) = 0 we have that

P=oAw=(a,0,8,0,Y) A(S, p,&,1,8);a,8,v,6 p,¢emn, 60 ER.
Next we analyze the sectional curvature of R, (k > 2) on G — Q. Our goal
being to explicitly describe Z(R,)(k > 2) we can desregard the normalization
factor.
Let
£= (a’ 0, B’ 0, Y) N (8’ K, € 7, 0)

= ape;, + (ae — Bd)e); + ameyy + (af — Y8)e;s
—Bueys — Yueys + Presy + (PO — ye)ess — meys,
R = (ap— af + v5 — Bn)e, + (af — ¥8 — ap — Bn)eys
+ (Bn — af + v — ap)ey,
+k[(ae — Bd)e,; + ameyy — Buey; — Ypeys — Y’)€45],
(R, &) = au? — 2a%uf + 2apyd — 2apBn

+ (ab — v8)? — 2880 + 2v8pn + B?

+ k[ (ae — B8’ + a’® + BH? + Yl + Yi?] = (»).
For k > 2 we will write (+) as the sum of squares of polynomial functions.

Theorem9.2. Fork > 2and{ € G — Q,

(R £ = (=P + af — v8 — ap)’ + 2(Bp — am)’
+k[(ae — B8)* + Y2 + v*?] + (k — 2)(a™n* + B72).
Theorem 93. Fork > 2, Z(R) = {x(e); + €,5)/ V2, + &y, *es55).

Proof. For k > 2 Theorem 7.1 implies that the only zeroes of R, in Q are
+ ey, For k > 2 and £ € G — Q, an analysis of the polynomial expression



NONNEGATIVE CURVATURE OPERATORS 313

for (R.& &) given by Theorem 9.2 shows that {R.¢, £) = 0 only if a’? +
B%? = 0. It is easily checked that this happens only when £ = + €35 Or
E= % (e +e5/V2)

Proposition 94. For k > 2, L, is not the projection under m of a positive
semi-definite operator on A2

Proof. Suppose it is. Then for some S € A%, R, + S is a positive semi-
definite operator on A% Let a = e, + e;s + e;. Then R,a = -a and
(Rya, a) = -3. Thus {(R, + s)a, a) > 0 implies that {(Sa, a) > 3. Now
since S € A*, it follows from Proposition 3.1 that

S = > NjirSiitr - N € R-
1<i<j<k<I<5

Thus {Sa, a) = 2\ ,34 + 2A,3,s, and since {Sa, a) > 3 it follows that A,,,
+ Ajags > 3/2.

Letting w, = e,3 + ke,, and w, = e, + keys we get (R, + S)w;, w,) = —
kX234 and (R + S)w,, wy) = —kA 345 But this together with A 5 + A ays
> 3/2 implies that {(R, + S)w,, w,) <0 or (R, + S)w,, w,> <0, thus
contradicting the assumption that R, + S is positive semi-definite.

Theorem 9.5. There exist curvature operators which satisfy the Bianchi
identity, have nonnegative sectional curvature, and each of whose zero sets is the
intersection with G of a linear subspace of A%, but which are not the projection
under 7 of a positive semi-definite operator on A2,

Proof. We claim that for k > 2, each curvature operator L, is of this type.
It follows by Theorem 9.4 that L, is not the projection of a positive
semi-definite operator, and by Theorem 7.1 that o, > 0. By Theorem 9.3, for
k > 2 we see that

zZ(L,) = {i (e + €1)/ V2, *ey, te35}.

To complete the proof we verify that (for k > 2) Z(L,) = span Z(L,) N G.
That Z(L,) C span Z(L,) N G is clear. If £ € span Z(L,), then

g = a(elz + els)/\/i + be24 + Ce35, a, b, c, ER.
By Corollary 3.3, the following are equivalent:

(1) ¢ is decomposable.
@0=¢(ANE
a a
=| —— (e, + e;5) + bey, + ce /\[—e + e;5) + be,, + ce
[ (e + 1) + beag ] (e + 1) + besy + ce
2ac 2ab
=—0 es+ —e e, \e e
V3 1/\e/\e;/\es V3 1\ ex/\eg/\es

+2bce, N\ e, /\ e3 )\ es.
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B)ab=ac=bc=0=>a=b=0orb=c=00ra=c=0.

@éE=tes0oréi=*(e,+es5)/V2 orf= = e,

Theorem 9.6. If dimension V = n > 5, then there exist curvature operators
L} which satisfy the Bianchi identity and have the following properties:

1. Fork > 2,0; > 0.

2. For k = 2, Z(L?) is not the intersection with G of a linear subspace of A*.

3. For k > 2, L is not the projection under w of a positive semi-definite
operator on A%,

Proof. Forn > Slet{e,- - -,e,} be an orthonormal basis for ¥, and let
W = span{e,, e,, €3, €,, es}. Since W C V, AX(W) C A(V). We define the
linear map m,: A(V) — AX(W) by

7,(§) = 2 a;e;;
1<i<j<5
for § = 2, cicjcn a5¢; € A*(V). Note that if £ is decomposable, then 7,(£) is
decomposable.

For k a real number and dimension V' = n > 5, consider the following
example: Let R!: AX(V) — AX(V) be defined by

Rie, = e, — €5 — ey,
Rieis = €5 — e — €3
Riey = ey~ € — e
R/eyy = Riess =0,

Rle; = ke

Note that for k > 0, (R&, £) > (Rym(§), R,m(§)) for all £ € AX(V).
Let L = w(R}). Then L satisfies the Bianchi identity, and for k > 2

0!.,;'(5) = GR,;'(g) = (R2§ &) > (Rym(§), R,m(§)> > 0.
Thus L; has Property 1.
To see that L} has Property 2, 1t B,(i=1,- - - ,5) and B be defined as

above. Taking advantage of the natural inclusion of A%(W) in A%(V) we can
consider B and B; as elements of A%(¥). Then

"L;( B) = UR;( B) = ORZ( B) =0,
GL;( B/8) = UR;( B/8) = "R,( B/8) = 1.
Thus we have found five zeroes of L; whose linear span contains a 2-plane in
G with nonzero sectional curvature, and so Z(L;) is not the intersection with

G of a linear subspace of A%(V).

Following an approach similar to that in the proof of Proposition 9.4 one
can show that L' has Property 3.

for remaining e;.
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