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POSITIVE RICCI CURVATURE ON FIBRE
BUNDLES

JOHN CNASH

In this paper we construct complete metrics of positive Ricci curvature on a
large class of fibre bundles. Some of the results for compact fibres have been
obtained independently by Poor [12]. The base manifold M is assumed to be
compact admitting a metric with Ric^ > 0. If F = G/H is compact homoge-
neous with πλ(F) finite, we show that any bundle over M with fibre F admits
a metric with Ric > 0. Certain exotic 7- and 15-sρheres arise as sphere
bundles over spheres and, thus, admit metrics of positive Ricci curvature.

For vector bundles we have the following result.
Theorem. Let m\ B -> M be a vector bundle over M, a compact manifold

admitting a metric of positive Ricci curvature. If the fibre dimension is greater
than two, B admits a complete metric of positive Ricci curvature.

This result is related to a question of Cheeger and Gromoll [1]: Does any
vector bundle over Sn admit a complete metric with K > 0? Rigas has some
partial results on this problem [13].

The author would like to express his thanks to Professors Shing-Tung Yau,
Hans Samelson, and Robert Osserman for helpful conversations throughout
the course of this work.

1. Preliminaries
We begin by recalling some basic notions and introducing notation. All

objects (manifolds, maps, actions, etc.) will be C0 0, and Mn denotes a
manifold of dimension n. The differential of a map /: M-±N between
manifolds will usually be abbreviated to fp{X) of just f(X) for X e TpM. For
a Riemannian manifold M we use the following curvature convention:

RM(X, Y)Z = [VX, VY]Z - Vιx,r]Z,

RM{X, Y, Z, W) = (RM{X, Y)Z, W),

RM{X, Y) = RU(X, Y, Y, X).

3E(Λ/) denotes the C 0 0 vector fields on M.
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A Lie group Gm acting on Mn from the right induces a Lie algebra

homomorphism a: g-»X(M), where g is the Lie algebra of G, defined by

a(X)(p) = X(p) = c'(0), c(t) = p expOX), /? E M. This map can also be

expressed as follows: For p E A/, define ^: G->Λf, ί^(g) = p g. Then

AX/0 = (^)e(Ar), e = identity of G. If the action is free, a is injective. In fact,

in that case o^: Q -* TpM, Op(X) = X(p) is injective.

Suppose further that G has a bi-invariant metric, and M is Riemannian.

For each/? E M there exist orthonormal bases el9 . . . , em and/j, . . . ,fn of g

and TpM respectively and constants \x(p)9 . . . , \Jip) satisfying \x(p) >

X2(p) > > λs(p) > λJ+1(/0 = λjj>) = 0 such that

= 0, i = s + 1, . . . , w.

The \(/?) are the expansion factors of o^ and depend continuously on p. In

general the bases and the integer s also depend upon/?.

A differentiable fibre bundle (E, M, F, G, π) will usually be abbreviated to

π: E -^ M. Here F is the fibre, and G the structural group. Unless stated

otherwise we assume throughout that G is a compact Lie group acting on F

from the left. The principal bundle m\ P -» M associated to a fibre bundle has

a free right action by G such that P/G = M. G acts from the right on P X F

by (p,f) 'g = (j> g, g~ι -f) and(P X F)/G = E.

We now summarize material on Riemannian submersions developed by

O'Neill [10]. For Riemannian manifolds M and N consider a surjective map

π: N —» M with TΓ̂  of maximal rank at all points. This implies that for

x e M, π~ι(x) is a submanifold of N. For /? E π~ι(x)9 denote the tangent

space of TΓ'^Λ;) at/? by Vp and its orthogonal complement in TpN by Hp. Such

a map m is a Riemannian submersion ilπ^Hp is an isometry for all/? E TV.

There are two (1, 2) tensors on N associated with a Riemannian submer-

sion:

for X, Y E 36(7V) where X = Xh + XΌ is the decomposition into horizontal

and vertical components. The tensors have the following properties:

(i) Tx and Ax are skew-symmetric for X E £(N),

(1.2) (ϋ) TVW = 7VF for vertical vector fields F, W,

(iii) ^ y = -AYX = \[X, Y]Ό for horizontal vector fields X, Y.

T = 0 if and only if the fibres ττ~x{x) are totally geodesic. O'Neill has
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developed formulas relating the curvatures of Λf, N, and π~\x). For our

applications T = 0. We state his results for that case. Set Fx = π~ι(x).

Theorem 1.1. Let π: N —» M be a Riemannian submersion such that the

fibres are totally geodesic (T = 0). // Λ: E M, p E Fx, X, 7 6 Hp9 and V,

W E Vp, then the following hold:

(1.3)

(i)

(ϋ)
(iϋ)

(iv)

(v)

RN(X,

R*(V,

RN(X,

R*(V,

RN(X,

Y) =
W) =

V) =

w, w
Y,Y,

RFχ(V, W),

Uxv\ΐ,
\ X) = 0,

V) = <.(VγA)yX, F>.

2. Curvature on principal bundles

In this section TΓ: P -+ M denotes a principal bundle over a compact

manifold Mn with fibre and group Gm. Fix < , >G, a bi-invariant metric on G.

For a fixed connection ω on P and metric ( , ) M on M there is a family of

metrics < , >, on P, t > 0, defined by

(x, y>, = <τr(jr), ̂ ( n > M + t\ω{x\ ω(y)>G.

These metrics have also been used by Jensen [7],-and Lawson and Yau [9].

The map π: P -* M becomes a Riemannian submersion for < , >„ and the

vertical and horizontal subspaces of ω agree with the respective vertical and

horizontal subspaces of the Riemannian submersion. For X, Y E g, X, Y are

vertical vector fields and {X, Y}t = t\X9 Y}G. Since the vertical and hori-

zontal subspaces are invariant under G, the metrics < , >, are G-invariant.

Lemma 2.1. The fibres in P are totally geodesic with respect to ( , ) r

Proof It suffices to show <VpF, H}t = 0 for V E Q and H an invariant

horizontal field. In_this case <V,H>t =^0_and [V, H] = 0, so <VFF, H\ =

-<F, Vp#>, = -<κ, vHv\ = 4jy<κ, F>, = o.
We will denote the various quantities associated to < , >, with a subscript or

superscript, e.g., V, i?r, A'. For / = 1 the t will usually be deleted.

Lemma 2.2. Let X and Y be horizontal fields, and V and W vertical fields

on P. The following equations then hold:

(2.1) AXY = AXY, AxV=t2AxV9 ΨXY=VXY9

(V'XV)V = (VxV)υ=[X, V]v, (ΨVW)Ό =VVW.

The proof uses only the basic properties of A * in (1.2), T = 0, as well as the

standard formulas for the Levi-Civita connection.

The following result combines Theorem 1.1 and Lemma 2.2.
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Proposition 23. For/? e P let I , 7 £ / ^ and F, JF G F,. The following

equations then hold:

(i) Rt(X, Y)

(ii) Rt(K W) = t2R(V, W) = (t2/4)\\[cς\n «;l(W)]\\2

G,

(2.2) (iii) Rt(X, V) = t4\\AxV\\2,

(iv) tf,(^^> JF,*) = 0,

(v) Rt(x, y, y, F) = t2R(x, y, y, κ>.

Proof, (i), (iii), and (iv) follow easily. Since the fibres are totally geodesic

and RG(X, y, y, X) = (1/4)||[X, y]||2

G for X,Y Gg, (ii) holds. To prove (v),

first extend X, Y and ί/, V respectively to horizontal and vertical fields which

we denote by the same letters. Combining Theorem 1.1, Lemma 2.2 and (1.2)

we have

Rt(x, y, y, v)

- <V'y04yΛΓ) - A'VγYX - AY(VYX), V\

= <yγ{Aγx) - AVYYX - AY(VYX), v\

= t\(vγA)γx, v) = t2R{x, y, y, v).

The following theorem establishes a large class of principal bundles which

admit metrics of positive Ricci curvature.

Theorem 2.4. Let π: P —» Mn be a principal bundle with compact semi-sim-

ple structural group Gm. If M is compact admitting a metric <( , yM with

Ric^ > Mo > 0, then P admits a G- invariant metric of positive Ricci curva-

ture.

Proof. Fix a connection ω on P and a bi-invariant metric < , }G on G. We

show that for t small enough Ric, > 0. Because G is compact semi-simple,

Ricσ(ei) = 0/4)Σ,||[ei, eJH^ is positive for ev . . ., em an orthonormal basis

of Q. Thus there exists a constant Go such that RicG > Go > 0.

For X G TpP, \\X\\t = 1, there exist orthonormal bases el9 . . . , em and

hl9 . . . , hn of g and /ζ, respectively such that X = α^// + ί>Aj for some a, b

satisfying a2 + b2 = 1. Here we have identified ^ with ex(p). With this

identification ex/t, . . . , em//, hv . . . , hn is an orthonormal basis of 7^P with

respect to < , >,. Thus X, beλ/t - ahv e2/t, . . . , em/t, A2, . . . , hn is also such

a basis. Hence

(2.3) Ric,(X) = Rt[x,-eλ - ah\ + Σ R,(xA) + Σ R,(X, h,).
V ' / , -2 V * ' 7-2
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Proposition 2.3 and the symmetries of the curvature tensor imply

Rt(X, bex/t - ahx) = t2\\Ahex\\2 > 0,

Rt(X,ei/t)>a2\\[ex,ei]\\2

G/(4t2),

y ' } Rt(X, A,) > b2[RM(π(hx), ττ(λ,))] - 3bV\\Ahfy\\2

+ 2abt R(el9 hp hp hx).

The terms R(ex, hp hp hx) and ||ΛAiλy | |
2 have bounds independent of eέ and hp

Thus by (2.3) and (2.4)

Ric,(X) = b2 RicM(7KA,)) + {a2It2) Ricσ(e,) + O(0

> b2MQ + (a2/t2)G0 + 0{t).

Hence for / small enough, Ric, > 0.
Remark. The validity of the above theorem requires some assumption on

the fibre. For example, π: Sn X Sι -»S", n > 2, satisfies all the hypotheses
of Theorem 2.4 except the semisimplicity condition. Sn X Sι does not admit
a metric with Ric > 0 since it has infinite fundamental group.

3. Positive Ricci curvature on compact bundles

We begin this section by constructing a family of metrics < , }E , on the
total space £ o f a bundle, and then derive estimates for the Ricci curvature of
these metrics. These estimates will be used to obtain positive Ricci curvature
on several classes of bundles.

For Mn compact, consider a bundle π: E-* M with fibre F\ structural
group Gm, and associated principal bundle π: P -* M. Assume that F admits
a G-invariant metric < , >F. For a fixed connection ω on P, bi-invariant metric
< , >G on G, and metric < , }M on Λf, we obtain a family of metrics on
P X F: < , > ; = < , > , x < , }Fr where < , ) F t t = t\ , }F. These metrics are
G-invariant and thus induce, by horizontal projection, a family of metrics < ,
>£, o n ^ = ( P x F)/G such that π: P X F^>(P X F)/G is a Riemannian
submersion for each t.

For (p,y) E P X F let Vpo, and Hp^ denote the vertical and horizontal
subspaces respectively at (p,y). For an orthonoraml basis ev . . . , em of Q let
ex, . . . , em and ex, . . . , em be the associated fields on P and F respectively.
Since {e&p) - e^y), i = 1,. . . , m) is a basis of Vp^ both Hp%y and ^ are
independent of t.

Proposition 3.1. Let π: E —> M be a fibre bundle, and < , ) F a complete
G-invariant metric on F. Then < , }Et is complete, and the fibres are totally
geodesic and mutually isometric.
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Proof. Set τr,(/?, y) = π(p). Then the diagram

P X F

(3.1) * * ^

commutes. Fix £ = π(p,y) G £, and let u G 7^£. Let tί = (υ, w) G i / ^ be
the horizontal lift of u with ϋ 6 Γ / and w 6 TyF. If c: R - ^ P X f ,
c(s) = (a(s), β(s)), is the unique geodesic with c(0) = u, then by O'Neill [11]
c = # o c is a geodesic with c(0) = w. Hence < , }Et is complete. Assume
further that u is tangent to Fx, the fibre through x, x = π(ξ). By (3.1),
ττι(ύ) = 0 which implies υ E: Vp. Because the fibres in P are totally geodesic,
π(ά(s)) = 0. Again by (3.1), π(c(s)) = 0. Thus Fx is totally geodesic.

Define πp: F^> E by 7^(7) = π(p,y). To prove the fibres are mutually
isometric it suffices to show that for fixed t the pull-back metrics 77̂ *« , }Et)
are independent of p. For u G TyF its length in the metric π*« , >£ r) is given
by \\υp + wjJIT' where t?̂  G 7 ,̂P, MJ, G ^ F , and vp + >î  is the unique vector
in ίϊpof such that vp + wp - u E Vp%y. Fix q G P. There exists e G g such that
έ(?) - e(y) = vq + wq- u, and thus t>9 + wq = e(̂ r) + u - e(y). Setting ẑ
= e(p) + u — e(y) one notes that zp is horizontal (since zq is) and zp — u is
vertical. Thus zp = υp + wpi and since ||z^H^ = ||̂ HΓ> ^ e norm is indepen-
dent of p.

The lemma below will be useful in later calculations.
Lemma 3.2. Let u l 5 . . . , vn be an orthonormal set of vectors in an inner

product space V. Suppose that (ay) G 0(ri) and that cv . . . , cn are constants

such that ct > p > 0, i = 1, . . . , n. Setyt = Σj ctyCjVj. Then

HΛ Λ yj\\2 = 2 2 2 4

Proof | |Λll2H^II2-<^

( Σ °lcή( Σ 4cή - (Σ «*«Jkcή( Σ

kj

\
A:,/

For a bundle π: E -+ M with the conditions sufficient to define <_, >£, we
wish to obtain an estimate of the Ricci curvature. Fix X G TζE, H^H^ = 1,
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where / is also fixed. There exists X G Hp<y with π(X) = X. Choose orthonor-

mal bases (with respect to the 1-metric) eλ, . . . , em and fv...9fs9

& „ . . . , kr_s of g and TyF respectively such that

= 0, / = s + 1, . . . , m.

The vectors υx - \x(y)fX9 . . . , € > , - \(y)f3, vs+l9 . . . , υ m form a basis for
J?^, where vi = eg(p). If Aj, . . . , hn is an orthonormal basis for Hp c 7VP,
then Aj, . . . , AΛ, fc1? . . . , A:Γ_5, wl5 . . ., ws is an orthonormal basis for Hpy

with respect to < , >J", where

4 = (r1)^., 7 = 1, . . ., r - s,

Let //, /Γ, / denote the spaces spanned by the A,., &,, and vv7 respectively. There

exist h EL H,ίi E: K, and zx G / all unit vectors for || \\~ such that A" = α(αz,

+ )8fc) + 6A with a2 + b2 = a2 + β2 = \. By choosing new bases for /f and

A' we may assume A = hλ and k = kv Complete Zj to an orthonormal basis

zj,..., z5 of /. There exists (α/y) G 0(s) such that z7 = Σs

jwml atjwΓ Set

*, =
j

so that z7 = w, + M,. We have the following orthonormal basis for Hpy.

X = a(azι + βkλ) + bhv

Y = b(azι + i8fc,) - αA^

Z = βzλ- akl9

k2, - > ^Γ-j> A2, . . . , An, z2, . . . , z7.

By (1.3) the sectional curvature of a plane σ spanned by horizontal vectors

on P X F is increased under projection by TΓ. Thus

, Y) + Rt(X, Z) + Σ R<(X, h)
ι-2

(3.2)

7-2 /=2

In the estimates below any C, is a positive constant depending on ω, < , >Λ/,
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and < , >G. The following inequalities are obtained by using (2.2):

R,(X, Y) = a2R,{ux, A,) > 0,

R,(X, Z) = a2RFXaΰλ + βkt, βύλ - ak\) + R,{aaux + bhv βux)

> a2RFl(aΰι + βkx, βύι - α&,)

R,(X, kj) = a2/^,(a«, + βkx, kj),

R,(X, z,) > a2RFt(aύλ + βkx, «,) + t2a2a2R(uv «,),

\R,(Uι, A,, A,, A,)| < ίΣ l«i*Λ(ϋfc, A,., A,, A,)| < tCv

k

and thus

R,(X, A,) = Λ,(αo«, + bhv A,) > b2R,(hv A,) + 2αδαΛ,(κ,, A,, A,., A,)

> ί ^ M A , ) , W(A,)) - ί2b2C2 - t\aba\C3.

These estimates and (3.2) yield

Ric£,,(J) > b2 RiCA/(π(A,)) + (ίαα)2 Σ *(«„ u,)

+ α2 ΛF,(α«, + βkχ, βύx - aίcΛ + Σ RFt(a"i + βh\, *>)
(3.3) I ' 7=2 '

+ 2 RFXaux + βk\, ύ,)I - (rf>)2C2 - r|α6α|C3.

Define 0 < p(j) = min,{(λ/

2(.y) + 1)"1/2} < 1. Because fJt, . . . ,f./t,
kv . . . , &Γ_5 are orthonormal, Lemma 3.2 can be applied to aύλ + βkv

βύι — akv ύ2, . . . , ύs, k2, . . . , fcr_s. Thus with respect to || | | F / the plane
spanned by any two of the above vectors has p\y) as a lower bound for its
norm squared. Let KF denote the sectional curvature of < , ) F . Using the
above and R(ul9 ut) > 0 we simplify (3.3) to

Ric^(J) > b2 Ric^TKΛ,)) + (p\y)a2/t2)\κF(ύl9 kλ)

(3.4) + 2 KF(<**I + ^ * P 4) + Σ ^F(«"I + β*» fi/)l

> / J
-{tb)2C2- ί\aba\C3.

Definition. (F, G) satisfies Condition A if G is a compact Lie group acting
by isometries on a compact Riemannian manifold F with positive Ricci
curvature such that each \: F - ^ R is either identically 1 or 0. If (F9 G)
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satisfies Condition A, the dimensions of the orbits of F are identically, in fact,
equal to the number of \ with constant value 1.

Theorem 33. Let (E, M, F, G) be a fibre bundle with M compact and
admitting a metric such that RicM > Λf0 > 0. If(F, G) satisfies Condition A, E
admits a metric of positive Ricci curvature.

Proof In the previously developed notation ώ7 = (tVΪ )~ιΣj atJfj with the
Condition A assumption. The plane σ = {ύv kx) is orthogonal to ύ2,..., ύs,
k2, . . . , kr_s. Thus (3.4) becomes

R i c ^ ( ^ ) > b2M0 + (a2/4t2) RicF(aύx + βkx) + 0(0-

Since there exists a constant FQ satisfying RicF > FQ > 0, the theorem is
proved by choosing t small enough.

We now find fibres F admitting actions which satisfy Condition A. If F
admits a transitive action by a compact Lie group G, then F = G/H for
H c G a closed subgroup, and the action is by left multiplication.

Proposition 3.4. For a compact Lie group G and closed subgroup H the
following are equivalent:

(ϊ)πx(G/H) is finite.
(ii) Any normal homogeneous metric on G/H has positive Ricci curvature.

(iii) G/H admits a metric of positive Ricci curvature.

Proof, (ii) => (iii) is trivial, and (iii) => (i) is standard. To prove (i) => (ii) we
first exhibit a compact semi-simple group G which acts transitively on G/H.
The Lie algebra g of G can be decomposed as g = ϊ θ 8 where ϊ = [g, g] is
semi-simple and 3 is the center of g. There exists a covering π: G X Tn —> G
such that G is compact, simply connnected, semi-simple, and has Lie algebra
f, and Tn is a torus with algebra 5. Let H denote the path component of the
identity of π~x{H). Since the induced mapping Ψ. (G X T)/H^> G/H is a
covering, πj[((5 X T)/H] is also finite. It suffices to show that G acts
transitively on (G X T)/H to conclude that it acts transitively on G/H. Let
i: H -» G X T be the natural injection, and/?: G X Γ—» T denote projection
to the second factor. The problem reduces to showing p ° / is surjective. If
not, T/Ή is a torus for Ή = p ° i(H), and thus *πx(T/Ή) is infinite. Let
a G mx(T/Ή) and q: Γ-» T/H denote projection. By the long exact homo-
topy sequence for Ή'-* Γ-» T/H there exists /? G ττx(T) such that q+β = a.
Let j : T^>(G X Γ)/// denote inclusion followed by projection, and p:
(G X T)/H^> T/H denote the map induced by p. Since 4 = / °j,pjj+β)
= α. Thus /?* is surjective contradicting the fact that πx[(G X T)/H] is
finite.

We recall the following formulas for a normal homogeneous metric in-
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duced from < , >G on G, [8]:

(3.5) <[ Z, X], Y}G = (X, [ Y, Z])G, X,Y,ZG β,

(3.6) R(X, Y) -\\\[X, Y]J% + \\[X, Y]/G,X,YeTl,

where R is the curvature tensor associated with the metric on G/H. In (3.6),
ϋDΐ = ί)-1-, the orthogonal complement of ί), the Lie algebra ί) of H. We make
the usual identification 3K ~ T[H]G/H. From (3.6), Ric > 0 on G / # . Sup-
pose X e 2)ϊ, X φ 0 satisfies Ric(JO = 0. Then (3.6) implies [X, Y] = 0 for
all y e S l β . F i x Z e ί ) . For arbitrary 7 e K , <[*, Z], y>G = 0 by (3.5), and
[X,Z] = 0 since [X, Z] e SDΪ. Thus I 6 j . Since G acts transitively on G/H,
the map f^ϋDΐ + ί j ^ Iftis surjective. Thus there exist A Bΐ and B E ί) such
that Λ = Λ' + B. By (3.5) and the fact that ϊ = [g, g], X is orthogonal to A.
But since also I 6 Λ 1 J = O.

Theorem 3.5. Let (E, M, G/H, G, π) be a fibre bundle such that M is
compact and admits a metric with RicM > 0. If G/H admits a metric with
Ric > 0 (equivalent ly, if πx(G/ H) is finite), then E admits a metric of positive
Ricci curvature.

Proof. By Theorem 3.3 it remains to show that (G/H, G) satisfies Condi-
tion A for G/H with a normal homogeneous metric. By Proposition 3.4 this
metric has positive Ricci curvature. Since a normal homogeneous metric is
G-invariant, the \ are identically 1 or 0.

Remark. In the above theorem the action of G on G/H is assumed to be
the standard one. The following corollary is immediate.

Corollary 3.6. Let (E, M, Sn, O(n + 1), if), n > 2 be a sphere bundle
whose base is compact admitting a metric with RicM > 0. Then E admits a
metric with Ric > 0.

Eells and Kuiper [2] have shown that a number of exotic 7- and 15-spheres
arise as sphere bundles over a standard spheres. These exotic spheres will thus
admit metrics of positive Ricci curvature. More precisely, we have the
following.

Theorem 3.7. Of the 28 (16, 256) diffeomorphisms classes of 7- (15-) spheres,
16 (4,096) admit metrics of positive Ricci curvature.

Not all exotic spheres admit such metrics. In fact, Hitchen [6] has proved
that any exotic sphere which does not bound a spin manifold cannot even
admit a metric of positive scalar curvature. For n = 1 or 2 (mod 8) the exotic
spheres which bound spin manifolds form a subgroup of index 2 in the group
Θrt of homotopy Λ-spheres. Since all 7- and 15-spheres bound spin manifolds,
there are no known obstructions to metrics of positive Ricci curvature on any
of them. Hernandez [5] has constructed metrics of positive Ricci curvature on
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a large number of exotic spheres which occur as certain Brieskorn varieties.
His results do not seem to include the spheres in the theorem above.

We now consider another class of examples: Fibres F admitting a free
action by a compact semi-simple group G. If F/G admits a metric with
Ric > 0, then Theorem 2.4 implies that the metric ί~2< , >, on F has positive
Ricci curvature for t small enough. By construction it satisfies Condition A.
This yields the following result.

Theorem 3.8. Let (E, M, F, G, #) be a bundle with M compact and admit-
ting a metric with RicM > 0. If G is compact semisimple and acts freely on F
which is compact such that F/G admits a metric with Ric > 0, then E admits a
metric of positive Ricci curvature.

We conclude this section by noting that hypotheses on the type of action
on F can be reduced if the curvature assumption on F is strengthened. The
following result was obtained independently by Poor [12] who used it to
prove Theorem 3.7.

Theorem 3.9. Let (E, M, F, G, π) be a bundle with M compact and admit-
ting a metric with RicM > 0, and suppose G is compact. If F is compact and
admits a G-invariant metric of positive sectional curvature, then B admits a
metric of positive Ricci curvature.

Proof. This follows immediately from (3.4) by choosing t small enough.
Remark. By Proposition 3.1 the fibres are totally geodesic and mutually

isometric with respect to the metrics on E in the theorems in this section.

4. Positive Ricci curvature on vector bundles
In this section G will be the m-dimensonal orthogonal group O(w) whose

Lie algebra Q = o(m) consists of the m X m skew-symmetric matrices. Let Eϋ

denote the m X m matrix whose (/,/) entry is 1 and all otheres are 0. The
matrix Atj = Ey - Eβ is skew-symmetric, and {Aij}i<j form a basis for o(/w).
The fact that Eυ Ekl = 8jkEu implies

(4.1) [Ay, Akι] = δJkAa + 8tjAki + 8kiAy + 8uAjk.

The inner product

(a,β} = - (1/2) trace(αiS), α, β G g

on Q defines a metric < , >G on G by left translation which is bi-invariant. The
matrices {^ιy}l<7 form an orthonormal basis with respect to < , >G. This
metric will remain fixed throughout this section.

Let v - w denote the usual inner product of two vectors in Rm, and
βj, . . . , ew be the canonical orthogonormal basis with respect to this inner
product. For x G Rm we make the standard identification TxR

m ^ Rm.
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The Aπ-dimensional paraboloid F is diffeomorphic to Rm and has positive

sectional curvature. F is obtained from the induced metric on Rm via the

imbedding /: Rw -> Rm + 1, i(x) = (x,x x/2). For v, w E TXF, i+(v) = (v,v
x) so that (v, w)F = υ w + (v x)(w JC). Thus Z7 is O(m)-invariant. The

curvature of F is computed by noting that its image in R m + 1 is the 0-set for

the function/,

f(xx, . . . , xm+χ) = xx + + x m - 2x w + 1 .

From V/OO = 2(7^ . . . ,ym, -1) it follows [3, p. 109] that for w, v, w,

(4.2) RF(u, v, w, z) = (|x|2 + \yι[(v w)(w - z) - (11 w)(t> z)] .

Thus for m > 2, F has positive sectional curvature, and is complete since its

image in R m + 1 is closed.

The action of O(m) at >> = rεm E F is especially simple. Since the action is

linear A(y) = Ay, A G o(m). Thus

Am(y) = ^.^ 1 = 1, . . . , m - 1,

My) = 0, i <y < m.

Theorem 4.1. Lei (£, M, Rm, O(w), #) 6e a vector bundle with m > 2, α/w/

assume M is compact and admits a metric with RicM > 0. Then E admits a

complete metric of positive Ricci curvature such that the fibres are totally

geodesic and mutually isometric.

Proof. We use the metric < , >G and < , >G introduced above to define

< , ) E J as in Proposition 3.1. It remains to show that Ric^, > 0 for t small

enough.

For £ G £ there exists (p,y) G P X F such that π(p,y) = ξ v/ithy = rεm,

r > 0. Thus in the calculations leading to (3.3) we assume y is of this form.

From (4.3) we have \(>>) = r, i = 1, . . . , m — 1. Note that εl9 . . . , εm_v

εm/(r2 + 1)1 / 2 is an orthonormal basis for the tangent space at rεm. Thus (3.3)

holds with the following substitutions:

«/ = /•[/(
_1 m ~ l

r2 + 1)1 / 21 2 «/ŷ /m» / = 1, , /W ~ 1,

[t(r2 + 1) 1 / 2 ]- ' Σ ayεj, I = 1,. . . , m - 1,
1
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In (3.3) the terms in brackets involving the curvature of F become

m - l

RFXaύλ + βkl9 βύΛ - akx) + 2 RFA"U\ + 0 4 "/)
1=2

because of (4.2). By (4.1),

- (m - 2)r4[4(r2

Referring to (3.3) the assumption on M implies that there exists Mo > 0 such

that RiCj^i^h^) - (tb)2C2 > Mo for t small enough.

Combining all the above with (3.3) produces

b2M0 - ί\aba\C3 + ( ™ ft(r) + ( f

(4.4) >

for / small enough, where/(r) = (m - 2)r4[2(r2 + I)]"2 and g(f) = (m - l)[r2

+ 1]~3. Denote the term in brackets { } by Λ. The function/(r) + \g(r) is

bounded away from zero for r > 0. Thus there exist positive constants C4, C5,

and C6 such that

Λ > C4b
2 - \aba\tC5 + (aa/t)2C6

(4 5)

>(««)2[C6r2-(C5ί)2(4C 4Γ1]>0
for / small enough. The second inequality in (4.5) follows since the right-hand

term is quadratic in \b\ so that its minimum is easily computed. For t small

enough, (4.4) and (4.5) imply

Ric*,,(*) > WblMo + (β/02*W] > 0.

In [4] Gromoll and Meyer show that for M compact, M X R does not

admit a complete metric of positive Ricci curvature. If M is compact with

Ric^ > 0, we know of no obstruction to constructing metrics of positive

Ricci curvature on vector bundles with fibre dimension equal to two.
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