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REFLECTIVE SUBMANIFOLDS. IV.
CLASSIFICATION OF REAL FORMS

OF HERMΓΠAN SYMMETRIC SPACES

D. S. P. LEUNG

1. Introduction

This note is a sequel to the author's previous papers [7], [8], [9] where we
studied geodesic submanifolds of Riemannian symmetric spaces, which are
fixed point sets of involutive isometries and are called reflective submanifolds.
For a Heπnitian symmetric space M, the fixed point sets of antiholomorphic
involutive isometries (called complex conjugations) are called real forms of M.
In the papers [3], [4], [5], the real forms of the bounded symmetric domains
have been classified. Using the classification of reflective submanifolds ([8],
[9]) we give here a classification of the real forms of compact and noncom-
pact Heπnitian symmetric spaces. The results will be useful in the study of
the real points of compact Hermitian symmetric spaces and arithmetic
quotients of bounded symmetric domains, when both of them are considered
as algebraic varieties, [3], Our present method is different from that of [3], [4],
and [5], and is more elementary in the sense that we use only Lie theoretic
machineries and avoid the use of Galois cohomology. Real forms belong to a
special class of reflective submanifolds which are also self-complementary
(see §2). So to classify the real forms in an irreducible Hermitian symmetric
space M, we only need to look for them among the self-complementary
reflective submanifolds of M.

The author wishes to thank H. A. Jaffee for copies of his thesis and paper
[5], as well as for some helpful comments on the original draft of this paper.

2. Reflective submanifolds

We recall here some facts from [7] and [8] and establish some notation. In
this note Lie groups and their Lie algebras will be denoted respectively by
capital Latin and the corresponding lower case German letters. For general
terminology related to symmetric spaces we follow [6] closely.

Let M = G/H be a simply connected Riemannian symmetric space with
canonical involution σ and canonical decompostion g = m + ϊ) where m =
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T0(M) and o E Λf corresponds to the coset H. A connected submanifold
B = K/Q through o is said to be reflective if it is a connected component of
the fixed point set of an involutive isometry p. A reflective submanifold is
necessarily totally geodesic. If we let b = T0(B) and let b x be its orthogonal
complement, then we have

[[Uμ]c6,
[ [ b , b ± ] , b ] c b \ [ [ b , b ^ ] , b ± ] c b .

A subspace b of m satisfying (1) is said to be reflective. There is a one-to-one
correspondence between the reflective subspace b of m and the reflective
submanifolds through o given by TQ(B) = b, [7, Theorem 3]. B1- is also a
reflective subspace, and corresponds to a reflective submanifold B^. The pair
{b,^} (resp. {B, i?"1}) is called a complementary pair of reflective sub-
spaces (resp. submanifolds). If B is isometric to Bx, it is said to be self-com-
plementary; in this case b is also said to be self-complementary. Duality
between compact and noncompact symmetric spaces preserves reflective
subspaces, [8, Remarks 2-4].

3. Classification of real forms of irreducible Hennitian symmetric spaces

Let Λf be a Hennitian symmetric space. An involutive antiholomorphic
isometry p of M is called a complex conjugation of Λf. In general the fixed
point set of an involutive isometry of a Riemannian symmetric space is not
connected. However, the fixed point set of a complex conjugation is con-
nected, as we shall see later. For the moment, let us call any connected
component of the fixed point set Λfp of p, if not empty, a real form of Λf. Let
B be a real form of Λf. Then B is a reflective submanifold. In fact, B is
self-complementary since the complex structure / of Λf maps B isometrically
onto its complementary partner. We will begin the classification with the case
where Λf is irreducible, and will describe how to handle the general case later.
For the remainder of this section, Λf = G/H will denote an irreducible
Hennitian symmetric space where G is the largest connected group of
holomorphic isometries; the notation established in the previous section will
also be preserved. We will also assume, unless the contrary will be stated, that
all real forms go through the origin o (corresponding to the coset H) of Λf.

Lemma 3.1. Let b be a self-complementary reflective subspace of m. The

reflective submanifold B corresponding to b is a real form if and only if the

complex structure J maps b and b x isometrically onto each other.

Proof. Suppose B is a real form. Let p denote the involutive antiholomor-

phic isometry which leaves B point-wise fixed. Then we have

(4) pjb = id, pjfex =- id .
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Since p is antiholomorphic, we have

(5) p,7 = -/p,.

It follows that
(6) Jh c b 1 , ^ 1 cfc.

Being an isometry, / must map b and b x isometrically onto each other.
On the other hand, suppose J maps b isometrically onto b x . Then we have

m = b + /b. Define p^: m -> m by
(7) p*(x + Jy) = χ- Jy, χ,y G b.

One can easily check that (5) holds again in this case and that p# preserves
the curvature tensor of M restricted to m. By [10, 8.1.1] and the fact that M is
globally symmetric, pφ can be extended to a global isometry p. Since / is
invariant under G, (5) implies that p is antiholomorphic. Obviously p is
involutive. If B is the reflective submanifold corresponding to b, then B is a
real form.

Definition. A subspace b of m which satisfies the condition of Lemma 3.1
is called a real form of m.

Next we will prove a number of lemmas which will be used to decide which
of the self-complementary reflective submanifolds of M are indeed real
forms.

For an irreducible Hermitian symmetric space M = G/H, it is well known
that H = LT\ where Tι = {exp 2πitv\t G R) for a suitably chosen ele-
ment v in ί), is a circle group and H is the centralizer of Tι in G.
Furthermore, there exists an element./ G Γ 1 such that J = Adj (cf. [10, §8.7]).
Let b be a self-complementary reflective subspace of m. The irreducibility of
M implies that

ϊ=[h,h] +[h,b±] +[b ± ,b ± ].

In fact e = [b, b] + [b x, b x ] is the Lie algebra of the largest subgroup of G
which leaves B invariant. Let us put f = [b, b x ] . Then we have

ί) = e + f (a direct sum of vector spaces only),

[e, e] ce, [f, f] c e,

[f,e] cf, [f,b] c b 1 , [f,.^] cb.

Lemma 3.2. Either v G eor v E f, b is a real form if and only ifv G f.
Proof Suppose v = υλ + t>2, t^ G e and t>2 Π f. Since t) lies in the central-

izer of ί), we have

0 - [ o , e ] = [ ϋ 1 , e ] +[> 2,e].

Since [ϋ1? e] c e and [t>2, e] c f, we must have

0-[ι?i ,e] = [ ϋ 2 , e].
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Similarly one can show that

Since the dimension of the centralizer of ΐ) is one, we must have vx = 0 or

v2 = O. The last part of the lemma follows now easily from Lemma 3.1.

q.e.d.

As a first step, we will next give a classification of the real forms up to

isometric types. According to [8, Remark 2.4] duality between compact and

noncompact spaces preserves reflective submanifolds. Since in the Hermitian

case, duality preserves also complex structure and therefore real forms. We

will only classify the real forms of irreducible compact Hermitian symmetric

spaces, and can then obtain the classification in the noncompact case by

duality.

Theorem 3.4. Up to isometric types, the real forms of compact irreducible

Hermitian symmetric spaces are given as follows. (We put here G?r+S(ΈL) =

SO(r + s)/SO(r) X SO(s), Gr

u

tr+S(

- Sp(r + s)/Sp(r) X Sp(s).)

= O(r + s)/O(r) X O(s) and

M

SU(p + q)/S(U(p) X U(q))

p = q = 1 oτp < q

p, q not both even

p, q both even

p = q > 2

p odd

p even

SO(p + 2)/SO(p) X SO(2)

Real forms

G$φ+q
(R),

); Gp/Up+q)/2(Q).

Gp\(R);{SU(p)xSι}/Zp9

% P ( R ) ; {SU(p) X Sι}/Zp; Gp/2J>{Q).

0<k<

SO(2n)/U(n),
n odd

n even

Sp(n)/U(n)

n odd

n even

£6/{[Spin(10)

Ad(£7)/{£6 X

n > 3

X 7"]/Z4}

Γ'/Z,}

X

SO(n),

SO(n); {[SU(n)/Sp(n/2)\ X Sι}/Zn.

{[SU(n)/SO(n)]XSι}/Zn9

{[SU(n)/SO(n)] X Sι}/Zn; Sp(n/2).

F4/Spin(9); G2A(Q)/Z2,

[SU(S)/Sp(4)]/Z2; {[E6/F4] X Sι}/Z3.

Proof. We can obtain the table by computations using the results on
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self-complementary spaces in [9, §2], the structure of the largest group of
isometries leaving a reflective submanifold invariant (cf. [9, §2]), and Lemmas
3.1 and 3.2. Indeed, let M = G/H be the ambient space, and B = K/Q be a
self-complementary reflective submanifold of M determined by an involutive
automorphism p of G. From the structure of the largest subgroup of G which
leaves B invariant, we can determine the structure of Gp. In fact, Gp = K X
A or K' A, where A is the subgroup of Gp which leaves B pointwise fixed.
From this we can conclude that Hp = Q X A or Q- A. This determines the
involutive automorphisms ρ\H up to automorphism of H. In particular, since
p(Tι) = T1, the involutive automorphism p\Tι is uniquely determined. In
fact, if we identify Tι with the set of complex number of modulus one, p is
either the identity mapping or complex conjugation. From Lemma 3.2 and
the definition of an almost complex structure, it follows easily that B is a real
form if and only if p\Tι the complex conjugation. Using this it is straightfor-
ward to decide which of the self-complementary reflective submanifolds of M
are real forms, q.e.d.

Next we will show that Theorem 4 in fact gives a classification of real
forms of Hermitian symmetric spaces up to holomorphic equivalence. We
begin with the following lemma.

Lemma 3.5. Let M = G/H be a Hermitian symmetric space, and Bλ and

B2 be two real forms left fixed by the involutive isometries ργ and p 2 respectively.

If Bλ and B2 are isometric, then they are mapped onto each other by some

elements of G {the identity component of the group of isometries ofM).

Proof. The lemma is a corollary of [9, Theorem 1.1]. (We use here the
notation in [9].) In fact, using the computations of [1, Chapter III], it is easy
to check that for all the p which define real forms in Hermitian symmetric
spaces, p|ϊ) is determined up to inner automorphisms of ί) by the isomorphic
type of the fixed point set ί)p.

Theorem 3.5. The table of Theorem 3.4 in fact gives a classification of the

real forms of irreducible compact Hermitian symmetric spaces up to holomorphic

transformations of M, and also gives a classification in the noncompact case by

duality.

Proof. By Lemma 3.5 and the remark before Theorem 3.4, we can
conclude that Theorem 3.4 in fact gives a classification of the real forms of M
(compact or noncompact) up to isometries of M. Now G is a subgroup of the
group of holomorphic transformations of M, and no two real forms or a fixed
M in the table of Theorem 3.4 are diffeomorphic to each other. Therefore
Theorem 3.4 actually gives a classification of real forms up to holomorphic
transformations, q.e.d.

Next we will give a proof of the fact that the fixed point set of the
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conjugation of an irreducible Heπnitian symmetric space is connected. We
begin with the following lemma.

Lemma 3.7. Let M = G/H be a Hermitian symmetric space with G acting
effectively on M as holomorphic isometries. If k EL G leaves a real form B of M
pointwise fixed, then k must be the identity element of G.

Proof. We can assume o (the coset H) G B. Then k+ leaves T0(B)
pointwise fixed, and k+J = Jk+. Therefore k+ also leaves JT0(B) pointwise
fixed. Since T0(M) = T0(B) + JT0(B), k^ leaves T0(M) pointwise fixed.
Hence g must be the identity transformation.

Theorem 3.8. Let Λf be an irreducible Hermitian symmetric space. Then the
fixed point set Mp of a complex conjugation p is connected.

Proof. When Λf is noncompact, the theorem follows from [9, Lemma 3.1].
Now assume that Λf = G/H is compact with G simply connected. For a
given reflective submanifold B of Λf, it is easy to compute the largest
subgroup of G which leaves B invariant (cf. [9, §2]). Using the list of reflective
submanifolds in [9], the list of real forms and [9, Lemma 3.2], we can
conclude that for a complex conjugation p, if Λfp is not connected, then any
two components of Mp must be isometric. Let B = K/Q and B' are two
isometric components of Mp, by Lemma 3.5, there is a g e G such that
gB = Br. Using [9, Lemma 3.1] and the notation there, we can conclude that
k — g~ιp(g) leaves B pointwise fixed. Lemma 3.7 then implies that k is the
identity element of K and hence that g is in the fixed point set Gp of p. Again
using Lemma 3.7 we can conclude that Gp = K, since Gp is connected [2,
Theorem 7.2]. Therefore g G K, and Mp is connected, q.e.d.

Theorem 3.8 was also known to H. A. Jaffee.

4. Classification of real forms of Hermitian symmetric spaces

Let M be a Hermitian symmetric space, p a complex conjugation of A/, and
M p the fixed point set of p. If M is noncompact, then it follows from [6,
Theorem 9.2] that Mp is nonempty. However, when M is compact, Mp could
be empty. In fact, for a given irreducible compact Heπnitian symmetric
space, one can classify all its fixed point free complex conjugations (cf. [10,
§9.58]). Now let

M = Λf 0 X Λf, X X Mr

where Mo is Cm, and Λf7, / = 1, , r, are irreducible Hermitian symmetric
spaces. If Λfp is not empty, then and we can show without difficulty that it is
holomorphically and isometrically equivalent to

Mξ X Af{* X M*

where p,, i = 0, 1, , r, is a complex conjugation of Λf, such that its fixed
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point set Mf1 is not empty. The fixed point set of complex conjugation of Cm

is isometric to Rm and is connected. It follows from Theorem 3.8 that this is

also true for any irreducible Heπnitian symmetric space. Therefore we can

conclude that Mp, if not empty, is also connected. U$ing the classification of

real forms of irreducible Heπnitian symmetric spaces, we can easily obtain a

classification of real forms of all Hermitian symmetric spaces.
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