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EIGENVALUES OF THE LAPLACIAN
AND UNIQUENESS IN THE MINKOWSKI

PROBLEM

V. I. OLIKER

Introduction

Throughout this paper by a convex hypersurface in Euclidean space Em+ι,
m > 2, we mean a subdomain of a closed convex three times differentiable
hypersurface with strictly positive Gaussian curvature.

Let S' and S" be two convex hypersurfaces satisfying the following
conditions:

(a) they have a common spherical image ω on the unit hypersphere Σ; the
boundary of ω consists of a finite number of piecewise smooth (m — 1)-
dimensional manifolds homeomorphic to the (m — l)-dimensional sphere;

(b) the products of the principal radii of curvature of S" and S" have equal
values at the points with the same unit exterior normal;

(c) their support functions coincide on the boundary of the spherical image.
One of the versions of the well-known uniqueness theorem in the Minkow-

ski problem says that when S' and S" are closed (conditions (a) and (c) in
this case are omitted), they are equal up to a translation [7]. When S" and S"
are open, satisfy (a), (b), (c), and their spherical image ω is contained in a
hemisphere, Alexandrov [1] proved that the hypersurfaces coincide. In the
same paper he also conjectured that the uniqueness theorem fails when ω is
not contained in a hemisphere.

The purpose of this paper is to present the two following theorems.
Theorem A. Let S' and S" be two convex hypersurfaces satisfying condi-

tions (a), (b), and (c). Then, if ω is contained in a hemisphere or contains a

hemisphere, the hypersurfaces coincide.

Theorem B. There exists a domain ω on a unit hypersphere (neither contain-

ing nor contained in a hemisphere), such that two convex hypersurfaces having ω

as their spherical image and satisfying conditions (a), (b) and (c) may not be

translation equivalent.
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It is interesting to note that under boundary conditions different from (c),
the uniqueness theorem still holds. Namely, two results are known to us on
this matter. Stoker [8] considered convex surfaces of class C 3 in E3 with a
finite number of holes with the following property: each one is bounded by a
convex closed plane curve having continuous third derivatives such that the
plane of the curve is tangent to the surface all along the edge of the hole. He
has shown that such surfaces are uniquely defined (up to a translation) by the
product of the principal radii of curvature given as a function of the normal
to the surface.

Hsiung [4] has proved the following result: Let S" and S"' be two convex
surfaces of class C 2 with boundaries C" and C" in E3. Suppose that there is a
differentiable homeomorphism H of the surface S' onto the surface S" such
that at corresponding points the two surfaces S" and 5"' have the same unit
inner normal vectors and equal Gaussian curvatures. If the homeomorphism
H restricted to the boundary C is a translation carrying the boundary C"
onto the boundary C", then the homeomorphism H is a translation carrying
the whole surface S' onto the whole surface S".

The proofs of both Theorems A and B are based on the study of the first
two eigenvalues of an elliptic boundary value problem to which the unique-
ness problem for open hypersurfaces can be reduced. In its turn, this
boundary value problem is considered as a "perturbation" of an eigenvalue
problem corresponding to the uniqueness problem for convex closed hyper-
surfaces. The eigenvalues of the last problem are actually known.

Finally we wish to notice that in the case where m = 2, Theorem A was the
subject of our paper [6].

1. Preliminaries

In what follows we preserve the notation from the introduction. In addi-
tion, we use M1, w2, , um to represent local coordinates of a point Λ G Σ ,
and n also denotes the unit vector whose origin is at the center of Σ.

In this section, unless otherwise stated, it is not supposed that the hyper-
surfaces under consideration are convex.

Let F be a C 2 hypersurface in Em+ι defined as the envelope of an
/w-parameter family of hyperplanes with normal equations

rn = h(n),

where r is the position vector of F, and n is the unit vector of exterior normal
at the point r. The function h(n) determines F, and it is called a support
function of F. If the Gaussian curvature of F does not vanish, then h is of
class C 2 [3]. Let F be a hypersurface with nonzero Gaussian curvature, and
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let by and go(i,j = 1, 2, , m) be the second and third fundamental
tensors of F. The principal radii of curvature Rv R2, , Rm are the roots of
equation

det(^ + Rgy) = 0,

and

where b = det(^), g =
Since the components of the second fundamental tensor can be expressed

as -by = Vyh + goh, where Vyh are the second covariant derivatives of h in
metric gy on Σ we have

d t ( V ^ + gίJh).

Proposition 1. Let h\ b\j and h'\ by be the support functions and the second

fundamental tensors of hypersurfaces F' and F" of class C 3 . Suppose that F'

and F" have a common spherical image ω on the unit hyper sphere Σ, and their

products of the principal radii of curvature have equal values at the points with

the same unit normal. Then the difference h = h" — h' satisfies a linear

formally self-adjoint differential equation

g 1 = 1 9w \j=\ Vg 3M7 / g ιj=i

n G ω,

where

βϋ = Γ1 biJ(t)dt,

and biJ(t) is the cofactor of the element

fy(0-(i-0ty + 'ΛVe[0,i].

Proof. At first we show that h satisfies a linear differential equation

(2) \ Σ * W + ί̂ A) - 0.
In fact, this equation is implicitly contained in Alexandrov's paper [2],

where an analogous equation is derived under more general circumstances.

However, the particular form of this equation is of special importance to us.

Set

Φ(0
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Since F' and F" have equal products of the principal radii of curvature at the
points with the same unit normal, we have φ(l) — φ(0) = 0, and therefore

dφ(t)
dt = φ(l) - φ(0) = 0.

On the other hand,

Finally, putting

biJ= C biJ(t)dt,

and noting that

we obtain (2).
To show that (2) can be presented in the form (1), it is sufficient to show

that

du'XJZi V^ duJ) ijtx g

This follows from simple computations in combination with the Codazzi
equations. Hence the proposition is proved.

Proposition 2. Let S' and S" be two hypersurfaces as described in Proposi-
tion 1. If, in addition, S' and S" are convex hypersurfaces, then the operator
Δ + Q is defined and uniformly elliptic on the entire hypersphere Σ.

That Δ + Q is defined on Σ follows from the fact that 5" and S" are
subdomains of closed convex hypersurfaces. The other part of the proposition
is a well-known theorem, whose proof can be found, for example, in [2].

2. Proofs of Theorems A and B
In this section S' and S" are supposed to be convex hypersurfaces

satisfying conditions (a), (b), and (c) in the Introduction. Under these
hypotheses the question of whether 5" and 5" are translation equivalent or
not, reduces, by virtue of Proposition 1, to the question of uniqueness for the
following problem:

ΛΛ + Qh = 0, n E ω,

ΛL = 0.

It is easy to see that two hypersurfaces with the same support function always
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coincide except for two cases: when the spherical image is a hemisphere or

when it is a whole hypersphere. In the second case the hypersurfaces may

differ by a translation, and in the first case this translation is possible only in

the direction perpendicular to the hyperplane of the equator bounding the

hemisphere.

Because of Proposition 2, Δ + Q is defined everywhere on Σ, and we can

consider the following eigenvalue problems with respect to λ:

(3) Ah + XQh = 0, n G Σ;

(4) Ah + XQh = 0, n G ω,

(5) ΛL = 0;

(6) Ah + XQh = 0, n G Σ + ,

(7) Λ|ΘΣ+ = 0,

where Σ + is a hemisphere of Σ.

In the case where λ = 1, problem (3) corresponds to the classical Minkow-

ski problem for closed convex hypersurfaces, and it is known (see, e.g., [7])

that λ = 1 is an eigenvalue of multiplicity m + 1. The appropriate normalized

eigenfunctions are the components of the unit vector n. Obviously, λ = 0 is

an eigenvalue of (3) of multiplicity 1 with eigenf unction h = 1. We inter-

polate linearly between (3) and the equation V2Λ + Xmh = 0, n G Σ, where

V2 is the Laplacian on Σ. Since eigenvalues depend continuously on the

parameter of interpolation, it follows that λ = 0 and λ = 1 are the first and

the second eigenvalues throughout the interpolation. Now we observe that

λ = 1 is an eigenvalue for the problem (6), (7), and the corresponding

eigenfunction is positive. (In a suitably chosen spherical coordinates

#i> #2> * * ' > #m> - f < θk < f > k < m ~ 1> ° < θm < 27Γ> t h e eigenfunction is

sin θλ.) From this follows [5] that λ = 1 is the first eigenvalue, and a simple

one. If co c Σ + , then, because of continuous monotonicity of the eigenvalues

of a self-adjoint elliptic operator [9], the first eigenvalue λ of the problem (4),

(5) is greater than 1. For the same reason, when ω D Σ + , ω φ Σ, the first

eigenvalue of (4), (5) is greater than zero but less than 1, and Theorem A

follows.

Now let TV and S be the endpoints of a diameter of the hypersphere Σ, and

let B%t and B% be open w-balls in Σ with centers N and S and radii ε and 8

respectively. Let ωδ = Σ \ (B^ u B$), and let λ! be the first eigenvalue of the

problem (4), (5) for ω = ωδ. Since the first eigenvalue for problem (3) is zero, ε

and δ can be selected sufficiently small so that Xx < 1. By increasing 8 until

Bς becomes a hemisphere we obtain Xγ > 1 (Theorem A). Therefore there

exists a 8 such that λ! = 1 when ω = ωδ. The corresponding eigenfunction
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does not represent a parallel translation, since a function h — en, where c is a

constant vector =^0, cannot be a solution of (3), (4) in ω. Thus we obtain

Theorem B.

3. Conclusion remarks

1. As it can be seen from the proof of Theorem B, the domain ω is of a

"belt" shape and contains the equator of the hypersphere. Note that similar

to the proof of Theorem A one establishes uniqueness in the domains either

containing or contained in the domain ω from Theorem B.

2. In Theorem B we were unable to indicate the domain ω explicitly; only

the existence has been proved. However, it can be shown, as in [10], that

when the operator Δ = V2 and Q =m, the boundary of ω is defined by the

equation (in the spherical coordinates introduced in the Proof of Theorem A),

(8) sin θx ί c o s 1 " ^ ! siτΓ2θι dθι = 0.

In the particular case, where m = 2, this equation becomes

sin0! lntanί--yj = -1.

The hypothesis is that in the general case of operator Δ + Q the domain ω is

defined by the same equation (8).
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