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1. Introduction

Let M be a connected Kaehlerian manifold of complex dimension n
covered by a system of real coordinate neighborhoods {U; xh}9 where, here
and in the sequel the indices h, i,j, k, . . . run over the range (1, 2, . . . , 2n),
and let gβ, Ff, {/,}, V, , Kkβ

H, Kβ and K be the Hermitian metric tensor, the
complex structure tensor, the Christoffel symbols formed with gJi9 the opera-
tor of covariant differentiation with respect to {/,}, the curvature tensor, the
Ricci tensor and the scalar curvature of M respectively.

A vector field υh is called a holomorphically projectiυe (or H-projectiυe, for
brevity) vector field [1], [2], [5] if it satisfies

(1.1) £,{/,} = V V y + vkKk/ = Pjδ? + P | β/ - p,F/F* - PeF'Fjh

for a certain covariant vector field pj on M called the associated covariant
vector field of υh, where tΌ denotes the operator of Lie derivation with
respect to t>\ In particular, if py is the zero-vector field, then vh is called an
affine vector field.

When we refer in the sequel to an if-projective vector field vh

9 we always
mean by py the associated covariant vector field appearing in (1.1).

In the present paper, we first prove a series of integral inequalities in a
Kaehlerian manifold with constant scalar curvature admitting an if-projec-
tive vector field, and then find necessary and sufficient conditions for such a
Kaehlerian manifold to be isometric to a complex projective space with
Fubini-Study metric.

In the sequel, we need the following theorem due to Obata [4]. (See also

[3].)
Theorem A. Let M be a complete connected and simply connected

Kaehlerian manifold. In order for M to admit a nontrivial solution φofa system
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of partial differential equations

(1.2) VjViΨh + ̂ (2ψjgih + Ψigjh + φhgβ - FβFh

sφs - FJhF^s) = 0

with a constant c > 0, where φh = Vhφ and Fβ = Fjgti> it is necessary and

sufficient that M be isometric to a complex projective space CP with Fubini-

Study metric and of constant holomorphic sectional curvature c.

We assume in this paper that the Kaehlerian manifold under consideration

is connected.

2. Preliminaries

Let M be a Kaehlerian manifold of complex dimension n. The complex

structure tensor F/1 and the Hermitian metric tensor gβ satisfy

(2.1) FfFj = -δ/, VjFt

h = 0, VjFih = 0,

(2.2) Fj% + Ft

sgjs - 0.

(2.2) is equivalent to

(2.3) gβ - Fj%sgts = 0.

We have [5], for the curvature tensor Kkβ

h,

(2-4) Fs

hKkj° - F*Kkjs

h = 0,

or equivalently

(2-5) Kk/ + F/FfKy? = 0,

(2-6) Fh*KkJis + FfK^ = 0,

or

(2-7) KkJih - F/F^ = 0,

where KkJih = Kkji'gιh.

Using (2.4) and the identity

V
we obtain

where g7' are contravariant components of gβ and Fts = g1^5, that is,

(2.8) Fs%
s = - ^ % / ,

from which it follows that

(2-9) F/K^ = -\F»Kkjih.
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For the Ricci tensor Kβ, from (2.8) we have

(2.10) FfK? - Fs%
s - 0,

or equivalently

(2.11) K* + F/F/Jζ' = 0.

Similarly, from (2.9) we have

(2.12) F/Ksi + F'K,, = 0,

or equivalently

(2-13) Kβ - Fj'Ffa = 0.

A vector field uh on M is said to be contravariant analytic if

(2.14) F/V,u, + FFjU, = 0,

or equivalently

(2.15) vjU, - F;F°V,US = o,

where «, = g,A«A Since

£ U /; Λ = -F,'V,«* + F/V,«' - - ( F / V Λ + F,'VlU,)g*,

a vector field MΛ on M is contravariant analytic if and only if

(2.16) £ W ^ Λ = 0

holds, where tu denotes the operator of Lie derivation with respect to uh. It is

known [5] that if M is compact, then a necessary and sufficient condition for

a vector field uh on M to be contravariant analytic is that

(2.17) VJVjUh + AjV = 0

holds, where Vy = gβVr

For an //-projective vector field vh on M defined by (1.1), we have

(2.18) VjVy = 2(Λ + l)p;,

(2.19) V'V ϋ* + A;\?' = 0.

(2.18) shows that the associated covariant vector field pj is gradient. Putting

(2.20) » = 2(Λϊ) V '

we have

(2.21) Pj=Vjp.

If an H-projective vector field vh on M is contravariant analytic, then
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substituting (1.1) in the well-known formula [5], [6]

and using a straightforward computation we find

(2.22) ec V = -δ*V,Pl. + {

from which by contracting with respect to h and k we obtain

(2.23) tΌKβ = -2nVjPi - IF'F'Vt9s.

A Kaehlerian manifold M has the constant holomorphic sectional curva-

ture k if and only if

(2.24) Kkβ

h = | ( β * ^ - δfgki + Fk% - FjhFki - IFyF*).

We define tensor fields Gβ and Zkβ

h on M by

(2-25) Gj, = Kβ- £gji,

respectively. We then easily see that the tensor fields Gβ and Zkβ

h satisfy

(2.27) Gβ = Gy, GJigt' = 0, ZtJi' - Gy ί,

(2.28) Z Λ y ϊ A = -Zjkih, Zkβh — Zihkp

(2.29) Zk/ + Zikj

h + ZJik» = 0,

where Zkβh = Zkβgth. If G,7 = 0, then M is a Kaehler-Einstein manifold and

K is a constant provided n > 1 if Z^7

Λ = 0, then M is of constant holomor-

phic sectional curvature K/n{n + 1) provided n > 1.

3. Lemmas

In this section, we prove some lemmas which we need in the next section.

Lemma 1. If an H-projective vector field vh on a Kaehlerian manifold M of

complex dimension n > 1 is contraυariant analytic, then the associated vector

field ph is also contravariant analytic, and

(3.1) tvKβ = -2(n + l)V,ft,

where ph = fig*.
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Proof. Applying the operator tv of Lie derivation with respect to vh to

both sides of (2.13) and using £ojr* = 0, we have

from which together with (2.23) we see that ρΛ is contravariant analytic and

(3.1) holds.

Lemma 2. If a Kaehlerian manifold M is compact, then an H-projective

vector field υh on M is contravariant analytic, and consequently £„/*)* = 0.

Moreover, ifn>\, then the associated vector field ph is contravariant analytic.

Proof of this lemma is easy and therefore omitted.

Lemma 3. For a contravariant analytic H-projective vector field vh on a

Kaehlerian manifold M with constant scalar curvature K of complex dimension

n > I, we have

(3.2) ZvGβ = -V,*v,. - V,.w,,

where we have put

(3.3) w * - ( ι i + l ) p * + ^f,\

andwi = gihw
h.

Proof This follows from (2.25), (3.1) and the fact that py is gradient, that

is, pj = Vjp.

Lemma 4. For an H-projective vector field vh on a compact Kaehlerian

manifold M, we have

(3.4) / pfdV = - J f tJdV
JM 2{jι + 1) JM

for any real function f on M, where dV denotes the volume element of M, and p

is the function defined by (2.20).

Proof This follows from (2.20) and

0= ί V.(fv

i)dV= f fViυ
idV+ ί v

JM JM JM

Lemma 5. In a compact Kaehlerian manifold M, we have

f tDfh dv-f tDjdv = f (v/w'h) dv
JM JM JM

(3-5)
= - I fAhdV=-\ hAfdV
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for any real functions f and h on M, where HDj denotes the operator of Lie

derivation with respect to the vector field Vf, and Δ = g*ιVjV r

Proof This follows from

0 - ( VX/V'A) dV = f (VJ)(Ψh) dV+ f /ΔA dV,
JM JM JM

0= f vi(hvif)dv = ί (v,*)(vjr) dv + f
JM JM JM
JM JM JM

Lemma 6. If, in a compact Kaehlerian manifold M, a nonconstant function
φ satisfies

(3.6) V,V/φΛ + ±(2φjgih + φigjh + φΛgy/ - ^ ^ ' φ , " F^Ffa) - 0,

φΛ =VΛφ, c teng α real constant, then the constant c is necessarily

positive.

Proof. Transvecting (3.6) with g'\ we have

VyΔφ + (n + l)cψj = 0,

from which and Lemma 5 it follows that

cf Ψy dV = - — j — f (V,ΔφV dV = —l-j- Γ (Δφ)2 rfK,

where cp7 = g^φ Since φ is a nonconstant function, two inequalities

Γ φ y dV > 0, Γ (Δφ)2 </F > 0

hold, and consequently C is necessarily positive.

Lemma 7. // a Kaehlerian manifold M with constant scalar curvature K

admits an H-projective vector field vh, and the vector field wh defined by (3.3) is

a Killing vector field, then the associated covariant vector field pj satisfies

(3.7) V,V/ftk + 4 w ( / | * + 1 } (2Pjgih + PigJh + phgji - FβFk'Pl - FJhF°ps) = 0.

Moreover, if M is complete and simply connected, K is positive and vh is

non-affine, then M is isometric to a complex projective space CPn with

Fubini-Study metric of constant holomorphic sectional curvature K/n(n + 1).

Proof By using (1.1) we have

(3.8) V y (V Λ + VAι%) = 2pjgih + pigjk + phgβ - FβFh

sps - FJhF*ps.

If wh is a Killing vector field, then

V/WA + V Λ W / = 0
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holds, and consequently

which together with (3.8) implies (3.7). The second part of the lemma follows

from Theorem A.

Remark. Using Lemma 6 we see that in Lemma 7 if M is compact, then

we can remove the positiveness of the scalar curvature K.

In the following Lemmas 8, . . . , 15, Λf is a compact Kaehlerian manifold

of complex dimension n > 1 with constant scalar curvature K, and vh is an

//-projective vector field on M.

Lemma 8. For a vector field vh on M we have

(3.9) f (V^ + V >v,)( W + VV) dV=l( (V,w>')2 dV.

Proof. By using a well-known integral formula [5], [6] on a compact

orientable Riemannian manifold, we have

f (ψVjwh + A;V)WA dv- ί (vy)2 dv

dv - °^Ji >M )
Λ

On the other hand, by Lemma 2 the associated vector field pΛ is con-

travariant analytic and hence satisfies
h + *,V = 0.

Consequently (3.9) follows immediately from (2.19) and the above relations

since K is a constant.

Lemma 9. For a vector field vh on M we have

(3.10) Γ Gj^w* dV = \ f (VjW; + V.W X W + VV) dV.

Proof. From Lemma 2, the associated vector field pΛ is contravariant

analytic and hence satisfies

V'V/ + K/p* = 0,

from which and the equality

V , V , p ' - V ' V Λ - V

we find

V,.V,p' = -2A,y.
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Using the above equation, (2.18), (2.25), (3.3) and Lemma 8, we have

ĉ V dv = -Ifjπwtv - ̂ E-^jjy^)^ dv

J > ^ > ' d v = 2 < ϊ τ π L{v'w>)2 dv

w > dv

Lemma 10. For a vector field υh on M we have

(3.H)

ϊ r Γ (V#wf + V,w,)(W + VV)
/z + I)2 V y y / VI)

Proof. From (2.25) and (3.3), we have

(3.12) / Gjfifa* dV=(n+l)[ Gj^pi dV + ̂ -\ G^v* dV.
JM JM ±n JM

On the other hand, using the identities Gβg*' = 0 and

(3.13) l λ

and integrating

VJ(fiGβt>') = Gjfiiυ1 + ̂ pGj^V + VV)

over M, we find

Γ G,,yt/ dV=-\( p(£ΌGβ)gJi dV,

which implies, in consequence of Lemma 4,

(3.14) f GβPh' dV = ^

By (3.10), (3.12) and (3.14), we readily obtain (3.11).

Lemma 11. For a vector field vh on M we have

(3.15) ί (ΨtGΛw1 dV=\[ (VΛV. + VΛΛXW + W ) t/K.
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Proof. Integrating

over M and using (3.2), we obtain (3.15).

Lemma 12. For a vector field vh on M we have

(3.16)

/V00/. Substituting (1.1) in the well-known formula [5], [6]

WkGβ -V&Gjt - Gs£Ό{k

sj} - GJstv{k%}

and using FkjG
hj = 0 and

Fk*Gsj + F/Gt, = 0,

which follows from (2.2), (2.12) and (2.25), we have

8*WkGβ = 8*1 M - 2Gβ9f9

and therefore

[ 8"(£9VkGjiW dV-f (Ψ'tvGjw* dV-lf Gj^w* dV.
JM JM JM

(3.16) follows from (3.10), (3.15) and the above relation.

Lemma 13. For a vector field vh on M we have

(3.17) f £„[(£„<*)<?*] </K = - / (V,w(. + V,,v,)(VV + VW)

/. Using (3.2) and (3.13) we have

Integrating this over M and using Lemmas 4 and 9, we arrive at (3.17)
immediately.

Lemma 14. /br a contravariant analytic vector field vh on M we have

(3.18) {tvZk/)gji = - ^ h " ( * X + *V)

(3.19) (e o Z
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Proof. Using (2.16), (2.22) and (2.26), we have

tϋZk/ = -δk

hVjPi + β/Vrf, + Fk

h(VjpM)F'

-FJ

hFk'Z9gtl-2Fk'{ZΌgξ,)Fi

h].

Using this relation, (2.1), ,(2.13), (2.25), (2.26), Lemma 3 and con-

travariant analyticity of vh and ρΛ, we obtain (3.18) and (3.19) by a straight-

forward computation.

Lemma 15. For α vector field υh on M we have

/ j ( , v ) J dv

(3.20) "

. This follows from (3.17) and (3.19).

4. Propositions

In this section, we prove a series of integral inequalities and obtain

necessary and sufficient conditions for a Kaehlerian manifold to be isometric

to a complex projective space.

Proposition 1. A complete simply connected Kaehlerian manifold M of

complex dimension n > 1 with positive constant scalar curvature K admits a

nonaffine and contravariant analytic H-projective vector field vh such that

(4.1) £„<?,, = <),

if and only if M is isometric to a complex projective space C P with Fubini-

Study metric and of constant holomorphic sectional curvature K/n(n + 1 ) .

Proof. This follows from Lemmas 3 and 7.

Remark. In Proposition 1 if M is further compact, then by Lemmas 2 and

6 we can remove the contravariant analyticity of /ί-projective vector field vh

and the positiveness of scalar curvature K. The same remark applies to the

following Proposition 2.

Proposition 2. A complete simply connected Kaehlerian manifold M of

complex dimension n > 1 with positive constant scalar curvature K admits a

nonaffine and contravariant analytic H-projective vector field vh such that

(4.2) tυZkβ" = 0,
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if and only if M is isometric to a complex projective space CP" with Fubini-

Study metric and of constant holomorphic sectional curvature K/n(n + 1).

Proof. If (4.2) holds, then from (3.18) we have Vtw* = 0 and hence wh is a

Killing vector field. Consequently the proposition follows from Lemma 7.

Remark. In Proposition 2, (4.2) can be replaced by

(4.3) (e^V = o.

In the following Propositions 3, , 8, we suppose that a compact Kaeh-

lerian manifold M of complex dimension n > 1 with constant scalar curva-

ture K admits an //-protective vector field vh.

Proposition 3. For M we have

(4.4) f G«pV dV > 0,
JM

where wι is defined by (3.3). Assume moreover that M is simply connected and

vh is nonaffine, then the equality in (4.4) holds if and only if M is isometric to a

complex projective space CP" with Fubini- Study metric and of constant holo-

morphic sectional curvature K/n(n + 1).

Proof. This follows from Lemmas 7 and 9.

Proposition 4. For M we have

,4.5)

Assume moreover that M is simply connected and vh is nonaffine, then the

equality in (4.5) holds if and only if M is isometric to a complex projective space

CP" with Fubini-Study metric and of constant holomorphic sectional curvature

K/n(n + 1).

Proof. This is an immediate consequence of Lemmas 7 and 10.

Proposition 5. For M we have

(4.6) f (ΨtΌGJi)widV>09

where w' is defined by (3.3). Assume moreover that M is simply connected and

vh is nonaffine, then the equality in (4.6) holds if and only if M is isometric to a

complex projective space CP" with Fubini-Study metric and of constant holo-

morphic sectional curvature K/n(n + 1).

Proof. This follows from Lemmas 7 and 11.

Proposition 6. For M we have

(4.7)
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where wι is defined by (3.3). Assume moreover that M is simply connected and

vh is nonaffine, then the equality in (4.7) holds if and only if M is isometric to a

complex projective space CF 1 with Fubini- Study metric and of constant holo-

morphic sectional curvature K/ n(n + 1).

Proof. This is an immediate consequence of Lemmas 7 and 12.

Proposition 7. For M we have

(4.8) /

Assume moreover that M is simply connected and vh is nonaffine, then the

equality in (4.8) holds if and only if M is isometric to a complex projective space

CPn with Fubini-Study metric and of constant holomorphic sectional curvature

K/n(n + 1).

Proof This is an immediate consequence of Lemmas 7 and 13.

Proposition 8. For M we have

(4.9) fM βo{(βoZw*)Z*»Λ} dV < 0.

Assume moreover that M is simply connected and vh is nonaffine, then the

equality in (4.9) holds if and only if M is isometric to a complex projective space

CP* with Fubini-Study metric and of constant holomorphic sectional curvature

K/n(n + 1).

Proof. This follows from Lemmas 7 and 15.
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