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MAPPINGS OF ALMOST HERMΓΠAN
MANIFOLDS

SAMUEL I. GOLDBERG & ZVI HARΈL

1. Introduction. The concept of a mapping of bounded dilatation recently
introduced [4] is more general and natural than that of a quasiconformal
mapping. Let M and N be Riemannian manifolds, and let /: M —> N be a
mapping of bounded dilatation of order K. When / is also harmonic, the
principal result in [4], namely, Theorem 5.1, may be extended to complete
manifolds M with nonpositive sectional curvature. (Theorem 5.1 says, in
particular, that for an open m-ball Bm with the Poincare metric and an
^-dimensional Riemannian manifold N whose sectional curvatures are
bounded above by a negative constant, if/: Bm -» N is a harmonic mapping
of bounded dilatation, then / is distance-decreasing up to a constant.)
However, these generalizations are concerned only with the Riemannian
structures of M and N as C0 0 manifolds. When these give rise to more rigid
structures, e.g., when both M and N are hermitian, or, more generally, almost
hermitian manifolds, and /: M —»N is an almost complex mapping, then it
turns out that / is of bounded dilatation. In addition, if the hermitian
structures are suitably restricted (see Theorem 2) in a sense to be described in
§2, / is also harmonic. It is therefore of interest to ask for the almost
hermitian extensions of the Schwarz-Ahlfors lemma. Typical of the results
obtained is the following generalization of a theorem due to S. S. Chern [2].

Theorem 1. Let f: M —»N be an almost complex mapping of In-dimen-

sional almost hermitian manifolds. Suppose M is a complete Kaehler manifold

with nonpositive sectional curvature. If the scalar curvature of M > -S, and the

Ricci curvature of N < -S/2n, where S is a positive constant, then f is

volume- decreasing.

Note that the sectional curvatures of a manifold of constant negative
holomorphic curvature c lie between c and c/4, and that a complete simply
connected m-dimensional Kaehler manifold of constant negative holomor-
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phic sectional curvature is biholomorphic with an open ball in C 1 . This is the
case dealt with in [2],

For more general domains, we have the following.
Theorem 2. Let M be a 2m-dimensional complete almost semi-Kaehler

manifold with nonpositiυe sectional curvature whose Ricci curvature is bounded

below by a negative constant -A, and let N be a 2n-dimensional quasi-Kaehler

manifold whose sectional curvature is bounded above by a negative constant -B.

Iff is an almost complex mapping of M into N, then (i) / is distance-decreasing

if B > Ak2/2, where k = min(2w, 2n), and (ii) in the equidimensional case, f is

volume-decreasing provided B > mA.

For almost Kaehler manifolds, we have the following.
Corollary. Let M be as in Theorem 2, and let N be a 2n-dimensional almost

Kaehler manifold whose holomorphic bisectional curvature is bounded above by

a negative constant -2B. If f is an almost complex mapping of M into N, then

the conclusions (i) and (ii) hold.

In §2, the canonical connection of an almost hermitian manifold is intro-
duced, and the definitions of a quasi-Kaehler and almost semi-Kaehler
manifold are given. In §3, a formula for the Laplacian of the ratio of volume
elements of M and N in the equidimensional case is derived which resembles
that obtained in [2] for hermitian manifolds. The proof of Theorem 1 is given
in §§4 and 5 by a method involving a conformal deformation of the hermitian
metric. In the concluding section, a distortion theorem is given when the
domain is not necessarily a Kaehler manifold.

2. The canonical connection. Let M be a 2/i-dimensional almost hermitian
manifold with (hermitian) metric g and almost complex structure /. An
hermitian connection on M is a connection in the bundle U(M) of unitary
frames on Λf, that is, a linear connection which is both metric (g is parallel)
and almost complex (/ is parallel). The existence of such a connection is
assured by the general theory of connections in principal bundles.

Let Γ be an hermitian connection on Λf, and let ω = (ωj) be its connection
form on ί/(Λf ). We denote by Θ = (Θ1) and Ω = (Ωj) the corresponding
torsion and curvature forms on U(M). Finally, let θ = (θ') be the canonical
form on U(M). Then the following structural equations hold:

(1) </0 = -<oΛ0 + Θ,

(2) dω = -ω Λ <*> + Ω

Any other hermitian connection f has a connection form ώ related to ω by

ώj = ωj + ajkθ
k + bjkθ

k, θk = 1*,



MAPPINGS OF ALMOST HERMITIAN MANIFOLDS 69

where the ajk and bjk are complex-valued functions on U(M), and ajk + b(k =
0 since ω and ώ are both skew hermitian. (The summation convention is used
here and in the sequel.) These functions are chosen so that bjfl /\ θk is the
part of Θ1 of bidegree (1,1). The following statement therefore follows (see
also [9]).

Proposition 1. There is a unique hermitian connection with a pure torsion
form θ, that is, θ u = 0.

This connection is called the canonical connection of the almost hermitian
manifold M. It was introduced by S. S. Chern [1] in the hermitian (integrable)
case. The property θ l f l = 0 is expressible in terms of the torsion tensor T by
T(X, JY) = T(JX, Y) for any vector fields X and Y on M.

Proposition 2. The torsion form of the canonical connection on M is of
bidegree (2,0) if and only if M is hermitian.

Proof. The almost complex structure is integrable if and only if d /\ I>0 c
Λ 2'° © Λ U> where /\p'q is the module of forms of bidegree (/?, q) on Λf.
Let φ be a form of bidegree (1,0) on U(M). Then φ = φfi* and

dφ = (dφi - φjω{) Λ & + φj&.

Hence (dφ)02 = Φ7®o,2> a n c * ^ s ^s z e r o ^ a i κ * OΏty ^ ^ e (̂ »̂ ) part of the
torsion form vanishes.

The torsion forms are closely related to the exterior differential of the
Kaehler form Φ (viewed as a tensorial form on U(M)). We have, using (1),

φ = iθk
 Λ θk, i = λ ^ ϊ ,

dΦ = i(-ωk Λ V + ®k) Aθk- iθk Λ (~ω/ Λ & + θk)

= -/(ω/ + ωjQ Λ β17 Λ 0* + «(®* Λ ** - 0* Λ θ*)>

so that

(3) rfΦ = /(©^ Λ ^ - θ f c Λ oky

Separating (3) by bidegrees and recalling that θ u = θ u = 0, we have

(4)

(5)
An almost hermitian manifold M is called quasi-Kaehlerian if 9Φ = (dΦ)ι2

vanishes. (Here 9ψ = (dψ)p+hq and 3ψ = (dφ)Ptq+ι for a form ψ of bidegree
(p, q)). M is called almost semi-Kaehlerian if Φ is co-closed. It is known (cf.
[5]) that a quasi-Kaehler manifold is also almost semi-Kaehlerian.

Proposition 3. The torsion form of the canonical connection on M is of
bidegree (0,2) if and only if M is quasi-Kaehlerian.
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If (dΦ)03 is also zero, M is almost Kaehlerian and we can use (3) to

characterize M directly.

Proposition 4. Let Θ be the torsion form of the canonical connection on an

almost hermitian manifold M, and let θ be the canonical form on U(M). Then

(i) M is almost Kaehlerian if and only if & /\θ* = 0, and (ii) M is Kaehlerian

if and only if θ = 0.

The second part of this proposition is well known.

3. The Laplacian of the ratio of volume elements. Let M be a 2/2-dimen-

sional almost hermitian manifold with the canonical connection of §2. For

the sake of convenience, we make the discussion local by fixing a local

section of U(M), and pulling the various forms back to a neighborhood in Λf.

All the formulas above still hold locally. In particular, {θ1} is the coframe

dual to the chosen unitary frame field. The covariant differential V defined

by Γ is given by

V01 = -ωj ® 9J.

For a complex-valued function u on M, we can write

where /* = / + n9 and

Ψu = dut ® 01 - 14,1*} ® θj ^

= (dut - Ujωj) ® θi

= (uyθ> + uϋJ
J) ® 01 + ( M I V ^ + W / v # ) ® d1 (say),

where the uAB, A,B=l,...,2n, are given by

Ui+jP + UpjJP = dup

Since du = M^' + 1/,- ff', the structural equation (1) gives

0 = rfM| Λ 0i' - Ugωj Λ ΘJ + W/Θ1 + rfw/# Λ ^' - W/ ω/ Λ & + W/ Θ

= (rfw,. - ujω{) Λ ^' + W/Θ1 + (dup - Uj ωj) Λ ^ + ",.©'

= ( ^ + uy ffl) Λ β1 + ttSrθ' + [urjV + W / . 7 > ) Λ 0' + w/ θ1'.

Comparing bidegrees we obtain

u^Ψ A 0* + uiVθ
J Λ θ* = 0,
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SO

Therefore the Laplacian of u is

(6) Δu = gΛBuAB = 2g«'uy. - 2u,,...

Since du = (du)l0 = 14 01', and

the Laplacian may be computed from the components of the complex hessian
of w,

(7) 39M = -ddu = urd
l Λ &.

Let JV be another almost hermitian manifold of the same dimension 2n,
and let /: M -» N be a C °° mapping. We fix a local unitary frame field on N,
and denote by θ' = (θ'a), Θ' = (Θ/α), ω' = (ω'£) and S2' = (Ω'£) the pullbacks
by/" of the forms corresponding to 0, θ, ω and Ω on Λf. Let {^α} be the
induced unitary frame field in the induced bundle f~ιTι'°(N). Then/is almost
complex if and only if its differential maps tangent vectors of bidegree (1,0) to
tangent vector of the same bidegree. It is therefore given by

Λ = A, ® »'•
Denoting by V the covariant differential operator on f~ιTι'0(N)-vahxed

forms induced by the canonical connections in M and N, we have

θ1

%-&) ® θ > ( s ay)

Taking the exterior derivative of θ'α = f?θ' and using (1), we obtain

-ω'β

α Λ θ" + Θ'« = df° Λ 0' + Xα(-ω/ Λ ^ + &),

that is

(<«" + fM% - J5"*^) Λ «' + tf& - θ'« = 0

from which

(φι + jμi) Λ β' + j?& - &α = o.

Comparing bidegrees we see that

jμi Λ θ' = o,

from which

(8) fζ. = 0.
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Put D = det(^α), and u = \D\2 = DD. The latter is the ratio of the volume

elements,/15 VN/ VM. Let Dl

a denote the cofactor of f? in D. Then

(9) dD = Didfr - D'ASIP+J5"«/ - Λ α )
Z>(ω/ - ω?)

/ > ( « / - « ? ) (say).

Since ω/ and (*£* are pure imaginary,

du = 2>Dytf> + D ^ ^ , 3M = 2)Z),0>.

Taking the exterior derivative of (9) and using the second structural equation

(2) we obtain

0 = d(DjθJ) + dD/\ (ω/ - ω?) + Λ/(ω/ - ω^)

= d(DjθJ) + Djθj Λ («/ - O + i)(Ω; - Ω-),

so that

0 = Dd(DJθ
J) + Djθj Λ (A^ 1 - dD) + w(Ω;. - Ω;α)

= d{DDjθj) + Z)y.^ Λ A»' + W(Ω; - Ω^α).

Hence

d(du) = z ) ^ . ^ Λ θi - «(Ω;. - Ω;α).

Comparing bidegrees yields

ΘΘM = DiDjfr Λ Θ* - "(Ω;: - n;β) l f l.

But (Ωj)lfl = Rjkι*θk Λ #'> where the functions i^ c z > are the components of
the curvature tensor. Hence

(ΩJX, = R'ikl.θ
k

 Λ θ' = Λ ^ β * Λ β1,

where Rkl+XkXι/gkl*XkXι is the ΛICCI curvature in the direction of the tangent

vector X. Using (7) we have

ΉrV Λ θi = D^ΘJ A θi + u(Rij^ Λ β' - f?ffKβ*& Λ β'),

from which it follows that

UiJ. = D,Dj + u(Ry. - f?ffR^.).

Thus

Δ« = 2DtDt + u(R - ififKp),

where R = 2Rii* is the scalar curvature of Af, and

(10) Δ log u = R -
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for u > 0, that is, at those points where / is locally one-to-one. In the
hermitian case, this formula was obtained by Chern [2].

If the Ricci curvature of N is not greater than -S/2n, S > 0, then

so that

(11) Δlogw > # + Suι/n.

4. Conformal changes of the hermitian metric. Let Λf be a 2/z-dimensional
almost hermitian manifold with hermitian metric g. Then g = e2σg is also an
hermitian metric on Λf for any smooth real-valued function σ on Λf. Let {01}
be a (local) unitary coframe on (Λf, g). Then {01}, 0' = eσ0', is a unitary
coframe on (Λf, g). Denote by 0, ώ, Θ and Ω the analogues for (Λf, g) of the
forms 0, ω, θ and Ω, respectively, on (Λf, g) defined in §2. Then

(12) θ = e°θ.

Hence, from (1),

Θ = dθ + ώ Λ #

= e°dσ Λ θ + eσ(θ - ω Λ 0) -h eσώ Λ^

= eσ[Θ + (ώ -ω) Λ θ -I- Jσ Λ θ].

Put ώ/ - ω/ = ajkθ
k - a{kθ

k and do = σkθ
k + σΛ0Λ. Then

e-°& = Θ' + (ajkθ
k - άjkθ

k) Λ ^ + (okθ
k + σ Λ ^) Λ θ*.

Comparing bidegrees we see that

a{kθ
k A ΘJ - δkθ

k Λ 0* = 0,

from which it follows that

Θ1 + 2σ*0* Λ 0*.

Therefore

ώj

Setting dcσ =

mulas as

(13)

(14)

J J k

i(dσ — θσ) =

* -

ώ

δjδj

θk-

= ω

) = Θ

\<

+

θk) we

idcσl,

Ida A

where / is the identity matrix.
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For the curvature forms, from (2) we have

(15) Ω = dώ + ώ Λώ = dω + iddcσl + ω Λ ω = Ω + iddcσl.

Comparing bidegrees yields

(16) Ω u = Ω l f l - 293σ/,

or, in terms of components,

el°Rjkl* = Rjkl* ~ 28jσkl >

kl*θk Λ θι Twhere 3θσ = σkl*θk Λ θι. Thus, for the Ricci tensors,

e2°Rki* = Rki* ~ ki>

and, for the scalar curvatures,

(17) e2σR = R - 2ΛΔσ.

(The last formula is simpler than its Riemannian analogue.)

5. The volume-decreasing theorem. Let M be a complete simply connected

Λ-dimensional Kaehler manifold of nonpositive sectional curvature. We ex-

haust M by a sequence of relatively compact open submanifolds Mp = {p G

M\τ(p) < p}, where τ(p) is the Riemannian distance of p from a fixed point

in M, that is, M = U p < 0 0 Mp. Endow Mp with a metric g conformally

related to g, namely,

g = e2v>g, where v = log — - — - .
p 2 - τ 2

By (17), the scalar curvature R of (Mp, g) is given by

R = ̂ "2t?"(Λ - 2nAvp)

where we have used the identity

p dτ dτ2

Suppose now the scalar curvature of M satisfies R > - 5 , where S is a

positive constant. Since M has nonpositive sectional curvature, its Ricci

curvature is also bounded below by -S. (Note that by Proposition 4, the

canonical connection is the Riemannian connection.) Let S = (2n — \)κ2.

Then (cf. [7])

0 < TΔT < (2Λ - l)/cτ coth KT < {In - \)κp coth fcp.
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Hence

where εp is a real-valued function on Mp satisfying

0 < εP < ^7 [ V + ( 2* " ι)*f>3 c o t h * P ] "

as p -^ oo. Therefore, for every ε > 0, we have

(18) R > -S - ε

on Mp for sufficiently large p.

Let / be as in Theorem 1, and let /: Mp -» N be its restriction to Λfp.

Consider the ratio of volume elements

Since the function ύ is nonnegative and continuous on the closure of M p, and

zero on its boundary, it attains its maximum on Mp. If the Ricci curvature of

N is not greater than -S/2n, then, by (11) and (18),

A log ύ > R +Sύλ/n > S(ύι/n - 1) - ε.

At the maximum point x of M, Δ log ύ < 0, unless ύ is totally degenerate.

Hence ύ(x) < (1 + ε/S)n. Since this inequality obviously holds at all pointsp

ofΛ/p,

( 2

7 ^
Finally, letting p -» oo, and ε -> 0, we conclude that u < 1 thereby completing

the proof of Theorem 1.

Corollary 1. Let M be the open unit ball in Cm with the Poincare-Bergman

metric, and let N be an almost hermitian manifold of the same dimension. If the

Ricci curvature of N is not greater than -2(m + 1 ) , then every almost complex

mapping f: M —> N is volume-decreasing.

Corollary 2. Let M be a symmetric bounded domain with the Bergman

metric, and let N be an almost hermitian manifold of the same dimension. If the

Ricci curvature of N is not greater than - 1 , then every almost complex mapping

f:M-*N is volume-decreasing.

In both corollaries, M is an Einstein-Kaehler manifold with Ricci tensor

-2(m + \)g and -g respectively.
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6. Mappings of bounded dilatation. Let M and N be C 0 0 Riemannian
manifolds of dimensions m and n respectively, and let g and g* denote their
respective Riemannian metrics. Let/: Λ/-> TV be a C 0 0 mapping, and denote
by λjQ?) > λ2(/>) > > λ^/O > 0 the eigenvalues of JJj TpM-* TpM,
where % denotes the transpose of the mapping /„,. If there is a positive
number K such that for every/? E Λf, λ2(/>) < λj(/>) < K2λ2(p), then/is said
to be of bounded dilatation of order K. This notion is more general and natural
than that of a A'-quasiconformal mapping.

The norm \\A\\ of a linear mapping: A: V-> Wof Euclidean vector spaces
is defined by \\A\\2 = trace *AA. If r < min(w, n), A may be extended to the
linear mapping /\Ά: /\Ύ^ /\rW given by /\rA(υx A' ' ' Avr) = Avι

Λ ' * Λ^^Γ> where the t>, G F. Then

(19) IIΛ'/JI2- Σ \, \ ;
Kι'i< <iΓ<m

see [4]. Observe that || Λ7*ll bounds the ratio of r-dimensional volume
elements. In particular, for any X E TpM,

where {ω,}, i = 1, . . . , m, is the basis of covectors dual to an orthonormal
basis of eigenvectors of '/,/*. Thus f*(dsjf) < | | / J | 2 ds2

M, where dsM and dsN

are the distance elements defined by g and g*, respectively.
Let k = min(w, AZ). Then rank/+ < k. Hence, by (19),

(20) { | | A%\\2/(k

q)}l/q > ( | | A%\\2/(k

r)}l/\ ι < q < r < k ,

since || A %l| 2 i s Λe #th elementary symmetric function of λ1? . . . , λ̂ .
When / is of bounded dilatation of order K, there is an inequality in the

opposite direction, namely,

(21) ll/JI2

To see this, assume /+ φ 0. Then

I l / J 2 ^
(λ,λ2)

1/2
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Conversely, (21) implies that/is of bounded dilatation of some order. For,

HΛH2 Σ \ λ.

from which we have

,1/2

k)
When Λf and JV are almost hermitian manifolds, and /: Λf -» N is an

almost complex mapping, y ^ commutes with the almost complex structure /
of Λf. This implies that if X is an eigenvector of !/"„/„, then so is JX. Since A"
and JX are linearly independent, the eigenvectors of 'fj^ have multiplicity 2
at least, so, in particular, λx(j>) = λ2(/?) for all p G Λf. An important conse-
quence of this is given by

Proposition 5. An almost complex mapping of almost hermitian manifolds is

of bounded dilatation of order 1.

The following statement is an extension of the well-known fact that a
holomorphic mapping of Kaehler manifolds is harmonic in terms of the
corresponding Kaehler metrics.

Proposition 6 (Lichnerowicz [8]). An almost complex mapping f: M -* N,

where M is an almost semi-Kaehler manifold and N is quasi-Kaehlerian, is a

harmonic mapping.

Combining the last two propositions it is seen that an almost complex
mapping /: Λf -» N, where Λf and N are almost semi-Kaehlerian and quasi-
Kaehlerian, respectively, is harmonic and of bounded dilatation. It therefore
belongs to the class recently investigated by one of the authors [4].

7. A distance-decreasing theorem. In what follows, the almost complex
structures of Λf and N will be ignored. In fact, Λf and N will be C°°
Riemannian manifolds of dimensions m and n respectively. Proceeding lo-
cally, orthonormal moving frames {β1} in Λf and {0*α} in N are chosen. Let
fι M —»iV be harmonic. Then the components of/+ with respect to the above
frames are given by

f*θ*a =ffθ\

Assume Λf is complete and simply connected (otherwise, pass to its simply
connected covering), and has nonpositive sectional curvature. As in §5, we
exhaust Λf by means of the submanifolds Λfp with the identical conformally
related metrics.



78 SAMUEL I. GOLDBERG & ZVI H A R Έ L

Let / be the restriction of / to (M , g). Then it is shown in [3] that

II/JI = e ΊI/JI ^ a s a maximum on Mp. Furthermore, if the Ricci curva-
ture of M is bounded below by a negative constant -A, then there exists a
sequence of positive constants ε(p), which goes to 0 as p -» oo, such that

at the maximum point x of | |/J|2, where f? = e^# α , and the R^βyδ are the

pullbacks by/" of the components of the curvature tensor of N. On the other

hand, if the sectional curvatures of N are bounded above by a negative

constant -B,

(23) -KβyJΐffMΪ < -2*ll Λ 1112-
Combining (22) and (23) we get, at x,

(24) 25H Λ 2 Λ I I < μ + ε(p)}iιΛιι2.

If/is of bounded dilatation of order K, then from (21) and (24)

2B\\fJ* <{A+ ε(p)}k2K2\\fJ2

at x. Hence

H/JI2 < \k2K\A + e(p)}/B

everywhere in Mp. Since this inequality holds for every p and | |/J| -> | |/J| as

p—> oo

II/JI2 < \Ak2K2/B.

Applying the inequality (20), this implies the following distortion theorem for

intermediate volume elements, which is a considerable improvement of Theo-

rem 5.1 in [4].

Proposition 7. Let M be an m-dimensional complete Riemannian manifold

with nonpositive sectional curvature and with Ricci curvature bounded below by

a negative constant -A, and let N be an n-dimensional Riemannian manifold

with sectional curvature bounded above by a negative constant -B. Iff: M -^> N

is a harmonic mapping of bounded dilatation of order K, then
r A -

for any r, 1 < r < k = min(w, ή).

Corollary. Under the conditions of Proposition 7, (i) / is distance-decreasing

if IB > k2AK2, and (ή)fis volume-decreasing ij m = n andlB > mAK2.

Propositions 5 and 6 yield the following

Proposition 8. Let M be a 2m-dimensional complete almost semi-Kaehler
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manifold with nonpositiυe sectional curvature and with Ricci curvature bounded

below by a negative constant -A. Let N be a In-dimensional quasi-Kaehler

manifold whose sectional curvatures are bounded above by a negative constant

-B. Iff: M —> N is an almost complex mapping, then

for any r, 1 < r < k = min(2m, In).
Theorem 2 is now a consequence of Proposition 8.
The corollary to Theorem 2 is obtained from the following formula:

K(X, Y)\\XΛ Y\\2 + K(X9JY)\\XAJY\\2 + K(JX, Y)\\JXΛ Y\\2

+ K(JX,JY)\\JXΛJY\\2 < 2H(X, r)| |jr| |2 | |7| |2,

valid for almost Kaehler manifolds (see [6, formula 4.5]) where K(X, Y) and
H(X, Y) are the sectional curvature and the holomorphic bisectional curva-
ture, respectively, determined by the tangent vectors X and Y. From this
formula, it is seen that (23) also holds under the assumption that the
holomorphic bisectional curvatures of N are bounded above by a negative
constant -IB.

By taking M = Cm with the standard flat metric Proposition 8 yields the
following generalization of Liouville's theorem as well as Picard's first theo-
rem.

Proposition 9. Let N be a quasi-Kaehler manifold with negative sectional

curvature bounded away from zero. Iff: C" —> N is an almost complex mapping,

then it is a constant mapping.

We take this opportunity to correct an error in [4], from which §§6 and 7 of
this paper originated. The inequality in Lemma 2.2 should be replaced by
formula (21) above. (In the hypotheses preceding Lemma 2.1 the expression /,
should be replaced by ls_\) As a consequence, the factor K4 in Theorems 4.1,
5.1 and 5.4, as well as in Corollaries 4.2, 4.3 and 5.1 can be replaced by K2.
This correction actually improves these results. Moreover, since for m = n =
2, the notion of a mapping of bounded dilatation of order K is identical with
that of a A'-quasiconformal mapping, the factor K4 appearing in Theorem 1
of [3] may be replaced by K2, thereby improving that statement when M and
N are surfaces.
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