MAPPINGS OF ALMOST HERMITIAN MANIFOLDS

SAMUEL I. GOLDBERG \& ZVI HAR'EL

1. Introduction. The concept of a mapping of bounded dilatation recently introduced [4] is more general and natural than that of a quasiconformal mapping. Let M and N be Riemannian manifolds, and let $f: M \rightarrow N$ be a mapping of bounded dilatation of order K. When f is also harmonic, the principal result in [4], namely, Theorem 5.1, may be extended to complete manifolds M with nonpositive sectional curvature. (Theorem 5.1 says, in particular, that for an open m-ball B^{m} with the Poincaré metric and an n-dimensional Riemannian manifold N whose sectional curvatures are bounded above by a negative constant, if $f: B^{m} \rightarrow N$ is a harmonic mapping of bounded dilatation, then f is distance-decreasing up to a constant.) However, these generalizations are concerned only with the Riemannian structures of M and N as C^{∞} manifolds. When these give rise to more rigid structures, e.g., when both M and N are hermitian, or, more generally, almost hermitian manifolds, and $f: M \rightarrow N$ is an almost complex mapping, then it turns out that f is of bounded dilatation. In addition, if the hermitian structures are suitably restricted (see Theorem 2) in a sense to be described in $\S 2, f$ is also harmonic. It is therefore of interest to ask for the almost hermitian extensions of the Schwarz-Ahlfors lemma. Typical of the results obtained is the following generalization of a theorem due to S. S. Chern [2].

Theorem 1. Let $f: M \rightarrow N$ be an almost complex mapping of $2 n$-dimensional almost hermitian manifolds. Suppose M is a complete Kaehler manifold with nonpositive sectional curvature. If the scalar curvature of $M \geqslant-S$, and the Ricci curvature of $N \leqslant-S / 2 n$, where S is a positive constant, then f is volume-decreasing.

Note that the sectional curvatures of a manifold of constant negative holomorphic curvature c lie between c and $c / 4$, and that a complete simply connected m-dimensional Kaehler manifold of constant negative holomor-

[^0]phic sectional curvature is biholomorphic with an open ball in \mathbf{C}^{m}. This is the case dealt with in [2].

For more general domains, we have the following.
Theorem 2. Let M be a $2 m$-dimensional complete almost semi-Kaehler manifold with nonpositive sectional curvature whose Ricci curvature is bounded below by a negative constant $-A$, and let N be a $2 n$-dimensional quasi-Kaehler manifold whose sectional curvature is bounded above by a negative constant -B. If f is an almost complex mapping of M into N, then (i) f is distance-decreasing if $B \geqslant A k^{2} / 2$, where $k=\min (2 m, 2 n)$, and (ii) in the equidimensional case, f is volume-decreasing provided $B \geqslant m A$.

For almost Kaehler manifolds, we have the following.
Corollary. Let M be as in Theorem 2, and let N be a $2 n$-dimensional almost Kaehler manifold whose holomorphic bisectional curvature is bounded above by a negative constant $-2 B$. If f is an almost complex mapping of M into N, then the conclusions (i) and (ii) hold.

In §2, the canonical connection of an almost hermitian manifold is introduced, and the definitions of a quasi-Kaehler and almost semi-Kaehler manifold are given. In §3, a formula for the Laplacian of the ratio of volume elements of M and N in the equidimensional case is derived which resembles that obtained in [2] for hermitian manifolds. The proof of Theorem 1 is given in $\S \S 4$ and 5 by a method involving a conformal deformation of the hermitian metric. In the concluding section, a distortion theorem is given when the domain is not necessarily a Kaehler manifold.
2. The canonical connection. Let M be a $2 n$-dimensional almost hermitian manifold with (hermitian) metric g and almost complex structure J. An hermitian connection on M is a connection in the bundle $U(M)$ of unitary frames on M, that is, a linear connection which is both metric (g is parallel) and almost complex (J is parallel). The existence of such a connection is assured by the general theory of connections in principal bundles.

Let Γ be an hermitian connection on M, and let $\omega=\left(\omega_{j}^{i}\right)$ be its connection form on $U(M)$. We denote by $\Theta=\left(\Theta^{i}\right)$ and $\Omega=\left(\Omega_{j}^{i}\right)$ the corresponding torsion and curvature forms on $U(M)$. Finally, let $\theta=\left(\boldsymbol{\theta}^{i}\right)$ be the canonical form on $U(M)$. Then the following structural equations hold:

$$
\begin{align*}
& d \theta=-\omega \wedge \theta+\Theta \tag{1}\\
& d \omega=-\omega \wedge \omega+\Omega . \tag{2}
\end{align*}
$$

Any other hermitian connection $\tilde{\Gamma}$ has a connection form $\tilde{\omega}$ related to ω by

$$
\tilde{\omega}_{j}^{i}=\omega_{j}^{i}+a_{j k}^{i} \theta^{k}+b_{j k}^{i} \bar{\theta}^{k}, \quad \bar{\theta}^{k}=\overline{\theta^{k}},
$$

where the $a_{j k}^{i}$ and $b_{j k}^{i}$ are complex-valued functions on $U(M)$, and $a_{j k}^{i}+\overline{b_{i k}^{j}}=$ 0 since ω and $\tilde{\omega}$ are both skew hermitian. (The summation convention is used here and in the sequel.) These functions are chosen so that $b_{j k}^{i} \theta^{j} \wedge \bar{\theta}^{k}$ is the part of Θ^{i} of bidegree (1,1). The following statement therefore follows (see also [9]).

Proposition 1. There is a unique hermitian connection with a pure torsion form Θ, that is, $\Theta_{1,1}=0$.

This connection is called the canonical connection of the almost hermitian manifold M. It was introduced by S. S. Chern [1] in the hermitian (integrable) case. The property $\Theta_{1,1}=0$ is expressible in terms of the torsion tensor T by $T(X, J Y)=T(J X, Y)$ for any vector fields X and Y on M.

Proposition 2. The torsion form of the canonical connection on M is of bidegree $(2,0)$ if and only if M is hermitian.

Proof. The almost complex structure is integrable if and only if $d \bigwedge^{1,0} \subset$ $\wedge^{2,0} \oplus \bigwedge^{1,1}$, where $\wedge^{p, q}$ is the module of forms of bidegree (p, q) on M. Let ϕ be a form of bidegree $(1,0)$ on $U(M)$. Then $\phi=\phi_{i} \theta^{i}$ and

$$
d \phi=\left(d \phi_{i}-\phi_{j} \omega_{i}^{j}\right) \wedge \theta^{i}+\phi_{j} \Theta^{j}
$$

Hence $(d \phi)_{0,2}=\phi_{j} \Theta_{0,2}^{j}$, and this is zero if and only if the $(0,2)$ part of the torsion form vanishes.

The torsion forms are closely related to the exterior differential of the Kaehler form Φ (viewed as a tensorial form on $U(M)$). We have, using (1),

$$
\begin{aligned}
\Phi & =i \theta^{k} \wedge \bar{\theta}^{k}, \quad i=\sqrt{-1} \\
d \Phi & =i\left(-\omega_{j}^{k} \wedge \theta^{j}+\Theta^{k}\right) \wedge \bar{\theta}^{k}-i \theta^{k} \wedge\left(-\bar{\omega}_{j}^{k} \wedge \bar{\theta}^{j}+\bar{\Theta}^{k}\right) \\
& =-i\left(\omega_{j}^{k}+\bar{\omega}_{k}^{j}\right) \wedge \theta^{j} \wedge \overline{\boldsymbol{\theta}}^{k}+i\left(\Theta^{k} \wedge \overline{\boldsymbol{\theta}}^{k}-\theta^{k} \wedge \bar{\Theta}^{k}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
d \Phi=i\left(\Theta^{k} \wedge \bar{\theta}^{k}-\bar{\Theta}^{k} \wedge \theta^{k}\right) \tag{3}
\end{equation*}
$$

Separating (3) by bidegrees and recalling that $\Theta_{1,1}=\bar{\Theta}_{1,1}=0$, we have

$$
\begin{align*}
& (d \Phi)_{0,3}=\overline{(d \Phi)_{3,0}}=i \Theta_{0,2}^{k} \wedge \bar{\theta}^{k}, \tag{4}\\
& (d \Phi)_{2,1}=\overline{(d \Phi)_{1,2}}=i \Theta_{2,0}^{k} \wedge \bar{\theta}^{k} . \tag{5}
\end{align*}
$$

An almost hermitian manifold M is called quasi-Kaehlerian if $\bar{\partial} \Phi=(d \Phi)_{1,2}$ vanishes. (Here $\partial \psi=(d \psi)_{p+1, q}$ and $\bar{\partial} \psi=(d \psi)_{p, q+1}$ for a form ψ of bidegree (p, q)). M is called almost semi-Kaehlerian if Φ is co-closed. It is known (cf. [5]) that a quasi-Kaehler manifold is also almost semi-Kaehlerian.

Proposition 3. The torsion form of the canonical connection on M is of bidegree $(0,2)$ if and only if M is quasi-Kaehlerian.

If $(d \Phi)_{0,3}$ is also zero, M is almost Kaehlerian and we can use (3) to characterize M directly.

Proposition 4. Let Θ be the torsion form of the canonical connection on an almost hermitian manifold M, and let θ be the canonical form on $U(M)$. Then (i) M is almost Kaehlerian if and only if $\Theta^{i} \wedge \bar{\theta}^{i}=0$, and (ii) M is Kaehlerian if and only if $\Theta=0$.

The second part of this proposition is well known.
3. The Laplacian of the ratio of volume elements. Let M be a $2 n$-dimensional almost hermitian manifold with the canonical connection of §2. For the sake of convenience, we make the discussion local by fixing a local section of $U(M)$, and pulling the various forms back to a neighborhood in M. All the formulas above still hold locally. In particular, $\left\{\boldsymbol{\theta}^{i}\right\}$ is the coframe dual to the chosen unitary frame field. The covariant differential ∇ defined by Γ is given by

$$
\nabla \theta^{i}=-\omega_{j}^{i} \otimes \theta^{j}
$$

For a complex-valued function u on M, we can write

$$
\nabla u=u_{i} \theta^{i}+u_{i} \bar{\theta}^{i}
$$

where $i^{*}=i+n$, and

$$
\begin{aligned}
\nabla^{2} u & =d u_{i} \otimes \theta^{i}-u_{i} \omega_{j}^{i} \otimes \theta^{j}+d u_{i^{*}} \otimes \overline{\boldsymbol{\theta}}^{i}-u_{i^{*}} \bar{\omega}_{j}^{i} \otimes \overline{\boldsymbol{\theta}}^{j} \\
& =\left(d u_{i}-u_{j} \omega_{i}^{j}\right) \otimes \theta^{i}+\left(d u_{i^{*}}-u_{j^{*}} \bar{\omega}_{i}^{j}\right) \otimes \overline{\boldsymbol{\theta}}^{i} \\
& =\left(u_{i j} \theta^{j}+u_{i j^{*}} \bar{\theta}^{j}\right) \otimes \theta^{i}+\left(u_{i^{*} j} \boldsymbol{\theta}^{j}+u_{i^{*} j^{*}} \bar{\theta}^{j}\right) \otimes \overline{\boldsymbol{\theta}}^{i} \quad \text { (say) }
\end{aligned}
$$

where the $u_{A B}, A, B=1, \ldots, 2 n$, are given by

$$
\begin{gathered}
u_{i j} \theta^{j}+u_{i *^{*}} \bar{\theta}^{j}=d u_{i}-u_{j} \omega_{i}^{j}, \\
u_{i * j} \theta^{j}+u_{i * j^{*}} \bar{\theta}^{j}=d u_{i^{*}}-u_{j *} \bar{\omega}_{i}^{j} .
\end{gathered}
$$

Since $d u=u_{i} \theta^{i}+u_{i} \bar{\theta}^{i}$, the structural equation (1) gives

$$
\begin{aligned}
0 & =d u_{i} \wedge \theta^{i}-u_{i} \omega_{j}^{i} \wedge \theta^{j}+u_{i} \Theta^{i}+d u_{i^{*}} \wedge \bar{\theta}^{i}-u_{i^{*}} \bar{\omega}_{j}^{i} \wedge \bar{\theta}^{j}+u_{i^{*}} \bar{\Theta}^{i} \\
& =\left(d u_{i}-u_{j} \omega_{i}^{j}\right) \wedge \theta^{i}+u_{i} \Theta^{i}+\left(d u_{i^{*}}-u_{j * *} \bar{\omega}_{i}^{j}\right) \wedge \bar{\theta}^{i}+u_{i^{*}} \bar{\Theta}^{i} \\
& =\left(u_{i j} \boldsymbol{\theta}^{j}+u_{i j^{*}} \bar{\theta}^{j}\right) \wedge \theta^{i}+u_{i} \Theta^{i}+\left(u_{i *} \boldsymbol{j}^{j}+u_{i * j^{*}} \bar{\theta}^{j}\right) \wedge \bar{\theta}^{i}+u_{i^{*}} \bar{\Theta}^{i}
\end{aligned}
$$

Comparing bidegrees we obtain

$$
u_{i j *} \bar{\theta}^{j} \wedge \theta^{i}+u_{i * j} \theta^{j} \wedge \bar{\theta}^{i}=0
$$

so

$$
u_{i j^{*}}=u_{j^{*} i}
$$

Therefore the Laplacian of u is

$$
\begin{equation*}
\Delta u=g^{A B} u_{A B}=2 g^{i j^{*}} u_{i *^{*}}=2 u_{i i^{*}} \tag{6}
\end{equation*}
$$

Since $\partial u=(d u)_{1,0}=u_{i} \theta^{i}$, and

$$
\bar{\partial} \partial u=\left(d\left(u_{i} \theta^{i}\right)\right)_{1,1}=u_{i j} \cdot \bar{\theta}^{j} \wedge \theta^{i}
$$

the Laplacian may be computed from the components of the complex hessian of u,

$$
\begin{equation*}
\partial \bar{\partial} u=-\bar{\partial} \partial u=u_{i j^{*}} \theta^{i} \wedge \overline{\boldsymbol{\theta}}^{j} \tag{7}
\end{equation*}
$$

Let N be another almost hermitian manifold of the same dimension $2 n$, and let $f: M \rightarrow N$ be a C^{∞} mapping. We fix a local unitary frame field on N, and denote by $\theta^{\prime}=\left(\theta^{\prime \alpha}\right), \Theta^{\prime}=\left(\Theta^{\prime \alpha}\right), \omega^{\prime}=\left(\omega_{\beta}^{\prime \alpha}\right)$ and $\Omega^{\prime}=\left(\Omega_{\beta}^{\prime \alpha}\right)$ the pullbacks by f^{*} of the forms corresponding to θ, Θ, ω and Ω on M. Let $\left\{s_{\alpha}\right\}$ be the induced unitary frame field in the induced bundle $f^{-1} T^{1,0}(N)$. Then f is almost complex if and only if its differential maps tangent vectors of bidegree $(1,0)$ to tangent vector of the same bidegree. It is therefore given by

$$
f_{*}=f_{i}^{\alpha} s_{\alpha} \otimes \theta^{i}
$$

Denoting by ∇^{\prime} the covariant differential operator on $f^{-1} T^{1,0}(N)$-valued forms induced by the canonical connections in M and N, we have

$$
\begin{aligned}
\nabla^{\prime} f_{*} & =s_{\alpha} \otimes\left(d f_{i}^{\alpha}+f_{i}^{\beta} \omega_{\beta}^{\prime \alpha}-f_{j}^{\alpha} \omega_{i}^{j}\right) \otimes \theta^{i} \\
& =s_{\alpha} \otimes\left(f_{i j}^{\alpha} \theta^{j}+f_{i^{*}}^{\alpha} \bar{\theta}^{j}\right) \otimes \theta^{i} \quad \text { (say) }
\end{aligned}
$$

Taking the exterior derivative of $\theta^{\prime \alpha}=f_{i}^{\alpha} \theta^{i}$ and using (1), we obtain

$$
-\omega_{\beta}^{\prime \alpha} \wedge \theta^{\prime \beta}+\Theta^{\prime \alpha}=d f_{i}^{\alpha} \wedge \theta^{i}+f_{i}^{\alpha}\left(-\omega_{j}^{i} \wedge \theta^{j}+\Theta^{i}\right)
$$

that is

$$
\left(d f_{i}^{\alpha}+f_{i}^{\beta} \omega_{\beta}^{\prime \alpha}-f_{j}^{\alpha} \omega_{i}^{j}\right) \wedge \theta^{i}+f_{i}^{\alpha} \Theta^{i}-\Theta^{\prime \alpha}=0
$$

from which

$$
\left(f_{i j}^{\alpha} \theta^{j}+f_{i j}^{\alpha} \bar{\theta}^{j}\right) \wedge \theta^{i}+f_{i}^{\alpha} \Theta^{i}-\Theta^{\prime \alpha}=0
$$

Comparing bidegrees we see that

$$
f_{i j^{\alpha}}^{\alpha} \bar{\theta}^{j} \wedge \theta^{i}=0
$$

from which

$$
\begin{equation*}
f_{i i^{*}}^{\alpha}=0 \tag{8}
\end{equation*}
$$

Put $D=\operatorname{det}\left(f_{i}^{\alpha}\right)$, and $u=|D|^{2}=D \bar{D}$. The latter is the ratio of the volume elements, $f^{*} V_{N} / V_{M}$. Let D_{α}^{i} denote the cofactor of f_{i}^{α} in D. Then

$$
\begin{align*}
d D & =D_{\alpha}^{i} d f_{i}^{\alpha}=D_{\alpha}^{i}\left(f_{i j}^{\alpha} \theta^{j}+f_{j}^{\alpha} \omega_{i}^{j}-f_{i}^{\beta} \omega_{\beta}^{\prime \alpha}\right) \tag{9}\\
& =D_{\alpha}^{i} f_{i j}^{\alpha} \theta^{j}+D\left(\omega_{i}^{i}-\omega_{\alpha}^{\prime \alpha}\right) \\
& \left.=D_{j} \theta^{j}+D\left(\omega_{i}^{i}-\omega_{\alpha}^{\alpha \alpha}\right) \quad \text { (say }\right) .
\end{align*}
$$

Since ω_{i}^{i} and $\omega_{\alpha}^{\prime \alpha}$ are pure imaginary,

$$
d u=\bar{D} D_{j} \theta^{j}+D \bar{D}_{j} \bar{\theta}^{j}, \quad \partial u=\bar{D} D_{j} \theta^{j} .
$$

Taking the exterior derivative of (9) and using the second structural equation (2) we obtain

$$
\begin{aligned}
0 & =d\left(D_{j} \theta^{j}\right)+d D \wedge\left(\omega_{i}^{i}-\omega_{\alpha}^{\prime \alpha}\right)+D d\left(\omega_{i}^{i}-\omega_{\alpha}^{\prime \alpha}\right) \\
& =d\left(D_{j} \theta^{j}\right)+D_{j} \theta^{j} \wedge\left(\omega_{i}^{i}-\omega_{\alpha}^{\prime \alpha}\right)+D\left(\Omega_{i}^{i}-\Omega_{\alpha}^{\prime \alpha}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
0 & =\bar{D} d\left(D_{j} \theta^{j}\right)+D_{j} \theta^{j} \wedge\left(\bar{D}_{i} \bar{\theta}^{i}-d \bar{D}\right)+u\left(\Omega_{i}^{i}-\Omega_{\alpha}^{\prime \alpha}\right) \\
& =d\left(\bar{D} D_{j} \theta^{j}\right)+D_{j} \theta^{j} \wedge \bar{D}_{i} \bar{\theta}^{i}+u\left(\Omega_{i}^{i}-\Omega_{\alpha}^{\prime \alpha}\right) .
\end{aligned}
$$

Hence

$$
d(\partial u)=D_{i} \bar{D}_{j} \bar{\theta}^{j} \wedge \theta^{i}-u\left(\Omega_{i}^{i}-\Omega_{\alpha}^{\prime \alpha}\right) .
$$

Comparing bidegrees yields

$$
\bar{\partial} \partial u=D_{i} \bar{D}_{j} \bar{\theta}^{j} \wedge \theta^{i}-u\left(\Omega_{i}^{i}-\Omega_{\alpha}^{\alpha}\right)_{1,1} .
$$

But $\left(\Omega_{j}^{i}\right)_{1,1}=R_{j k l}^{i} \theta^{k} \wedge \bar{\theta}^{\prime}$, where the functions $R_{B C D}^{A}$ are the components of the curvature tensor. Hence

$$
\left(\Omega_{i}^{i}\right)_{1,1}=R_{i k l}^{i} \cdot \theta^{k} \wedge \bar{\theta}^{l}=R_{k l} \theta^{k} \wedge \bar{\theta}^{l}
$$

where $R_{k l}{ }^{*} X^{k} \bar{X}^{l} / g_{k l}{ }^{*} X^{k} \bar{X}^{l}$ is the Ricci curvature in the direction of the tangent vector X. Using (7) we have

$$
u_{i j j^{*}} \bar{\theta}^{j} \wedge \theta^{i}=D_{i} \bar{D}_{j} \bar{\theta}^{j} \wedge \theta^{i}+u\left(R_{i j} \bar{\theta}^{j} \wedge \theta^{i}-f_{i}^{\alpha} \bar{j}_{j}^{\beta} R_{\alpha \beta^{*}}^{\prime} \bar{\theta}^{j} \wedge \theta^{i}\right)
$$

from which it follows that

$$
u_{i j^{*}}=D_{i} \bar{D}_{j}+u\left(R_{i j^{*}}-f_{i}^{\alpha} \bar{f}_{j}^{\beta} R_{\alpha \beta^{*}}^{\prime}\right)
$$

Thus

$$
\Delta u=2 D_{i} \bar{D}_{i}+u\left(R-2 f_{i}^{\alpha} \overline{f_{i} \beta} R_{\alpha \beta^{*}}^{\prime}\right)
$$

where $R=2 R_{i i *}$ is the scalar curvature of M, and

$$
\begin{equation*}
\Delta \log u=R-2 f_{i}^{\alpha} \bar{f}_{i}^{\beta} R_{\alpha \beta^{*}}^{\prime} \tag{10}
\end{equation*}
$$

for $u>0$, that is, at those points where f is locally one-to-one. In the hermitian case, this formula was obtained by Chern [2].

If the Ricci curvature of N is not greater than $-S / 2 n, S>0$, then

$$
2 f_{i}^{\alpha} \bar{f}_{i}^{\beta} R_{\alpha \beta^{*}}^{\prime} \leqslant-\frac{S}{n} f_{i}^{\alpha} \bar{f}_{i}^{\alpha} \leqslant-S u^{1 / n}
$$

so that

$$
\begin{equation*}
\Delta \log u \geqslant R+S u^{1 / n} \tag{11}
\end{equation*}
$$

4. Conformal changes of the hermitian metric. Let M be a $2 n$-dimensional almost hermitian manifold with hermitian metric g. Then $\tilde{g}=e^{2 \sigma} g$ is also an hermitian metric on M for any smooth real-valued function σ on M. Let $\left\{\theta^{i}\right\}$ be a (local) unitary coframe on (M, g). Then $\left\{\tilde{\theta}^{i}\right\}, \tilde{\theta}^{i}=e^{\sigma} \theta^{i}$, is a unitary coframe on (M, \tilde{g}). Denote by $\tilde{\boldsymbol{\theta}}, \tilde{\omega}, \tilde{\Theta}$ and $\tilde{\Omega}$ the analogues for (M, \tilde{g}) of the forms θ, ω, Θ and Ω, respectively, on (M, g) defined in $\S 2$. Then

$$
\begin{equation*}
\tilde{\theta}=e^{\sigma} \theta \tag{12}
\end{equation*}
$$

Hence, from (1),

$$
\begin{aligned}
\tilde{\Theta} & =d \tilde{\theta}+\tilde{\omega} \wedge \tilde{\theta} \\
& =e^{\sigma} d \sigma \wedge \theta+e^{\sigma}(\Theta-\omega \wedge \theta)+e^{\sigma} \tilde{\omega} \wedge \theta \\
& =e^{\sigma}[\Theta+(\tilde{\omega}-\omega) \wedge \theta+d \sigma \wedge \theta]
\end{aligned}
$$

Put $\tilde{\omega}_{j}^{i}-\omega_{j}^{i}=a_{j k}^{i} \theta^{k}-\bar{a}_{i k}^{j} \bar{\theta}^{k}$ and $d \sigma=\sigma_{k} \theta^{k}+\bar{\sigma}_{k} \bar{\theta}^{k}$. Then

$$
e^{-\sigma} \tilde{\Theta}^{i}=\Theta^{i}+\left(a_{j k}^{i} \theta^{k}-\bar{a}_{i k}^{j} \bar{\theta}^{k}\right) \wedge \theta^{j}+\left(\sigma_{k} \theta^{k}+\bar{\sigma}_{k} \bar{\theta}^{k}\right) \wedge \theta^{i}
$$

Comparing bidegrees we see that

$$
\bar{a}_{i k}^{j} \bar{\theta}^{k} \wedge \theta^{j}-\bar{\sigma}_{k} \bar{\theta}^{k} \wedge \theta^{i}=0
$$

from which it follows that

$$
a_{i k}^{j}=\delta_{i}^{j} \sigma_{k} .
$$

Therefore

$$
\tilde{\omega}_{j}^{i}=\omega_{j}^{i}+\delta_{j}^{i} \sigma_{k} \theta^{k}-\delta_{j}^{i} \bar{\sigma}_{k} \bar{\theta}^{k}, e^{-\sigma} \tilde{\Theta}^{i}=\Theta^{i}+2 \sigma_{k} \theta^{k} \wedge \theta^{i}
$$

Setting $d^{c} \sigma=i(\bar{\partial} \sigma-\partial \sigma)=i\left(\bar{\sigma}_{k} \bar{\theta}^{k}-\sigma_{k} \theta^{k}\right)$ we may write the last two formulas as

$$
\begin{gather*}
\tilde{\omega}=\omega+\mathrm{i} d^{c} \sigma I, \tag{13}\\
e^{-\sigma} \tilde{\Theta}=\Theta+2 \partial \sigma \wedge \theta \tag{14}
\end{gather*}
$$

where I is the identity matrix.

For the curvature forms, from (2) we have

$$
\begin{equation*}
\tilde{\Omega}=d \tilde{\omega}+\tilde{\omega} \wedge \tilde{\omega}=d \omega+\mathrm{i} d d^{c} \sigma I+\omega \wedge \omega=\Omega+\mathrm{i} d d^{c} \sigma I . \tag{15}
\end{equation*}
$$

Comparing bidegrees yields

$$
\begin{equation*}
\tilde{\Omega}_{1,1}=\Omega_{1,1}-2 \partial \bar{\partial} \sigma I \tag{16}
\end{equation*}
$$

or, in terms of components,

$$
e^{2 \sigma} \tilde{R}_{j k l^{*}}^{i}=R_{j k l^{*}}^{i}-2 \delta_{j}^{i} \sigma_{k l^{*}},
$$

where $\partial \bar{\partial} \sigma=\sigma_{k l} \theta^{k} \wedge \bar{\theta}^{l}$. Thus, for the Ricci tensors,

$$
e^{2 \sigma} \tilde{R}_{k l^{*}}=R_{k l^{*}}-2 n \sigma_{k l^{\bullet}}
$$

and, for the scalar curvatures,

$$
\begin{equation*}
e^{2 \sigma} \tilde{R}=R-2 n \Delta \sigma \tag{17}
\end{equation*}
$$

(The last formula is simpler than its Riemannian analogue.)
5. The volume-decreasing theorem. Let M be a complete simply connected n-dimensional Kaehler manifold of nonpositive sectional curvature. We exhaust M by a sequence of relatively compact open submanifolds $M_{\rho}=\{p \in$ $M \mid \tau(p)<\rho\}$, where $\tau(p)$ is the Riemannian distance of p from a fixed point in M, that is, $M=\cup_{\rho<\infty} M_{\rho}$. Endow M_{ρ} with a metric \tilde{g} conformally related to g, namely,

$$
\tilde{g}=e^{2 v_{\rho} g}, \quad \text { where } v_{\rho}=\log \frac{\rho^{2}}{\rho^{2}-\tau^{2}}
$$

By (17), the scalar curvature \tilde{R} of $\left(M_{\rho}, \tilde{g}\right)$ is given by

$$
\begin{aligned}
\tilde{R} & =e^{-2 v_{\rho}}\left(R-2 n \Delta v_{\rho}\right) \\
& =\left(\frac{\rho^{2}-\tau^{2}}{\rho^{2}}\right)^{2} R-\frac{4 n}{\rho^{4}}\left[\rho^{2}+\tau^{2}+\left(\rho^{2}-\tau^{2}\right) \tau \Delta \tau\right],
\end{aligned}
$$

where we have used the identity

$$
\Delta v_{\rho}=\frac{d v_{\rho}}{d \tau} \Delta \tau+\frac{d^{2} v_{\rho}}{d \tau^{2}}
$$

Suppose now the scalar curvature of M satisfies $R \geqslant-S$, where S is a positive constant. Since M has nonpositive sectional curvature, its Ricci curvature is also bounded below by $-S$. (Note that by Proposition 4, the canonical connection is the Riemannian connection.) Let $S=(2 n-1) \kappa^{2}$. Then (cf. [7])

$$
0<\tau \Delta \tau \leqslant(2 n-1) \kappa \tau \operatorname{coth} \kappa \tau<(2 n-1) \kappa \rho \operatorname{coth} \kappa \rho .
$$

Hence

$$
\tilde{R}=\left(\frac{\rho^{2}-\tau^{2}}{\rho^{2}}\right) R-\varepsilon_{\rho}
$$

where ε_{ρ} is a real-valued function on M_{ρ} satisfying

$$
0<\varepsilon_{\rho} \leqslant \frac{4 n}{\rho^{4}}\left[2 \rho^{2}+(2 n-1) \kappa \rho^{3} \operatorname{coth} \kappa \rho\right]=0\left(\frac{1}{\rho}\right)
$$

as $\rho \rightarrow \infty$. Therefore, for every $\varepsilon>0$, we have

$$
\begin{equation*}
\tilde{R} \geqslant-S-\varepsilon \tag{18}
\end{equation*}
$$

on M_{ρ} for sufficiently large ρ.
Let f be as in Theorem 1 , and let $\tilde{f}: M_{\rho} \rightarrow N$ be its restriction to M_{ρ}. Consider the ratio of volume elements

$$
\tilde{u}=\tilde{f}^{*} V_{N} / V_{M_{\rho}}=e^{-2 n v_{\rho} u}=\left(\frac{\rho^{2}-\tau^{2}}{\rho^{2}}\right)^{2 n} u
$$

Since the function \tilde{u} is nonnegative and continuous on the closure of M_{ρ}, and zero on its boundary, it attains its maximum on M_{ρ}. If the Ricci curvature of N is not greater than $-S / 2 n$, then, by (11) and (18),

$$
\tilde{\Delta} \log \tilde{u} \geqslant \tilde{R}+S \tilde{u}^{1 / n} \geqslant S\left(\tilde{u}^{1 / n}-1\right)-\varepsilon
$$

At the maximum point x of $\tilde{u}, \tilde{\Delta} \log \tilde{u} \leqslant 0$, unless \tilde{u} is totally degenerate. Hence $\tilde{u}(x) \leqslant(1+\varepsilon / S)^{n}$. Since this inequality obviously holds at all points p of M_{ρ},

$$
u(p)=\left(\frac{\rho^{2}}{\rho^{2}-\tau^{2}}\right)^{2 n} \tilde{u}(p) \leqslant\left(\frac{\rho^{2}}{\rho^{2}-\tau^{2}}\right)^{2 n}\left(1+\frac{\varepsilon}{S}\right)^{n}
$$

Finally, letting $\rho \rightarrow \infty$, and $\varepsilon \rightarrow 0$, we conclude that $u \leqslant 1$ thereby completing the proof of Theorem 1.
Corollary 1. Let M be the open unit ball in \mathbf{C}^{m} with the Poincaré-Bergman metric, and let N be an almost hermitian manifold of the same dimension. If the Ricci curvature of N is not greater than $-2(m+1)$, then every almost complex mapping $f: M \rightarrow N$ is volume-decreasing.

Corollary 2. Let M be a symmetric bounded domain with the Bergman metric, and let N be an almost hermitian manifold of the same dimension. If the Ricci curvature of N is not greater than -1 , then every almost complex mapping $f: M \rightarrow N$ is volume-decreasing.

In both corollaries, M is an Einstein-Kaehler manifold with Ricci tensor $-2(m+1) g$ and $-g$ respectively.
6. Mappings of bounded dilatation. Let M and N be C^{∞} Riemannian manifolds of dimensions m and n respectively, and let g and g^{*} denote their respective Riemannian metrics. Let $f: M \rightarrow N$ be a C^{∞} mapping, and denote by $\lambda_{1}(p) \geqslant \lambda_{2}(p) \geqslant \cdots \geqslant \lambda_{m}(p) \geqslant 0$ the eigenvalues of $f_{*} f_{*}: T_{p} M \rightarrow T_{p} M$, where ${ }^{t} f_{*}$ denotes the transpose of the mapping f_{*}. If there is a positive number K such that for every $p \in M, \lambda_{2}(p) \leqslant \lambda_{1}(p) \leqslant K^{2} \lambda_{2}(p)$, then f is said to be of bounded dilatation of order K. This notion is more general and natural than that of a K-quasiconformal mapping.

The norm $\|A\|$ of a linear mapping: $A: V \rightarrow W$ of Euclidean vector spaces is defined by $\|A\|^{2}=\operatorname{trace}{ }^{t} A A$. If $r \leqslant \min (m, n), A$ may be extended to the linear mapping $\wedge^{r} A: \wedge^{r} V \rightarrow \wedge^{r} W$ given by $\wedge^{r} A\left(v_{1} \wedge \cdots \wedge v_{r}\right)=A v_{1}$ $\wedge \cdots \wedge A v_{r}$, where the $v_{i} \in V$. Then

$$
\begin{equation*}
\left\|\wedge^{r} f_{*}\right\|^{2}=\sum_{1<i_{1}<\cdots<i_{r}<m} \lambda_{i_{1}} \cdots \lambda_{i_{r}} \tag{19}
\end{equation*}
$$

see [4]. Observe that $\left\|\wedge^{r} f_{*}\right\|$ bounds the ratio of r-dimensional volume elements. In particular, for any $X \in T_{p} M$,

$$
\begin{aligned}
\left(f^{*} g^{*}\right)(X, X) & =g^{*}\left(f_{*} X, f_{*} X\right)=g\left(f_{*} f_{*} X, X\right) \\
& =\sum_{i=1}^{m} \lambda_{i}\left(\omega_{i}(X)\right)^{2} \leqslant \lambda_{1} g(X, X) \leqslant\left\|f_{*}\right\|^{2} g(X, X),
\end{aligned}
$$

where $\left\{\omega_{i}\right\}, i=1, \ldots, m$, is the basis of covectors dual to an orthonormal basis of eigenvectors of $f_{*} f_{*}$. Thus $f^{*}\left(d s_{N}^{2}\right) \leqslant\left\|f_{*}\right\|^{2} d s_{M}^{2}$, where $d s_{M}$ and $d s_{N}$ are the distance elements defined by g and g^{*}, respectively.

Let $k=\min (m, n)$. Then rank $f_{*} \leqslant k$. Hence, by (19),

$$
\begin{equation*}
\left\{\left\|\wedge^{q} f_{*}\right\|^{2} /\binom{k}{q}\right\}^{1 / q} \geqslant\left\{\left\|\wedge^{r} f_{*}\right\|^{2} /\binom{k}{r}\right\}^{1 / r}, 1 \leqslant q \leqslant r \leqslant k \tag{20}
\end{equation*}
$$

since $\left\|\wedge^{q} f_{*}\right\|^{2}$ is the q th elementary symmetric function of $\lambda_{1}, \ldots, \lambda_{k}$.
When f is of bounded dilatation of order K, there is an inequality in the opposite direction, namely,

$$
\begin{equation*}
\left\|f_{*}\right\|^{2} \leqslant k K\left\|\wedge^{2} f_{*}\right\| . \tag{21}
\end{equation*}
$$

To see this, assume $f_{*} \neq 0$. Then

$$
\frac{\left\|f_{*}\right\|^{2}}{\left\|\bigwedge^{2} f_{*}\right\|}=\frac{\sum \lambda_{i}}{\left(\Sigma_{i<j} \lambda_{i} \lambda_{j}\right)^{1 / 2}} \leqslant \frac{k \lambda_{1}}{\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}}=k\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{1 / 2} \leqslant k K .
$$

Conversely, (21) implies that f is of bounded dilatation of some order. For,

$$
\frac{\left\|f_{*}\right\|^{2}}{\left\|\wedge^{2} f_{*}\right\|}=\frac{\Sigma \lambda_{i}}{\left(\Sigma_{i<j} \lambda_{i} \lambda_{j}\right)^{1 / 2}} \geqslant \frac{\lambda_{1}}{\left[\binom{k}{2} \lambda_{1} \lambda_{2}\right]^{1 / 2}}=\left[\frac{\lambda_{1}}{\lambda_{2}} /\binom{k}{2}\right]^{1 / 2}
$$

from which we have

$$
\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{1 / 2} \leqslant\binom{ k}{2}^{1 / 2} \frac{\left\|f_{*}\right\|^{2}}{\left\|\bigwedge^{2} f_{*}\right\|} \leqslant k\binom{k}{2}^{1 / 2} K
$$

When M and N are almost hermitian manifolds, and $f: M \rightarrow N$ is an almost complex mapping, ${ }^{1} f_{*} f_{*}$ commutes with the almost complex structure J of M. This implies that if X is an eigenvector of ${ }^{t} f_{*} f_{*}$, then so is $J X$. Since X and $J X$ are linearly independent, the eigenvectors of $f_{*} f_{*}$ have multiplicity 2 at least, so, in particular, $\lambda_{1}(p)=\lambda_{2}(p)$ for all $p \in M$. An important consequence of this is given by

Proposition 5. An almost complex mapping of almost hermitian manifolds is of bounded dilatation of order 1 .

The following statement is an extension of the well-known fact that a holomorphic mapping of Kaehler manifolds is harmonic in terms of the corresponding Kaehler metrics.

Proposition 6 (Lichnerowicz [8]). An almost complex mapping $f: M \rightarrow N$, where M is an almost semi-Kaehler manifold and N is quasi-Kaehlerian, is a harmonic mapping.

Combining the last two propositions it is seen that an almost complex mapping $f: M \rightarrow N$, where M and N are almost semi-Kaehlerian and quasiKaehlerian, respectively, is harmonic and of bounded dilatation. It therefore belongs to the class recently investigated by one of the authors [4].
7. A distance-decreasing theorem. In what follows, the almost complex structures of M and N will be ignored. In fact, M and N will be C^{∞} Riemannian manifolds of dimensions m and n respectively. Proceeding locally, orthonormal moving frames $\left\{\theta^{i}\right\}$ in M and $\left\{\theta^{* \alpha}\right\}$ in N are chosen. Let $f: M \rightarrow N$ be harmonic. Then the components of f_{*} with respect to the above frames are given by

$$
f^{*} \theta^{* \alpha}=f_{i}^{\alpha} \theta^{i} .
$$

Assume M is complete and simply connected (otherwise, pass to its simply connected covering), and has nonpositive sectional curvature. As in §5, we exhaust M by means of the submanifolds M_{ρ} with the identical conformally related metrics.

Let \tilde{f} be the restriction of f to $\left(M_{\rho}, \tilde{g}\right)$. Then it is shown in [3] that $\left\|\tilde{f}_{*}\right\|^{2}=e^{-2 v_{\rho}}\left\|f_{*}\right\|^{2}$ has a maximum on M_{ρ}. Furthermore, if the Ricci curvature of M is bounded below by a negative constant $-A$, then there exists a sequence of positive constants $\varepsilon(\rho)$, which goes to 0 as $\rho \rightarrow \infty$, such that

$$
\begin{equation*}
-R_{\alpha \beta \gamma \delta}^{\prime} \tilde{f}_{i}^{\alpha} \tilde{f}_{j}^{\beta} \tilde{f}_{i}^{\prime} \tilde{f}_{j}^{\delta} \leq\{A+\varepsilon(\rho)\}\left\|\tilde{f}_{*}\right\|^{2} \tag{22}
\end{equation*}
$$

at the maximum point x of $\left\|\tilde{f}_{*}\right\|^{2}$, where $\tilde{f}_{i}^{\alpha}=e^{-v}{ }_{0} f_{i}^{\alpha}$, and the $R_{\alpha \beta \gamma \delta}^{\prime}$ are the pullbacks by f^{*} of the components of the curvature tensor of N. On the other hand, if the sectional curvatures of N are bounded above by a negative constant $-B$,

$$
\begin{equation*}
-R_{\alpha \beta \gamma \delta}^{\prime} \tilde{f}_{i}^{\alpha} \tilde{f}_{j}^{\beta} \tilde{f}_{i} \tilde{f}_{j}^{\delta} \leqslant-2 B\left\|\wedge^{2} \tilde{f}_{*}\right\|^{2} \tag{23}
\end{equation*}
$$

Combining (22) and (23) we get, at x,

$$
\begin{equation*}
2 B\left\|\bigwedge^{2} \tilde{f}_{*}\right\| \leqslant\{A+\varepsilon(\rho)\}\left\|\tilde{f}_{*}\right\|^{2} \tag{24}
\end{equation*}
$$

If f is of bounded dilatation of order K, then from (21) and (24)

$$
2 B\left\|\tilde{f}_{*}\right\|^{4} \leqslant\{A+\varepsilon(\rho)\} k^{2} K^{2}\left\|\tilde{f}_{*}\right\|^{2}
$$

at x. Hence

$$
\left\|\tilde{f}_{*}\right\|^{2} \leqslant \frac{1}{2} k^{2} K^{2}\{A+\varepsilon(\rho)\} / B
$$

everywhere in M_{ρ}. Since this inequality holds for every ρ and $\left\|\tilde{f}_{*}\right\| \rightarrow\left\|f_{*}\right\|$ as $\rho \rightarrow \infty$

$$
\left\|f_{*}\right\|^{2} \leqslant \frac{1}{2} A k^{2} K^{2} / B .
$$

Applying the inequality (20), this implies the following distortion theorem for intermediate volume elements, which is a considerable improvement of Theorem 5.1 in [4].

Proposition 7. Let M be an m-dimensional complete Riemannian manifold with nonpositive sectional curvature and with Ricci curvature bounded below by a negative constant $-A$, and let N be an n-dimensional Riemannian manifold with sectional curvature bounded above by a negative constant $-B$. If $f: M \rightarrow N$ is a harmonic mapping of bounded dilatation of order K, then

$$
\left\|\wedge^{r} f_{*}\right\|^{2 / r} \leqslant \frac{k}{2}\binom{k}{r}^{1 / r} \frac{A}{B} K^{2}
$$

for any $r, 1 \leqslant r \leqslant k=\min (m, n)$.
Corollary. Under the conditions of Proposition 7, (i) f is distance-decreasing if $2 B \geqslant k^{2} A K^{2}$, and (ii) f is volume-decreasing if $m=n$ and $2 B \geqslant m A K^{2}$.

Propositions 5 and 6 yield the following
Proposition 8. Let M be a $2 m$-dimensional complete almost semi-Kaehler
manifold with nonpositive sectional curvature and with Ricci curvature bounded below by a negative constant $-A$. Let N be a $2 n$-dimensional quasi-Kaehler manifold whose sectional curvatures are bounded above by a negative constant $-B$. If $f: M \rightarrow N$ is an almost complex mapping, then

$$
\left\|\wedge^{r} f_{*}\right\|^{2 / r} \leqslant \frac{k}{2}\binom{k}{r}^{1 / r} \frac{A}{B}
$$

for any $r, 1 \leqslant r \leqslant k=\min (2 m, 2 n)$.
Theorem 2 is now a consequence of Proposition 8.
The corollary to Theorem 2 is obtained from the following formula:

$$
\begin{gathered}
K(X, Y)\|X \wedge Y\|^{2}+K(X, J Y)\|X \wedge J Y\|^{2}+K(J X, Y)\|J X \wedge Y\|^{2} \\
+K(J X, J Y)\|J X \wedge J Y\|^{2} \leqslant 2 H(X, Y)\|X\|^{2}\|Y\|^{2},
\end{gathered}
$$

valid for almost Kaehler manifolds (see [6, formula 4.5]) where $K(X, Y)$ and $H(X, Y)$ are the sectional curvature and the holomorphic bisectional curvature, respectively, determined by the tangent vectors X and Y. From this formula, it is seen that (23) also holds under the assumption that the holomorphic bisectional curvatures of N are bounded above by a negative constant $-2 B$.

By taking $M=\mathbf{C}^{m}$ with the standard flat metric Proposition 8 yields the following generalization of Liouville's theorem as well as Picard's first theorem.

Proposition 9. Let N be a quasi-Kaehler manifold with negative sectional curvature bounded away from zero. If $f: \mathbf{C}^{m} \rightarrow N$ is an almost complex mapping, then it is a constant mapping.

We take this opportunity to correct an error in [4], from which $\S \S 6$ and 7 of this paper originated. The inequality in Lemma 2.2 should be replaced by formula (21) above. (In the hypotheses preceding Lemma 2.1 the expression l_{s} should be replaced by l_{s-1}.) As a consequence, the factor K^{4} in Theorems 4.1, 5.1 and 5.4, as well as in Corollaries 4.2, 4.3 and 5.1 can be replaced by K^{2}. This correction actually improves these results. Moreover, since for $m=n=$ 2, the notion of a mapping of bounded dilatation of order K is identical with that of a K-quasiconformal mapping, the factor K^{4} appearing in Theorem 1 of [3] may be replaced by K^{2}, thereby improving that statement when M and N are surfaces.

Bibliography

[1] S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. of Math. 47 (1946) 85-121.
[2] \qquad , On holomorphic mappings of hermitian manifolds of the same dimension, Proc. Sympos. Pure Math. Amer. Math. Soc. Vol. II, 1968, 157-170.
[3] S. I. Goldberg, Mappings of nonpositively curved manifolds, Nagoya Math. J. 61 (1976) 73-84.
[4] S. I. Goldberg, T. Ishihara \& N. C. Petridis, Mappings of bounded dilatation of Riemannian manifolds, J. Differential Geometry, 10 (1975) 619-630.
[5] A. Gray, Some examples of almost Hermitian manifolds, Illinois J. Math. 10 (1966) 353-366.
[6] __, Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J. 28 (1976) 601-612.
[7] Z. Har'El, Harmonic mappings of negatively curved manifolds, Canadian J. Math. 30 (1978) 631-637.
[8] A. Lichnerowicz, Applications harmoniques et variétés kählériennes, Symposia Math., Bologna, Vol. 3, 1970, 341-402.
[9] J. A. Schouten \& K. Yano, On an intrinsic connection in an $X_{2 n}$ with an almost Hermitian structure, Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955) 1-9.

University of Illinois, Urbana
Israel Institute of Technology, Haifa
University of Illinois, Urbana

[^0]: Communicated by S. S. Chern, January 13, 1977, and, in revised form, March 28, 1977. The first author was partially supported by NSF Grant MCS76-06319.

