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COMPLETENESS OF CURVATURE SURFACES
OF AN ISOMETRIC IMMERSION

HELMUT RECKZIEGEL

Let M be a hypersurface in a euclidean space, let Ep be the null space of
the second fundamental tensor of M at p G M, denote by k the minimum
value of the dimensions of the vector spaces Ep on M, and let G be the open
subset of M on which this minimum occurs. Then it is well known from
classical differential geometry that G is generated by λ>dimensional totally
geodesic submanifolds along which the normal space of M is constant.
Moreover, if M is complete, then these generating submanifolds of G are also
complete; this fact was proved first by S. S. Chern and R. K. Lashof [1] and
later by many other authors.

In 1971 this theorem was generalized by D. Ferus [3] to submanifolds of
higher codimension in arbitrary ambient spaces of constant curvature. The
present paper is concerned with a further generalization. While in the above
case the generating submanifolds of G may be interpreted as curvature
surfaces corresponding to the principal curvature 0, now for an arbitrary
principal curvature function λ of M the analogous problem will be consid-
ered. A first approach to this general situation was made by T. Otsuki [9] and
the author [10]. But the proof of the completeness of the generating submani-
folds was left until now. For solving this problem we shall modify the ideas of
P. Dombrowski [2], who discovered a fundamental relation between Jacobi
fields and so-called geodesic forms.

Applying our results to the case, where M is also a space of constant
curvature which exceeds that of the ambient space, we can continue B.
O'Neill's investigation [7] to obtain a result analogous to the one of B. O'Neill
and E. Stiel [8] about spaces of the same constant curvature.

1. Statement of the principal results

Let/: M -» N be an isometric immersion of a Riemannian manifold M into
a Riemannian manifold N of constant curvature with dim N > dim M. Let
v(f) denote the normal bundle of/, v*(f) its dual, D the canonical covariant
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derivative of v(f), and A the second fundamental form of /. In this article all

manifolds, maps, vector bundles, . . . are assumed to be of class C 0 0, if no

other assumptions are formulated explicitly.

Definition. A 1-form μ E v*(f) aXp E M is called a principal curvature of

/at/? if the vector space

(1) E(μ) := {v E TpM\Aηv = μ(η) - v for all η E vp(f)}

is at least 1-dimensional.

Suppose now that there is given a continuous principal curvature function λ

of /, i.e., a continuous section of the bundle v*(f) on M with dim E(λp) > 1

for all p E M (see (1)), and let G be any open subset of M on which the

function p H» dim E(λp) is constant, say

(2) dim E(\) = k for all/? E G.

For these data and hypotheses we obtain the following theorem, where the

statements (i), (iv) and (v) are the main new results of this article.

Theorem 1. (i) The principal curvature function λ is C^-differentiable on G.

(ii) The vector spaces EQ^), p E G, form a vector subbundle E of the tangent

bundle TM\G which is integrable.

(iii) If L denotes the foliation obtained by integrating E, and g: L<LJ> M its

inclusion map, then all leaves of L are k-dimensional umbilical submanifolds of

M, andf ° g: L —> N is an umbilical immersion into N.

(iv) Ifλ is covariant constant along E, i.e., if

(3) (Vxλ)(η):=X λ(η)-λ(Dχη) = 0

for all X E T(E) and η E T(ι>(f)\G) (see Remark (c)), if furthermore c:

J —> L is a geodesic of L with δ := sup / < oo, and if q := lim,.^ c(t) exists in

My then also dim E(λq) = k; see (2).

(v) If, in particular, G is the subset of M on which the function p ι-» dim E(λp)

is minimal (this subset is open, because p ι-» dim £(λp) is upper-semicontinuous),

λ is covariant constant along E (see Remark (c)), and M is complete, then all

the leaves of L are also complete spaces.

Remarks, (a) The leaves of L may be called the curvature surfaces of / in

G corresponding to λ; for, at every point p E G the tangent space TpL is

contained in an eigenspace of each tensor Aη, η E vp(f).

(b) If we denote by Gt the interior of the subset {p E M|dim E(λp) = i}

for every integer / < dim M, then the subset U Gt is dense in M, because the

function p ι-> dim E(λp) is upper-semicontinuous. Nearly the whole manifold

M is therefore foliated by those curvature surfaces of/which correspond to λ.

(c) If k > 2, then λ is always covariant constant along E; see [10, Satz 2].

(d) If k > 2, G is the subset on which the function p ι-> dim E(λp) is
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minimal, and M is complete, then the leaves of L are k-dimensional space

forms, i.e., complete Riemannian manifolds of constant curvature. This fol-

lows from the fact that / ° g is umbilical; see (iii). If, moreover, TV is a

standard space, i.e., a euclidean space RΛ, or a euclidean sphere Sn(r) of some

radius r, or a hyperbolic space Hf of some negative curvature K, then every

leaf of L is isometric to a standard space. For, / ° g maps every leaf K of L

into a Λ -dimensional sphere Sκ of N; see [10, Satz 2]. Since K is complete and

Sκ is simply connected,/ ° g\K is in fact an isometry of K onto S^

(e) Every hypersurface of a surface of constant curvature with a global unit

normal vector field ξ has global continuous principal curvature functions. For

instance, define λ by means of the smallest eigenvalue of At at every/? E Λf.

(f) If in the assertions (iv) and (v) we had omitted the assumption that λ is

covariant constant, these assertions would not be true. (Examples: the com-

pact surfaces of revolution in R3 which are not spheres.)

The statements (ii) and (iii) of Theorem 1 are immediate consequences of

the statement (i) and of [10, §1, Bemerkung (v) and Satz 2]. The proof of (i),

(iv) and (v) will be given in §§3 and 4 of this article. The assertion (v) will be

deduced from (iv), and the proof of (iv) is essentially based on the investiga-

tions of §2, where we collect those arguments which do not depend on the

special situation of the problem and may also be applied to other "spherical

foliations".

There are isometric immersions without any principal curvature; for in-

stance the immersion of the Veronese surface into S 4 . The following theorem,

however, describes an important class of isometric immersions with just one

distinguished principal curvature function.

Theorem 2. Let M (resp. N) be an w-dim. {resp. n-dim.) Riemannian

manifold of constant curvature κM {resp, κN), and f: M -^ N an isometric

immersion. If κM — κN > 0 and m < n < 2m — 2, then the following two

statements are true:

(i) At every p E M there exists exactly one principal curvature \ of f with

dim E(\) > 2; see (1); moreover, one has dim EQ^) > 2m - n + 1 > 3. (B.

O'Neill)

(ii) The function p \-^λp is a continuous principal curvature function; and if E

is defined as in Theorem l(ii), then λ is covariant constant along E, and

therefore the whole Theorem 1 applies to the mapf

The assertion (i) of Theorem 2 is due to B. O'Neill, who studied the second

fundamental form of such isometric immersions in detail (see [7, Theorem 1])

and also showed that M is foliated by curvature surfaces in the neighborhood

of "regular points" (see [7, Theorem 2]). But his results about the question

whether a point is regular or not do not allow us to deduce a global statement
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about the curvature surfaces. In [4] W. Henke treated the case n = m + 2

and obtained the completeness result by a method adapted just to this case.

The proof of Theorem 2(ii) is given in the last section of this article.

2. The tangent bundle of a spherical foliation

In this section we shall deal with a little more general situation. The

essential assertion is Proposition 3(vi) which together with Propositions 4 and

5(iv) will give the main step of the proof of Theorem l(iv). It should be

mentioned that the system (9) of differential equations is a modification of

the Jacobi equation adapted to our situation.

A foliation L of a Riemannian manifold G will be called a spherical

foliation of G, iff every leaf of L is an extrinsic sphere of G, i.e., an umbilical

submanifold of G with a mean curvature vector field which is parallel with

respect to the normal connection of L in G; see [6]. For instance, every totally

geodesic foliation is a special spherical foliation.

Proposition 1. Let G denote a Riemannian manifold, V its Leυi-Civita

covariant derivative, E a subbundle of the tangent bundle TG of G with

άimEp > 1, and P: TG -+ E and Q: TG-*E^ the orthogonal projections.

Then E is the tangent bundle of a spherical foliation L of G, if and only if there

exists a section H G T(E •L) with

(4) QVx Y = (X, Y)H and QVXH = Ofor all X, Y G T(E).

(E -1- denotes the orthogonal complement of E in TG. If E is the tangent

bundle of a foliation L, then E^ is the normal space of L at/? for all/? G G.)

For the proof, which will not be given in detail, one has to remark that (4)

implies Q[X, Y] = QVXY - QVYX = 0 for all X, Y G T(E), i.e., the inte-

grability of E, that every X G T(E) may be considered as a vector field of L,

and that H ° g (g = the inclusion map L °* G) is the mean curvature vector

field of L. The concept of spherical foliations is useful for us because of the

following two propositions, the first of which is obtained as an immediate

consequence of [10, Satz 2 and its proof] and of Proposition 1. (In [10] the

"normal field" H was denoted by Z.)

Proposition 2. If f: G —> N is an isometric immersion of a Riemannian

manifold G into a space N of constant curvature with dim N > dim G, λ is a

differentiable principal curvature function off, for which the vector spaces E(λp)

(see (1)) form a vector subbundle E of TG, and furthermore λ is covariant

constant along E, then E is the tangent bundle of a spherical foliation of G.

Proposition 3. Let E be the tangent bundle of a spherical foliation L of a

Riemannian manifold G, let V, P, Q and H be as in Proposition 1, and let R be
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the Riemannian curvature tensor of G. Let V denote the coυariant derivative of
G defined by

(5) VXY := VXY - (X, Y)H + (Y, H)X,

and B the tensor field of type (2,1) on G defined by

(6) B(X, Y) := QVYPX = QVYPX - (PX, PY}H

for all vector fields X, Y on G. Furthermore, let J be an open interval of ΈL with
0 G /, c: J -» L a path in L with <c, c} = 1, and w G Ecφy Then the following
hold:

(i) V is metric with respect to the Riemannian metric < , ) of G, i.e.,

X (Y,Z) = (VXY,Z) + <y, VxZ)forallX, Y, Z GΓ(ΓG).

(ii) E is auto-V-parallel, i.e., V / G T(E) for all X, Y G Γ(£), and there-
fore PVXZ = VXPZ and QVXZ = VxQZfor all X e T(E) and Z G T(TG).

(iii) H is V-parallel along E, i.e.,

VXH = VXH + (H, H}X = 0/or all X e Γ(£:),

αnί/ therefore (H ° c, H ° c^ is a constant function and

(7) V a # o c = _</f o c, H o c> c

where, as always in this article, 9 denotes the canonical unit vector field ofR.
(iv) The following three statements arepairwise equivalent:

(a) c w 0 geodesic of L,

(8) (b) c is a V-geodesic of G,

(c) Vθc = H o c.

(v) ̂ ( x , y>z = ̂ (jr, ρy>z/or α//x, z e Γ(E) αnrf y e T(TG).
(vi) // c w a geodesic of L, and (Uv U2, U3) with ty G T(c*TG) is the

solution of the homogeneous system of linear differential equations

V3ί/,= U2,

(9) VdU2 = R(c,U,)c + U3,

V3ί/3 = R(c, ί/,)V8c -<V3c, V3c>ί/2 - 2<l/3, Vdc)c

with t/,(0) = w, ί/2(0) = 5(c(0), w) α/κ/ £/3(0) = V^/ί, ίAen y := QUλ is a
solution of the linear differential equation

VdY=B(c,Y).

Remark. The suitableness of the covariant derivative V and the tensor
field B is shown by the assertions (ii) and (iii) of this property and above all
by Proposition 5(iii).

PROOF OF PROPOSITION 3. Using (4), (5), P + Q = id r σ and the integra-
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bility of E we can obtain the statements (i), , (v) by a simple computa-

tion.

For (v) we first prove R(X, Y)Z e T(E) for all X, Y, Z E T(E) and then

use curvature identities. To verify (vi) let (Uv U2, U3) be the solution of (9)

with the prescribed initial values. Then the proof will be finished by the

uniqueness theorem for ordinary differential equations, and the following

statements (10), (11), (12).

U := Ux is the solution of the differential equation

(10) V a V a £ / = # ( c , C/^+V^if

with U(0) = w and (Va£/)0 = B(c(0), w), and the function
<c, Vaί/> vanishes identically on /.

Y := QU is the solution of the differential equation

( l i ) v a v a y = R(C, Y)C + ρ v y i

with 7(0) = w and (Va y ) 0 - B(c(0), w) - <w, (Vac)0>c(0).

If Ϋ G T(c*TG) is the solution of the differential equation

(12) Va Ϋ = B(c, Ϋ) with Ϋ(0) = w, then Ϋ also satisfies the

differential equation and the initial conditions of (11).

Now we proceed to prove the above statements (10), (11), (12).

For (10), for abbreviation and in accordance with (8) set

(13) h := H o c =V a c.

Now choose any path γ: ]-l, l[-> G with γ(0) = c(0) and γ(0) = w, and

denote by Z the section in E along γ with Zo = c(0), which is parallel with

respect to the metric covariant derivative of E, induced by V, i.e., Z satisfies

the equation PVdZ = 0. Thus ||Z,|| = 1 for all s e ]-l, 1[. If Vs: JS-*L

denotes the maximal geodesic in L with ^(0) = γ(^) and Vs(0) = Zs, then we

get (Vs, Vs} = 1 for all s G ]-l, 1[. Since, according to (iv), the Vs

9s are

V-geodesics in G at the same time, we obtain a C°°-maρ V: (t, s)\~* Vs{t)

defined on an open subset c R2, which contains / X {0}. To study the

infinitesimal variation along c induced by V, denote the two canonical vector

fields of R2 by dλ and 32, and the maps 11-» (t, s), s ι-» (0, s) of R into R2 by τ5,

σ0 respectively, and set Xx := V+dv X2 := V^ Uλ := X2 <> τ0 (this is the

infinitesimal variation), U2 := (VdXx) ° τ0, and U3 := (Va Va A",) ° τ0. Of

course, one has K ° T, = Vs, Xx ° τs = Vs (especially V ° τ0 = c, Xx ° τ0 =

c% V ° σ0 = γ, and Xx © σ0 = Z. Since

(*) (V8|»F) o τs =Vd(W o T,) for all IF e Γ(F*ΓG),
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and [9j, 32] = 0, we obtain the differential equations

vat7i = ϋ2, v8t/2 = R(C, ux)c + u3,

VdU3 = R(c, Ux)h + (V32V3 iV3 i^) o r0.

To calculate the last term, by means of (*) we derive V8iA
r

1 = H ° Vfrom (8)
and VdH ° V = -<if o K, H ° F ) * ! from (7). Hence the definition of t/3

yields

t/3 - (VdH o F) o τ0 - (v^ f f ) τ0 = V^i/,

(Va^VaJfO o τ0 = - (V9 2<if V, H K>Jf,) τ0

= -2<ί73,Λ>c-<A,Λ>ί72.

Thus (C?!, t/2, U3) is a solution of (9), U3 = V^ΛΓ, and V ^ t ^ = Λ(c, ί/j)̂
+ V&H. Moreover, since (Xv Xχ)M = (Vs(t\ Vs(t)} = 1 for all / and s9 we
have <c, Va ί/,> = <c, £/2> = (X^ V^A^) ° τ0 = 0. To complete the proof of
(10) it therefore suffices to show £r.(0) = L (̂0). For instance,

#2(0) = Va2oσo(o)*i = V^o)*! = ( V d ^ o σo)o - (V 3 Z) 0

- (ρv a z) 0 = (ρv a z) 0 = B(Z09 γ(o» = i/2(o).
The verificaton of ^(O) = ί/^O) is similar; and this implies t?3(0) = ί/3(0)
because of ί73 = V^i/.

For (11), the assertion (ii) "βV^Z =VXQZ for all X e Γ(£) and Z G
T(TG)" is, by (5), equivalent to

- <̂ r, Z)H,v
{ ' for all X G Γ(£) and Z G Γ(ΓG).
Applying this to the vector fields U and VdU G Γ(c*ΓG), and bearing (13)
and y = βC/ in mind we get

(15) Vd Y =

and by means of (10) and (15),

vaβvθc/ = ρv θv aί/ - «c, £/></>, A> + <v8y,

Since, according to (13) and (7), we have V8A = -<A, A>c, the last two
equations yield

(16) v3v3y=<2V8vΘί/-2«v3y,/ ί>c+<y,A>A).

Furthermore, from (10), assertion (v) and (4) it follows that

QVdVdU=R(c, QU)c+QVPUH + QVQUH = R(c, Y)c+QVYH,

so that (16) becomes the required differential equation for Y. To compute the
initial value (Va Y)o use (15) and (10) again.
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For (12), at first the definitions (5), (6) and the assertion (ii) imply

B(V, W) = 0, B(X, QW) = B(X, W\

(17) Q(VXW - B(X, W)) = Q[X, W\

for a l l * G Γ(£), K G Γ^E1-1), W G Γ(ΓG).

Using (4), (5), (6), (14), (17), and assertion (v), by a straightforward computa-

tion we get, for all Xy Z G Γ(£) and V G Γ^- 1 ),

, V) - <F, JΪ>Z) - 5(V^Z, F)

V^F - B(X, V)) - (VXV - B(X, F), H)Z

= R(X,V)Z+ (X,Z)QVVH+((Z,VVH)X- (X,VVH)Z)

V, H)Z - « F , VXZ)H + <F, H}VXZ).

Now let f G Γ(c*TG) be the solution of V a7 = B(c, Ϋ) with 7(0) = w.
Then the assertion (ii) and (17) show VdQΫ = B(c, QΫ) and QΫφ) = w. The
uniqueness theorem for ordinary differential equations therefore implies
QΫ = Ϋ, that means Ϋ G T^E1-). Thus by the usual technic (for instance
using local frame fields for the vector bundles E and E^\ from (18) we may
deduce

= R(c, Ϋ)c +QVΫH- 2<Va f, Λ>c - « Ϋ, Vdc>Λ + < f, A>Vac).

Because of (13) and (17) one has B(Vdc, Ϋ) = 0; and by (5) and the
assumption about Ϋ we get Va Ϋ = B(c, Ϋ) — <y, h}c. Using (13) again we
see that Ϋ satisfies the differential equation and the initial conditions of (11).
Hence the proof of Proposition 3(vi) is complete.

Remark. As a corollary of (7) and (8) we obtain: If the hypotheses of
Proposition 3 are fulfilled and c is a geodesic of L, then c satisfies the
following differential equation of third order:

(19) VθVθc+<V8c, Vθc>c = 0.

Thus c is either a geodesic or a circle of G; see [6].
For the proof of Theorem l(iv) it will be important to notice that in a

Riemannian manifold geodesies and circles either have infinite length or run
to the "boundary" of the manifold; this is the content of

Proposition 4. If M is a Riemannian manifold, p G M, and υ, w are vectors
of TpM with \\υ\\ = 1 and <t>, H>> = 0, then there exists a unit speed path c:
I -> M, defined on an open interval / C R, which satisfies the differential
equation (19) and the initial conditions 0 G /, c(0) = p, c(0) = v, and (V8c)0 =
w, and is maximal in the following sense: If t+ := sup / < oo (resp.
t~ :— inf / > -oo), then for every compact subset K of M there exists an
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ε E R + , such that ε < t + and c(]t+ - ε, ί+[) Π K = 0 (resp. ε < -Γ and

c(]r9 Γ + ε[) n K = 0 ) . Moreover, if c: J-+Af is any other unit speed path,

which satisfies the differential equation (19) and the preceding initial conditions,

then J C / and c = c\J.

Proof. If c is a solution of (19) and <c, c> = 1, then <V8c, V8c> is a

constant function. If w = 0, then the path c is a geodesic. Thus from now on

we assume ω := ||w|| > 0. In this case the path c has to be a circle. By [6] we

know that a unit speed path c: I —» M with 0 e / is a circle, if and only if its

development in the tangent euclidean space Tci^M is a circle in the ordinary

euclidean sense. Thus we shall get the desired solution c by "enveloping" the

curve

C: R -+ TpM, t H> c o ^ s i n ^ t ; + ω"2(l - cos(ωί))w

into Λf. For this let w0 denote an orthonormal base of TpM, and denote the

induced linear isomorphism Rm -» TpM (m := dim M), as usual, also by w0.

Then it is easy to see that a path c: I -» M with 0 G / and c(0) = p has the

development C\I if and only if the horizontal lift u of c in the bundle of

linear frames with w(0) = u0 is a solution of the ordinary differential equation

(20) ύ{t) = ^VC'W)*,),

where C" denotes the ordinary derivative of C in the vector space TpM9 and

2?(£) the standard horizontal vector field corresponding to ξ E Rm; see [5].

(The author was pointed to the differential equation (20) by B. Wettstein,

Zurich, who learned it by corresponding with K. Nomizu about the "envelop-

ment" of curves.) Since every u(t), t G /, is an orthonormal frame and the

orthogonal group O(m) is compact, Proposition 4 follows from the theory of

ordinary differential equations.

3. The proof of Theorem l(i)

Let/: M -^ N be an isometric immersion of a Riemannian manifold M into

a space N of constant curvature with r := dim N — dim M > 0.

1st step. Let/?0 be a point of M and U a neighborhood of p0, on which

there exist such sections ηl9 , ηr of v(f) that ηx(p\ , ηΓ(/0 is a basis

of ^ ( / ) for each p E (/. Abbreviate Λ to Λy . Furthermore, denote the

spectrum of an operator T by σ(T) and set σy := σ ^ ^ ^ .

Now let ε > 0 be a constant with the following property:

For ally E {1, , r} and all distinct eigenvalues z,wG σj9

(21) the open discs Bε(z) and Bε(w) in C of radius ε and centers

z, w respectively have no common points.
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Since the Aj are continuous sections of the bundle Hom(7!Λ/, TM)\U, their

eigenvalues depend also continuously on the points of U. We may therefore

assume U to be so small that we have

(22) σ(AJlp) c U Bε(z)

for ally E (1, , r] and/? E U. Now define

for all / E {1, , r}, z E σ,, and /? E U. By this construction we get

orthogonal C °°-ρrojections i^.^ of TM\U onto subbundles which we denote

by i ^ z ) (see e.g. [10, p. 172], where this functional analytical idea was also

used). Then it is known that, because of (22),

the fibre Fo^p is the sum of the eigenspaces of AΆp corre-

sponding to the eigenvalues w E o(A^p) n Be(z).

To relate these vector bundles with the principal curvatures of / (see (1))

define

r r

(24) Fφ:= Π F α φ 0 ) ) f o r a l l φ E Π : = Π σ,.

As Fφ is the kernel of the vector bundle homomorphism

TM\ U-» 0 ΓMIU, v ^ (υ - PυMmv)j.,,...,„

the function p H> dim i^^ is upper-semicontinuous. Thus we may further

assume U to be so small that

(25) ^ p φ ] p o

for all φ E Π and p E U. Moreover,

if the function p ι-> dim Fφ\p is constant on U, then Fφ is a
( ' vector subbundle of TM\ U.

2nd step. Now let λ be a continuous principal curvature function of/, and

G an open subset of M on which the function/? H» dim £(λp) is constant, and

let p0 be a point of G. Using the notation of the 1st step we define φ 0 E Π

(see(24))byφ0O):=λPo(i?,.(/»0)).

Since the functions λ(τj7) are continuous on U, we may assume

U c G and\(ηj(p)) G Bβ(φo(j))

for all/? E £/ andy E {1, , r}. By (23) we see that the eigenspace of A^p
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corresponding to \ty(p)) is contained in ^ M ^ ) ^ - According to (1) we

therefore get

U.

On the other hand (23), (21) and (1) show Fψ(Apo = ^(λ^. Using the

assumption U c G and (25) we obtain

dim E(\) = dim E(\) < dim Fψolp < dim F^Po = dim E(\),

i.e., E(\) = Fψolp for all/? G U. Thus, because of (26), the vector spaces EQs^)

form a C°°-bundle on U, namely, FψQ. Therefore for all X G Γ(Fφo) and

η G Γ(Kf)| t θ we have (AηX, X} = λ(τj°) (X, X} which proves the differen-

tiability of λ at p0.

4. The proof of Theorem l(iv) and (v)

Let /: M -> N, λ and G be as described at the beginning of §1. In

particular, suppose

(27) dim E(\) = k for all/? G G.

By Theorem l(i) and (ii), λ is differentiable on G and the is(λ^) form an

integrable subbundle E of TM\G = TG. Let us suppose λ to be coυαriαnt

constant along E (see (3)). Then, according to Proposition 2, E is the tangent

bundle of a spherical foliation L of G, and Proposition 3 is applicable.

Henceforth let P, Q, H, V and B be as described in Propositions 1 and 3.

Furthermore, denote by ή the continuous section of v{f) characterized by

(28) λ(η) = <η, η> for all η e Γ ( F ( / ) ) ,

and let ά be the continuous bilinear vector bundle map TM X M TM -» v(f)

defined by

(29) ά(X, Y) = a(X, Y) - (X, Y)ή for all X, Y G Γ(ΓM).

Since λ is differentiable on G, ή and ά are also so. First we show how to

control the variation of E(λp) along a path in L by means of ά.

Proposition 5. If D denotes the coυariant derivative of v(f), then the

following statements are true:

(i) E(\) = {v G TpM\ά(v, w) = Ofor all w G TpM) for allp G M.

(ii) Dxή = Ofor all X G Γ(£).

(iii) Dxά(Z, Y) = ά(VxZ, Y) + ά(Z, V^y - B(X, Y)) for all X G Γ(£)

andY, Z GT(TM\G).

(iv) If c: J -*L is a path, Z G T(c*TM) a V-parallel vector field, and

Y G Γ(c* ΓAf) w a solution of the differential equation V8 Y = £(c, 7),

ά(Z, Y) G Γ(c*K/)) w D-paralleL



18 HELMUT RECKZIEGEL

Proof. First, as a consequence of the symmetry of a and the well known

relation between a and A, we get

(30) ά(v, w) = ά(w, t>),

(31) (Avv - \(η)v, w) = (ά(v, w), η)

for all/? E M, v9 w E 7̂ ,M and 17 E vp(f). Thus (i) is immediately obtained

by (1) and (31); and (ϋ) is exactly the covariant constancy of λ along E

expressed by ή (use (28) and (3)).

For (iii), the statement (i) and formula (30) shows

(32) ά(Z, QY) = ά(QZ, Y) = ά(Z, Y) for all Y, Z E T(TM\G).

Therefore by Proposition 3(ii) it suffices to prove (iii) for Z E T(E -1). In this

case, using (30), (32), (17), (5), (ii), (i) and the Codazzi equation we get, for all

X E T(E) and Y E T(TM\G),

Dxά(Z, Y) - (ά(VxZ, Y) + ά(Z, VXY - B(X, Y)))

= Dx(a(Y, Z) - <Y, Z)η) - ά(Y, VXZ) - ά([X9 7], Z)

= (Dxa(Y, Z) - a([X, Y], Z) - a(Y, VXZ))

- (X(Y, Z> - ([X, 7], Z> - <7, VxZ))ή

= (Dγa(X, Z) - a(X9 VyZ)) - <VYX, Z)rj = (X, Z)Dγή = 0.

For (iv), by applying (iii) to sections Y, Z E Γ(c* TM), one obtains

Ddά(z, Y) = ά(vaz, y) + ά(z, vθy - B(C, Y)).

Proof of Theorem l(iv). Let c : / ^ L b e a geodesic of L with δ := sup /

< 00 for which q := lim,^δ c(f) exists in M. We may assume J to be an open

interval, 0 E / and (c, c} = 1. Furthermore since, by the Remark before

Proposition 4, c is a solution of the differential equation (19), Proposition 4

shows that we may continue c to a differentiable path / -» M, where / is an

open interval containing / and δ. This continuation will also be denoted by c.

To prove dim E(λg) = k (see (27)) we first remember that the function

p \-> dim E(λp) is upper-semicontinuous. Therefore one has dim is(λg) > k,

and thus it is sufficient to construct a linear isomorphism

φ: TqM-> Γc(0)Λ/withφ(£(λ,)) c £(λ c ( 0 ) ) .

To this end we define φ(t>) := Z(0) for v E TqM using the solution Z E

Γ(c* ΓΛf) of the linear differential equation

(33) VΘZ - <c, Z>Vac + <Z, Vdc}c = 0 with Z(δ) = υ.

(It is to be emphasized that the solution Z exists on the entire interval /.) In

this way we get a linear map φ which is injective, since every solution of (33)

vanishing at any point does vanish identically. Hence φ is an isomorphism.
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Now suppose v E E(λq) and let Z be the vector field along c satisfying
(33). To prove </>(t>) E is(λc(())) we use Proposition 5(i), according to which we
have only to check α(Z(0), w) = 0 for each w E E(kc{^)^-. For this purpose
we denote by (Ul9 U2, U3)9 Ut E Γ(c*ΓM), the solution of the system (9) of
differential equations (which is also defined on the entire interval /) with the
initial values Uγ(β) = w, U2(0) = B(c(Q), w) and £/3(0) = VWH. Since c\J is a
unit speed geodesic of L, Proposition 3(vi) yields that Y := Q(UX\J) is a
solution of the differential equation Va Y = 5(c, y). On the other hand,
Proposition 3(iv) and the formulas (5) and (33) show that Z \J is a V-parallel
vector field. By Proposition 5(iv) we therefore see that ά(Z\J, Y) =
ά(Z, Uλ)\J isD = parallel (see (32)). Furthermore ά(Z, Ux) is continuous and
ά(Z(δ), ί/j(δ)) = 0, since υ = Z(δ) E JF(λ̂ ). Thus the parallel section
ά(Z, ί/j)!/ must vanish identically, and especially ά(Z(0), w) = 0.

Proo/ <?/ Theorem l(v). Now suppose M to be complete, let k be the
minimal value of the function p ι-> dim E(\p\ see (27), and denote the open
subset {p G Λf |dim E(λp) = A:} by G. Then we have to prove the complete-
ness of each leaf K of L. By using the theorem of Hopf and Rinow, it suffices
to show that if c: J-> K is a, maximal unit speed geodesic of K, then
δ := sup/ = oo.

Assume the existence of such a geodesic c with δ < oo. If we denote by d
the distance function on M induced by the Riemannian metric of Λf, then we
have d(c(t^), c(t2)) < \tx — t2\ for all tl912 G /, i.e, c is a uniformly continu-
ous map into the complete metric space (M, d). Hence there exists
q := lim,^δ c(t) on M, so that the hypotheses of Theorem l(iv) are fulfilled.
Thus dim E(λg) = k, i.e., q E G. But then q has to be a point of K, and c
would be a unit speed geodesic of K ending at an interior point of K. This is a
contradiction to the maximality of c.

5. The proof of Theorem 2(ii)

We have only to prove that the section λ: p ι-> λ̂ , defined in Theorem 2(i),
is continuous. The other assertions of Theorem 2(ii) are obvious because of
Theorem 1 and the Remark (c) of §1.

To prove the continuity of λ, let/?0 be any point of Λf, and use the notation

and the construction described in the 1st step of the proof of Theorem l(i).

Obviously it suffices to prove the continuity of the functions \{y\x\ , λ(ηr)

at/?0. For this let ε > 0 be given. We may assume (21) to be satisfied. Then

define φ 0 E Π (see (24)) by ψo(j) := \0(Vj(Po)) and show

(34) E(\) C Fφolp for all/> E U.
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For (34), if p EL Uis fixed, then there exists exactly one φ E Π with

see (21), (22), and (24). By means of (1) and (23) we get E(\) c Fφlp9 and

thus, in consequence of (25),

(35) 2 < dim E(\) < dim Fφ{p < dim FψW

On the other hand, if μ denotes the principal curvature of / at p0 char-

acterized by μiηjiPo)) = φθ) for j = 1, . . . , r, then (21) and (23) yield

Fφ\Po = E{ μ). Hence (35) shows μ = λ^, i.e., φ = φ0. Thus (34) is verified.

The continuity of λ(τjy) at/?0 follows now immediately; for by (34), (24) and

(23) we obtain

\{φ)) G Bε(φ0(j)) - Be(\o(Vj(po)))

for ally = 1, . . . , r and/? E U.
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