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THE HEAT EQUATION AND MODULAR FORMS 

H. D. FEGAN 

1. Introduction 

Let G be a compact semi-simple simply connected Lie group, and let A be the 
Casimir operator on G. Then the heat equation on G is Au + aujat = 0. We 
denote by H ( x ,  - t1271.i) the fundamental solution of the heat equation, and by 
Z ( t )  the trace of the heat Kernel. The aim of this paper is to investigate how 
H ( x ,  t )  behaves under the transformation t + - l j t .  Two main conclusions of 
this investigation are the following results. 

Theorem 1.1. e"kt/lz H(a,  t )  = ~ ( t ) ~ ,  where k = dim G, 7 is the Dedekind 17- 
function, that is, q ( t )  = eMtlL2 n;=, (1 - e2""9), and a is an element of G which 
is principal of type p. (For a definition of elements principal of type p see [5]  or 
5 5 of this paper.) 

Theorem 1.2. Z ( t )  - (471.t)-'"2)901 G exp (ktj24) is the asymptotic expansion 
for small t of the trace of the heat kernel. 

The first of these two results is a form of Macdonald's 7-function identities. 
These identities can be written (see [6]) 

where the summation is over a suitable lattice which together with the other 
notation will be explained later. In [5] Kostant observed that this could be 
written as a sum over the dominant weights with a suitable weighting factor 
& ( A )  as 

Kostant identified the weighting &(I)  as the value of the character with highest 
weight A at the point a which is principal of type p, that is, & ( A )  = ~ ~ ( a ) .  With 
this result (1.2) can be interpreted in terms of the fundamental solution of the 
heat equation. In fact Theorem 1.1 is such an interpretation. However, our 
proof of Theorem 1.1 is independent of these two previous results, given by 
(1.1) and (1.2). Thus there is now a set of three results any two of which imply 
the third. 

The result of Theorem 1.2 was first obtained by McKean and Singer [7] in 
the case of the group S 3 .  More recently Urakawa [lo] has obtained this result 

Communicated by B. Kostant, February 18, 1977. 
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for the other compact Lie groups. However our method of proof is different
from that in [10]. For the motivation to study the function Z(t), see [7].

Our method of proof in both cases is to take Fourier transforms and to use
the Poisson summation formula. This process is described in the form which
we shall use in § 2. Before we can apply this procedure the fundamental solu-
tion of the heat equation must be expressed as a sum over a lattice. At this
point a basic difference between the two results emerges. The fundamental solu-
tion is given by

(1-3) H(x91) = Σd(λ :ic{λ)t

with the sum over the dominant weights. In the case when x is a regular element
of G the Weyl character formula is used to express χλ(x) as a sum over the
Weyl group. We can then combine the two summations, over the dominant
weights and over the Weyl group, as a single summation over a lattice. This is
carried out in § 3.

In § 4 we obtain an expression for the way H(x, t) behaves under the trans-
formation t —• — 1//. This expression can be summarized in the following result.

Theorem 1.3.

( 1 \ p2πiB(P)2/t / f \k/2 j -n / 1

* , - — ) = - ( - ) - Σdlλ - ±-
t ) j(x) \ i ) vol P \ 2

The notation is explained in § 4, and this result is proved by the methods
of § 2. The proof of Theorem 1.1 is completed in § 5. With the help of Theorem
1.3 we can show that eίπfct/12H(a, t) transforms in the same way under the
modular group as the kύv power of the Dedekind ^-function. An estimate of
eίπkt/12H(a, t)lη(t)k as / -> i oo then provides sufficient additional information
to complete the proof of Theorem 1.1.

In § 6 we give a proof of Theorem 1.2 which is essentially as follows. If
φ.H^C with H = {z e C: imaginary part of z > 0} the upper half plane, is
a modular form then the asymptotic expansion of φ is φ(t) ~ at~υ for suitable
a and v. This fact is well known and is a consequence of the transformation law
φ(-\/t) = ctvφ(t). We shall show that Z{-2πίt) = e~ίπktn2θ{t) where the
function θ(t) also has a transformation law. In fact the transformation law of
θ(t) is more complicated than that of a modular form, but it is sufficient to give
the asymptotic expansion θ(t) — a0ΐ~

(1/2)k. This now gives the asymptotic ex-
pansion for Z(t) — ct~(1/2)k exp (kt/24) for some constant c. To determine the
constant c we compare the first term of our expansion with the first term of
the expansion of the trace of the heat kernel on a Riemannian manifold. The
transformation law of θ(t) is obtained by applying the results of § 2.

Finally in § 7 we use this asymptotic expansion to compute the volume of
G. It is well known that the first term in the asymptotic expansion is
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(4ττ/)"(1/2)fc vol G. By equating this with the first term of our expansion we
obtain the following result.

Theorem 1.4. vol G = (2π)ι+n vol Q(Rυ)l[\a>o B(a, p\ where vol Q(Rυ) de-
notes the volume of a fundamental parallelepiped of the lattice generated by the
coroots with respect to the inner product induced by the Killing form.

This result can be rewritten in the following form. Let G be a compact con-
nected Lie group, T a fixed maximal torus in G, and g and t the corresponding
Lie algebras. We denote by L the integer lattice, that is 2πL is the kernel of
the map exp: t -> T\ let <x, y} be an innerproduct on g invariant under the
adjoint action of G. Then this induces a Riemannian structure on G. The
volume of G with respect to this Riemannian structure is given by

Theorem 1.5. vol G = C f] vol Sdj, where d3 are the degrees of the gener-
ators ofH*(G, R), vol S*J is the volume of the sphere Sd> C R*'+1 with the usual
Euclidean measure, and the constant C is given by

C = volL Π \\av||2 ,
α = 0

with ά° the coroot corresponding to a and \\ά°\\2 = <V, av}.
The author would like to acknowledge the benefit which he has derived from

correspondence with Professor I. G. Macdonald, and would also like to thank
the Science Research Council of the United Kingdom for financial support.

2. Fourier transforms

We shall work on Rι. Let Sf denote Schwartz space, that is,

(2.1) & = {g: Rι -> R: \\\x\\rD'g\ < CJ .

For g e ^ the Fourier Transform of g is

(2.2) g(ξ) =

and the Poisson summation formula

(2.3) Σg(n)=—*— Σ g(*n),
nζL Vθl L m€L*

where L is a lattice in R\ and L* = {m e Rι: (rn, n) e Z for all n ξ L) is the
dual of L. By vol L we denote the volume of a fundamental cell of L taken
with respect to the innerproduct (x, y) used in (2.2) and normalized so that
volume of the standard integer lattice is vol (Zι) ~ 1. These facts can be found
in [9].

Let g(x) = eίπM[2t where ||x||2 = (x,x). Then an elementary calculation
shows that
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(J Λ\ &(£\ (tli\-W)lp-iπU\V/t

VZ.H-J g\s) — \1/1) e

However we require the Fourier transform of the function g(X) = j\X)e

ίπmH

when/is a homogeneous polynomial of degree 2n. This is given by
Proposition 2.1. Let f be a homogeneous polynomial of degree 2n and g(λ) =

f(λ)eίπmH. Then the Fourier transform of g is

8\§) — vl1) ι

where #? is the operator given by

and Δ is the Laplacian associated to the norm ||f ||2.
Remark. Formally we can write &F — exp (—tΔ/4πi).
Proof of Proposition 2.1. The following result is well known. lff(λ) — Σaaaλ

a,
using multi-indices, and g(λ) = f(λ)eixmH

9 then

( f

For convenience of notation let u = — 2πi/t. We need to introduce the Her-
mite polynomials with parameter u and to give some results about them.

Definition. The kth Hermite polynomial with parameter u is hk(x, ύ) =

e-
{1/2)ux\d/dx)ke{1/2)ux\

With this definition we obtain from (2.5)

( f \

-L) tf-iπWξWVt

Here we have used the assumption that/ i s homogeneous of degree In, and the
multi-index notation is interpreted so that if a = (a^ , at), then ha(ξ, u) =
haιQSί9u)...haί(gl9u).

Now it is a fact that

(2.7) hk(x, u) = u*

This fact is clearly true when k = 0 and k = 1. To prove it we claim that both
sides satisfy the recurrence relation

(2.8) ht+ι(x> u) = - ^ ( * > u) + uxhk(x, u) ,
dx

which can be checked by a direct claculation.
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To complete the proof of Proposition 2.1 we proceed as follows. First change
coordinates so that ||f ||2 is diagonal. Next use (2.7) on each variable in turn in
(2.6). Observe that the series in (2.7) is an exponential series and so has the
usual additive property. The result now follows upon changing coordinates
back to the original ones.

3. The fundamental solution of the heat equation

We need some facts about Lie groups. The proofs of these can be found in
[2]. Let G be a compact semi-simple simply connected Lie group. Fix a maxi-
mal torus T c (/, and let t and g denote their Lie algebras respectively. Let
Pa ί* be the lattice of weights of G, and choose a fundamental Weyl chamber
D C f *. Then the set P Π D is the set of dominant weights. There is a one-one
correspondence between the finite dimensional irreducible representations of G
and the points in P Π D. We denote the innerproduct on t* induced from the
Killing form by B(x, y). Let b(x, y) = tr (adxady) be the Killing form on t. Then
b is negative definite since G is semi-simple and compact. The innerproduct
B(x, y) is the innerproduct on t* induced by — b(x,y), where we have choosen
the sign conventions to make B{x, y) positive definite. The following result is
well known; see [4].

Lemma 3.1. The eigenvalues of Δ are c(λ) for λ e P Π D where c(λ) =
B(λ + PY - B(p)\

Here p is half the sum of the positive roots and B(x)2 = B(x, x).
Let d(λ) = Π «>o B(λ, a)/ fj α > 0 B(ρ, a) where the products are over the set of

positive roots of G Then if Vλ is the representation space corresponding to λ,
the Weyl dimension formula gives

(3.1) dim Vλ = d(λ + p) .

It is known that the multiplicity of the eigenvalue c(λ) is (dim Vλf.
The kernel of the heat equation is known [1] to be

(3.2) K(x, y, t) = ΣrftixW&)<**«» ,

where the summation is over a complete orthonormal set of eigenfunctions {φj}
with λj the eigenvalue corresponding to φό. Notice that we have made an ele-
mentary change of variables replacing the usual equation Δu + dujdt = 0 by
Δu — (\/2πi)(du/dt) = 0. In the case of a Lie group we can express the kernel
as a convolution kernel which we shall call the fundamental solution. Using
the fact that the eigenfunctions are the matrix coefficients of irreducible re-
presentations we can show that the fundamental solution is

(3.3) H(x,t)= Σ (dimVλ)χλ(xV ίcWt
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Let./(/*) = Σ<oew ( - iye2πiB(ω(p)'h\ Then the Weyl character formula gives

(3.4) χλ(x)= Σ (-l)V*< Λ<-w + '>'*7/(x).

Since H is a class function, it is sufficient to work with H restricted to the maxi-
mal torus T. Now lift H(x, t) to the Lie algebra t. By identifying t with t*
using the innerproduct B(x, y) we find that H(x, t) defined for x <= t* is given
by

H(x, 0

^_ y V1 d() _[_ n\( ]Λωp2πiB(ω(λ + p),x)p2πίBU+p)2t

]yX) λ<=PΠD ωζW

where we have substituted the value c(λ) = B(λ + pf — B(p)2.
We can use following three facts to write # as a sum over the lattice P.
(1) The map λ -• λ + p maps P Γϊ D onto P Π Z)°, the lattice points in the

interior of D.
(2) The polynomial d(λ) vanishes for λ in the walls of D.
(3) There are the invariance properties d(σλ) = (— \)°d(λ) and 5(σ^)2 =

B(Xf for σ e W, that is, d(Λ) is skew invariant and B(λf is invariant under the
Weyl group.

With these facts (3.5) can be expressed as

(3.6) H(x, t) = e:2πιB(P)H

This formula only holds for h a. regular element. When h is not regular we
need a different procedure. For the trace of the heat kernel instead of taking
H(l, t) we shall take Z(t) — Σe~u where {λ} is the set of eigenvalues of Δ
counting multiplicities. Thus we can express Z(t) in the following form:

(3.7) Z ( 0 = Σ d(λ + pγe-
B^+p)H+B^)n .

Thus we can put Z(—2πit) = e-
2πίB{p)Hθ(t) where θ(t) is given by

(3.8) 0(0 = Σ d(λ + pye

2*i*«+pw .
λ€PΠD

Consider the map P —• P defined by >ϊ —>• >ί + ô. Under this map P Π D goes
onto P Π D°. Now rf(λ) = 0 if λ is in one of the walls of/). Both d{λ)2 and
i?(/l)2 are invariant under the action of the Weyl group W. If λ <= P and J(Λ) ^ 0,
then the orbit of λ under ^ has a unique element in D. So under the action of
the Weyl group, (3.8) becomes
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L(3.9) θ(t) =

Here | W | denotes the order of the Weyl group.

4. The inversion formula

In this section we shall give an expression for the way H(x, t) transforms
under / —• —lit. This expression is

Theorem 4.1.

( 1 \
p2πiB(p)2/t

J\X)

The notation is as follows. Let {#} be the root system of G with respect to T.
Then there is the opposite root system {av}. The map a —• α^ is characterized
by the two conditions:

(1) φ*) = 2,
(2) x — x(αυ) is a root if x is a root.

The root system {a} C t* and {av} C t. The Killing form can also be defined
by B(x, y) = Σa(x)a(y), and we define a new innerproduct (x\y) = 2τx(αυ)Xαί')
on t*.

Definition, m = | |α 0 + ^||2 — \\p\\2 with||x| |2 = (JC|JC), a0 is the highest root,
and p = \ Σa>o & is half the sum of the positive roots.

The number m satisfies (x\y) = mB(x, y).
Now we introduce the lattice Qv. Let Q(Rυ) be the lattice in t generated by

{av}. Then Qv is given by

Qv = {x e t* : OI y) = y(βυ) for some βv e Q(RV) and all j e t * } .

It is a fact that \mQ° c P and P * = }mβυ, where P is the lattice of weights,
and P * is the dual lattice with respect to 2B(x, y\ that is, P * = {x € t*: 2B(x, y)
<= Z for all y e P}. These facts can be found in [2].

To prove Theorem 4.1 we start with (3.6) in the form

(4.1) H(x, t) = Σ d(λ)e2πίB{λ+x/2t)H ,

j(x) izp

and let

(4.2) θ(x, t)= Σ d(λ)e2πίB{λ+x/n)H .

With respect to the innerproduct 2B(x, y) the lattices P and \mQv are dual.
Now using elementary facts about the Fourier transform and Poisson summa-
tion formula we have
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( t \ -(i/2)(2w+i)

— ) — 2 ^
/ / VOl P £6(1/2)TO<2« \ 3ξ

Completing the square in the exponent gives

( t \
-)

1/

7-2πίB(ξ-(l/2)X)2/t
e Σ

VOlP f6(l/2)mQ» ξ

with

it - 2w + / = dim G .

Now we proceed as in the proof of proposition 2.1. This introduces the expres-
sion jed where J f is the operator J f = ΣtrΔr/[(—4πi)rrl].

Proposition 4.2. J f d = d.
Proof. This follows at once from the fact that d is harmonic. To prove that

d is harmonic observe that since d(λ) = f] α > 0 B(λ, a)/B(p, a), d has the property
that it is skew invariant, and if/is another skew invariant polynomial then d
divides/ Since Δ is invariant, Δd\s again skew invariant and so d divides Δd.
But the degree of Δd < (degree of d) — 2, so we have Δd = 0.

We can now use the same methods as in Proposition 2.1 to give

iB(λ-(1/2)X)*/t( f \ -kit j-n / 1 \

— ) — eίπBW/2t Σ dlλ - — x)e2π

i I volP xea/2)mQv \ 2 /
Substituting this into (4.1) gives the result in Theorem 4.1.

5. Macdonald's ^-function identities

In this section we shall prove Theorem 1.1. To do this we shall evaluate
H(x, t) at x = a where a is principal of type p, and then show that eiπkt/12H(a, t)
has the same transformation laws under the modular group as η(t)k. A simple
estimate of eiπIct/uH(a, t)/η(t)k as t -> / oo gives sufficient information to show
that these two functions are equal. We start by describing the element a.

Let β: ί -• t* be the isomorphism defined by λ(x) = B(λ, β(x)) for x € t and
λet*. Then a e G is principal of type p if a is conjugate to exp (β~\2p)), since
H(x, t) only depends on the conjugacy class of x it is sufficient to define a upto
conjugation. For more details about a see [5]. Thus when we lift H to i*, the
element corresponding to a is 2p.

The modular group is generated by T: t -• t + 1 and S: t-> — lit. Under
these two transformations we have the following transformations of η(t):

(5.1) η(t + 1) = e^v(t) , V(-1/0 = (t/i

Since H(x, t + 1) = H(x, t), it is immediately verified that eίπkt/12H(a, t) has
the same transformation under Γas η(t)k

) k
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In the next section we shall prove the result B(p)2 = k/24. If we use this and
Theorem 4.1 we obtain the expression

'

where σ is the element of the Weyl group such that σ(p) = — p (in [2] σ is de-
noted by ω0).

On the other hand from (3.6) we have

(5.3) eUktn*H{2p9 t) = L
jj(2p)

This summation can be written as a summation over \mQv and one over a set
of coset representatives of P/(jmQv).

eίπkt/uH(2p, t)

(5.4) = 1 Σ

Under the action of the Weyl group Pl(\mQv) becomes the disjoint union of
orbits which have the following two properties, both of which can be found
in [11].

(1) There is a unique orbit in P/(^mQv) on which W acts transitively,
and this orbit contains a coset with representative p.

(2) If μ e P defines a coset μ such that the stabilizer of μ under W is non
trivial, then there is s e W such that (— l) s = — 1 and sμ = μ.

From property (2) it follows that if μ e P is such that μ has a non trivial
stabilizer, then

Σ d(λ + μy
iB«+»%* - o .

Thus we have the expression

eίπkt/12H(2p, t)

(55) 1 / d(λ + y
j(2p) \ω<cW

Comparing (5.2) and (5.5) gives

(5.6) e-ίπk/mH(2p, -1/0 = c(t/iyi/2'keίπkt/12H(2p91)
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where c = i~n{- l)7(vol P Σ^w ( - iye

4πίB(^p)).
To complete the proof we make some estimates as t —• / oo. Let q = e2πίL

Then as / —• ί oo, # -> 0. Now

λ+p)H = d(p)qk/u

λ€a/2)mQv

and

which gives

lim ( Σ ( 1 ) V

η{t)k ) j(2p) \.&

However by definition j(2p) = Σ«ew (— l)ViB(<"'>">) and J(,o) = 1, so

(5.7) lim (^^WPi'l) = 1 .

As in [11] this now implies that c = 1, and eίπkt/12H(2p, t)/η(t)k is a bounded
entire function and so is constant. The limit (5.7) gives that this constant is one,
which completes the proof.

6. The asymptotic expansion

We start with the results of § 3, that is,

(6.1) Z(-2πit) = e-2πίB{p)Hθ(t) .

Thus to complete the proof of Theorem 1.2 we need to establish the two facts:

(6.2) (1) B(pY = k/24, (2) θ(t) ~ a0Γ^\

where k is the dimension of G. The first of these is the "strange formula" of
Freudenthal and de Vries (see [3]), and it follows from the second fact.

Lemma 6.1. Suppose that θ(t) ~ a,Γ{ί/2)k. Then B{pf = k/24.
Proof. The assumption θ(t) — aot~

il/2)k and (6.1) give the asymptotic ex-
pansion for Z(t) as

(6.3) Z(0 ~ ct

for C = aj(—2πi)~{1/2)k. Now in [7] the asymptotic expansion is given as

(6.4) Z(t) ~ (4πt)-(1/2)k vol G(l + tR/6 + O(t2)) ,

where R is the scalar curvature. Comparing the first two terms in the expansions



HEAT EQUATION AND MODULAR FORMS 599

(6.3) and (6.4) gives the values of the constant C and the formula B(p)2 = R/6.
From [8] we have that the curvature tensor is

(6.5) R(X9 Y)Z = \[[X9 Y]9 Z] .

Thus the scalar curvature is R = k/4.
To complete the proof of Theorem 1.2 we have only to establish the second

fact of (6.2). We now prove this.
Lemma 6.2. θ(t) ~ a0Γ

il/2)k.
Proof. We need to establish a formula which gives the behaviour of θ(t)

under the transformation t —> —\/ΐ. To do this we shall use the Fourier trans-
form and Poisson summation formula. Let g(λ) = d{λ)2eίπB{λ)n. Then from
Proposition 2.1.

(6.6) g(ξ) = (tli)-1/2{'n + l)i-2n(^d(ξY)e-iπB^ .

Now k = In + /, that is, the dimension of G is twice the number of positive
roots plus the rank of G. For convenience we put C(t) = (t/ίy{1/2)kr2n/vo\ P.
The Poisson summation formula (2.3) gives

(6.7) Σ d(λ)2eίπBWH = C(t)
λ£P ξζP*

Replacing t by - l / / w e obtain the formula

(6.8) 0(-l/2?) = C ( ~ J |

/ 0 Σ ( - ) V - d(ξγ}e"B<»" .
\ W\ i£P \ I I

Let q = eut. Then there is the expansion "about infinity"

(6.9) Σ {t\ϊ)nW

where br(t) = (t/i)nΣje — d(λ)2 with the sum over those λ such that B(λ)2 = r.
We have used the fact that for ξ e P * then B(ξ)2 e Z. This follows from the
results in [2]. Let Rv be the opposite root system to that of G, and let Q(RV) be
the lattice of roots generated by Rv. Then P * = mQ(Rv). Here m is the number
such that (x\y) = mB(x, y) where (x \ y) is the innerproduct induced from Rv in
the same way that B(x, y) is induced from the root system of G.

The next result we shall need is that bo(t) is independent of t. This follows
from the fact that the degree of d(λ)2 is In. Hence

(6.10) JT - d{ΐf = And(λ)2t-n/[(4πi)nnl] = g(X)

for some g satisfying g(0) = 0, where jtf* — is just the operator J f when t has
been replaced by — 1/ί. Now br(t) is a polynomial in t so as t —• /oo, br(t)qr

->0ϊor r Φ 0. This gives, as ί —>• / oo,
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(6.11) θ(-l/2t)~C(-l/t)bJ\W\.

The expansion (6.11) can be expressed as t —• 0

with a, = 2-^2)kί-2n + {ι/2)kbJ(\ W\ vol P).

7. The volume of a Lie Group

In this section we shall prove Theorems 1.4 and 1.5. We start by recalling
the result of the previous section. This is the asymptotic expansion

(7.1) Z(-2πίt) ~ e-

where the constant a0 is given by

(7.2) a0 = i-3n + (1/2)k(/lnd2)/[(4πi)nn\ vol P] .

On the other hand from [7] we have the expansion

(7.3) Z(-2πit) ~ (-$π2it)-(1/2)k vol G(l + 0(0) .

Equating the first terms of these expansions leads after some elementary mani-
pulation to the result

(7.4) vol G = 2ιπn + ι(Δnd2)/(n! | W | vol P) .

We shall use this to obtain a simple expression for the volume of the Lie group
G. First we need to calculate Δnd2.

Let τ = (—l)nΣB(aί9 a2) B(a2n_1, a2n) where the summation is over all
(2n)l orderings (aί9 ,<*2Jof the roots of G with respect to the fixed maxi-
mal torus T. The value of Δnd2 is then given by

Lemma 7.1. Δnd2 = τ\ Π«>o B(a, p)2.
Proof. Rather than calculate Δnd2 we shall calculate Δn(Πa), where the

product is taken over all the roots. To see that this is sufficient observe the fol-
lowing. Let ω: t* -> t be the isomorphism induced by B so that λ(ω(μ)) = B(λ,μ)
for all λ, μ e t*, and let d* = do or 1 then since ω is an isometry Δnd2 = Δnd*2,
where Δ denotes respectively the Laplacian associated to B on either t* or t.
Now d* = Π«>o oίl Π«>o B(a, p\ hence we have

(7.5) Δnd2 = ( - \γΔ\Πa)l \\ B(a, pf ,
>0α > 0

where the first product is taken over all the roots. Thus the proof of the lemma
will be complete when we show τ = (—l)nΔn(Πa). To see this let xί9 , xt

be an orthonormal basis of / with respect to B(x, y), and let ξ 1? , ξι be the
dual basis of /*. Now a = Σa(xj)ξj and so da/dξj = a{x3). Hence we have



HEAT EQUATION AND MODULAR FORMS 601

(7.6) -ί{Πaϊ = Σ Φ,)β(χj) Π r ,
Oξj «*β rΦ«,β

where now all the sums and products are over all the roots with the indicated
restrictions. From (7.6) and the definition of {x3) we have

Δ(Πa) = Σ B(a, β) [] 7 ,

and so

An(Πa) = ΣB(aΛ, ot2) B(a2n.u a2n) ,

where this summation is over all (2n)l orderings (aί9 , a2n) of the set of roots.
It is now clear from the definitions that τ = (— \)nΔn{Πά) which together with
(7.5) completes the proof of the lemma.

If we combine Lemma 7.1 and (7.4) we obtain the expression

(7.7) vol G = 2ιπn + ιτ/[ Π B(a, p)2n\ \ W\ vol P] .
α>0

There is a similar expression for vol G due to Freudenthal [3], which in our
notation should read

(7.8) vol G = 2ι+2nπι + nn\ \W\\o\ Q(Rv)/τ .

We can obtain a value for the number r by equating these two expressions.
More precisely we find

(7.9) τ = 2nn\\W\ \\ B(a, p) ,
α>0

where we have used the facts that vol P vol Q{RV) = 1 and that τ is positive.
This gives the volume of G as

(7.10) vol G = (2π)ι + n vol Q(RV)/ f] B(a9 p) ,
α>0

which is Theorem 1.4.
This formula (7.10) can be expressed in other forms, one of which is given in

Theorem 1.5. To see this we need to introduce the height of a coroot av, for
the definition of coroots see [2].

Definition. p(av) is the height of the coroot av

9 where p € i* is half the sum
of the positive roots and av e ί. Some of the properties of p(av) are well known.
First, 1 < p(av) < h — 1 where h is the Coxeter number. Let nr be the number
of coroots of height r. Then (nί9 , nh_ί) is a partition of n. Now let rrij be
the number of nr such that nr > j . Then there are at most / nonzero mp m1 >
^2 > Ήj, which are the exponents of G. Thus we have
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Π/*«')= ΠKO,
α>0 J = l

and hence

α>0 y = l α>0

With this we can write (7.10) as

(7.12) vol G = 2ιπι + n f] ^ 0 7 vol β(7Γ)/ f] (m7!) .

Since the volume of the unit sphere S2m + ί C i?2m + 2 with the standard Euclidean

measure is vol s2m + 1 = 2πm + 1/m\, (7.12) can be written

(7.13) vol G = vol Q(Rv)B(avY f] vol S2m^+ι .

(7.13) is Theorem 1.5 for the group G. In fact it holds more generally. For

any Lie group G, which is compact and connected, we fix a maximal torus T.

Then the integer lattice is L — (2π)~ι ker (exp: t —• Γ), and we denote the

degrees of the generators of i/*(G, R) by {dj}.

If (x, y) is an A JG-invariant innerproduct on q, then the volume of G with

respect to the Riemannian structure induced by <x, y) is

vol G = C Π vol £* ' ,

and the constant C is given by

C = volL f] II^H2 .
α>0
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