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ON THE NON-LINEAR COHOMOLOGY OF
LIE EQUATIONS. IV

HUBERT GOLDSCHMIDT & DONALD SPENCER

CHAPTER IV. ABELIAN EXTENSIONS AND COHOMOLOGY

17. Some results on cohomology

Here we bring together various results concerning cohomology, both linear
and non-linear, which can be derived from the theory as it has been developed
up to this point. Some of the results state conditions under which the coho-
mology is trivial, i.e., the linear cohomology vanishes in positive degrees and
the non-linear cohomology in degree 1.

We begin by improving slightly Propositions 7.4, 7.5, 7.7 (ii) and 7.8 by
making a small change in the lower bound for which the assertions hold. This
is accomplished by proving Proposition 17.1.

We define the twisted ^-operator mentioned in the remark of § 7 following
Proposition 7.4. Let v be a section of Γ* (x) JQ(T) over X; we then have the
operator

δv: Λ J^*®S f cΛ(Ό*®/ 0(Ό-> Λ'+1^* ® S^UT)* <g> J0(T)

defined by

δvw = [v, w] = [v19 w] ,

where w e /\jT* <g) SkJ0(T)* ®J0(T), and v, is any section of Γ* (x) Jk{T) over
X such that πϋvλ = v. Let v*: / 0(Γ)* -• Γ* be the mapping dual to v: T->J0(T).
Then

(17.1) δυ(ω®u) = ( - l ) ' ω Λ (^*ov*-1 (x) iά)δu ,

for ω € /\jT*, u e SkJ0(T)* (x) J0(T). Therefore if v is the section of Γ* (x) J0(T)
corresponding to v\ T^> J0(T), then δv — δ. Moreover the diagram

skJ0(τr
(17.2) I (y-iov)*(g)id(g)id

5 V 0 ( Γ ) * (x) / 0 (Γ) - ^ /y + i j * (x) 5*"V 0 (Γ)*
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is commutative, and we thus obtain a complex

0 > SkJ0(T)* (x) J0(T) A > r* <g> Sk-'J0(T)* <g> /0(Γ)

- ^ > Λ2^* ® sk~2J0(T)* <

— > Λwr* ® sfc~ vo(Γ)*

for fc > 0; if v: Γ—• J0(T) is an isomorphism, it is exact.
Let Rk c Λ ( Ό be a differential equation; then by (17.1),

dv(gk+l)d T*®gu+ι_ί9

for all / > 1, and thus we obtain a complex

/m-2 •

where gm = SmJ0(T)* <8> Λ ( Ό for m < k; if v: T-^J0(T) is an isomorphism,
by the commutativity of (17.2) its cohomology at /\jT* (x) gm_j is isomorphic
to H"->>>(gk):

The following proposition generalizes Propositions 7.4 and 7.5 and its proof
is the same as that of [26, Proposition 3.3].

Proposition 17.1. Let Rk c Jk{T) be a formally ίntegrable Lie equation, and
suppose that gko is 2-acyclic, with k0 > k. Then, for all m > k09 the mappings
(7.9), (7.10), (7.11) and (7.12) are surjective.

Proof It suffices to show that (7.9) is surjective. Let u e Z^R^^ with
m > k09 x e X, and choose uf e {3Γ* (x) &m + ί)x such that πmu' = M. Then ^ 1 M / €

t? = v + πou, we have

xu
f) = -D(Duf - i[i/, u'\) + [i

= \D\vl, u'] + [II, Z)i/] - J

= [Du\ u] + [«, /)i/] = 0 ,

by the Jacobi identity and (1.25). Since gm is assumed to be 2-acyclic and
v(x): Tx -> JO(T)X is an isomorphism, there is an element u" e ^ * ®gm + 1 satis-
fying a y 7 = Q)γu

f. Then

hence M7 + u" belongs to Z\Rm + 1)x and satisfies πm(u' + M77) = M, that is (7.9)
is surjective.

Therefore in Propositions 7.4, 7.5, 7.7 (ii), we may assume that k0 > sup (k, 1)
and in Proposition 7.8 we may replace sup (k09 2) by sup (k0, 1). Consequently
throughout § 9 we may assume that k0 > sup (k, 1).
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If a € X9 we denote by idα = iάx>a the germ of the identity mapping of X in
(Aut (X))a. We say that a Lie equation Rk c Jk(T) is of finite type if there is
an integer k0 > k such that gkQ = 0. The following proposition is stated with-
out proof.

Proposition 17.2. Let Rk C Jk(T) be a formally integrable Lie equation of
finite type. IfPk is a formally integrable finite form of Rk and gkQ = 0, with k0 > k,
then Pk is integrable and

Hj(Rk) = 0 ,

H\Pk)m>a = {idβ} , H\Pk)mta = 0 ,

for allj > 09m>k09aeX.
Assume that X is endowed with a structure of real-analytic manifold com-

patible with its structure of differentiable manifold. Let ΘXtW be the sheaf of
real-analytic real-valued functions on X. If E is a real-analytic vector bundle
over X, we denote by Sω the sub-sheaf of £ of analytic sections of E.

We next record two lemmas, of which the first is required in the proof of the
second and the second is used in proving Lemma 18.2. Let x e X and set A =
@x,ω,x- If M is an ^[-module and ξ e ^ω>x, an /^-linear mapping D: M —• M is
a ξ-derivation if

D(frή) = ξf m+fDm,

for all / € ^4, m e M. The proof of the following lemma is the same as that of
[9, Lemma 8.2] and is due to Malgrange.

Lemma 17.1. Let f1? ,ξn e ̂ ω,x9 and Dt be a ξ^derivation of an A-module
M of finite type, for i = 1, , n. If the values ξλ(x), , ξn(x) of ξu , ξn at
x form a basis of Tx9 then M is a free A-module.

Lemma 17.2. Assume that X is connected. Let E be an analytic vector bundle,
and let SF be a coherent Θx ω-submodule of Sω. Assume that, for all x e X, there
are ξl9 , ξn € 3Γωx and a ξ^derivation Di of the Θx,ω,x-module $ω^x satisfying
DX^J C &'x, for i = 1, , n, such that {ξί(x\ , ξn(x)} is a basis of Tx.
Then there is an analytic sub-bundle F of E such that ϊF is the sheaf of analytic
sections of F.

Proof Let £f be the coherent 0x?ω-module SJ&. If x e X, ξ € yu%x and D
is a f-derivation of the ΘXtω>x-moά\x\z SωtX satisfying D(JFx) d 3Fx, then D in-
duces a ξ-derivation of the 0x>ω)J.-module Sfx. According to Lemma 17.1, for
all x e X, the 0^>α,ιa.-modules ϊFx, Sf x are free. Since ¥ is a coherent ΘX}0)-
module, by the Syzygy Theorem, <? is locally free. Therefore there is an analytic
vector bundle S such that 6f is isomorphic to the sheaf of analytic sections of
S. The natural mapping $ω —• £f is induced by an epimorphism of vector bun-
dles E —• S whose kernel is an analytic sub-bundle F of E satisfying the condi-
tion of the lemma.

We now turn to the consideration of real-analytic equations and their coho-
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mology defined in the analytic sense and, if elliptic, in the differentiable (C°°)
sense.

Let Rk C Jk(T) be an analytic Lie equation; assume that Rk + ι is a vector
bundle for all / > 0. Let Pk + ι be an analytic finite form of Rk + ι. If we place
ourselves in the category of real-analytic manifolds and real-analytic mappings,
then, following § 7, we can define the analytic cohomologies Hl(Pk)my(L,
HXPX.a, HXPk)mta and H%Rt) = Hl(Pk)a, for m > k, a e X. If Rk and Pk

are formally integrable, Pk + i = (Pk)+ι, and gkQ is 2-acyclic, with k0 > k, then,
according to [19, Theorems 8.5 and 8.3] and the integrability of analytic
formally integrable differential equations, it follows that Hl(Pk)m>a = 0 for all
m > k0, a e X and hence by Proposition 7.8 we have the following

Proposition 17.3. Let Rk C Jk(T) be an analytic formally integrable Lie
equation, and Pk be an analytic formally integrable finite form of Rk. If gko is 2-
acyclic, with k0 > k, then

Hl{Pk)m,a = 0 ,

for all m > k0, a e X.
Assume that E is a real-analytic vector bundle. If Rk C Jk(E) is an analytic

formally integrable differential equation, there is an integer mx>k such that
the sub-complex

o — > ( # j . - ^ ( r * <g> mm_x\ -! ( Λ ® w 2 > .
—>{Kntr*®mm-X—>o

of (1.7) is exact, except at (^m)ω, for all m > mλ; its cohomology at («^m)ω is
isomorphic to the sheaf Hl(Rk) of analytic solutions of Rk (see [5]).

By [25, Proposition 1] and results of [5] (see also [21]), we have:
Proposition 17.4. Assume that E is an analytic vector bundle. Let Rk C Jk(E)

be an analytic elliptic formally integrable differential equation. Then

H\Rt) = HXRk), W(Rt) = 0, forj>0.

The following theorem asserts in particular the result of Malgrange [19] that
the non-linear Spencer cohomology of an analytic elliptic formally integrable
Lie equation vanishes.

Theorem 17.1. Let Rk c Jk(T) be an analytic elliptic formally integrable Lie
equation, and Pk an analytic finite form of Rk. Then every solution of Pk is ana-
lytic, and if Pk is formally integrable and gko is 2-acyclic, with k0 > k, we have

H\Pk)m,a = 0 ,

for all m > k0, a e X.
Proof The first assertion is given by [9, Proposition 7.1]. If Pk is formally
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integrable, according to [19, Theorem 9.1] we see that H1(Pk)ma = 0, for all
m > k0, a € X; the second assertion now follows from Proposition 7.8.

We continue with our treatment of linear analytic elliptic equations, but place
it in the context of linear cohomology sequences for general projectable equa-
tions as developed in [6]; the final result is Theorem 17.2. We also give some
complements to [6], in particular Proposition 17.5.

Let F be a vector bundle over Y9 and ψ: E —• F be a morphism of vector
bundles over p: Z—• Y such that the morphism φ: E —• p~λF, whose kernel we
denote by K, is surjective.

We consider a formally integrable differential equation Rk c Jk(E; φ) satis-
fying the following conditions:

(A) for all / > 0, there is a differential equation R"+ι c Jk + ι(F; Y) such
that

<p(Rjc + l,a) = K'+l,p<a) , f©Γ all d € X \

(B) if Rk + ι = Rk + ι (Ί Jk + t(K) denotes the kernel of the epimorphism φ:
Rk + ι-+ p~1R'k'+ι, the projections πk + ι: Rk + ι + 7rι —• Rk + t are of constant rank, for
all /, m > 0.

We now recall some facts which may be found in the paper [6]. Since
πm' Rm+i -• Rm i s surjective form>k and R'£+1 c ( l θ + 1 , t n e r e e x i s t s by the
Cartan-Kuranishi prolongation theorem an integer.^ > k such that (Rk[)+ι =
i^ii+ί for all / > 0, and R!k\ is a formally integrable differential equation in
Jkl(F; Y). For all / > 0, we have Rk + ι = (Rk)+ι; for / > 0 and m > k, let R$
be the sub-bundle πmRm + ι of Jm(K). According to [5, Theorem 1], there exist
integers m0 > k, l0 > 0 such that R'mo = R™ is a formally integrable differential
equation in Jmo(K), whose r-th prolongation is equal to

for all / > /0. For m > k, let

{/\'3τ* (x) «,,)„ = ( Λ ^ * ® « m ) n

for a z X, with Z> = p(ά), the mappings

(17.3) p : ( Λ ^ * ® / » ( ί p)) f,β -

give us the commutative diagram

(17.4) | , j P L
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and thus determines a mapping between the cohomology Hj

ψ{Rk)ma of the top
row of the diagram and the cohomology of the bottom row. For m > kί9 we
therefore have a mapping

(17.5) φ:Hl(RX.a->H>(K'1)m,b.

According to [6, Theorem 3], there is an integer k2 > kx such that the natural
mappings

Hl(Rk)n.a - H>(Rk)n,a

are isomorphisms for all m > k2, j > 0 and a e X. These isomorphisms together
with (17.5) yield mappings

07.6)

(17.7) w

for m > k2, j > 0 and a e X. According to [6, Theorem 3], we also have the
exact sequence

Assume now that φ\ E-+ p~xF is an isomorphism. If a e X and b = p(a),
consider p*: T*tb -+ Γ*; then p*(/\jT$ιb (x) SmT*tb) (g) £ α is the fiber over a

of a sub-bundle'(ΛJ^* ® ^ m ^ * <8> ^ ) P of A T * ® 5 m 7 > * ® »̂ a n d w e h a v e a

natural isomorphism

9 Λ χ S r a Γ* (x) F\ .

According to [6, § 5], the diagram

( s m + 1 r * <g> ̂  -^-> ( r * (g)
(17.9) L \φ

commutes, and the diagram
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0 0

I
(SmT* (x) E)ψ — - • SmT* <g) F

i i
(17.10) JΛE φ) - ^ Jm(F; Y)

i I
0 0

is commutative and exact.
Consider the mapping

( 1 7 . 1 1 ) o. 1 (X) o i ^ — • / \ i ^ Q s ) o

by (1.5), we have

(17.12) <£ Λ 37, δu) = ξ A 3M(^) — V A

for w e Γ* (x) ,Sm + 1 Γ* and ξ, η e T. Fix x e X\ denote for the moment by Γ*,
Γ^ the fibers of these vector bundles over x and |O(JC), and consider Tf as a
subspace of Γ* by means of the injective mapping p*. For m > 0, if the image
of w € Γ* (8) 5 m + 1 Γ^ under the mapping (17.11) belongs to Λ 2^* ® *S m r j , then
w is an element of Γ* ® 5 m + 1 Γ*. Indeed, to verify that u belongs to Γ*(g)
,Sm + 1 Γ*, we must show that u(ξ) = 0, for all ξ € F. If f € F, 37 e Γ, then
1/(37) € ^ m + 1 ^* and f A δu(η) = 0; since <f Λ 37, ̂ w> - 0, by (17.12) we have
η A δu{ξ) = 0. Therefore δu(ξ) = 0 and w(f) = 0.

For m > A:, let #^ C S m Γ J (x) F be the sub-bundle with possibly varying fiber
such that the sequence

is exact; for m < it, we set # m = ( 5 m Γ * (x) E)ψ and ^^ = 5mT* (x) F. From
diagram (17.10), we deduce that gm c ( 5 m Γ * (x) F)^ and that

ψ' Qm,a > Qm,p{a)

is an isomorphism for all m > 0, β € X. Fix x € Jf and denote again for the
moment by J1*, Γ^, ^ m , gZ the fibers of these bundles over x or ^(x). From
(17.9), we obtain the commutative diagram
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δ δ δ

*

whose vertical arrows are injective. Its bottom row is exact at Tf (x) g'^ for
m > k, and if Hm'\gk)x = 0 with m > k, by the above remark concerning the
mapping (17.11), it is also exact at f\2Tf (x) g^.

The mapping (17.3) is an isomorphism and therefore determines an isomor-
phism between HJ

φ(Rk)m a and the cohomology of the bottom row of diagram
(17.4).

Proposition 17.5. Assume that φ: E —• p~Ψ is an isomorphism, and let Rk C
Jk(E; ψ) be a formally integrable differential equation satisfying condition (A).

(i) The differential equation R" C Jk(F; Y) is formally integrable and R"+ι

= (K') + ιfor all l> 0.
(ii) If gkQ is 2-acyclic, with k0 > k, then g"ϋ is also 2-acyclic, the natural

mapping

is an isomorphism for all m > k0, a e X, and the mapping

ψ:H\Rk)mta-,H\R^)mtP{a),

which it determines, is also an isomorphism for m > k0, a e X.
Proof (i) is given by [6, Proposition 5 (ii)]. As we have seen above, if gko

is 2-acyclic, so is g'k\\ the proof of [6, Theorem 3], Lemma 3.1 and diagram
(17.4) tell us that the mappings of (ii) are isomorphisms for m > k0.

We no longer assume that φ: E —> p~λF is an isomorphism.
Theorem 17.2. Assume that X, Y are real-analytic manifolds, that p: X —> Y

is an analytic submersion, that E, F are analytic vector bundles and that φ'.E^F
is an analytic morphism of vector bundles over p. Let Rk a Jk(E; φ) be an analyt-
ic formally integrable differential equation satisfying conditions (A) and (B). If
Rkl C Jkl(F; Y) is elliptic, then, for all j > I, we have an isomorphism of coho-
mology

(17.13) Hj(Ko) -^-+ Hj{Rk) .

Proof According to [6, Theorem 3], we have the exact sequence (17.8) for
j > 1, and the exact and commutative diagram

< i 7 1 4 ) 1 1 1
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for all a e X. Since Rkl is analytic and elliptic, by Proposition 17.4 we have
Hj(K%a) = 0 for 7 > 1, and the mapping

is an isomorphism. Thus (17.8) gives the isomorphism (17.13) for 7 > 2 and the
surjectivity of (17.13) for 7 = 1. From diagram (17.14), we deduce the injectivity
of (17.13) for y = 1.

Returning to Lie equations, we now take E = T, F = Tγ, φ = p and Rk C
Jk(T; p) to be a formally integrable Lie equation. Condition (A) is of course
the same as condition (I) of § 9 and (B) the same as (III). Assume that Rk satis-
fies conditions (I), (II) and (III) of § 9. We shall assume as in § 9 that the order
m0 of the equation R'mQ c Jmo(V) is chosen so that m0 > k, and gmo, g'w gZ0

are 2-acyclic. Let Pk c Qk(p), P'mo c β W o (F), P'k[ c Qkl(Y) be formally inte-
grable finite forms of the Lie equations Rk C Jk(T; p), R'mo C Jmo(V), Rkl C
Jkl(Tγ; Y) respectively; we denote by Pk + ι, P'mo+l9 Pkl+ι the /-th prolongations
of Pk, P'mo, Pkl. Let Pm be a finite form of ^ m , for m>k. Consider the se-
quences (9.5) and (9.11) with / > /0.

For a € X, we consider the following assertions:
( i ) jy1(P/

mo)Wiβ = 0 , f o r a l l m > / ι ι 0 ;
(ii) there exists an integer r > 0 such that, for all m > m0 and f" 6

^ ° T O m + r.,(α,, there is an element/€ H\Pk)m>a satisfying Λ/" = / / / ;
(iii) if m > m0 and the image of a e H\Pf

m^mia in H\Pk)ma vanishes, then
a = 0.
In § 20, we shall construct a class of Lie equations Rk satisfying conditions (I),
(II) and (III) of § 9 and this assertion (ii).

If Pk is integrable, we now prove the implications (i) => (ii) in Theorem 17.3
and (ii) => (iii) in Theorem 17.4, showing how the lifting property (ii) for solu-
tions of Pkl to solutions of Pk is related to information about the non-linear
cohomology. In fact, Theorem 17.4 tells us that assertion (i) implies a lifting
property for solutions of Pkl to solutions of Pk which is stronger than (ii) and
which is used in Corollary 17.1 to derive our version of the Kuranishi-Rodrigues
theorem [31]. Corollary 17.1 and Theorem 17.4 are required to derive further
properties of the non-linear cohomology of the sequence (9.11) in Theorem 17.5,
when Rkl is elliptic. All these results and Theorem 17.6 are basically conse-
quences of our study of the sequences (9.5) and (9.11) in § 9.

Theorem 17.3. Let Rk c Jk(T; p) be a formally integrable Lie equation satis-
fying conditions (I), (II) and (III) of § 9. Assume that the finite form Pk of Rk is
formally integrable and integrable. Let m>m0, aeX and assume that H\P'm^)mta

= 0. Then there exists a neighborhood U of IYf7n+lo+2(p(a)) in PZ+ιo+2(p(a)) such
that for any germ f" e Sόl(P'k%a)9 mthjn + lo+t(f'%>(a))eU9 there is ft Sol(i>fc)α

satisfying pf = f" \ moreover, iff" e H\P'k'χ + h+2tβ{a)9 there is ft H\Pt)m + Ua

satisfying pf = f".
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Proof. Let m > m0 and a e X; from the remarks following Lemma 9.1, we
deduce the existence of a neighborhood £/ of lγ m + ιo+2(p(a)) in Pm+z0+2θ>(β))
such that U d μ(Pn + l0+2(a)). I f / " <= Sol ( P ^ ' with ; m + i o + 2 ( f )W«)) € *7,
choose GePm + lo+2(a) with pG = j m + lQ+2(f")(p(ά)). Since Pfc is integrable,
there exists $ <= Sol (Pk)a such that j n + lo+i(g)(a) = G. Then / ί ' = ^g"1 of" be-
longs to Sol (P'k'χ{a) and satisfies ./m + ίo+2(/Γ)(|θ(β)) = /y,m + io+2(|o(fl)). Since
j\Um+ιo+i(fi))(p(a)) = pj\(Im+io+i)(a\ we see that /Γ is an element of
# 0 T O ™ + ίo+i.« According to our hypotheses, the element d*/Γ of H\P'mo)m>a

vanishes and therefore so does the image of/" in H\Pk)ma. By Proposition 9.1,
there exists / € H°(Pk)m + Ua such that ^ = /ί ' . Then the e lement/= gof\ of
Sol (Pk)a satisfies ^/ = /" . ' If/" € H%P'k% + lo+2>pia), we take g = id a n d / = / .

From Theorem 17.3, we now deduce our (non-linear) version of the Kuranishi-
Rodrigues theorem [31]:

Corollary 17.1. Assume that X, Y are real-analytic manifolds, that p: X^Y
is an analytic submersion. Let Rk c Jk(T; p) be an analytic formally integrable
Lie equation satisfying (I), (II) and (III) of§ 9. Let Pk and Pk\ be analytic formal-
ly integrable finite forms ofRk and Rkl; let m > mQ and a € X. Then there exists
a neighborhood U of IYm + lo+2(ρ(a)) in P^+ιQ+2{piβ)) such that for any analytic
germ f" e Sol (Pkl)p{a), with j m + lo+2(.Γ)(p(a)) € U, there is an analytic germ
feSol(Pk)a satisfying pf-—f"; moreover, if fn is an analytic germ in
ffKL^^tα)' there is an analytic germ f in H°(Pk)m + Ua satisfying pf = f".

Proof. We may assume that P^ o is an analytic formally integrable finite
form of R'mQ\ then by Proposition 17.3, Hl(P'mo)nta = 0. Since/" is analytic
and Pk is integrable, the proof of Theorem 17.3 gives us the existence of/.

Theorem 17.4. Let Rk C Jk(T; p) be a formally integrable Lie equation satis-
fying conditions (I), (II) and (III) of § 9. Assume that the finite form Pk of Rk is
formally integrable and integrable, and that there exists an integer r > 0 such
that, for all m > m09 a e X and f" e H°(Pkl)m + r)P(a), there is an element fe
H\Pk)m,a satisfying pf = f". Ifm > m0, a e X and the image of a e H\P'mχ>a

in H1(Pk)ma vanishes, then a = 0.
Proof. Let m > mQ, a e X and a e H\P'mXfa', suppose that the image of

a in H\Pk)m a vanishes. According to Theorem 9.2 (i), there exists f" e
HXPί'X^riua such that dψ' = a. Let/e H\Pk)m + lo+Ua with pf = f"; then
the image of/" in H1(Pk)m + lQ>a vanishes and hence so does a.

The following theorem is a non-linear analogue of Theorem 17.2:
Theorem 17.5. Assume that X, Y are real-analytic manifolds, and that p:

X—• Y is an analytic submersion. Let Rk C Jk(T; p) be an analytic formally inte-
grable Lie equation satisfying conditions (I), (II) and (III) of § 9. If R'k[ c
Jkl(Tγ; Y) is elliptic andm > m0, a e X, then we have:

( i ) the mapping of cohomology

(17.15) HχP'mX,a-^

is surjective;
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(ii) if the image of a e Hί(P/

mo)m a in H\Pk)ma vanishes, then a = 0;
(iii) H\P'mo)a = 0 if and only ifH\Pk)a = 0.'
Proof (i) We may assume that Pk and Pkl are analytic finite forms of Rk

and Rkι. By Theorem 17.1, we see that H1(Pkl)7ϊltP(a) = 0; therefore, since P"x

is integrable, by Theorem 9.2 (ii) the mapping (17.15) is surjective.
(ii) Since any solution of Pkl is analytic by Theorem 17.1, Corollary 17.1

implies that the hypotheses of Theorem 17.4 hold with r = /„ + 1; this last
theorem gives us the result.

(iii) is a direct consequence of (i) and (ii).
If in Theorem 17.5 we replace the hypothesis that Rkl is elliptic by the stronger

hypothesis that it is of finite type and remove all assumptions of real-analyticity,
we obtain the stronger assertions of the following

Theorem 17.6. Let Rk C Jk(T; p) be a formally integrable Lie equation satis-
fying conditions (I), (II) and (III) o/§ 9. If Rkl C Jkl(Tγ; Y) is of finite type and
if Wi > ^o is an integer such that g'ήx = 0, then, for all m > m19 I > l0, a e X,
we have:

( i ) the mapping

is an isomorphism of cohomology,
(ii) the mapping of cohomology

is surjective
(iii) if a19 a2 e H\P'm^m + ι>a have the same image in H\Pk)m + lt(L, then πmaλ

= πma2 as elements of H\Pf

m^m>a\ if Pk is integrable and the image of a e
HχP'mQ)m>a in H\Pk)m>a vanishes, then a = 0;

(iv) the mapping

H\P'mχ -> H\Pk)a

is an isomorphism of cohomology.

Proof For m>mλ,azX, by Proposition 17.2, P'k[ is integrable, H\P'k'x)mtP{a)

= 0 and H°(PίX + Ua = {idFi,(α)}. Since αld^<.> = a for all a 6 H\Fk)m>a, Prop-
osition 9.1 tells us that (i) holds and Theorem 9.2 (ii) gives us (ii). If aλ, a2 e
^ V ' J ^ u , with / > /0, have the same image in Hί(Pk)m + lta, according to
Proposition 9.1 the images of ax, a2 in H\Pk)m + Ua are equal; by the commuta-
tivity of (9.9), so are their images in H\P'm()mta. The second assertion of (iii)
follows directly from Theorem 9.2 (i). Finally (iv) is a consequence of (i).

We now proceed to show how the above results on the sequence (9.11) can
be used to derive relations between the non-linear cohomology of a pair of ana-
lytic formally integrable Lie equations Rk, R\ C Jk{T) on X satisfying
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if R*k is formally transitive. In particular if RL,X/Roo,x is an elliptic transitive
Lie algebra for all x e X, the non-linear cohomology of either of these equations
vanishes if and only if the other one does (Theorem 17.7); if these Lie algebras
are finite-dimensional, we obtain a stronger result (Theorem 17.8).

Let W be an integrable sub-bundle of T. For m > 0, let

+ 1(T)\[ξ,Jm + 1(W)]CZJm(W)},

F{Jm(W)a) = Jm(W\

if a = source F, b = target F

It is easily seen that JX{T\ W) is a formally transitive and formally integrable
Lie equation whose ra-th prolongation is Jm + ί(T; W), and Qλ(X\ W) is a for-
mally integrable finite form of J^T; W) whose m-th prolongation is Qm + ί(X; W).
Moreover Jm(W) c JJT\ W\ for m > 1.

Assume that X is connected. Let 7?fc c Jk(T) be a formally transitive and
formally integrable Lie equation such that

By [10, Lemma 10.5] and Lemma 1.5, the relation (17.16) is equivalent to the
inclusion Rk C Jk(T; W). By [10, Proposition 10.3 and Lemma 10.3 (ii)] and
[6, Theorem 1], we see that πm(Rm + ι Π Jm + ι(W)) is a sub-bundle of Rm for all
m > k, / > 0, and we obtain a formally integrable Lie equation NkQ c i?fco

with /r0 > k, and an integer /0 > 0 such that

7Vm = πm(Rm + ι Π

for all m > k0, I > /„, and

moreover, for ^ € X, the closed ideal TV^ of ^ ^ is defined by a foliation in
( iL^ , Rί,a)' In particular, /oo(^)α is a closed ideal of / ^ Γ ; W)a defined by
the foliation J0(W)a in (JJT\ W)a9 Ji(T; W)a) for a e l W e denote by La the
transitive Lie algebra JJT\ W)JJOΰ(W)a for α e l ; according to [10, Proposi-
tion 10.2], the image L°a of Ji(T; W)a in La is a fundamental subalgebra of La.
Let Lb

a be the closed subalgebra which is the image of R^>a in La; then the se-
quence

is exact. Since La = Lb

α + L°α, we see that Lb

α° = L\ Π ̂ °α is a fundamental
subalgebra of the transitive Lie algebra Da. If τr0Noo,α = JQ(W)a, then Lb

α° is
equal to the image of i ? i α in Lb

a. We write
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D™ = D^pS , for m > 1 ,

LV = L\

we denote by gr L\ the graded Lie algebra 0 ~ = _ ! Lb
a
m/Lb

a
m+1.

Let Pfc a Qk(X; W) be a formally integrable finite form of Rk. If a, b e X,
since i?fc is formally transitive, there exists ^ € QJβ, b), with τrTO0 e Pm for all
m > k. As 7rTO0 € GTOCX; FF) for m > 1, we have

<HJJT\ W)a) - JUT; W\ , ^ / M ( » 0 a ) = JJW)> , ^ -o . a ) = ^.o,6 .

Therefore ^ determines an isomorphism ψ: Lα —> L6 sending L^ onto L°δ and
ZA onto Lb

Λ. Hence

is an isomorphism of pairs of topological Lie algebras and so induces an iso-
morphism

of graded Lie algebras. In turn, this last isomorphism gives us an isomorphism
of bigraded vector spaces

\\Dl gr Da) -> H*(Db/Lf, gr Dh) .

From these isomorphisms, we deduce the existence of an integer kx > 1 such
that

for ally >09m>k1—l,aeX.

Let Z be a differentiable manifold, and r : [ / - > Z b e a surjective submersion
defined on an open subset U of X such that WXΌ is the bundle of vectors tan-
gent to the fibers of τ. Then for m > 1, by Proposition 6.1 (i) we have

JJT\ τ) = Jm(T; W) , βw(τ) = Qm{X\ W)

on U. The mapping r determines a canonical isomorphism

(17.17) La-*UTz;Z)τia)

for all a e C/; the image of L^ under this mapping is Jl£Tz\Z)τ(ar If (7 and the
fibers of r are connected, by [10, Corollary 11.1 and Theorem 11.2 (i)], there is
a formally transitive and formally integrable Lie equation Rb

k2 c Jk£Tz; Z),
with k2 > k, such that
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for all m>k29aeU. The equation Rk c Jk(Tz; Z) on U therefore satisfies
conditions (I), (II) and (III) of § 9 with respect to the submersion r, and the
sequence

0 • N^a > R^a _ U RίMa) > 0

is exact for all aeU. Let Rb

m = πmR\2 for m < k29 and gb

m be the sub-bundle of
SmJ0(Tz)* <g) JO(TZ) such that the sequence

0—>Λ—>Rl^iRl_1—>0

is exact with m > 0. Let Hmj denote the cohomology of the complex

(17.18) Λ'-^f ® Λ+ i -^> Λ^f ® Λ ^ Λ j + i n ® Λ-i.

For ae U, the image of Lb

a under the mapping (17.17) is Rt,τ{a), and so this
mapping determines an isomorphism of graded Lie algebras

According to § 15, we obtain isomorphisms

for ally, m > 0. Hence the sequence (17.18) is exact fory > 0, m > Z:̂  By the
first remark of §6 of [9], we may assume that k2 = kx\ moreover gb

kl is 2-acyclic.
Using the above discussion, we now derive from Theorem 12.1 and results of

[10] the following
Proposition 17.6. Assume that Y is a connected differentίable manifold. Let

R^ c Jkl(Tr; Y) be a formally transitive and formally ίntegrable Lie equation,
and R"x C R'k'* a formally integrable Lie equation such that

Then there exist a connected dίfferentίable manifold X, a surjectίve submersion
p: X^ Y, a formally transitive and formally integrable Lie equation Rl C JX(T\ p),
a formally integrable Lie equation R^ c R[ and integers mQ > ku /0 > 0 such
that the following assertions hold:

( i ) the equations R\, R, satisfy conditions (I), (II) and (III) of § 9 with re-
spect to the submersion p;

( ii) Rl is a prolongation of R"* and Rt is a prolongation of Rkι

(iii) [lUJc«,;
(iv) πQR, is an ίntegrable sub-bundle W of T and R\ c Λ(Γ; W\ R, C Jx{ W)

( v ) g'Z 9mv 9lo> 9mo a r e Ί-acyclic and
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(17.19) πm(Rl+ι ΓΊ Jm + ι{V)) = πm(Rm+ι Π JM + ι(V)) = 0 ,

(17.20) πm(Rl+ί Π / m + ι(W0) = Rm ,

for all m > m09 I > lo;
(vi) for all α e l , //*e subspace R^,a of RL,a ^ a closed ideal defined by the

foliation J0(W)a in (Rl,a,R*ΪJ;
(vii) if ae X and Lb

a denotes the transitive Lie algebra R^JR^^, the image
US of R^a in Da is a fundamental subalgebra and

for j = 1,2 and all m > m0 — 1 for all a, b e X, there are an isomorphism Lb

a

—> Lb

δ of transitive Lie algebras and an isomorphism of graded Lie algebras

gr Da - > gr Lb

6

(viii) /or α// x e l , ί/ze/*̂  are a neighborhood U of' x, a differentiable manifold
Z, a surjectίve submersion τ: U—>Z, a formally transitive and formally ίntegrable
Lie equation Rb

mo C Jmo(Tz; Z) such that:
(a) Ww is the bundle of vectors tangent to the fibers of τ\
(b) the equation R\ c JX(T\ τ) o« U satisfies conditions (I), (II) and (III) 0/

§ 9 with respect to the submersion τ and

for all m > m0, az U;

(c) for all a e U, the sequence

0 • Λ β j β • Λ t , β ^ ^ Λ t , t ( β ) • 0

mapping τ determines an isomorphism of pairs of topological Lie

algebras

(LI

(d) gb

mo is 2-acyclic.

Proof Let y0 e Y and set L = R'^yo, V = RZ*?yo; by [10, Proposition 10.1],
there exists an integer k>kι such that the closed ideal RZiV0 of RZ*yo is defined
by a foliation in (L, Dk

LL°). According to Theorem 12.1, there exist a connected
diίferentiable manifold X, a surjective submersion p: X —> F, a formally transi-
tive and formally integrable ^o-projectable Lie equation R\ c JX(T\ p) and a
formally integrable p-projectable Lie equation Rί c i?ϊ such that (ii) and (iii)
hold and such that, for all a € X, with p(a) = JΌ,
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is an isomorphism of pairs of topological Lie algebras moreover πQRx is an in-
tegrable sub-bundle W of T and R, c JX{W\ p). By [10, Proposition 10.3 and
Lemma 10.3 (ii)], we see that πm(R*m+ι Π Jm + ι(V)) and πm(Rm + ι Π Jm + ι(V)) are
sub-bundles of R*m for all m > 1, / > 0, and that F Π W is a sub-bundle of Γ,
and so (i) holds. From (ii) and [6, Theorem 1], we now obtain integers pι > 1,
A > 0 such that (17.19) holds for all m>p19 l> lv From (iii), we deduce that

[§tl /O(TT)] C /0(7T) .

As we have seen above, this implies that R\ c Λ(Γ; PF), and we have a formally
integrable Lie equation Nko c R*ko with &0 > p19 and an integer /0 > lλ such that

7Vm = πm(Rl+ι Π

for all m > kQ, I > l0, and

N,. = KL n

Then R^ c ^ and thus π0AΓfco = /0(fK). If asX satisfies ^ α ) = %, by the
choice of integer k and the construction of NkQ, the closed ideals R^^ and
N^ ofRl,a are both defined by the foliation J0(W)a in (Λ»,>α, ^L°,α); we there-
fore obtain the equality i V ^ = R^ a. Consequently Nm = Rm for all m > A:o,
and

R^ = Rl n JJW) .

From the discussion preceding the proposition, we obtain an integer p2 > k0

such that (vi) and (vii) hold with mQ replaced by p2. Finally, let m0 > p2 be an
integer such that g^l g^Q, g*mo, gmo are 2-acyclic. Assertion (viii) follows also
from the above discussion.

Remark. If y e Y and x^X satisfy p(x) = y, then the transitive Lie algebras
RZ*JRZ,y and Dx are isomorphic. If RZ*JRZ,y is finite-dimensional, by (vii)
there is an integer mx > m0 such that Lb

a

m/Lb

a

m+1 = 0, for all m > mί — 1, a e X\
then gb

m = 0 for m > mv

We continue to consider the objects of Proposition 17.6. Let P^#, P'k[ C
Qkι(Y) be formally integrable finite forms of the Lie equations R'k'f, R'k\ on Γ,
and

^ί c a(p) n a(jr ; »o, p , c β^) n βt(>fo

be formally integrable finite forms of the Lie equations Rl, Rί on X. Let y e Y
and x e X with p(x) = y; consider the submersion τ defined on a neighborhood
U of x and the Lie equation Rb

mo on the manifold Z given by (viii). Let Pb

mo c
β m o (Z) be a formally integrable finite form of 7^0. According to § 9, for ra >
m0 we have the commutative diagram of cohomology
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(17.21)

whose horizontal arrows in the left-hand square are induced by inclusions of
Lie equations and whose top row is a complex, in view of (viii) and (17.20).
Moreover the mappings p satisfy the assertions of Theorem 9.3 (with
mί = m0).

Now suppose that Y is endowed with a structure of a real-analytic manifold
compatible with its structure of differentiable manifold and that Rk*9 R'k\ are
analytic equations. We may assume that X, Z are real-analytic manifolds, that
τ is an analytic submersion and that all Lie equations considered and their
finite forms are analytic. Suppose moreover that for some point y0 e Y the tran-
sitive Lie algebra RZ*yJRZ,yo is elliptic; by (vii) so is Lb

a, for all a e X, and by
(viii) so is Rt,z for all z e Z. Theorem 16.4 (iii) tells us that Rb

mo is an elliptic
equation. For m > m09 by Theorem 17.5 (i) the mapping H1(Pί)mtX^H1(Pt)m>x

is surjective and by Theorem 9.3 (i) so are the mappings p of diagram (17.21).
Therefore using the commutativity of this diagram, we see that the mapping

(Π.22) H\P'k'XtV - HχP'k'X.v

is also surjective for m > m0. Next, let a e H\P"^)mtV with m > m0, and assume
that its image in H\P"*)mty vanishes. According to Proposition 17.1, choose
ax e H1(P/

k

/

1)m + ι>y9 with / > /„, satisfying πmaΛ = a; by Theorem 9.3 (i) choose
β e H\PX + ltX satisfying pβ = a19 and let γ be the image of β in H\Pf)m + ltX.
From the commutativity of (17.21), we deduce that πmpγ = 0; since P"* is in-
tegrable, by Proposition 7.6 we infer that pγ = 0. Hence by Theorem 9.3 (ii),
we have πmγ = 0. Theorem 17.5 (ii) implies that πmβ = 0; therefore a = pπmβ
= 0. These facts imply that H\P'k'X = 0 if and only if H\Pk*)y = 0.

We no longer assume that the equations R"*, Rk[ are analytic. We now sup-
pose that for some point y0 e Y the Lie algebra RZ*yJRZ,yo is finite-dimensional
according to the remark following Proposition 17.6, there is an integer m1 > m0

depending only on Rkf and Rkl such that gb

m = 0 for m > mx. By Theorem
17.6 (ii), the above argument concerning the surjectivity of (17.22) shows that
this mapping is surjective for m > mv Let aί9 a2 e H1(P/

k[)m + ι>y, where m > mί9

/ = 2/0 + 1, have the same image in H1(Pk*)m + ltV; we shall now show that πmax

= πma2. Indeed, according to Theorem 9.3 (i) choose β19 β2 e H1(Pί)m + ltX satis-
fying pβ1 = a19 pβ2 = a2. By the commutativity of (17.21), the images γ19 γ2 of
β19 β2 in Hι(Pl)m + l)X verify pγ, = pγ2, and so by Theorem 9.3 (ii) we have πm + ιjί

= Km + ioh- T h e r e f o r e πm + l o β 1 9 πm + l o β 2 h a v e t h e s a m e i m a g e i n Hι{P*X + lQtX\
from Theorem 17.6 (iii), we deduce that πmβ{ = πmβ2 and hence that πmaλ =
πma2. The injectivity of the mapping H\Pkl)y —> H\Pk*)y is an immediate con-



472 HUBERT GOLDSCHMIDT & DONALD SPENCER

sequence of the property of the mappings (17.22) we have just verified. To prove
that it is surjective, it suffices by the Mittag-Leίfler theorem (see [1, § 3, No. 5,
Corollary 2]) to show that if (βj e H\Pk%9 with βm e H\Pk'Xty9 m > k19

then, for all m>mx and all r > m + 2/0 + 1 and for a e H1(Pkl)m+2lQ + Uy whose
image in H\P^)m+UQ+Uy is equal to βm+2lo + 19 there exists a! e H\P'^TtV whose
image in H1(Pk*)rty is equal to βr and which satisfies πma' = πma. To verify that
this condition is satisfied, we choose a' e Hι(P"X,v whose image in H\Pk*)ry

is equal to βr. Then πm+2lo + ίa' and a have the same image βm+2lQ + λ in
Hx(Pk*)m+2lQ + Uy. Hence by the above, πma' = πma. Finally, if Pk* is integrable
and the image of a e H\Pk^)mty, with m > mί9 vanishes in H\Pk*)m>y, by Prop-
osition 17.1 choose ax e H\Pkl)m + l}y, with / = 2/0 + 1, satisfying πmax = a.
Then the image β1 of ax in H1(Pk^)m + l)y satisfies πmβι = 0. By Proposition 7.6,
we see that βι = 0. Thus the two elements aΛ and 0 of H\P"^m + ltV have the
same image in H\Pk'*)m + Uy\ therefore a = πmaΛ = 0.

We state the above results as the two following theorems:
Theorem 17.7. Assume that X is a connected real-analytic manifold. Let R\

be an analytic formally transitive and formally integrable Lie equation, and let
Rk c Rl be a formally integrable Lie equation such that

[8*k+l9 9tk] C @k .

Let PI and Pk be formally integrable finite forms of R\ and Rk respectively. If
x 6 X and R^JR^^ is an elliptic transitive Lie algebra, then there is an integer
m0 > k such that, for all m > m0, a 6 X, we have:

( i ) the mapping of cohomology

H\Pk)m,a - H\Pt)m,a

is surjective',
(ii) if the image of a e Hι{Pk)m,a vanishes in H\Pl)my(L, then a = 0;
(iii) H\Pk)a = 0 if and only if H\P*)a = 0.
Theorem 17.8. Assume that X is connected. Let Rl be a formally transitive

and formally integrable Lie equation, and let Rk C R\ be a formally integrable
Lie equation such that

Let PI and Pk be formally integrable finite forms of R\ and Rk respectively. If
x z X and Rt,JRoo,x is finite-dimensional, then there are integers mι>k,lι>\
such that, for all m > mλ, I > ll9 a e X, we have:

( i ) the mapping of cohomology

H\Pk)m,a -

is surjective',
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(i i) ίfau a2 e H1(Pk)m + ι>a have the same image in H1(Pk

r)m + ι>a, then πmax =
πm<*2; if Pt is integrable and the image of a € Hι(Pk)ma in H\P^)mf(L vanishes,
then a = 0;

(iii) the mapping of cohomology

H\Pk)a - H\Pi)a

is an isomorphism of cohomology.
Remark. Let Rk c Rk be a formally integrable Lie equation satisfying

_ tπk , Kk L_ Kk .

Then in Theorems 17.7 and 17.8, we may replace the equation R*k by Rk.
We now give consequences of some results of this section concerning the co-

homology of transitive Lie algebras and their closed ideals.
Theorem 17.9. Let L be a real transitive Lie algebra, and I a closed elliptic

ideal of L. Then

W(L, I) = 0 forj > 0 , H\L, I) = 0 .

Proof By [9, Corollary 6.1] and [10, Theorem 10.1], there exist a formally
transitive and formally integrable analytic Lie equation R{ c Jk(T) on a con-
nected analytic manifold X, a point x e X, and a formally integrable Lie equa-
tion Rk C Rl such that [@*k+l9 0tk] C &k and (Rl,x, R^J and (L, /) are isomor-
phic as pairs of topological Lie algebras. By Theorem 16.4 (iii), Rk is an elliptic
equation; therefore from Proposition 17.4 and Theorem 17.1, we obtain the
desired vanishing of cohomology.

Theorem 17.10. Let φ\L^L"be an epimorphism of real transitive Lie al-
gebras, and I a L, I" c L" be closed ideals of L and L" such that φ(I) = I".
Let V be the closed ideal of L which is the kernel of φ: I—> I"'. Assume that 1"
is an elliptic ideal of Ln'. Then we have an isomorphism of cohomology

W{L, V) -+ W{L, I) , forj>0,

and a mapping of cohomology

(17.23) H\L, Γ) — H\L, I) .

If the image of a e H\L, Γ) under the mapping (17.23) vanishes, then a — 0;
moreover, H\L, Γ) = 0 if and only if H\L, I) = 0. //" I" is finite-dimensional,
the mapping (17.23) is an isomorphism of cohomology.

Proof We apply Theorem 10.1 to φ: L -> L" and to the ideals /, V of L
and I" of Ln, and consider the various objects and relations connecting them
whose existence is asserted by that theorem. We may assume that the kernels of
πk_x:Nk->Jk_x(T\ τrfc_1:Λ^/-+Λ_1(Γ) and πkχ_x: N'k[ - JtJ . . ( ^ Y) are 2-
acyclic. Let Pk c Qk(p), P'k c Qk(V) and Pk[ c Qkι(Y) be formally integrable
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analytic finite forms of Nk c Jk(T; p), Nk c Jk(V) and Nkl C Jkl(Tγ; Y) re-
spectively. By Theorem 16.4 (iii), Nkl is an elliptic equation; if I" is finite-di-
mensional, then Nkl is of finite type. Theorem 17.2, Theorem 17.5 (ii) and (iii)
and Theorem 17.6 (iv) give us the desired result.

Corollary 17.2. Let φ\L-^L" be an epimorphίsm of real transitive Lie al-
gebras, and let J be the kernel of φ. Assume that L" is elliptic. Then we have an
isomorphism of cohomology

W{L, J) -* H\L) , forj > 0 ,

and a mapping of cohomology

(17.24) H\L, J) -> H\L) .

If the image of a e Hι(L, J) under the mapping (17.24) vanishes, then a = 0;
moreover, H\L, J) = 0 if and only if HX(L, I) = 0. If L" is finite-dimensional,
the mapping (17.24) is an isomorphism of cohomology.

18. The cohomology and structure of abelian Lie equations

We begin by recalling the construction of abelian Lie equations given at the
beginning of § 11 in the case where Z — Y and σ is the identity mapping of Y.

Let X be an affine bundle A over Y, whose associated vector bundle we de-
note by F, and let p: X --> Y be the projection of the affine bundle A onto Y.
If V is the integrable sub-bundle of T of vectors tangent to the fibers of p, we
have a canonical morphism of vector bundles λ: V —> F over p such that the
corresponding mapping

(18.1) λ: V-+p-ψ

is an isomorphism of vector bundles over X (see [4, Proposition 3.6]). A section
/ of F over Y determines a diffeomorphism γf: X—• X sending x into x +f(p(x))
and a vector field

_ ± \
dt tf\t=o

on X, which is a section of i^λ. Iff, f are sections of F over Y, then

(i8 2) rn°rf, = rf*°rn = rf1+n,

(18.3) lμfι, μH] = 0 .

The mapping
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induced by (18.1) is a morphism of vector bundles over p sending jk(μf)(x) into
jk(f){y\ where x <=. X and y = p(x), such that the corresponding mapping

λ: Jk(V; X) ̂  p-V^F; Y)

is an isomorphism of vector bundles over X. Then by (18.3), we have

(18.4) [JAV; λ), Jk(V; λ)] = 0 ,

and /j(F; λ) is a formally integrable abelian Lie equation.
The image Qk(V; λ) of the injective mapping

r:p
1Jk(F;Y)-+Qk(V),

sending (x,jk(f)(y)), with y = ρ{x), into jk(γf)(x), is a sub-bundle of Qk(V) and
a finite form of Jk(V; λ). We set J f c ( F ; Λ) - J f c Π £k(V; X). Let

be the mappings sending jk(γf)(x) into jk(μf)(x) and jk(f)(y) respectively, where
y = ^(x). Then the induced mapping

β: Q*(V; λ)-> p-V^F; Y)

sends jk(γf)(x) into (x9jk(f)(y)) and |8 = ^ o ^ .
We have

so if ^ e βfc + iί^; ^), the diagram

Λ
(18.5)

Λ(F; 7) 6 -^> Jk(F; Y)b

commutes, where α = source φ, c = target ^ and Z? = p(α). If ^ € ί?fc + 1 (F; ̂ )α,
w e ( Λ ^ * ® Λ ( ^ ; ^)).,α? and ŵ is the element v of (/\JSr* ® / f e ( ^ ; 7))6,
where b = |θ(β), then, since τro0 € <^0(^)?

 w ^ see that φ~\u) is the unique element
of (Λ' ^ * ® ΛC^; ^))i,c satisfying ^(^(w)) = v, where c = source π.φiα)'1

and ^(c) = b. In particular if πoφ(α) = α, then 0-1(w) = u.
We shall identify / 0 (F; 7) with F. If u € Γ* ® Λ ( F ; λ), then u e (Γ* (g)/fc(K; Λ))Λ

if and only if the element λ + λ(πou) of F * (x)x F is invertible, where λ(πou) is
defined by

^o«(f) for f e K .
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Consequently

(18.6) 05Γ* <g> Jk(ir X))λ c (JΓ * <g> / t(τT ^))Λ .

By [4, Proposition 5.1], it is easily verified that the diagram

Jλ{a)

is commutative, where the mapping d"1 sends w € (Γ* (x)/fc(K; /Γ))̂ , with x e Jt
intoj^/fcXx) + w. Let 0 e J f c + 1 (F; ^^ with x e X; if 0(x) = Λ + i(r*)W> where
is a section of F over 7 and xf = ^s(x), by (2.27) and (1.2) we obtain

ε(@φ)(x) = J,(a) a-1 (id (x) v

= j\(Jk(μ-s) + oί(πkφ))(x)

I α I i d I i d

We have thus shown that the left-hand square of the diagram

(18.7)

is commutative; the commutativity of the right-hand square is a consequence
of (18.4), and φ<= lk + 1(V; λ) belongs to Sk + 1(V; λ) if and only if Da(φ) belongs
to CT* (8) ΛCT ^))Λ (see Proposition 11.1). From (18.6) and [6, Proposition 4
(ii)], it follows that

and that, for a e X with b = p(a), the diagram

lk + λ(V\ λ)β,a > {ZΓ* ® / t ( f λ))λfa —

(18.8)
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whose vertical arrows are bijective, is commutative. Moreover, from (18.2) we
deduce that if φ, ψ e £k + 1(V; X)βt€b9 then ψ ψ e £k + 1(V; λ)β,a and

β(φ ψ) = β(φ) + β(ψ).

If u <= ( J Γ * (x) Λ O r X))iia9 φz§k + 1(V; λ)a with πoφ(a) = a, then as φ~\ύ) = w,
we have

(18.9) uφ = u + ®φ = u + Da(φ) .

Thus if φ <= lk + ί(V; λ)β,a9 then by Lemma 3.1, u* belongs to ( y * (g) / fc(τr Λ)),.
The first statement of the following lemma should be compared with Lemma

6.5 and the second with Proposition 6.4 (ii). Here we consider the mapping

λ\ Γ * (x) Jk(V; λ) -> K* (g)x Jk(F; Y) .

Lemma 18.1. (i) Let φζ£k + ι(V; X) and u e F* ®/ fe(iΓ ^). rAe« Λ(w) = 0
Ϊ / α«ί/ only if λ(uφ) = ττfc dx/γβ(φ).

(ii) L^ί i/ls w2 € ( ^ * (8) / f c ( ^ λ))λ,a and φz £k + 1(V; λ)a9 with a e X and πoφ(a)
= a. Ifu2 = ut then φ e J Λ + 1 ( F ; λ)β.

Proof, (i) By the commutativity of (18.5) and (3.2), by (18.7) and the fact
t h a t / = πoφ preserves V,

X(tS) = λ(u)of+ λ(Da(φ)) = λ(u)of+ πk dx/γβ(φ) ,

as elements of T^* ® Jk(^; Y)x. Now λ(u) = 0 if and only if λ(u)of= 0,
which is equivalent to λ(uφ) = πk dx/γβ(φ).

(ii) By (18.9), Dαr(^) belongs to (^~* ® / f c ( ^ ; Λ)),; Lemma 3.1 implies that

«(^) e Λ + i ( ^ ; ^λ and hence that 0 € ^fc + 1(F; Λ)^
Let 7Vfc C / f e(F; Y) be a formally integrable differential equation. Let Rk + ι C

Jk + ι(V'> Λ) be the inverse image of p~1Nk + ι under the isomorphism Λ: Jk + ι(V; X)
-+ p~ιJk + ι(F\ Y). According to [6, Proposition 5 (ii)], Rk + ι = (Rk)+ι for / > 0,
and Rk is formally integrable. Let k0 > /: be an integer such that #feo is 2-acyclic.
By Proposition 17.5 (ii), the natural mapping

(18.10) HXRk)mra->HXRk)m,a

is an isomorphism for all m > k0, a e X, and so determines an isomorphism

(18.11) λ:H\Rk)m,a > H\NX.,W

for all m~>kQ, a ς. X. Moreover, according to [6, Theorem 3] the mapping

λ: H*{Rt)a -> H*(Nt),w , for β e X ,

given by (17.7), is an isomorphism.
By (18.4), we have
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[Λt + i , Λ t + J = 0 , for a l l / > 0

therefore by [19, Proposition 4.4], Rk is an abelian Lie equation, and the graded
Lie algebra H*(Rk)a is abelian for a e X. Let Pk + ι = a\Rk + ι ) ; by (18.2), Pk + ι

is a groupoid. If α e X a n d / i s a section of F over a neighborhood of b = p(a)
such that j k + ι(f)(b) e Nfe + i, then the element of i£fc + ί,α

Jk + ι(μf)(a) = -- j \ + ι(rtf)(
at

b e l o n g s t o VIk+ι{a){Pk + ι\ smctjk + ι(γtf)(a) e Pk + ι. T h u s Rk + ι>a c F / λ ; ^ ( α ) ( P f e + z ) ;
as the dimensions of these vector spaces are equal, we see that Pk + ι is a finite
form of Rk + ι. It can easily be seen that Pk + t = (Pk) + ι and that /\ is a formally
integrable finite form of Rk.

For m> k, let

then by (18.7)

Zi

1(Λw) = {« 6(5 r*(8)«T O) i |2)i/ = 0} .

For α G x, let

op — op n dp-
^ m,β,a ^ m,β,a < ' ^ m,a

For m> k, a e X, according to (18.8) and (18.9), the group ^ + i > j 8 , α operates
on Zl(Rm)a and the set of orbits

under the right operations of the group &f'm+liβia on Zι

λ{Rm)a is the quotient of
the vector space ZftRm)a by its subspace

{Du\ue^m + Uλ,a, u(a) = 0}.

The cohomology Hj(Pk)mta is therefore a vector space. We have the mapping
of cohomology

(18.12) H\(Pk)nia-+HXPk)n,a

which sends the class of u e Zj(Rm)a in Hj(Pk)m>a into the orbit {uF \ Fe &'m+1,a}.
The proof of the following theorem is analogous to that of Theorem 9.1,

although it is considerably simpler.
Theorem 18.1. Let a e X with b = ρ(a) and m > kQ. The mapping (18.12) is
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an isomorphism of cohomology. Moreover, if u e Z1(/?m)α, there exists
Fe &>'m+ha such that uF{a) = 0 and uF € Z}(Rm)a.

Proof If u19 u2 e Zl(Rm)a and if ^ e ^'m+lya satisfy u{ = u2, then by Lemma
18.1 (ii), φ belongs to 0>m+1^,a and so (18.12) is injective.

Let ue Zί(Rm)a; then since gm is 2-acyclic, by [5, Theorem 2] there exists
ux e Z\Rm+2)a such that πmux = u. By Lemma 7.1, there exists φ1 e ^ + 3 > α such
that u{x(a) = 0. We set w2 = wf1; then Du2 = Q)λu2 = 0, and the element w =
^m + iKu2) of (f^* ( 8 ) ^ m + i,χ)α satisfies w(β) = 0 and dx/γw = 0, by the com-
mutativity of diagram (3.2). There exists v e Jf m + UXfa such that j\(v)(a) = 0
and dx/γv = w. Choose v G ̂ m + 2 , α satisfying λ(πm + ίv) = v and j\(v)(a) = 0. If
02 = α " W e ^ m + 2 , α , since j\(φ2)(a) = j\(Im+d(a\ we see that 02 belongs to ^m+2>a

and that iβφ^{a) = 0. Set w3 = (πm + 1u2)
φϊ\ As w2(α) = 0, we have u3(a) = 0

and

λiup) = w = πm + 1-dx/γβ(φ2)

it follows from Lemma 18.1 (i) that Λ(w3) = 0 or equivalently that

Since Duz = <$λu% = 0, by [6, Proposition 4 (i)] we know that w4 = πmw3 belongs
to ( ^ * (8) /TO(τΓ X))λ. Finally, we note that u4 = ŵ  and u£a) = 0, where 0 =
πm+iφrπm + iφϊ1 € ^m+i,α Hence w4 e zχjRTO)α belongs to the same cohomology
class in H\P^)ma as w, showing that (18.12) is surjective and completing the
proof of the theorem.

We have a mapping of vector spaces

(18.13) Hl(Pk)m,a^HXRk)mta,

for m > k, a & X, which is clearly surjective. By means of the isomorphisms
(18.12), (18.10) and (18.11), for a e X with b = p(a), and m > k0, we obtain
surjective mappings of cohomology

(18.14) H\Pk)m,a^H\Rk)mta,

(18.15) H\Pk)mta^H\Nk)m>b;

by Proposition 7.5, these mappings give rise to surjective mappings of
cohomology

(18.16) HXPk)a-+

(18.17) H\Pk)a->H\Nk)b.

Theorem 18.2. Let a^X and b = p{a). Assume that Nk is integrable.
(i) For m>k09 the mappings (18.14)-(18.17) are isomorphisms of cohomology.
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(ii) If m> k and u e (&** (x) &m)£ satisfies Du = 0, then the cohomology
class of u in H\Pk)ma vanishes if and only if the cohomology class of u in
H\Rk)m,a vanishes.

Proof (cf. Proposition 11.2). Let u <= (y* ( x ) ^ J α , with m > k, satisfy u =
Dv for some v e &m + Ua. Then λv(a) e Nm + ltb9 and we can write λv{a) = j m + ί(f)(b)

for some solution/of Nk over a neighborhood of b. We see that ξ — μf is a λ-
projectable section of V over a neighborhood of a which is a solution of Rk

and satisfies j m + x{ξ)(a) = ^ (α). If we also denote by ξ the germ of ξ in f α,
clearly yTO + 1(£) e &m + Uλ,a and ^ = v - j m + 1(ξ) belongs to &m + Ua and satisfies
T ύ̂f) = 0 and Dvx — u. If v belongs to &m+uλta so does v^ showing that (18.13)
is injective for all m> k; this last fact implies (i). By the commutativity of
(18.7), if u e C^"* ® ^ J £ , the equations Dv, = w, v,(a) = 0, with ^i <Ξ ̂ m + 1>α,
are equivalent to 3φ = u, φ(a) = /m + 1(fl), with ^ = α " 1 ^ ! ) ε ^ + 1 , α , and thus
(ii) holds.

It follows from Theorem 18.2 (i) that the mappings

are isomorphisms of cohomology for all m > k0, a e X.
We shall now construct the formally transitive and formally integrable Lie

equation A2 c J2(T) corresponding to the pseudogroup of transformations of
X whose restriction to a fiber of p is an affine mapping of that fiber to another.
For x e X, we shall endow J^{F\ Y)p(x) with the structure of a geometric module
over the transitive Lie algebra A^^.

Let {/i, ,/r} be a frame for F and σ: Y—> X a section of p over an open
subset U of Y. Then, for x € p~\U), we can write

x - σ(p(x)) + Σ xft ,
i = l

thus defining functions x\ ,xr on p~\U). Let (/, ,jμ9) be a system of
coordinates on U; we write for simplicity yj = yj o p. Clearly (x\ , xr, y\
• 9y

q) is a system of coordinates for X on p~\U) and μ/€ = 9/9x% for 1 < /
< r. If / = ΣUirfi i s a section of F over C/, then

(18.18) μ,= d

i t r | y r v * ^ i v ι y g**

on o
Let f € Jm + ί(T)x where x ε p~\U); there exist functions α1, a\b\ ,bq

on a neighborhood of c such that

ξ = 4
3/
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For 1 < j < r, we have

If

(18.19) [ζ,ΰ + 1(μfi)(x)] e /W(K; λ) , for 1 < J < r

there exist sections f(j) = Σi=iC}./J of F over C/ such that

by (18.18). We deduce that

for 1 < ί,7 < r, 1 < / < q hence we can find functions d\ • • , ί/r, b\ • • ,bq

defined on U such that

jmΛaι){x) = . / m + 1 ( ^ o p + Σ x1 (cj o

for 1 < / < r, 1 < / < q, and

(18.20) ξ =JmJt (dΌp + Σ xi-(ci

jop))J + Σ (bιop) A )(X) .

Moreover, if/ = Σί=i e!/« i s a section of F over C/, then

[f,7m + i(/i/)W] =jm(μf>)(x) ,

where./7 is the section

/ ' = Σ ( Σ *'--,--- Σ

of i 7 over U. Thus, if we set
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Am+1 = {ξ e Jm+1(T) I [ξ, Jm+1(V; X)] C Jm(V; X)}

for m>\, then ξ belongs to Am+ltX, where x e p~\U\ if and only if (18.19)
holds, or equivalently if we can write ξ in the form (18.20), where c), d\ bι are
functions on U. It is easily verified that A2 is a formally transitive and formally
integrable Lie equation, with A2+ι = (A2)+ι and A2+ι c J2+ι(T; p) for / > 0;
moreover

Λ, = π,A2 = J^T; p) , Λo = ττ0Λ2

and A2 is /?-projectable, with

P\Am,χ) = Jm\Tγ\ Y)P(X) ,

for all ra > 1, x e X For m > 0, we have Jm(V; λ) C ^4m, and so JJV\ λ)x is a
closed abelian ideal of the transitive Lie algebra A^^ for x e X. Let 5 m c Qm(p)
be the bundle of ra-jets of ^o-projectable diίfeomorphisms / of X whose restric-
tion to the fiber p~\y) is an affine mapping from p~\y) to p~\p(f(x))), where
x ς. X and y = p(x). Then J52 is a formally integrable finite form of A2, with

Let

08.21) Am+ί XYJm+1(F; Y) -> Jm(F; Y)

be the mapping sending (£, w) into f •« = [̂f, ^ ^ J , where x e l , ξ € ̂ 4m+lpa;,
w € Jm+iiFl Y)p(x) an<i t 1 is t n e inverse of the isomorphism λ: Jm+ι(V; X)x —>
Jm+1(F; Y)p(x). If x e X and ^ = |θ(x), then (18.21) induces a mapping

(18.22) AMιX ® / . ( F ; 7) , -> / . ( F ; 7) , ,

which endows JJJ?\ Y)y with the structure of a module over the Lie algebra
A^tX. We see that

AXιX.JZ(F; Y)v C / Γ " 1 ^ ; F), , for m > 1 ,

Λ ^ . W ; 7), C /»(F; 7), , for m > 0 ,

and since 4̂2 is formally transitive,

JRF; Y)y = D^JKF; Y)y , for m > 1 .

It follows that J^F; Y)v is a linearly compact A^ ,,-module and, by Proposition
14.2 (iii), that Jl(F; Y)y is a fundamental subspace of J^F; Y)y. Thus JJF\ Y)y

is a geometric ^4^^-module.
The following theorem gives the essential ingredients in the construction of

certain Lie equations derived from abelian Lie equations this theorem and the
following lemma, namely Lemma 18.2, will be used in § 19.
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Theorem 18.3. Let R" C Jq(Tγ; Y) be a formally integrable Lie equation.
Assume that F is associated to R" and that

(18.23) R'q'+k Nk + 1CZNk.

For all m > h, let £tm be an Θx-submodule of ̂ m satisfying the following con-
ditions :

(a) for all m > h, we have

(b) ifx^X and Rb

m^x denotes the image of the mapping 0βm,x -> ΛmtX sending
u e &b

niiX into the value u{x) of u at x, where m> h, we have

= K,p{x) , form> sup (h, q)

(c) for all x e X with y = p(x), ifRί,x = lim Rb

m^x, the diagram

Rί,x ® JΛF\ Y\ — > JΛF; Y)y

(18.24) U(g)id lid

Λ'oί.v ® / . ( F ; 7) , > JUF; Y\

commutes, where the top horizontal arrow is the restriction of (18.22) and the
bottom horizontal arrow is given by the RZtV-module structure of' JJJF\ Y)y;

(d) for all m > sup (h, k), there is a sub-bundle R*m of Am such that

<yιm — ίyιm ~\- <jιm .

Then there exists an integer p > sup (h, k) such that R\ is a formally integrable
p-projectable Lie equation satisfying

**P+ι = (*J)+ I, foralll>0,

(18.25) [l*+i,«JC«p,

08.26) [ < ^ J C i ? O T ) , ,

and Rt^ is a closed Lie subalgebra of R*,^ for all x e X, and

(18-27) p(R«mJ = K,pw ,

for all m > sup (p, q), x e l

Assume moreover that the following condition holds:
(e) for all x e X, the mapping

p : Rl,x -> RZ,p{x)
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is an isomorphism.
Then:
( i ) for all x e X, the linearly compact Lie algebra Rl>x is the semi-direct

product of its closed subalgebra Rl^^ and the linearly compact Rt^-module ΛM(Jt

and is the inessential abelian extension

(18.28) 0 > R^>x • Rl,x - % RZ,pix) > 0

of the linearly compact Lie algebra RZ,p{x) by the linearly compact RZfPix)-module

(ii) for all x <= X, with y = p(x), the diagram

Ώff (\s\ T ίI7 V\ >w T ίT7 VΛ

commutes, where the top horizontal arrow is the restriction of (18.22) and sends
RL,X (8) N°o,y into N^^, and the bottom horizontal arrow is given by the RZ,y-
module structure ofJ^F; Y)y;

(iii) if R" is formally transitive and π0: Nk-^> F is surjective, then R*p is
formally transitive and R^^ is defined by the foliation JO(V)X in (Rt,x, RS,X), for
allxeX.

Proof From (a), we infer that

for m > h, x e X, and that Rt>x is a closed Lie subalgebra of A^^. From (a)

and (d), it follows that

for all m > sup (h, k), x e X. The Cartan-Kuranishi prolongation theorem (see

[5, Theorem 1]) gives us an integer p > sup(/z, k, 2) such that Rp+ι = (Rp)+ί

for all / > 0. Then Rp C Ap is a formally integrable differential equation in

JP{T). From (18.23) and the commutativity of (18.24), we deduce (18.26); for

x e l , w e have πp + 1(Rb

x>,x) = Rρ+i,x and hence

ίHp+l,X9 K

P + l,x\ C- Kp,x '

Thus by (a), we have

[Rp+i, Rp+i] a Rp , [^p+i? ^p+i] ^ RP

Therefore by [19, Proposition 4.4], i?* is a Lie equation, and by Lemma 1.5,
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(18.25) holds. Since Rp c JP(V; λ), by (b), we see that R*p is p-projectable and
satisfies (18.27). Now assume that condition (e) also holds. To show that (18.28)
is exact, it suffices to prove that

(18.29) Rt,x ΓΊ JΛV)X c * „ , , ,

for x e X. In fact, fix x e X; for m > h and / > 0, set

i?ω = πm(Ri+ι,x ΓΊ Jm+ι{V)x), Rm=Π K>
l>0

Then πm(Rm+1) = Rm for m>h, and since p: Rt^-^ RZ,p(x) is an isomor-
phism, we have

Hm Rm = Hm « , Π Jn(V)x) = 0 .

Hence Rm = 0 for all m> h. Since ^ + 1 ) C i^^} and these are finite-dimensional
vector spaces, for each m> h there is an integer lm > 0 such that i^^m) = 0 or

(18.30) ^ « + l w , χ ΓΊ Jm+lm(V)x) = 0 .

Let £ € Λ*^ Π Jjy)x, and for m > sup (A, A:) let / = /w; we have τrm+ίf 6 iP m + I ^
and we can write ττ m + ^ = ^ + ζ, with η £ Rm+ι,x and ζ e Λb

TO+l)ϊ. Since
*m+i£ 6 / W + , (F) , , we see that ζ e / w + ι ( K ) x . Now (18.30) implies that\ m ζ = 0
and hence that πmξ e Rm. Therefore ξ e R^,. and so (18.29) holds. The remaining
assertions of (i) are consequences of the exactness of (18.28) and the fact that
p: Rt^ --> RZ,P(X) is an isomorphism of linearly compact Lie algebras for x <= X.
Finally, (ii) follows from (i) and (c), and (iii) from the exactness of (18.28) and
[10, Proposition 10.2].

If we are in the category of real-analytic manifolds and real-analytic map-
pings, if π0: Nk -> F is surjective and the equation R" of Theorem 18.3 is formally
transitive, then the following lemma shows, under an additional assumption of
coherence, that condition (d) of that theorem is implied by conditions (a)-(c).

Lemma 18.2. Assume that Y is connected and is endowed with a structure of
real-analytic manifold compatible with its structure of differentiable manifold,
that A is an analytic affine bundle over Yand that π0: Nk-^F is surjective. Let
R" C Jq(Tγ; Y) be an analytic formally transitive and formally integrable Lie
equation. Assume that F is associated to R", that the mapping R" (x) JX(F) -> F
is analytic and that (18.23) holds. For all m> h, let Rb

m^ω be a coherent ΘXtω-
submodule of srf m,ω satisfying the following conditions:

(i) for all m> h, we have

b ( i 1 j c
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(ii) if x € X and Rb
m^x denotes the image of the mapping έ%b

m:(ϋ,x —> Λm^x sending
u € £$°m,ω,x into the value u(x) of u at x, where m>h, we have

p(KJ = K,ptχ) , form> sup (A, q) ,

and condition (c) of Theorem 18.3 holds.
Then for all m > sup (A, k), there is an analytic sub-bundle R*m c Am such that

apt — op _ ι_ qsb

Proof The hypotheses imply that Nk, and hence also Rk, are analytic
equations. For m > A, we write # m , ω = v'1^^; for m > sup (A, k),

is a coherent ^x,ω-submodule of j / m , ω and, if J^5(U = v~x0l*m^ we verify that

First, since /?fc is a Lie equation, we have

[^»+i,., « „ J C ^ m , ω , for m > k .

From (i), using (1.15) we infer that

Γ# b ^ b 1 C~ 6$° for m "> h

Next, from (18.23) and the commutativity of (18.24), for m > sup (A, A:), x e X,
we deduce

since πm(Ri,x) = Rb

m^ and

Therefore by (1.15) and (i),

for m > sup (A, k), and so (18.31) holds. If m > sup (A, /:), x e l , choose f19

•••>£•€ @m+i,a,,x and f r + 1, , f n € ^ + l ϊ β j a ? such that {πoξ fa), , ττof r(x)} is
a basis of F x and {pπ0ξr+fa)9 • ,pπoξn(x)} is a basis of ΓF j / ) U ). Then {πoξfa),
• , πrof W(Λ:)} is a basis of 7^, and J?(ξt) is a 7rof -derivation of stfm,ω,x with
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by (18.31), for / = 1, •••,«. Since X is connected, Lemma 17.2 gives us the
desired sub-bundle R*m of Am.

Remark. Let Rb

h c Ah be a formally integrable and ^-projectable Lie equa-
tion, with h>2, which is a prolongation of the equation R" of Theorem 18.3
satisfying the following condition:

(d') Rm + Rb

m is a sub-bundle of Am, for all m > sup (/*, /:) .

Then the 6^-submodules 0t\+l — (^JO + z of ^/h+i, with / > 0, satisfy conditions
(a), (b), (d) and (e) of Theorem 18.3. If the category is the real-analytic one, if
Yis connected and πQ: Nk —• Fis surjective, if F is associated to R'q' and (18.23)
holds, and if R" is formally transitive and condition (c) of Theorem 18.3 holds,
then by Lemma 18.2 condition (d') is satisfied.

Remark. In Theorem 18.3, if we do not consider the vector bundle F a n d
the equation Nk, and we replace the affine bundle X over Γ, the abelian Lie
equation Rk and Am by any manifold X fibered over Y, a formally integrable
Lie equation Rk c Jk(V) and Jm(T; p) respectively, and the hypotheses that
(18.24) is commutative and that π0Nk = F b y the relations (18.26) and π0Rk =
V respectively, then the proof of Theorem 18.3 can be modified to show that
all its conclusions hold, other than (ii) and the fact that (18.28) is an abelian
extension. A similar remark is valid for Lemma 18.2.

We now assume that X is an open subset of the affine bundle A over Y, and
that the surjective submersion p: X —• Y is the restriction of the projection of
A onto Y.

The following theorem is a partial converse of Theorem 18.3; this is made
more explicit after its proof. It shows how, under certain assumptions, a
formally transitive and formally integrable Lie equation R\ c JP(T), with/? > k,
satisfying Rp c R*p and (18.25) gives rise to a Lie equation R'q\ on Y to which
the vector bundle F is associated in such a way that

Theorem 18.4. Assume that π0: Nk-+ F is surjective and that Nk is integrable.
Let R*p C JP(T) be a formally integrable Lie equation, with p > k, satisfying

( i ) For all I > 0, we have

(ii) If x e X, the subspace Rt^ (Ί J^,(V; X)x ofRt,x is a closed abelian ideal
If X is connected and Rv is formally transitive, and if

(18.32) Rt,x Π JUV; λ)9 = Rl,x Π
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for some x e X, then the equality

(18.33) Rt Π JJV\ λ) = Rl Π JJV)

holds.

(iii) Assume that X and the fibers of p are connected and that Rp is formally
transitive; then R*p is p-projectable. Let R" c JQ(T; Y) be the formally transitive
and formally integrable Lie equation such that

(18.34)

holds for all m > sup (p9 q) and x e X. If Rp C R*p, and if (18.33) holds and Rp

is integrable, then there exists an integer qo> q such that F is associated to R"Q,
V

<Zo'

lxqo + k i V fc + l ^— i y k 9

and assertion (ii) of Theorem 18.3 holds.
Proof, (i) We set

Rl = πmR*p, for 0 <m<p ,

Rm = πmRk , Nm = πmNk , for 0 < m < k .

We have ΛCRm,α) = NmjP(a) for all m > 0, a e X. Let y e Y. Since Nk is inte-
grable, there exists a frame {/15 ••-,/,.} for F consisting of solutions of Nk over
a neighborhood U of y\ then {μ/i? , /i/r} is a frame for K consisting of solu-
tions of Rk over ρ~\U). By Lemma 1.5,

(18.35) [**w+1, Λw+1] C Rm , for all m > 0

therefore any element ξ € ̂ + 1 , ^ with x e p~\y), satisfies (18.19) and thus be-
longs to Am+1 if m > 1. Therefore

for m > 2.
(ii) The first assertion is a consequence of (i) and (18.4). Assume that Xis

connected. By [10, Lemma 10.3 (ii)], R*m, Rm and Nm are vector bundles for
all m>0. Let /0 > 0, p0 > 1 be the integers and Rf

m c i?^ be the Lie equations
given by [5, Theorem 1] and [10, Proposition 10.3 (ii)] satisfying

K = *nX*l+io n Jm+l0(v)) = πm(Ri n J

-K-m + r (•— \^m) + r ? ^m^-m + r ^ m

for all m,r>0. From (i) and Lemma 1.5, it follows that
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(18.37) [#m+1, JJT\ X)] c JJT; X),

for m > 1. If (18.32) holds, then R'm,x c / m ( F ; ^ ) x ; by [10, Lemma 10.3 (i)],
relations (18.36) and (18.37) imply that R'm c / J T ; Λ) for /w > 0 and that

(iii) By [10, Corollary 11.1] and (i), R*p is p-projectable; then R'ή = πmR'q' is
a formally transitive Lie equation on Y, and (18.34) holds for all m > 0 and
Λ: € Z. From (18.35), we obtain a mapping

which is the restriction of (18.21), and a mapping

for x€ Z, which is the restriction of (18.22). Assume that (18.33) holds. For
x e X9 with jv = ρ(x), and ra > 0, consider the mappings

\(F\ Y)y —> «/m(F; y) y ,

sending f (x)w into f w = πm+1ξ'-u, where f' 6 ^ + Z o + 1 ) α ; satisfies pξ' = ξ. If
ξ" 6 iP w + I o + l f β satisfies ^ = f, then fr - ξ" e R*m+lQ+1 Π / m + I o + i ( n and
π m + 1 ( f - n belongs to R'm+1 and hence to JM+ί(V; X); by (18.4)

^ + i ( f - n u = 0 , for u e J m + 1 ( F ; 7 ) , ,

and so the mappings (18.38) are well-defined. If Rp c JR*, we now show that
the mappings (18.38) depend only on y and not on the choice of the point x of
the fiber p~\y). Indeed, let i5* be a formally integrable finite form of Λ*? whose
/-th prolongation we denote by P*+ι. Then, for m>p, the intersection Pm Π Pi
is a neighborhood of Im in Pm. Since the fibers of p are connected and τr0: Rk -+
J0(V) is surjective, given a,be X with ^(α) = p(b), we see that there exists
φ e Pm+lQ+2 Π Pl+ι0+2 with source 0 = a and target φ = b; we have

P v ^ T O + Zo + li'α/ : = : ^ m + Zo + l .δ 1

and 0€β m + ί o + 2 (K;λ). If f e C i o + i , ^ ueJmΛ.x{F\Y)p{a)9 ξ' e Λ*TO+Io+1,α,
^ e /TO+1(K; ^)α satisfy ^(f') = f, ^ ) = u, then by the commutativity of (18.5),

since λ(πm+zφ)(η) = u. As the element 0(£7) of ^ + l o + 1,6 satisfies pφ(ξ') = f? we
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see that the mappings (18.38) do not depend o n i ζ p~\y) for m > p, and hence
also for all m > 0. Thus the diagram

K+ι0+i ® Jn+i(V; λ) • Jm(V; λ)

(18.39) \p®* U

is commutative, where the top horizontal arrow sends ξ®η into [ξ, 57] =
frrm + i?> ή\> and the bottom horizontal arrow is (18.38); we deduce that

(18.40) [#JL+ ί 0 + l f,, / m + 1 ( ^ ; J),] c / w (τ r ^ .

To complete the proof of (iii), we now verify that the mappings (18.38) satisfy
the following properties :

(a) f o r a l l £ e l C I o + 1 , utSm + iT*®F,

f e(«) = e(y-1f Λ ί « ) ;

(b) for all f, 9 6 < + I o + 2 , w € Jm+2(F; Y\

(c) the diagram

K+io+i®Jn+i(F;Y) —>JΛF;Y)

(18.41) bm(g)id lid

/ . « + 1 ; 10 ® / W + 1 ( F ; 10 — > ̂ ( ^ 10

commutes, where the top horizontal arrow is (18.38), and the bottom horizontal
arrow sends jm(ξ)(y) ®ym + 1W(j) intoym(f Ms))(y), with ξ e m[[+Uy, s e &\ and
ye Y.

Indeed, if ξ e RZ+i0+Uy9 u G ( 5 m + 1 Γ* (g) F)y with j € 7, choose x <= ^^( j ) and
f' e ΉL+Io+i.*> w ' e (^m + 1 Γ* (g) K)ifar satisfying ^ = f and λu; = i/; then by
(1.15) and the commutativity of the diagrams (17.9) and (17.10) with E = V
and φ = λ, we have

ξ-e(u) = λ[πm + 1ξ\ εu'\ = ^ " ^ A

= ελ(v-ψ A 3M7) = ε^'Vf7 A δλi/) - ε^"1? A u) ,

and so (a) holds. Next, if ξ, η e K+lo+2>y, u e / m + 2 ( F ; y) y and f', ^ 6 l^+ l o + 2 f J B,
w' € / m + 2 ( ^ ; ^ar, with x € ̂  and j = p(x), satisfy pξ' = f, ^5/ = ^ and ^M' — u9

then by (6.5), p[ξ\ ηf\ = [f, 37] and by the Jacobi identity,



LIE EQUATIONS. IV 491

[?>3?] ffm + iW = π m + 1[?', 3/] ττm + 1w = λ[πm + 1[ξ\τf]9πm + 1ί/]

= Λ([τrm + 1f, [πn+2Ίf, u']} - [πn + 1τ/9 [πm+2ξ\ u'}})

= π m + 1 f Λ[ττTO+2?/, " Ί - π m + 1ί/ Λ[7Γm+2?', u'\

= πm + 1ξ
/-(πm+2η

/ u) — 7Γm + 1 j / (7Γm+2£' w)

and (b) is verified. Finally, by [9, Proposition 5.4] we have

and so diagram (18.41) is well-defined; in fact, since R*p is integrable

λm(Rl + m+1)dJm(Rl+1;p).

Consider the diagram

whose second top horizontal arrow sends./m(£)(x) ®jm+fy)(x)
with ξ e 0%lo+1,PtX9 η£ ^x,x^ xzX, and is well-defined by (18.40), and whose
second bottom horizontal arrow is the bottom horizontal arrow of diagram
(18.41). The left-hand square is clearly commutative, and the right-hand one
commutes because of the commutativity of (18.39) with m = 0. The composi-
tion of the arrows of the top row is equal to the top arrow of diagram (18.39).
Therefore, by the commutativity of (18.39), the composition of the arrows of
the bottom row is equal to the bottom arrow of (18.39), and we have proved (c).

If f < = Γ ( 7 , ^ + ί 0 + 1 ) , we define

to be the differential operator sending u into the element ^{ξ)u given by (15.24),
where uf eJm + ί(^r; Y) satisfies πmu' = u and ξ = vξ. From properties (a) and
(b), it follows that Jm(F; Y) is associated to R/Ji+lQ+1. If qQ = sup (q, l0 + 1),
then Jm(F; Y) is associated to Rqo+m by setting

for I e Γ(Y, R"0+m), usJJjF; Y). Property (c) implies that these operators
££(I) acting on JJJF Y) are precisely the ones arising from the action of J?"o

on SF. The remaining properties of this action are immediate consequences of
those of the mappings (18.38).
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Remark. If Rp is formally transitive and Rp d Rp, then, for all x <= X, the Lie
algebras R^^ and Rt,x (Ί J^V; λ)x are closed abelian ideals of the transitive
Lie algebra Rt,x9 and

RMtX C RltX Π JJV\ λ)x .

Under these conditions, since π^R^ = J0(V), if x e Xand R^^ is defined by the
foliation JO(V)X in (RltX9 R*ZJ, then (18.32) holds.

Theorem 18.4 is a partial converse of Theorem 18.3. Indeed, let X = A and
R" C / Q (Γ r 7) be a Lie equation on a connected manifold 7, and for all m > A
let ^ be an ^-submodule of j / m satisfying conditions (a)-(e) of Theorem
18.3. Assume moreover that Nk, R*mare integrable for m > sup (A, /:), that π0: Nk

—• F is surjective and that 7^ is formally transitive. Then the formally transitive
Lie equation Rp = Rp + Rρ given by Theorem 18.3 satisfies (18.25) and (18.33).
Therefore all the assumptions in Theorem 18.4 are satisfied; the Lie equation
Rqo on 7, obtained from Theorem 18.4 to which F i s associated, is none other
than a prolongation of our original equation R".

The following theorem describes the structures of graded module induced in
the cohomology corresponding to the equations of Theorems 18.3 and 18.4.

Theorem 18.5. Let RpClAp, R" ClJq(Tγ; Y) be formally integrable Lie
equations, with p > k, satisfying

RpdR*p, [3*p+1, 9tp] c mp , p(Rl>x) = K,pix) ,

for all m > sup (/?, q) and x e X. Assume that the sequence (18.28) is exact for all
x € X, that F is associated to R'q\ and that (18.23) and assertion (ii) of Theorem
18.3 hold. Then for x e X, the linearly compact Lie algebra Ri^ is an abelian ex-
tension of RZ,P(X) by the linearly compact RZ,p(x)-module N^^^y Moreover, if
R*p satisfies condition (III) of § 9, the mapping

(18.42) Jp(x) '

given by (17.7), is a morphism of graded Lie algebras, and H*(Rk)x is a graded
H*(Rl)x-module, and H*(Nk)pix) a graded H*(R'q%x)-module; if λ: H*(Rk)x -+
H*(Nk)p(x) is the isomorphism given by (17.7), we have

(18.43) • λ(a.β) = pa-λβ9

forallatH*(Rp)x,βzH*(Rk)x.
Proof Since λ: R^^ -> #»,,(*) is an isomorphism for x<εX, the first assertion

is a direct consequence of the hypotheses. The structures on the Spencer coho-
mologies of graded Lie algebras or of graded modules over these graded Lie
algebras are given by § 15. That the mapping (18.42) is a morphism of graded
Lie algebras follows from (6.10). Assertion (ii) of Theorem 18.3 implies that the
diagram
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λ) > Jm(V; X)

λ

Y) — > Jm(F; Y)

is commutative, where the top horizontal arrow sends ξ (x) η into [ξ9 rj\ =
[πm+iξ,vl I f W € Aiτ*®Rl + m belongs to F\(Jq + JT)\p\ and v e f\j T* (x)
Jm + ι(V\ X) belongs to Fj(Jm+1(V); λ) with q + m>p + 1, then we see that
the element [w, v] = [τrm + 1w, v] of /\i + JT* ®Jm(V; X) satisfies

[u, v] e F ^ ^ ( / m ( F ) ; Λ) , [̂w, v] = pu-λv 9

where Λ is the mapping

^: F\(JXV); X) -> Λz ^ ® Λ(^; ϊθ ,

with / = z and r = m + 1, or / = / + j and r = m, and where the product of
pu € /V T$ ® Λg+m and ^ is given by (15.30). We deduce that, if u € (/\* ^ *
®£%q + m)p and v € (/\j έF* Θ / m + i ( ^ ; )̂X, then [w, v] e (f\ί+3 <T* (x) / m ( ^ ; /l))̂
and

^[Wj v] = ÔM . λv .

For m>p, x $ X,v/e therefore obtain the commutative diagram

H*(Nk)n+U
βix)

whose horizontal arrows are induced by the bracket (1.19) and the mapping
(15.30), and whose vertical arrows are given by (17.5). By [6, Theorem 3], there
is an integer mQ>p such that the mappings

Hΐ(Rk)m>x -+ H*(Rk)m>x , H*(R*p)ntX -> H*(&χtx

are isomorphisms for all m > mo; by means of these isomorphisms and the
above commutative diagram, we deduce (18.43).

We now suppose throughout the remainder of this section that X is again an
arbitrary manifold and that p: X"-> Y is a surjective submersion. We no longer
assume that Rk is the abelian Lie equation constructed from the differential
equation Nk.

The first part of the following theorem generalizes Theorem 11.1 when the
equation Nk of Theorem 11.1 vanishes. This theorem implies that under certain
assumptions an integrable abelian Lie equation Rk c Jk(T) is locally of the type
of the examples considered above.
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Theorem 18.6. Let Rk c Jk(T) be an ίntegrable and formally integrable
abelίan Lie equation such that π0Rk is a sub-bundle V of T. Let ko> kbe an integer
such that gko is 2-acyclic. Then, for all x0 e X, with X replaced if necessary by a
neighborhood of x0, there exist a manifold Y, a surjective submersion p: X'—• Y,
an affine bundle A over Y whose associated vector bundle we denote by F, a diffeo-
morphίsm ψ: X -+ A over YofX onto an open subset of A, and an integrable and
formally ίntegrable differential equation Nk C Jk(F; Y) such that, if we identify
X with its image in A under the mapping φ, the following assertions hold:

( i ) V is the bundle of vectors tangent to the fibers of p;
(ii) if λ: V'—> F is the canonical morphism over p given by the structure of

affine bundle of A, we have Rk + ι c Jk + i(V; λ) for all / > 0;

(iii) the morphism λ: Jk + ι(V; X) -> Jk + ι(F; Y) induced by λ: V-^Fgives an
isomorphism

for all / > 0 and a e X, and π0Nk = F;
(iv) if a: Qk(V; λ)^Jk(V;X) is the isomorphism given by the structure of

affine bundle of A, and Pk is the formally integrable finite form a~\Rk) of Rk,
then the mapping λ induces isomorphisms of cohomology

H*(Rk)a - , H*(Nk)b ,

H\Pk)m>a - H\Rk)m>a - H\Nk)m,h ,

H\Pk\ -> H\Rk)a - H\Nk\ ,

for all m > k0, a e X, with b = p(a).
Furthermore, let R\ d Jk(T) be a formally transitive and formally integrable

Lie equation such that

/? r~ /?* \Φ tft 1 c eft

Then, with X still replaced by this neighborhood of x0 considered as a subset of
A, we have:

(v) for all I > 0,

m c A
Jxk + l ^— Slk + l •>

and R\ is p-projectable
(vi) if R\ is integrable and the closed ideal R^,^ of RL,XQ is defined by a

foliation in (RίlX0, R*H,X0) and if R" a Jq(Tγ; Y) is the formally transitive and
formally integrable Lie equation such that

for all m > sup (k, q) and x e X, there exists an integer qo> q such that F is
associated to R"o,
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and such that assertion (ii) of Theorem 18.3 holds, and for all x <= X, with y = p(x),
the diagram

Rl,x®R^fX >RβOtX

(18.44) \

commutes, where the top horizontal arrow is given by the bracket (1.11) and the
bottom horizontal arrow is given by the RZ,y-module structure of N^^; moreover
the conclusions of Theorem 18.5 are valid.

Proof. The existence of the objects described in the theorem satisfying (i)-
(iii) follows from Theorem 11.1 (with Nk = 0, Z = Y and σ the identity map-
ping of Y). We may assume that the neighborhood of x0 and the fibers of p are
connected. Then, in combination with Theorem 18.5, Theorem 18.2 (i) gives us
(iv) and Theorem 18.4 together with the remark which follows it implies (v) and
(vi).

Remark. In Theorem 18.6, one may take A to be the vector bundle F con-
sidered as an affine bundle over Y.

In the two following propositions Rk denotes the Lie equation of § 17 satisfy-
ing conditions (I), (II) and (III) of § 9, and Pk is a formally integrable finite
form of Rk. The equation R'mo c Jmo(V) obtained from Rk satisfies

L ^ m o + l? tyLmoi v — tyLτn,Q

and so if Z i s connected, by [10, Lemma 10.3 (ii)], πQRf

mQ is a sub-bundle of T.
If in Theorems 17.5 and 17.6, R'mQ is integrable and abelian, the following two
propositions show that its non-linear cohomology can be replaced by its linear
cohomology.

Proposition 18.1. Under the hypotheses of Theorem 17.5, if R'mQ is an abelian
Lie equation, then for all m > m09 a e X we have:

( i ) a surjective mapping of cohomology

(ii) if the image of a € H\R'mo)mta vanishes in H\Pk)m a, then a = 0;
(iii) H\K0)a = 0 if and only ίfH\Pk)a = 0.
Proof. By Theorem 18.6 (iv), we have isomorphisms of cohomology

for all m>m0, a e X. From these isomorphisms and Theorem 17.5, the asser-
tions of the proposition follow.
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Proposition 18.2. Under the hypotheses of Theorem 17.6, ifR'mo is an integrable
abelian Lie equation, then we have isomorphisms of cohomology

H\KX,a -* H\Pk)m>a , H\KX - H\Pk)a ,

for allm>m19 as X.
Proof. By Theorem 18.6 (iv), we have isomorphisms of cohomology

and the mappings

are isomorphisms of cohomology, for all m> m09 a e X. From these isomor-
phisms and Theorem 17.6 (ii) and (iii), we obtain the desired isomorphisms.

The final two theorems of this section are consequences of Theorems 17.7
and 17.8, and assert that, if the equation Rk of these last theorems is integrable
and abelian, its non-linear cohomology can be replaced by its linear
cohomology; the proofs, being similar to those of Propositions 18.1 and 18.2
respectively, will be omitted. These two theorems as well as the preceding two
propositions will be used in § 19 and § 20 to derive results on the non-vanishing
of non-linear cohomology.

Theorem 18.7. Assume that X is a connected real-analytic manifold. Let R\
be an analytic formally transitive and formally integrable Lie equation, and let
Rk C R\ be a formally integrable abelian Lie equation such that

Let PI be a formally integrable finite form of R\. If x e X and Rt,JRoo,x is an
elliptic transitive Lie algebra, then there is an integer mo> k such that, for all
m > m0, a e X, we have:

( i ) a surjectίve mapping of cohomology

H\Rk)mta - W(Pl)n,a

(ii) if the image of a e H\Rk)m a vanishes in H\P^)m a, then a = 0;
(iii) H\Rk)a = 0 if and only ifΉ\P*)a = 0.
Theorem 18.8. Assume that X is connected. Let R\ be a formally transitive

and formally integrable Lie equation, and let Rk c R\ be an integrable and
formally integrable abelian Lie equation such that

Let PI be a formally integrable finite form of R\. Ifx € X and Rt^/R^^ is finite-
dimensional, then there is an integer mx> k such that, for all m > m19 a e X, we
have isomorphisms of cohomology
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H\Rk)m,a - H\P$m>a , H\Rk)a - H\P*)a .

Remark. Let ^ C R\ be a formally integrable Lie equation satisfying

Then in Theorems 18.7 and 18.8, we may replace the Lie equation ΛJ by R'k.

19. The cohomology and realization of geometric modules

Let F be a vector bundle over Y and X be the vector bundle F considered
as an afrine bundle over Y, and let p: X-+ Y be the projection of this vector
bundle Fonto Y. Let R" C Jq(Tγ; Y) be a formally integrable Lie equation.
Assume that F is associated to R".

Consider the morphism σ of Lie algebras from Γ(Y, R") to the algebra of
p-projectable vector fields on X defined at the beginning of § 15 and determined
by the mappings (15.2)

for x € X with y = p(χ). If f is a section of K" over 7, then, by (15.6), σ(ξ) is a
solution of A2 and |θσ(|) = 7rof. For x e X with j = p(x), we thus obtain a
mapping

sending 7m( |)(j) into jm(σ(l))(x\ where | e ̂ y ; then by (15.4)

(19.1) σx[ξ,ηl = [σ£9σxη],

for ξ,η ς. Jm(Rq', Y)y9 where the bracket on the left-hand side is given by (1.33).
These mappings give us a morphism of vector bundles over X

σ:p-1Jm(R'q';Y)->Am.

We also denote by σx the composition

^q + m^y ^ ^rnK^q i 1 )y ^^m.x •>

by the commutativity of (1.37) and (19.1), we have

(19.2) *Jf, 7l = [**£**?]>

for ξ,ηe Rq+m,y These mappings give us a morphism of vector bundles over X

(19.3) σ:p-^+m-+Am.
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The diagram

(19.4)

is commutative, since

ί tid®σ

7« + i(D o^>) = 0 , D(σUm + i(i) o p)) = D(jm + I(σ(ξ))) = 0 ,

for I € 5 ^ , and, by (3.5) and (1.4),

(id (x) σ)(D(fu)) = df® σπmu + f(\ά (x) σ)Du ,

πmσu+fD(σu) ,

for/e ^ , w € Jm + 1(@"; Y)x. By [26, Proposition 1.4], the diagram

JmΛJq(^Y\ Y); Y)x -

commutes. From the commutativity of diagrams (19.4) and (19.5), we see that
the diagram

(19.6)

+ i •

i)
m+l,X •

whose bottom arrow is the restriction of the top arrow of (19.5) (see [26, § 2]),
is also commutative.

For xς. X with y = p(x), define the mapping

σx: (Aj T* (x) R'q'+m)y -> (ΛJ' Γ* (x) Λm)x

sending u into the element σxu given by the formula

(σxu)(ξ. Λ Λ ξj) = σMfiξ, Λ Λ tf,)) ,

for f,, , ξ} e Tx; then ffl« e Fj(Jm(T); p)x and
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It is easily seen that

(19.7) σx(T* ® K'+X C (Γ* <g> Amγx .

If u e (Λ'Γ? <8> < + m + 1 ) , , v e ( Λ ' 7 ? (g> Λi'+m+1),, then by (19.2) we have

(19.8) σx{u, v] = [σxu, σxv] .

We obtain a mapping

(19.9) σx: (/\>f$ ® < + m\ -> (Λ J ^* ® ^ J,,*

such that

(19.10) ^ ( ί i ) ) = πmu ,

for M € it^SΓ* Θ &!"+m)y. From the commutativity of (19.6) and [26, Proposition
1.2], we infer that the diagram

is commutative, and from (19.8) that

(19.12) σx[u, v] = [σxu, σxv] ,

for all u e (Λ'^Ίf ® <+«),, « e ( Λ ^ ? ® < + J » I f f" « S o 1 « ) v then

belongs to Sol (̂ 2)̂ . and satisfies

Pξ = ξ" •

If η" 6 Sol (^')». w e h a v e

(19.13) <τJί",^] = [<τ,f//,^)?"].

From the commutativity of (19.11) and (19.12), we obtain the formula

(19.14) ax{9ίU) = ®loxu) ,

for K e cr?<8> #£»),.
The image Rb

m of the morphism (19.3) is a sub-bundle of Am with possibly
varying fiber. We denote by 0t\ the sub-sheaf of s£m which is the image of the
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mapping of sheaves induced by the morphism (19.3). For all x e l , the image
of the mapping &b

m,x —• AmiX sending u into the value u(x) of u at x is equal
to Rb

m,x. We now verify that the 0^-submodules <%b

m of s/m satisfy conditions
(a)-(c) and (e) of Theorem 18.3, with h = 0. In fact, since R" is formally
integrable, we have

πm{®l+ι) = &n, for m > 0 ,

and from the relation (19.2) we deduce that

[#m+i> # t + J C ^ b

m , for m > 0 .

The commutativity of (19.6) implies that

/ > ( ^ + i ) C <T* (g) «̂ b

m , for m > 0 .

It is easily seen that, for x e X with y = p(x), the diagram

commutes. Thus

P(RIJ = lC,y , for m > 0

and |0 induces an isomorphism

(19.15) p:Rl,x->RZ,y,

and σ̂  an isomorphism

which is equal to the inverse of (19.15). Finally, for x e X with y = /φr) and

m > 0, the diagram

id

is commutative, where the top horizontal arrow sends j m + 1(ξ)(y) ®jm+-i(s)(y)
into y m (^f( i»(y\ with f <= @'q\y9 se ^ y , and the bottom horizontal arrow is
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given by (18.21). In fact, if f e @"iy, s e &y9 then by (15.6)

Thus the diagram

K+m + l,y ® Jn + l(F; Y)y > JJ?\ Y)y

I σx(g)iά I id

1(F; 7), > JJF\ Y\

commutes, where the top horizontal arrow sends ξ ® u into πq + mξ-u, and the
bottom horizontal arrow is given by (18.21). We deduce that the diagram

RZ,y <8> JJF\ Y\ > JJF\ Y\

σx(*)iά id

commutes, where the top horizontal arrow is given by the iC^-module structure
of J^(F; Y)y and the bottom horizontal arrow is (18.22); since the mapping
(19.15) is the inverse of σx: R'i,v —»• Rt,,x, the diagram (18.24) is commutative,
completing the verification of these conditions of Theorem 18.3.

For x € X, let β~ι denote the inverse of the mapping

and λ'1 the inverse of the isomorphism

λ:Jm(V;X)x->Jm(F;Yχw.

y

I f a € X w i t h y = p{a), a n d ζ e R ' ^ y , u e Jmtl(F; Y\, t h e n ζ-u e JJF; Y)y

and, if we set b = a + πou, we have p{b) = y; the elements β > of β r o + 1 (F; λ)a

and σαζ of /e^>β satisfy

(19-16) (fruXo.® = σsζ + λς\ζ «) .

Indeed, let f be a section of R", and 5 a section of F over a neighborhood of y
satisfying jm(ξ)(y) = λmζ and./m+1(5)(j) = u; by (15.5) we have

(βa'uXσ.ζ) = j m + 1(ΐs)(a)(σaζ) = Mh
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Let Nk c Jk(F; Y) be a formally integrable differential equation such that
(18.23) holds. Let Rk a Jk(V; X) be the formally integrable abelian Lie equation
whose /-th prolongation Rk + ι is the inverse image of p~1Nk + ι under the isomor-
phism

If pk + ι = a~ι(Rk + ι)9 then Pk is a formally integrable finite form of Rk with
(Pk)+ι = Pk + ι. Since Rk is a Lie equation and by (19.16) and (18.23), we have

(19.17) φ(RmJ = Rm,b ,

(19.18) φ(RlJ C * w > f t + < δ ,

for all m > k and φe Pm + 1 with source φ = a, target φ = b.

For m > k, let 7?^ denote the image of the morphism of vector bundles

(19.19) Rn®p-%'+n-+Am9

sending (u, v) into u + σv, where u e Rm, v e p~xR'q+m\ t n e n

for ae X. From (19.17) and (19.18), we deduce that

(19.20)

for all φ e Pm + 1 with source φ = a, target φ = b.
Proposition 19.1. Assume that Y is connected and endowed with the structure

of a real-analytic manifold compatible with its structure of differentiable mani-
fold, and that F is an analytic vector bundle. Let R" c Jq(Tγ; Y) be an analytic
formally transitive and formally integrable Lie equation. Assume that F is
associated to R", that the mapping R" (x) Jλ(F) —• F is analytic, and that π0: Nk

—• F is surjectίve. Then R*m is an analytic vector bundle for all m > k.
Proof For m > k, let <^"+m,χ,ω denote the 0X)ω-module of analytic sections

of p~ιR"+m, and let 0frm,ω be the coherent ^Xjω-submodule of stfm,ω which is the
image of the mapping

Clearly, for x e X, the image of the mapping 0tm^ —• AmtX sending u into the
value u(x) of u at x is equal to Rb

miX. By the above discussion of the sheaves
&b

m, we see that conditions (i) and (ii) of Lemma 18.2 hold with h = 0. There-
fore from Lemma 18.2 we deduce that R*m is an analytic sub-bundle of Am

satisfying
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for m > k.
We assume now that R*m is a vector bundle for all m > k. Clearly

aρ% — eft \ qft>

for m> k, and so conditions (a)-(e) of Theorem 18.3 are satisfied with h = 0.
Let p > k be the integer given by that theorem such that Λ* is a formally
integrable Lie equation with

K+ι = (&P)+ι , for / > 0 .

Then by Theorem 18.3, all the hypotheses of Theorem 18.5 other than con-
dition (III) of § 9 for R*p are verified. If π0: Nk -> F is surjective and R" is
formally transitive, then R*p is formally transitive and by Theorem 18.3 it
satisfies conditions (I) and (II) of § 9; if moreover Γis connected, by [10, Pro-
position 10.3 and Lemma 10.3 (ii)] it also satisfies condition (III) of § 9. For
x € X with y = p(x), the linearly compact Lie algebra R!liX is the inessential
abelian extension (18.28) of the Lie algebra R'l,y by Rmχ, which is split by the
homomorphism σx: RZ,y -+ RL,X- Therefore, if L* denotes the semi-direct pro-
duct of RZ,y and the linearly compact RZiV-modxύe N^^, the mapping
φx: LI -> Rt,x, sending (u, ξ) into λ~ιu + σxξ, where u e N^^, ξ e RZ,y and λ~ι

is the inverse of the isomorphism λ: JJ,V\ X)x —> JooiF; Y)y, is an isomorphism
of linearly compact Lie algebras furthermore the diagram

0 • N^^y > L% > RZ,y > 0

0 > R^,x > Ri,x - ^ RZ,y > 0

is commutative and exact, and its vertical arrows are isomorphisms. Thus

is an isomorphism of pairs of topological Lie algebras.
Suppose moreover that R*p also satisfies condition (III) of §9. By §15

and Theorem 18.5, for x <= X the Spencer cohomologies H*(Rk)x, H*(R*P)X,
H*(R'q%(x) are graded Lie algebras, H*(Rte)x is abelian and a graded H*(R*P)X-
module, and H*(Nk)pU) is a graded 7/*(Rq)p(x)-module; the mappings (18.42)
and

induced by the inclusion Rp c R*p, are morphisms of graded Lie algebras and
c intertwines H*{Rk)x and H*(Rp)x; moreover the relation (18.43) holds,
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For m>p and x € X with y = p(x), the image of the mapping (19.9) belongs
to ( Λ ^ * ® ^ ϋ , , * ; by the commutativity of (19.11) and (19.10), this mapping
induces a mapping

such that the diagram

HJ(K')m,

commutes, where the mapping p is given by (17.5). By means of [6, Theorem 3]
we obtain a mapping

(19.21) σx:H*(Rq%^H*(R*p)x

such that ρσx is the identity mapping of H*(R'q')y, where p denotes the mapping
(18.42). Because of (19.12), the mapping (19.21) is a morphism of graded Lie
algebras.

By the exactness of the sequence (18.28), the formally integrable Lie equation
obtained from the vector bundles R*m Π Jm{V), with m > sup (p, q), by means
of [6, Theorem 1] is equal to Rk + ι for some / > 0. According to [6, Theorem
3], the sequence

(19 22)

given by (17.8) with x e Xanά y = p(x), is exact. The properties of the mappings
(19.21) imply that the mappings d of the sequence (19.22) are equal to zero,
and hence that the graded Lie algebra H*(Rtyx is the inessential abelian ex-
tension of the graded Lie algebra H*(R")y by H*(Rk)x, which is split by the
morphism (19.21). Therefore, for x e X with y — p(x), if HI denotes the semi-
direct product of the graded Lie algebra H*(R")y and the graded H*(Rq%-
module H*(Nk)y9 the mapping Φx\ H*-+H*(R*P)X9 sending (a, β) into λ~ιa + σxβ,
where a e H*(Nk)y, β e H*{R")y and λ'1 is the inverse of the isomorphism
λ: H*(Rk)x —> H*(Nk)y given by (17.7), is an isomorphism of graded Lie
algebras; furthermore the diagram

0 >H*(Nk)y > HI >H*{R'i)y >0

(19.23) jλ"1 \Φ, jid

0 > H*(Rk)x - U H*(R*P)X ~^-+ H*(R'q')y > 0
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is commutative and exact, and its vertical arrows are isomorphisms. Thus

Φx: (//*, H*(Nk)y) -* (#*(**)„ H*(Rt)x)

is an isomorphism of pairs of graded Lie algebras.
At this point we turn to the consideration of the sequence of non-linear

cohomology which is analogous to (19.22). Let P" c Qq(Y) and P* c Qp be
formally integrable finite forms of R" and Rv whose /-th prolongations we
denote by P" + ί and P*p+ι. Let m0 > p be an integer such that gmo, g*w gZ0 are
2-acyclic. If R*p satisfies conditions (II) and (III) of § 9 and Nk is integrable,
then by Theorems 18.3 and 18.2 (i) and by § 9 we have the sequence of
cohomology

(19.24) H\Nk)m,v > H\Pχ,x -U H\P'q')m,y ,

for all m>m0 and x e X withy = p(x). If moreover P" is integrable, Theorem
9.2 (ii) asserts that the sequence (19.24) is exact. Furthermore the mapping p
of sequence (19.24) is surjective. Indeed, if u e Z\R!^)y, by Proposition 17.1 we
choose ux e Zί(RZ+q)y such that πmuί — u; then according to (19.7), (19.14) and
(19.10), ax(u,) belongs to Zl(R*p)m + qiX and satisfies pσx(uλ) = u.

We summarize some of the above results as:
Theorem 19.1. Suppose that R*m is a vector bundle for all m > k.
( i ) The hypotheses (a)-(e) of Theorem 18.3 with h = 0 and of Theorem 18.5,

other than condition (III) of § 9 for R*p, hold.
(ii) For x e X with y = p(x), the linearly compact Lie algebra R!LiX is iso-

morphic to the semi-direct product of RZ,y and the linearly compact R'l y-module
N^^; if R*p satisfies condition (III) of §9, the graded Lie algebra H*(R*P)X is
isomorphic to the semi-direct product of the graded Lie algebra H*{R")y and the
graded H*(R'q')y-module H*(Nk)y.

(iii) If R*p satisfies condition (II) of§ 9, the mapping of cohomology

p . ii \r p)m,x * i i yi q )m,P{x)

is surjective for all m > m0, x <= X.
From the above discussion and Propositions 18.1 and 18.2, we derive the

following:
Theorem 19.2. (i) If the hypotheses of Proposition 19.1 hold and R" is

elliptic, then Rv is a formally transitive and formally integrable Lie equation, and
H\Pζ)x - 0 if and only if H\Nk)p{x) = QJor x € X.

(ii) IfR" is formally transitive and of finite type, Nk is an integrable differential
equation, π0: Nk —> F is surjective, and R*m is a vector bundle for all m > k, then
Rv is a formally transitive and formally integrable Lie equation, and we have an
isomorphism of cohomology
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for x ζ. X.
Proof. If the hypotheses of (i) hold, by Proposition 19.1 so do those of

Proposition 18.1; on the other hand, the hypotheses of (ii) imply those of
Proposition 18.2. The conclusions of the theorem follow from these last two
propositions.

Theorem 19.2 gives us two classes of formally transitive and formally
integrable Lie equations 7?*, obtained from (i) or (ii), for which the second
fundamental theorem does not always hold indeed, if H^Nj,) Φ 0, the non-
linear cohomology of R*p does not vanish. The first class is related to the
examples considered by Buck [20]. In § 20 we shall construct Lie equations
belonging to these classes.

Henceforth we shall identify two graded modules of linear cohomology
over a graded Lie algebra which are isomorphic.

Although a special case of results which follow, we first make some observa-
tions about a closed ideal / of a real transitive Lie algebra L. By [9, Corollary
6.1] and [10, Theorem 10.1], there exist an analytic manifold X, a point x e X,
a formally transitive and formally integrable analytic Lie equation Rk c Jk(T),
and a formally integrable Lie equation Rkl c Rtel, with kx > k9 such that

and (/?«,,a, -RL.x) and (L, /) are isomorphic as pairs of topological Lie algebras.
According to § 15, we have structures of graded Lie algebras on H*(L) = H*(Rk)x

and H*(L, I) = H*(R'kl)x and of graded i/*(L)-module on H*(L, /), and a
morphism

r.H*(L,I)->H*(L)

of graded Lie algebras induced by the inclusion Rkl c Rkl, which intertwines
H*(L, I) and H*(L) in the sense that

t(a)>β = [a9β\ , c(γ a) = [γ9t(μ)] ,

for a,βe H*(L, I), γ e H*(L). Using Proposition 17.6 and formula (6.10), we
see easily that, without changing the graded Lie algebra and module structures
on H*(L) and H*(L, I) and their relationship, we may suppose that there is an
analytic surjective submersion p: X —> Y such that the Lie equation Rk is p-
projectable and R^ = R^ (Ί Jco(V); under these additional assumptions, by
[10, formulas (9.11) and (9.10)], the morphism of graded Lie algebras t and the
graded //*(L)-module structure on H*(L, I) coincide with the ones given by [10,
Theorem 13.1 (iii)], which are well-defined. From [10, Theorem 13.1] we obtain

Proposition 19.2. Let I be a closed ideal of a real transitive Lie algebra L.
Then the structure of graded H*(L)-module on i/*(L, 7) and the morphism
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of graded Lie algebras, which intertwines H*(L, I) and H*(L), are well-defined up
to automorphisms of these graded Lie algebras, and depend only on the isomor-
phism class of(L, I) as a pair of topological Lie algebras.

Let L" — L\I and φ: L —• L" be the natural epimorphism of transitive Lie
algebras. If Rkl c Jki(Tγ; Y) is the formally transitive and formally integrable
analytic Lie equation, with kx > k, such that

for all m > k19 a <= X, then the well-defined morphism of graded Lie algebras

φ: H*(L) ^ H*(L") ,

induced by φ and given by [10, Theorem 13.1 (ii)], is equal to

p:H*(Rt)x-+H*(B'k%x)9

up to automorphisms of these graded Lie algebras.
Let ^ b e a geometric module over a real transitive Lie algebra L. Consider

a transitive Lie algebra L' which is an abelian extension

(19.25) 0 > E > Lf -^-> L > 0

of L by E, defining the given structure of L-module on E. Let L'° be a funda-
mental subalgebra of Lf such that the ideal E of Lr is defined by a foliation in
(L\ Z/°).

According to [9, Corollary 6.1] and [10, Theorem 10.1], there exist an analytic
connected manifold X, a point x e l , a formally transitive and formally
integrable analytic Lie equation R'k c Jk(T)9 a formally integrable analytic Lie
equation Rk cz Rk, and an isomorphism of transitive Lie algebras ψ': L' --> R^x

such that

By [10, Lemma 10.3 (ii)], V = π,Rk is a sub-bundle of T and by Lemmas 1.5
and 11.3, Rk is an abelian Lie equation. Moreover, R^^ is defined by the
foliation JO(V)X in (Ri^R'°,x). We now apply Theorem 18.6 to Rk and R'k.
Replacing X if necessary by a neighborhood of x, we obtain an analytic
manifold Y, an analytic surjective submersion p\ X-+ Y, an analytic vector
bundle F over Y, a formally transitive and formally integrable analytic Lie
equation R% c Jq(Tγ; 7), and a formally integrable differential equation
Nk c / f c(F; 7) such that p: X ^ Y can be identified with an open fibered sub-
manifold of the vector bundle F, considered as an affine bundle A over Y, and
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all the assertions of Theorem 18.6 hold with q0 = q. Then, if y = p(x), there
is an isomorphism of transitive Lie algebras ψ: L —• RZiV such that the exact
diagram

0 0

I I
0 0

is commutative. We set η = λoψ\ where λ is the isomorphism J00(V;λ)x

J^iF; Y)y. From the commutativity of (18.44), we deduce that the diagram

L(g)E >E

(19.26) \f®v U

commutes, where the horizontal arrows are given by the L-module structure of
E and the RZ^-module structure of N^^. From the above discussion, we
obtain the following realization theorem for geometric modules over real
transitive Lie algebras, a formal version of which was given in [29] namely, we
show that every such geometric module is isomorphic to one of the type con-
sidered in § 15.

Theorem 19.3. Let E be a geometric module over a real transitive Lie
algebra L; let L° c L be a fundamental subalgebra of L, and E° C E be a
fundamental subspace of E such that

L° E° C E° .

Then there exist an analytic manifold Y9 a point y 6 Y, an analytic formally
transitive and formally ίntegrable Lie equation R" d Jq(Tγ; Y), an analytic
vector bundle F over Y associated to R", an analytic formally integrable linear
differential equation Nk a Jk(F; Y), an isomorphism of transitive Lie algebras
ψ: L -> RZ,y, and an isomorphism of topologίcal vector spaces η: E —• N^^ such
that
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= R'Z , V(E°) = Nl,v ,

N^^ is a closed geometric RZ y-submodule ofJ^F', Y)y and the diagram (19.26)
commutes.

Proof. Let l! be the abelian extension (19.25) of L by E. Let σ: L -> V
be a continuous linear mapping such that φ°σ = id. Assume that the con-
tinuous 2-cocycle a on L with values in is defined by (14.7) satisfies a(L°χL°)
C is0. In particular, we may take V to be the semi-direct product of L and E
and σ to be the mapping sending ξ into ( 0 , f ) ζ £ χ L ; in this case a = 0.
Then by Proposition 14.6, Z/° = E° + σ(L°) is a fundamental subalgebra of Z/,
and the ideal E of L' is defined by a foliation in (Z/, Z/°). Consider the objects
we have associated above to (19.25) and Z/°. The isomorphism λ: JJV\ λ)x —•
JJF\Y)V satisfies ^(/i(K; ί) x) = Ji(F; Y)y; thus r^E*) = Nl,y and, since
T̂ Nfe = F, the mapping η induces an isomorphism E/E° -^ Fy. As φ(L'°) = L\
we have ψ(L°) C RZ%, and so ψ induces a surjective mapping L/L° ~> J0(Tγ)y.
Because

dim L/L° - dim L'/ZΛ - dim ^/.E10 = dim X - rank F = dim 7 ,

this mapping is an isomorphism and hence ψ(L°) = RZ°,y

Let E be a geometric module over a real transitive Lie algebra L. According
to Theorem 19.3, there exist a formally transitive and formally integrable
analytic Lie equation R" c Jq(Tγ; Y) on an analytic manifold Y, a point
ye Y, an analytic vector bundle F over 7 associated to R'q\ an analytic formally
integrable differential equation Nk C / f c(F; 7), an isomorphism of transitive
Lie algebras ψ: L —• i?"?1/, and an isomorphism of topological vector spaces
η: E-+ N^^ such that

and the diagram (19.26) commutes. Then H*(L) is the graded Lie algebra
H*(R")y. We define the linear Spencer cohomology of the geometric L-module
E to be the graded //*(L)-module

H*(L, E) = © W(L, E) , with W(L, E) = W(Nk)v ,

given by § 15. We now show that this cohomology is well-defined.
Theorem 19.4. Let E be a geometric module over a real transitive Lie

algebra L.
( i ) The graded H*(L)-module H*(L, E) of linear Spencer cohomology of E

is well-defined and depends only on the isomorphism class of E as a topological
L-module.
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(ii) IfU is the semi-direct product of L and E, the graded Lie algebra H*{D)
is equal to the semi-direct product of H*(L) and the H*{L)-module H*(L, E).

Proof Consider the objects we have just associated to the L-module E.
Replacing F b y π0Nk and Y by the connected component of y9 by Lemma 15.2
we may suppose that π0Nk = F. Let X be the vector bundle F, and consider
the mapping (19.3) and the abelian Lie equation Rk on X obtained from Nk.
According to Proposition 19.1, the image R*m of the morphism of vector
bundles (19.19) over Xis a vector bundle for m > k. Theorems 19.1 and 18.3
give us the formally transitive and formally integrable analytic Lie equation
R*v c JP(T), with/? > k, whose /-th prolongation is R*p+ι and which satisfies
conditions (I), (II) and (III) of §9; moreover they tell us that (18.25) holds
and, for x ς. X, with y = p(x), that Rt^ is isomorphic to the semi-direct
product of R'ή,y and the RZ,^-module N^^, and that H*(Rp)x is isomorphic to
the semi-direct product of H*(R'q% and the H*(R'q')y-modu\e H*(Nk)y. If Ώ is
the semi-direct product of L and E, and φ: L* —• L is the natural projection,
the linear Spencer cohomologies of the closed ideal E of Ώ and of Ώ are given
by

H*(L*9 E) = H*(Rk)x , //*(L*) = H*{R% ,

with x e X, and the morphism φ: H*(D) —> H*(L) of graded Lie algebras
induced by φ is equal to p: H^{R^)X -• H^(Rq)p(x), with x G X, up to automor-
phisms of these graded Lie algebras. Since the linear Spencer cohomology
H*(L*9 E) of the closed ideal E of V is well-defined by Proposition 19.2 as a
graded //*(L#)-module, from the commutativity of diagram (19.23) it follows
that #*(L, E) = H*(Nk)y, with y e Y, is well-defined as a graded H*(L)-
module and is equal to H*{D, E). The remaining assertions of the theorem
now hold by [10, Theorem 13.1 (i)].

The following proposition is an immediate consequence of Theorem 19.4 (i)
and the definitions of the Spencer cohomologies involved.

Proposition 19.3. If I is a closed ideal of the real transitive Lie algebra L,
the graded H*(L)-module H*(L, I) of linear Spencer cohomology of the ideal I
of L is equal to the graded H*(L)-module of linear Spencer cohomology of I
considered as a geometric L-module.

Theorem 19.5. Let E be a geometric module over a real transitive Lie algebra
L. Let Lf be the transitive Lie algebra which is the abelian extension (19.25) of
L by E, defining the given structure of L-module on E. If φ: H*(L') —• H*(L) is
the morphism of graded Lie algebras induced by φ: Lr —> L, there is an isomor-
phism of graded vector spaces

λ:H*(L',E)-+H*(L,E)

such that
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for alia 6 //*(!/)> β e H*(L\ E). Moreover, we have isomorphisms of cohomology

H\Lf, E) -> H\V, E) , H\Lr, E) -• H\L, E) ,

and a mapping of cohomology

(19.27) H\L, E) --> H\L) .

Proof Let Z/° be a fundamental subalgebra of U such that the ideal E of
U is defined by a foliation in (Z/, Z/°). Consider the objects which we associated
above to the abelian extension (19.25) and to Z/°. Then we have the equalities
of Spencer cohomologies

H*(L') = H*{Kk)x , H*(L', E) =

JΪ*(L) = #*(*'/), , H*(L, E) =

and the morphism ^: H*(L') -> 77*(L) of graded Lie algebras induced by ^ is
equal to p: H*(R'k)x -+ H*(R")V up to automorphisms of these graded Lie
algebras. The desired results now follow from Theorems 18.5 and 18.6 (iv).

Thus if Lf is the abelian extension (19.25) of the transitive Lie algebra L by
E, the Spencer cohomology H*(L', E) of the closed abelian ideal E of U
depends only on the geometric L-module E and not on the choice of the ex-
tension (19.25) of L by E.

Applying Theorems 18.7 (ii) and (iii) and 18.8 to the above equations Rk and
Rf

k, we obtain the following:
Corollary 19.1. Let L be an elliptic real transitive Lie algebra, and let Lf be

the transitive Lie algebra which is the abelian extension (19.25) of L by the geo-
metric L-module E.

( i ) If the image of a e H\L,E) under the mapping (19.27) vanishes, then
a = 0; moreover H\L, E) = 0 if and only if H\U) = 0.

(ii) If L is finite-dimensional, the mapping (19.27) is an isomorphism of
cohomology.

The corollary also follows from Corollary 17.2. Let /be a closed ideal of Lf

containing E\ in the corollary, we may replace Lr by / and L by the image of
/ in L.

From the corollary we deduce that if H\L, E) ψ 0, then H\Lf) Φ 0, from
which fact we shall obtain a class of abelian extensions of transitive Lie
algebras, whose non-linear cohomology does not vanish.

Proposition 19.4. Let φ\L-+L" be an epimorphism of real transitive Lie
algebras, and E a geometric L"-module. If φ: H*{L) —• H*(L") is the morphism
of graded Lie algebras induced by φ, there is an isomorphism of graded vector
spaces

φ: H*(L, φ*E) -> H*(L", E)
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such that

for all a e H*(L\ β <= tf *(L, φ*E).

Proof. Let Ώ be the semi-direct product of L and φ*E, and L'n be the
semi-direct product of L" and E\ then the epimorphism of transitive Lie
algebras φ*\ Ώ -> Z//#, which is equal to id x φ, induces an isomorphism of the
closed ideal φ*E of Ώ onto the closed ideal E of D. From [10, Corollary 13.1
(ii)], we obtain an isomorphism of graded vector spaces

φ*\ H*(L\ φ*E) -+ H*(L"\ E)

if we apply [10, Theorem 13.1 (iv)] to the commutative and exact diagram

0 • φ*E > U > L • 0

U* U* \Φ

0 > E • Lm > L" • 0

of topological Lie algebras, we see that there is a commutative diagram of
graded Lie algebras

H*(U) > 77*(L)

\Φ

) • H*(L")

such that

for all a e H*(L*\ β € H*(L\ φ*E). By means of Theorem 19.5, we now
deduce the proposition.

Theorem 19.6. Let L be a real transitive Lie algebra, and

0 > Ef ^-> E -^-+ E" > 0

an exact sequence of geometric L-modules, whose mappings are continuous. Then

we have an exact sequence

> Hj(L9 Ef) - % Hj(L9 E) JU Hj(L, E") - ^ > Hj + 1(L, Ef) •

of Spencer cohomology.
Proof. Let Ώ be the semi-direct product of L and E, and L"* the semi-

direct product of L and E". Then /3 determines an epimorphism of transitive
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Lie algebras β*: D -> L"\ which is equal to id X β, and a a monomorphism
of topological Lie algebras a*: Ef -^ L\ which is equal to (id, 0) and which
allows us to identify Er with a closed ideal of Ώ. If we apply [10, Theorem
13.1 (iii)] to the commutative and exact diagram

0 > Ef - ^ U E -?-+ E" • 0

0 > Ef > D ~^-> L"* > 0

of topological Lie algebras, we obtain the exact sequence

> Hj(L\ E') -^-> Hj(L\ E) JU W(L"\ E")

According to Propositions 19.3 and 19.4, if φ: Ώ -> L is the natural projection,
we have the isomorphisms of Spencer cohomologies

H*(L\ E') -> H*(L*, φ*E') -> H*(L9 Ef) .

From these isomorphisms, Theorem 19.5 and the above exact sequence, we
obtain the desired exact sequence of Spencer cohomology.

Let φ: L -± L" be an epimorphism of real transitive Lie algebras, 7 c L,
I" C L" be closed ideals of L and L" such that 0(7) - I". Let Γ be the kernel
of φ: 7--> I". Applying Theorem 19.6 to the exact sequence

0 > Γ > 7-^-> φ*I" > 0

of geometric L-modules, from Proposition 19.4 we recover the exact sequence
of Spencer cohomology of [10, Theorem 13.1 (iii)].

20. Counterexamples to the integrability problem

In this section, we give examples of Lie equations of the type of the equation
R*p of Theorem 19.1 and determine special properties of these examples.

Let R" C Jq(Tγ; Y) be a formally transitive and formally integrable Lie
equation. Let y0 € Y and let P" c Qq(Y) be a formally integrable finite form
of R"9 whose m-th prolongation we denote by P"+m. Assume that the projection
of P"(yQ) onto Y sending p € Pq(yQ) into the target of p is surjective. Then
Pq(yo) is a principal bundle over Y whose group is G" = Pq(y0, y0). Let FQ be
a finite-dimensional G^-module, and consider the vector bundle
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associated to P"(y0) and to R". Let X be the vector bundle F considered as an
affine bundle over Y, and p: X-+ Y the projection of this vector bundle F
onto Y.

According to § 15, to each section φ of P" over an open set U a Y, for
which πoφ is a diffeomorphism of U onto an open subset U' of 7, corresponds
an isomorphism of vector bundles

over πQφ. Then σ(φ) is a solution of the finite form B2 of A2. Let Jι(P'q'+m', Y) C
Qa,q + m)(Y) denote the bundle of jets of order / of sections of # " + m . For x e X
with y — p(x), we obtain a mapping

sending jm(φ)(y) into jm(σ(φ))(x), where ^ € ̂ r The compositions

p/ / m ^ τ rτ>". v^ σ

 v D
Γq + m,y ^ JmV-Γq •> 1 )y > nm,x ?

with x ζ. X and y = p(x), give us a morphism of fibered manifolds over X

(20.1) σ:p-*P'q'+m-+Bn.

By (15.8), for a <= A; with j = p(a\ and φzP"+m,y, ψ s P ^ , , where
£ = σ(πqψ)a, we have

(20.2)

We thus obtain a mapping

(20.3) σx:0'q'+mtV-»aMlX,

for x e Z with y = p(x), such that

&χ\y^q + m,y) ^— ̂ m,x >

and

Gχ\^'q + m,y) ^— ̂ m,x *

If/" 6 Sol (P'g%, then

/=ff , (/Ό = ff,α(/Ό

belongs to Sol (B2)x and satisfies

(20.4) pf=f".
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If Jι(Brn) c Qa,m) is the sub-groupoid of/-jets of sections of Sm, we have the
mapping

for x e X, with y = p(x), sending MψXy) into y '^ψX*), where ψ € ^"+ m > y ; it
is easily verified that the diagram

P " °x ^ R
Γq + l + m,y ^ L*l±'m,x

(20.5)

is commutative.
As F is associated to R", we consider the mapping (19.3) and we write

o = v~ι°σov\ p-1R'q'+m-> Am .

We identify p-*T{P'q'+JY) with V{p-ιP'q'+J. By (20.2), for a z X and ψ e
with source ψ = /)(α), target ψ = j and ό = σ(πqψ)a, the diagram

(20.6)

Tψ{Pq + m/ Y)

is commutative, where σaψ and ψ operate on the right. Also if x e X, with
j> = p(x), and 0 e 0*"+m,y, the diagram

(20.7) \σχ j , ,

commutes, where σxφ and φ operate on the left. From the commutativity of
(20.6), (20.7) and (20.5), by (2.6), if aeX, with y = p(a\ for ψ e P"+m+ltV,
ξ e Rq+m>y we have

(20.8) (σaψ)(σaξ) = σb(ψ(ξ)) ,

where b — σ(πqψ)a.
For xe X, with y = p(x% and ψ e &"+m+Uv, we have

(20.9)
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where σx on the left-hand side is the mapping (19.9) withy = 1. Indeed, to
prove (20.9) it suffices to show that

(πQσxξ) A ®(σxψ) = σx(πQξ A

for ξ € R"+m,y'9 by (2.28) and the commutativity of (20.7) and (20.5) we have

1-σxπq + mψ σxξ - σxξ)

^σ^πq^ψ ξ — σxξ)

= σx(τrof A ψ)

lίaeX satisfies p(α) = j , for ψ e ^+m+ltV9 u € ( ^ * (x) ̂  J , with target
= z and 6 = σ(τrςψ)α, we have p(b) = z and, by (20.9) and (20.8),

(20.10) σa(u+) = (σbu)-+ .

We denote by Pb

m the image of the mapping (20.1). If a e X, with y = ρ(a),
and ψeP"+m+lty9 ζe Rq+m>y, then the elements σaψ of Pb

m + ι>a and σα(ζ) of
Rb

mfa satisfy

(20.11) (σaψ)(σaζ) = σb(ψ(ζ)) ,

where Z? = σ(πqψ)a. Indeed, let φ be a section of P ^ over a neighborhood (7 of
y such that 7ro0 is a diίfeomorphism of £/ onto an open subset U' of Y, and
let I be a section of ^/over t/ satisfying jm+1(φ)(y) = λm+1ψ and jm(ξ)(y) = λmζ.
Then φ(ξ) is a section of R" over ί/7 and jm(φ(ξ))((πoφ)(y)) = λmψ(ζ). Therefore
by (15.10)

= jm(σ(φ(ξ)))(σ(φ)α) = σb(χjr(O)

Hence

(20.12) ψ(RlJ = Rl,b ,

for all ψ e Pb

m+U with source ψ = «, target ψ = Z?.
If α e Z, with .y = ^(α), and ψ G P"+m+1,v, u e Jm(F; Y)v, then πq + nιψΊie

Jm(F; Y)t, where z = target ψ: the elements σαψ of Pl+Uα and ^'w of Jm(V; X)α

satisfy

(20.13) (σαψXt 1") = *i\πq + nrt'U) >

where Z? = σ(πqψ)α. In fact, let φ be a section of />" over a neighborhood 17 of
y such that 7ro0 is a diffeomorphism of (7 onto an open subset U' of Y, and let
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s be a section of F over U satisfying jm+ί(φ)(y) = λm+ιψ and jjs)(y) = u\ if/
is the section σ(φ)oso(π0φ)~1 of F over U', then πq+mψ>u = jm(s')(z) and by
(15.15)

'u) = jm+Mφ))(a)(jm(μs)(a))

= Jm(σ(Φ)*μs)(σ(Φ)a)

= Mμs>)(σ(φ)a)

If a e X, with y = ^(β), and ψ e P'q'+m,y9 u 6 / m ( F ; F)^, and if we set b = a
+ πou and c = σ(πqψ)a, then |θ(ό) = y and p(c) = target ψ; the elements (7δψ
of Pltb and ^ - ^ of β m ( F ; λ)a satisfy

(20.14) ^ Ψ jβί1!/ - βΛf-u) σaψ .

In fact, let φ be a section of P" over a neighborhood t/ of y such that 7ro0 is a
diίfeomorphism onto an open subset U/ of F, and let s be a section of F over
C/ verifying jm(φ)(y) - Λmψ andyTO(j)(^) = u; if / is the section σ(φ)oSo {π,φYι

of Fover ί/', then ψ w = jjs^pic)) and by (15.14)

= JΛϊs')(σ(φ)a)'jm(σ(φ))(a)

Let 7Vfc c Λίi7; F) be a formally integrable differential equation such that
π0: Nk-^F is surjective and (18.23) holds. Let Rk c Jk(V; X) be the formally
integrable abelian Lie equation whose /-th prolongation Rk + ι is the inverse
image of p~ίNk + ι under the isomorphism

If Pk + ι = a~\Rk + ι), then Pk is a formally integrable finite form of Rk with
(Pk)+ι = Pfc + ί. For m> k, let ^ denote the image of the mapping (19.19).

Proposition 20.1. If

(20.15) P'q'+*'NkdNk,

then R*m is a vector bundle for all m>k.
Proof Condition (20.15) implies (18.23) according to § 15. Since

for all / > 0, we see from (20.13) that



518 HUBERT GOLDSCHMIDT & DONALD SPENCER

for all m > k and ψ e P^+1, with source ψ = a, target ψ = b, and hence by
(20.12) that

(20.16) ψ(Rl>a) = Rltb .

By our hypothesis on Pq(yQ) and the fact that the fibers of X are connected,
given a,b e X, there exist ψ e P'q'+m+1 with source ψ = ρ(a), target ψ = p(b)
and φ e P m + 1 with source ^ = σ(πqψ)a and target φ = b. Then by (20.16) and
(19.20), we have

showing that R*m is a vector bundle.
We now assume that R*m is a vector bundle for all m> k. Let /? > & be the

integer given by Theorem 18.3 such that R\ is a formally transitive and formally
integrable Lie equation with

Rl+ι = (R*p)+ι, f o r / > 0 .

If Y is connected or if (20.15) holds, then by results of [10] or the proof of
Proposition 20.1 the equation 7?* satisfies condition (III) of § 9.

Let P* be a formally integrable finite form of R*p whose /-th prolongation
we denote by P^+ι. Let m>p; since Rb

m c R*m and diagram (20.6) commutes,
we see that

for α/r € P"+m, a,b e X, with source ψ = ^(β) and Z? = σ(πqψ)a. Since / ^ is a
finite form of 7?^ and the image of the section Iγ>q+m° p of p~ιPq+m under the
mapping (20.1) is equal to the section Im of P^, there is an open neighborhood
U of the section Iγ,q+mop in ρ~ιPq+m such that σ(U) c />£. Therefore for all
x € Z, with y = p(x), we have

(20.17) ^ΐjc^,

(20.18) σx{H\Pf

q\+m,v) c #O(Z>*)W,,

i f / ^ e H\Pί%+ntV9 then by (20.18) and (20.4), **(/") belongs to ^°(P*)miJΓ

and satisfies

Thus if 7?* satisfies condition (III) of § 9 and P* is integrable, the hypotheses
of Theorem 17.4 hold for R*p, with r — q and mQ = ^.

Let m0 > p be an integer such that gmo, g*mo, gZ0 are 2-acyclic. If Rp satisfies
condition (III) of § 9 and if Nk is integrable, we consider the sequence of
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cohomology (19.24) for m> m0 and x € X, with y = p(x). If moreover P* is
integrable, Theorem 17.4 tells us that, if the image of a e HXNk)mtX in H\P^)mx

vanishes, then a = 0. For m>p and x e X with j = ^(x), the mappings (19.9)
and (20.3) induce, according to (19.14), (19.7), (20.10), (20.17) and (19.10), a
mapping of cohomology

uχ Λ1 \Γ q

such that the diagram

(20.19)

commutes. By means of Theorem 9.1, for m > m0 we obtain a mapping

ϋ i λ l \Γ q Jq + m,y * λ l \Γ p)m,x

such that ρσx is equal to the projection πm of diagram (20.19), where p denotes
the mapping of the sequence (19.24). Hence by Proposition 17.1, it follows that
the mapping p of sequence (19.24) is surjective. One verifies easily that the
diagram

H\PίX + ι+ntV - ^ > H\P«)ι+m>x

1*«
-*-* vJ q Jq + m,y ^ -*-* \* p)m,x

is commutative for / > 0 we thus obtain a mapping of cohomology

such that ρσx is the identity mapping of Hι(P")y, where p denotes the mapping
of cohomology

(20.20) p:HχP%^HχP'q')y.

It follows that (20.20) is a surjective mapping.
We now summarize some of the above results and obtain part (iii) of the

following theorem as a consequence of (i), (ii) and the exactness of (19.24).
Theorem 20.1. Assume that R*m is a vector bundle for m > k. Let m > m0

and x ζ X. The following assertions hold:
( i ) The mapping of cohomology
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is surjective.
(ii) If R*p satisfies condition (III) of§ 9, Nk and P* are integrable, and the

image of a € H\Nk)mtP{x) in H\P*)mfX vanishes, then a = 0.
(iii) IfRp satisfies condition (III) of § 9, and Nk9 P* and P " are integrabίe,

then H\Nk)p{x) = 0 and H%P'q%x) = 0 if and only ifH\P*)x = 0.
Theorem 20.1 (ii) gives us another class of formally transitive and formally

integrable Lie equations Rp for which the second fundamental theorem does
not always hold indeed, if H\Nk) Φ 0, the non-linear cohomology of Λ* does
not vanish.

Remark. For m > k, let Pm X γ P"+m be the set of all (φ, ψ) e Pm X P'q'+m

satisfying ^(source φ) = source ψ, and consider the mapping

sending (^, ψ) into σaΛJr-φ, where α = target ^. If (20.15) holds, by Proposition
20.1 and Theorem 18.3, R*m is a Lie equation; then using the relation (20.14), it
can be shown that the image P*m of Φ is a differentiate sub-groupoid of Bm and
a finite form of R*m. Furthermore by (20.9) and Proposition 7.2, Pi+1 c (P*,)+1

and P* is a formally integrable finite form of R*p whose /-th prolongation is P*+ι.
IfNk and Pg

7/ are integrable, so is P*; if x e X and/ 7 / e Sol (P^O^x), then ^ ( / ' O
belongs to Sol (Pj)^.

Assume that Y is a Lie group G and that jμ0 is the identity element of G;
let g be the Lie algebra of G with the bracket defined in terms of right-invariant
vector fields on G. Let

r.Q-+Γ(Y,Tr)

be the homomorphism of Lie algebras sending ξ into the right-invariant vector
field ξ on Y whose value at y0 is equal to ξ. We denote by RZ the image of the
morphism of vector bundles

sending (y9 ξ) into jm(ξ)(y). We have < = /0(ΓF) and

^m ^ m + 1 " ^ A m

is an isomorphism of vector bundles for m > 0. Clearly

and therefore i?^ is a formally transitive and formally integrable analytic Lie
equation of finite type such that

(RΪ)+m = RZ+1, foτm>0.



LIE EQUATIONS. IV 521

The mapping c^ determines, for y e Y, an isomorphism of Lie algebras of g
with the transitive Lie algebra RZ,y

The image P% of the morphism of fibered manifolds over Y

(20.21) r.Yx G->Qm(Y),

sending (y, g) into the ra-jet at y of the left-translation of Y by g, is an analytic
sub-groupoid of Qm(Y) and a finite form of R'^. Moreover P" is formally
integrableand of finite type with

(p"\ _ p"

and

_ . p " _v. τ>ff

is bijective for m > 0. For ye Y, we see that P^iy) is a principal bundle with
structure group {Iγ,m(y)}i and the mapping (20.21) determines a bijective
mapping

Assume that the vector bundle F is a G-bundle, that is, possesses the structure
of a G-space such that g: F-> F is a morphism of vector bundles over the left-
translation g: Y -+ Y, for g ζ. Y. Then F has a natural trivialization

YXFVO-+F,

which sends (g,f) into g f, and thus F i s an analytic vector bundle. We con-
sider F a s a vector bundle associated to the principal bundle P"(y0) by means
of the mapping

eyo X id: F x Fyo -> Λ"ϋ>o) X Fyo .

The diagram

G X F >F

\cχiά

P['XYF >F

is easily seen to commute, where the top horizontal arrow is given by the G-
bundle structure of F, and the bottom horizontal arrow is determined by the
structure on F of vector bundle associated to P"(y0). For g e G, we have an
endomorphism of Γ(Y, F) sending s into g s-g'1 and a morphism of vector
bundles
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g:Jm(F;Y)^Jm(F;Y)

over the left-translation g: Γ-> Y defined by

g jm(s)(y) = jjg-S'g-ι)(gy) ,

where s is a section of i 7 over Y and j e F ; thus Jm(F; Y) is endowed with the

structure of a (/-bundle. Then the diagram

GχJm(F,Y) >Jn(F;Y)

(20.22) \ixid lid

P'ή+i*γJJF\Y) >Jm(F;Y)

also commutes, where the top horizontal arrow is given by the G-bundle
structure of Jm(F; Y), and the bottom horizontal arrow is determined by the
structure on F of vector bundle associated to P"(y0).

We say that a differential equation Nk c Jk(F; Y) is G-invariant if Nk is a
G-invariant sub-bundle of Jk(F; Y). For such an equation, there exist a G-vector
bundle Ff over 7 and a G-morphism of vector bundles φ: Jk(F; Y) -> i 7 ' such
that ker φ = Nk. Moreover, the differential operator

is G-invariant in the sense that it commutes with the induced action of G on
Γ(Y, F) and Γ(Y, F'). Conversely, given G-vector bundles F, Ff over Y and a
G-invariant linear differential operator P: 3F —> «^' of order k, there is a G-
morphism of vector bundles φ: Jk(F; Y) -^ F/ such that P = φojk, and
Nk = ker φ is a G-invariant differential equation.

Let Nk C / f c(F; Y) be a G-invariant differential equation; then Nk is an
analytic equation, and Nk + ι is a G-invariant sub-bundle of Jk + ι(F; Y). In view
of the commutativity of (20.22), we have

moreover for ye Y, if we identify g with RZ,y by means of the mapping c^ the
RZ,v-vaoά\x\Q structure on N^^ coincides with the natural g-module structure
on N^Λ obtained from the G-invariance of Nk. Assume now that Nk is formally
integrable and that πQ: Nk -> F is surjective; then Nk is integrable. Let Rk a
Jk{V\λ) be the inverse image of p~1Nk under λ. By Proposition 20.1 and
Theorem 18.3, we obtain from R" and Rk the formally transitive and formally
integrable Lie equation jR*. Then by Theorem 19.1 (ii), for x a Z t h e transitive
Lie algebra RlotX is isomorphic to the semi-direct product of g and the g-
module N^^^. Let P* be a formally integrable finite form of R*p9 and let
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mo>pbe an integer such that gmo and g*mo are 2-acyclic. From Theorem 19.2 (ii)
and Proposition 18.2, we obtain

Theorem 20.2. Let Y be a Lie group G, and F a G-ίnvarίant vector bundle.
Let Nk C Jk(F; Y) be a formally integrable G-invariant differential equation such
that τr0: Nk —• F is surjective. Then Rp is a formally transitive and formally
integrable Lie equation and we have isomorphisms of cohomology

H\Nk)m,y • H\PXtX ,

H\Nk)y >W(P*)X,

for all m > m0, x ς. X, with y = p(x).
Thus a formally integrable (/-invariant differential equation Nk c Jk(F\ 7),

such that ;r0: Nk^» F is surjective, gives rise to a formally transitive and
formally integrable Lie equation Rp that belongs to the three classes of Lie
equations of Theorems 19.2 and 20.1 (ii) for which the integrability problem is
not always solvable in fact, if H^N^ Φ 0, the non-linear cohomology of R*p

does not vanish.
More generally, to any G-invariant differential operator on Y corresponds a

Lie equation belonging to these classes, as we now proceed to show. Let Ff be
a G-vector bundle over 7, and P: !F -+ J Γ / a G-invariant linear differential
operator of order k. If ψ: Jk(F; Y) —• Ff is the G-morphism of vector bundles
such that P = ψojk and Nk is the G-invariant differential equation ker <p, then
Nk + ι is a vector bundle for all / > 0, and the mappings πk + ι: Nk + ι+m -> Nk + ι

are of constant rank for all /, m > 0. According to [5, Theorem 1], there exist
a formally integrable differential equation NkQ C Jko(F; Γ), with k0 > k, and an
integer /0 > 0 such that

for all r > 0 , and

#: = ΛL .

By [5, Theorem 3], there is a vector bundle F" over Y and a linear differential
operator Q: !Ff —• IF" of order / such that the sequence

(20.23) p _P^ p , _β^ pt,

is formally exact in the sense that the sequences of vector bundles

are exact for all m > 0, where pι + m(φ), pm(ψ) are the morphisms of vector
bundles satisfying

jl + m°P = Pl + m(φ)°Jk + l + m , jm ° Q = Pm(ψ)°Jl + m
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The differential operator Q is the compatibility condition for P\ by [5, Proposi-
tion 8], we have the equality of Spencer cohomologies

H*(Nk) = H*(N'k0) ,

and by [5, Theorem 3] the cohomology H\Nk) is isomorphic to the cohomology
of the complex (20.23). The vector bundle F" can be chosen to be a G-vector
bundle and the differential operator Q to be (/-invariant. If FQ is the G-invariant
sub-bundle 7Γ0Λ̂ 0 of F, then by Lemma 15.2 we see that Nko c Jko(F0; Y) is a
formally integrable G-invariant differential equation in FQ whose cohomology
H\Nko) is isomorphic to that of the complex (20.23). Let X be the vector
bundle F09 and R*p c JP(T) be the formally transitive and formally integrable
Lie equation constructed from F09 Nko and R" by Theorem 18.3; for x € X, the
transitive Lie algebra R*,^ is isomorphic to the semi-direct product of g and
the g-module N^^^. Since Theorem 20.2 gives us an isomorphism of
cohomology

H\Nk\ -> H\R% ,

for all x <= X with y — p(x), we thus obtain a formally transitive and formally
integrable Lie equation Rv on X, whose non-linear cohomology at x e X is iso-
morphic to the cohomology of the complex (20.23) at p(x). If the differential
operator P is not locally solvable, that is, the complex (20.23) is not exact, the
second fundamental theorem does not hold for the Lie equation R*p, and we
have thus constructed counterexamples to the integrability problem.

Finally, we point out how the counterexample of Guillemin and Sternberg
[15] arises in this way. Let Y be the Lie group SU(2), and let {ηx,η2, η3} be a
basis for the Lie algebra of left-invariant vector fields on Y such that the
relations

fo> VJ\ = Vι

hold for all cyclic permutations (/,y,/) of (1,2,3). Under the standard
identification of Y with the three-dimensional sphere S3 imbedded in C2, the
differential operator Sb: Θγ -> Θγ determined by the complex vector field
η1 + V— 1 572 on Y coincides essentially with the tangential Cauchy-Riemann
operator on the real hypersurface S3 of C\ which is the locally non-solvable
operator of H. Lewy. The example of Guillemin and Sternberg [15] is the
pseudogroup corresponding to the formally transitive and formally integrable
Lie equation R[ of order one o n 7 χ C obtained by the above procedure from
the invariant differential operator db on Y. By Theorem 20.2, the non-linear
cohomology of R\ does not vanish.
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