J. DIFFERENTIAL GEOMETRY
13 (1978) 455-526

ON THE NON-LINEAR COHOMOLOGY OF
LIE EQUATIONS. IV

HUBERT GOLDSCHMIDT & DONALD SPENCER

CHAPTER 1V. ABELIAN EXTENSIONS AND COHOMOLOGY

17. Some results on cohomology

Here we bring together various results concerning cohomology, both linear
and non-linear, which can be derived from the theory as it has been developed
up to this point. Some of the results state conditions under which the coho-
mology is trivial, i.e., the linear cohomology vanishes in positive degrees and
the non-linear cohomology in degree 1.

We begin by improving slightly Propositions 7.4, 7.5, 7.7 (ii) and 7.8 by
making a small change in the lower bound for which the assertions hold. This
is accomplished by proving Proposition 17.1.

We define the twisted d-operator mentioned in the remark of § 7 following
Proposition 7.4. Let v be a section of T* ® J(T) over X; we then have the
operator

0,0 NT* Q@ SEI(T)* @ J(T) — NH'T* Q S*1J(T)* ® J(T)
defined by
o,w = [v, w] = [v,, W],

where we N'T* ® S*J(T)* ® J(T), and v, is any section of T* Q J,(T) over
X such that zv, = v. Let v*: J(T)* — T* be the mapping dual to v: T— J(T).
Then

(17.1) 0 (w®u) = (—1o A (v*or* ! Q id)ou ,
forwe N'T*, ue S*J(T)* ® J(T). Therefore if v is the section of T* @ J(T)
corresponding to v: T — J(T), then §, = §. Moreover the diagram
A b
NT* Q SEI(T)* @ J(T) —> NTT*Q S U(T)* ® J(T)
(17.2) l(u-lov)ﬂ@id@id l(y-lov)*@:id@id
. dy
NT*® SI(T)* @ J(T) —> N*'T* Q S*J(T)* ® J(T)
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is commutative, and we thus obtain a complex

0 —> ST ® J(T) 2> T* @ S*(T)* ® J|(T)

0y NT* ® ST @ J(T) 2
— /\"T* ® St J(TY* @ J(T) —> 0

for k > 0;if v: T — J(T) is an isomorphism, it is exact.
Let R, C J(T) be a differential equation; then by (17.1),

5v(gk+l) - T* ® gk+L—1 >

for all / > 1, and thus we obtain a complex

3 3 3
0—9,—>T*®gp,—> NT*Rgp,—> -

—)/\nT*®gm—n‘—>O,

where g,, = S™J(T)* ® J(T) for m < k;if v: T — J(T) is an isomorphism,
by the commutativity of (17.2) its cohomology at N\'T* ® g,,_, is isomorphic
to H™7/(g,).

The following proposition generalizes Propositions 7.4 and 7.5 and its proof
is the same as that of [26, Proposition 3.3].

Proposition 17.1. Let R, C J(T) be a formally integrable Lie equation, and
suppose that g, is 2-acyclic, with k, > k. Then, for all m > k,, the mappings
(7.9), (7.10), (7.11) and (7.12) are surjective.

Proof. Tt suffices to show that (7.9) is surjective. Let u € Z'(R,),, with
m > k,, x € X, and choose v’ ¢ (7 * Q@ Z#,,.,), such that 4’ = u. Then 2,u/ ¢
NT * g.,., and writing v = v + mu, we have

0,(9W) = —D(Dv — /', v']) + [u, D]
= %D[uls u/] + [u7 Du/] - %[u9 [u/5 u/]]
= [Du/, u] + [u’ Du/] =0,
by the Jacobi identity and (1.25). Since g, is assumed to be 2-acyclic and

v(x): T, — J(T), is an isomorphism, there is an element ¥’ ¢ 7 *® ¢,, ., satis-
fying 6,4 = 2,/'. Then

2w +v')=Dv — o — W]l - W, v =9y — 4" =0;

hence «’ + u” belongs to ZY(R,,.,), and satisfies =, + «”’) = u, that is (7.9)
is surjective.

Therefore in Propositions 7.4, 7.5, 7.7 (ii), we may assume that k, > sup (k, 1)
and in Proposition 7.8 we may replace sup (k,, 2) by sup (k,, 1). Consequently
throughout § 9 we may assume that k, > sup (k, 1).
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If a ¢ X, we denote by id, = id, , the germ of the identity mapping of X in
(Aut (X)),. We say that a Lie equation R, C J(T) is of finite type if there is
an integer k, > k such that g,, = 0. The following proposition is stated with-
out proof.

Proposition 17.2. Let R, C J(T) be a formally integrable Lie equation of
finite type. If P, is a formally integrable finite form of R, and g, = 0, with k, > k,
then P, is integrable and

H/(R,) =0,
Ho(Pk)m,a = {lda} s Hl(Pk)m,a =0 s

forallj >0, m>k,acX.

Assume that X is endowed with a structure of real-analytic manifold com-
patible with its structure of differentiable manifold. Let @, , be the sheaf of
real-analytic real-valued functions on X. If E is a real-analytic vector bundle
over X, we denote by &, the sub-sheaf of & of analytic sections of E.

We next record two lemmas, of which the first is required in the proof of the
second and the second is used in proving Lemma 18.2. Let x € X and set 4 =
Oy,0 If Mis an A-module and & € 7, ,, an R-linear mapping D: M — M is
a &-derivation if

D(fm) = &f-m + fDm ,

for all fe A, m e M. The proof of the following lemma is the same as that of
[9, Lemma 8.2] and is due to Malgrange.

Lemma 17.1. Leté&,,---,§,€9, ., and D, be a &,-derivation of an A-module
M of finite type, for i = 1, - - ., n. If the values & (x), - - -, &, (x) of &,, -+ -, &, at
x form a basis of T,, then M is a free A-module.

Lemma 17.2. Assume that X is connected. Let E be an analytic vector bundle,
and let & be a coherent Oy, ,-submodule of &,. Assume that, for all x € X, there
are &, ---,§,¢€ 7, and a §,-derivation D, of the Oy , ,-module &, ., satisfying
D(F)C F,, fori=1, .-, n, such that {£(x), - - -, £,(x)} is a basis of T,.
Then there is an analytic sub-bundle F of E such that F is the sheaf of analytic
sections of F.

Proof. Let & be the coherent Oy ,-module &,/%.If xe X,§e .7, ,and D
is a &-derivation of the @, , ,-module &, , satisfying D(¥ ,) C % ., then D in-
duces a &-derivation of the ¢y, ,-module #,. According to Lemma 17.1, for
all xe X, the 0y, ,modules &, &, are free. Since & is a coherent Oy ,-
module, by the Syzygy Theorem, . is locally free. Therefore there is an analytic
vector bundle S such that . is isomorphic to the sheaf of analytic sections of
S. The natural mapping &, — & is induced by an epimorphism of vector bun-
dles £ — S whose kernel is an analytic sub-bundle F of F satisfying the condi-
tion of the lemma.

We now turn to the consideration of real-analytic equations and their coho-
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mology defined in the analytic sense and, if elliptic, in the differentiable (C*)
sense.

Let R, C J(T) be an analytic Lie equation; assume that R, ., is a vector
bundle for all / > 0. Let P,,, be an analytic finite form of R,,,. If we place
ourselves in the category of real-analytic manifolds and real-analytic mappings,
then, following §7, we can define the analytic cohomologies HXP,)m.a»
HXP)m.o» H(P)m.. and HYR,) = HXP,),, for m >k, ae X. If R, and P,
are formally integrable, P,,, = (P,).,, and g,, is 2-acyclic, with k, > k, then,
according to [19, Theorems 8.5 and 8.3] and the integrability of analytic
formally integrable differential equations, it follows that ﬁ;(Pk)m,a = 0 for all
m > k,, a ¢ X and hence by Proposition 7.8 we have the following

Proposition 17.3. Let R, C J(T) be an analytic formally integrable Lie
equation, and P, be an analytic formally integrable finite form of R,. If g, is 2-
acyclic, with k, > k, then

Hy(P)p,. =0,

forallm >k, ae X.

Assume that E is a real-analytic vector bundle. If R, C J,(E) is an analytic
formally integrable differential equation, there is an integer m, > k such that
the sub-complex

0> (@n)e 2> (T* @ By )y —> (NT* @ B )y - -
—> (/\n‘aj_* ® gfm——n)m I O

of (1.7) is exact, except at (#,)., for all m > m,; its cohomology at (#,,), is
isomorphic to the sheaf H)(R,) of analytic solutions of R, (see [5]).

By [25, Proposition 1] and results of [5] (see also [21]), we have:

Proposition 17.4. Assume that E is an analytic vector bundle. Let R, C J (E)
be an analytic elliptic formally integrable differential equation. Then

H'(R,) = H(R,), H'(R) =0, forj>0.

The following theorem asserts in particular the result of Malgrange [19] that
the non-linear Spencer cohomology of an analytic elliptic formally integrable
Lie equation vanishes.

Theorem 17.1. Let R, C J(T) be an analytic elliptic formally integrable Lie
equation, and P, an analytic finite form of R,. Then every solution of P, is ana-
Iytic, and if P, is formally integrable and g, is 2-acyclic, with k, > k, we have

H'(P)pn,o =0,

for allm > k,, ae X.
Proof. The first assertion is given by [9, Proposition 7.1]. If P, is formally
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integrable, according to [19, Theorem 9.1] we see that A Pm.o = 0, for all
m > k,, a e X; the second assertion now follows from Proposition 7.8.

We continue with our treatment of linear analytic elliptic equations, but place
it in the context of linear cohomology sequences for general projectable equa-
tions as developed in [6]; the final result is Theorem 17.2. We also give some
complements to [6], in particular Proposition 17.5.

Let F be a vector bundle over Y, and ¢: E— F be a morphism of vector
bundles over p: X — Y such that the morphism ¢: E — p~'F, whose kernel we
denote by K, is surjective.

We consider a formally integrable differential equation R, C J,(E; ¢) satis-
fying the following conditions:

(A) for all / > 0, there is a differential equation Ry, C J,.,,(F;Y) such
that

SD(Rk+l,a) = R;c/+z,p(a) s forallae X ;

(B) if Ri,;=Ri,; N J,.(K) denotes the kernel of the epimorphism ¢:
R,,, — p"'R}.,, the projections x,,,: R.,,,» — R,,, are of constant rank, for
all/, m > 0.

We now recall some facts which may be found in the paper [6]. Since
7. R, — R/ is surjective for m > k and R.,,, C (R.),,, there exists by the
Cartan-Kuranishi prolongation theorem an integer k, > k such that (R),, =
R} ., for all />0, and R}, is a formally integrable differential equation in
Jo(F; Y). For all / > 0, we have R,,, = (R,),,; for I > 0 and m > k, let RY
be the sub-bundle #,R,,,, of J,(K). According to [5, Theorem 1], there exist
integers m, > k, I, > 0 such that R}, = R% is a formally integrable differential
equation in J,, (K), whose r-th prolongation is equal to

R — RWw _— Rw

for all / > I,. For m > k, let

(NT*RR,), = (NT*QR,) N (NT*R® T (E;59), ;
for a € X, with b = p(a), the mappings
(17.3) P (NT* Q@ Ju(€50)g,0 > (NTF R J(F; X)),

give us the commutative diagram

(NTIT* ® Roar)ya — (NT*® R, 0 s (NIT* @ T_(&3 9)

(17.4) l¢ l¢ l¢,

D D
(NTTER An)s —> (NTEQ &), —> (N'T @ Ju i F; Y)),

(213
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and thus determines a mapping between the cohomology Hi(R,),,,, of the top
row of the diagram and the cohomology of the bottom row. For m > k,, we
therefore have a mapping

(175) 90: H;{;(Rk)m,a i Hj(Rl/c’l)m,b .

According to [6, Theorem 3], there is an integer k, > k, such that the natural
mappings

quz;(Rk)m,a g Hj(Rk)m,a

are isomorphisms for all m > k,, j >0 and a ¢ X. These isomorphisms together
with (17.5) yield mappings

(17-6) @ Hj(Rk)m,a i Hj(R;c’I)m,p(m >
(17.7) ¢: H(R,), = H'(RY) ) »

form > k,, j > 0 and a € X. According to [6, Theorem 3], we also have the
exact sequence

. 9 . .
argy HIZ(R) pa) —> HI(RG,)e —> HI(RY),

¢
—> HJ(R;,I pl@y >

Assume now that ¢: E — p~'F is an isomorphism. If a ¢ X and b = p(a),
consider p*: T¥ , — T¥; then p*(\'T¥,® S"T%,) @ E, is the fiber over a

of a sub-bundle (A\’T* @ S™"T* ® E), of \'T* @ S™"T* & E, and we have a
natural isomorphism

e (NT*Q@S"T*Q E),, > (NTF ®S"TE Q F), .
According to [6, § 5], the diagram

(S™"'T* ® E), ——> (T* ® S"T* Q E),

(17.9) lw lzp

)
S"TEQF ——> TEQS"TEQF

commutes, and the diagram
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0 0

l l

(S"T*Q E), 2> S"TE® F

I X

(17.10) JE;p) —> J.(F;Y)

ln’m_l l”m—l

TuiE; Q) —— I, (F:Y)

l l

0 0
is commutative and exact.
Consider the mapping
(17.11) 0:T*QS™T* > N'T*Q S™T*
by (1.5), we have
(17.12) &N, 0uy =& R du(y) — 5 K ou§),

for ue T* @ S™*'T* and &, pe T. Fix x € X; denote for the moment by T*,
T% the fibers of these vector bundles over x and p(x), and consider T} as a
subspace of T* by means of the injective mapping p*. For m > 0, if the image
of ue T* ® S™*'T% under the mapping (17.11) belongs to A\*TF ® S™T%, then
u is an element of 7§ @ S™*'T%. Indeed, to verify that u belongs to T¥®
S™*1T¥, we must show that u(§) =0, for all £e V. If eV, pe T, then
u(np) e S™'T% and & K du(y) = 0; since (§ N\ 5, ouy =0, by (17.12) we have
7 N ou(§) = 0. Therefore du(§) = 0 and u(§) = 0.

For m> k, let g, C S™T%¥ ® F be the sub-bundle with possibly varying fiber
such that the sequence

0—> g ——> R, J, (F; Y)

is exact; for m < k, we set g,, = (S"T*® E), and g,, = S"TF ® F. From

m

diagram (17.10), we deduce that g,, C (S™T* ® E), and that
90: gm,a - g:rlt,p(a)

is an isomorphism for all m > 0, a ¢ X. Fix x ¢ X and denote again for the
moment by T*, T¥, g.., g the fibers of these bundles over x or p(x). From
(17.9), we obtain the commutative diagram
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0 [ J
0 —> gm+1 —> T* ®gm —> /\ZT* ®gm—] —> /\3T* ® gm—z

Tso‘l Tp":@w“ Tp*@p‘l Tp”‘@sa“
H] b b
0000 —>TERY, —> NTE® g —> NTF R g

whose vertical arrows are injective. Its bottom row is exact at 7% & g.. for
m > k, and if H™%g,), = 0 with m > k, by the above remark concerning the
mapping (17.11), it is also exact at A\*T¥ & g.

The mapping (17.3) is an isomorphism and therefore determines an isomor-
phism between H/(R,), . and the cohomology of the bottom row of diagram
(17.4).

Proposition 17.5.  Assume that ¢: E — p~'F is an isomorphism, and let R, C
J(E; @) be a formally integrable differential equation satisfying condition (A).

(i) The differential equation R, C J,(F; Y) is formally integrable and R,
= (RY),, for all | > 0.

(i) If g, is 2-acyclic, with k, > k, then gy, is also 2-acyclic, the natural
mapping

Hglo(Rk)m,a e H‘(Rk)m,a
is an isomorphism for all m > k,, a € X, and the mapping
SD: Hl(Rk)m,a - H!(Rl/cl)m,p(a) D)

which it determines, is also an isomorphism for m > k,, a ¢ X.

Proof. (i) is given by [6, Proposition 5 (ii)]. As we have seen above, if g,,
is 2-acyclic, so is g,; the proof of [6, Theorem 3], Lemma 3.1 and diagram
(17.4) tell us that the mappings of (ii) are isomorphisms for m > k,.

We no longer assume that ¢: E — p~'F is an isomorphism.

Theorem 17.2. Assume that X, Y are real-analytic manifolds, that p: X — Y
is an analytic submersion, that E, F are analytic vector bundles and that ¢: E— F
is an analytic morphism of vector bundles over p. Let R, C J(E; ¢) be an analyt-
ic formally integrable differential equation satisfying conditions (A) and (B). If
R C J.(F;Y) is elliptic, then, for all j > 1, we have an isomorphism of coho-
mology

(17.13) H(R,,)) —> H(R,) .

Proof. According to [6, Theorem 3], we have the exact sequence (17.8) for
j > 1, and the exact and commutative diagram

HYR), ——> HYR.)ywy —> 0

(17.14) l l l

d
H'(R), —> HR), 0y —> H'(Ro), —> H'(R,),
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for all a e X. Since R} is analytic and elliptic, by Proposition 17.4 we have
H(RY),., = 0forj > 1, and the mapping

HS(R;cll pla) - HO(RI/C/l)p(a)

is an isomorphism. Thus (17.8) gives the isomorphism (17.13) for j > 2 and the
surjectivity of (17.13) for j = 1. From diagram (17.14), we deduce the injectivity
of (17.13) for j = 1.

Returning to Lie equations, we now take E =T, F =Ty, ¢ = pand R, C
J(T; p) to be a formally integrable Lie equation. Condition (A) is of course
the same as condition (I) of § 9 and (B) the same as (III). Assume that R, satis-
fies conditions (I), (IT) and (IIT) of § 9. We shall assume as in § 9 that the order
m, of the equation R, C J, (V) is chosen so that m, > k; and ¢,.,, Grme» I
are 2-acyclic. Let P, C Q.(p), P,,, C Q,..(V), Py, C Q,,(Y) be formally inte-
grable finite forms of the Lie equations R, C J(T; p), R,,, C J,.(V), R, C
J(Ty; Y) respectively; we denote by P,.,, Pr,.;, Pi,,, the I-th prolongations
of P, P, P;. Let P, be a finite form of R,,, for m > k. Consider the se-
quences (9.5) and (9.11) with / > /.

For a € X, we consider the following assertions:

(i) H'(PL)m,..=0,forall m > m,;

(ii) there exists an integer r > O such that, for all m > m, and f” e
H(P{)m s 1,0 there is an element fe¢ H(P,),,, satisfying of = f"';

(i) if m > m, and the image of « € H'(P;,)) .o in H'(P.),,,, Vanishes, then
a=0.

In § 20, we shall construct a class of Lie equations R, satisfying conditions (I),
(IT) and (III) of § 9 and this assertion (ii).

If P, is integrable, we now prove the implications (i) = (ii) in Theorem 17.3
and (ii) = (iii) in Theorem 17.4, showing how the lifting property (ii) for solu-
tions of Py, to solutions of P, is related to information about the non-linear
cohomology. In fact, Theorem 17.4 tells us that assertion (i) implies a lifting
property for solutions of P;’ to solutions of P, which is stronger than (ii) and
which is used in Corollary 17.1 to derive our version of the Kuranishi-Rodrigues
theorem [31]. Corollary 17.1 and Theorem 17.4 are required to derive further
properties of the non-linear cohomology of the sequence (9.11) in Theorem 17.5,
when R} is elliptic. All these results and Theorem 17.6 are basically conse-
quences of our study of the sequences (9.5) and (9.11) in § 9.

Theorem 17.3. Let R, C J(T; p) be a formally integrable Lie equation satis-
Sfying conditions (1), (II) and (111) of § 9. Assume that the finite form P, of R, is
formally integrable and integrable. Let m > m,, a ¢ X and assume that H'(P,,),...
= 0. Then there exists a neighborhood U of I ,, .,,.p(a)) in P, .(0(@)) such
that for any germ f’ € Sol (P}.) ,ay> With j,, .1, o(f")o(@)) € U, there is f e Sol (P,),
satisfying of = f"'; moreover, if " € H(P{.)n 15,2000 there is fe H(Py)y, .0
satisfying of = f"'.
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Proof. Let m > m, and a e X; from the remarks following Lemma 9.1, we
deduce the existence of a neighborhood U of I, ,,.,,..(p(a)) in P, ., . .(p(a))
such that U C o(Py,1,.@). If 1" € Sol (PL),0 With j,1,.(f")o(@)) € U,
choose Ge P,,,,.(a) with oG = j, ., ..(f")e(a). Since P, is integrable,
there exists g € Sol (P,), such that j, ., ..(g)(@ = G. Then f7 = pg~'of" be-
longs to Sol (P)),., and satisfies j,,,..(f7)(e(a@) = Iy ,.1,.2(0(a)). Since
JiUn 1o (@) = 0ji(Tns10.)(@), we see that f7" is an element of
H(P{)ms1041,a- According to our hypotheses, the element 3% of H'(P},)n.a
vanishes and therefore so does the image of /7 i m H'(P,). .. By Proposition 9.1,
there exists f; € H(P,),,1,. such that pf; = f7. Then the element f = gof; of
Sol (P,), satisfies of = f". If " € H'(P}, ),,Hl0+z oy We take g =id and f = f.

From Theorem 17.3, we now deduce our (non-linear) version of the Kuranishi-
Rodrigues theorem [31]:

Corollary 17.1. Assume that X, Y are real-analytic manifolds, that p: X — Y
is an analytic submersion. Let R, C J(T; p) be an analytic formally integrable
Lie equation satisfying (1), (I1) and (I11) of § 9. Let P, and P}, be analytic formal-
ly integrable finite forms of R, and R, ; let m > m, and a e X Then there exists
a neighborhood U of I .. ,..(p(@) in P, .(0(@) such that for any analytic
germ f” € SOl (PY),ar> With o, 1o o(f")e(a)) € U, there is an analytic germ
feSol(P,), satisfying pf = f"; moreover, if f” is an analytic germ in
H(PY)m s 1042, 000> there is an analytzc germ fin HY(P)y .,1,. satisfying of = .

Proof. We may assume that P, is an analytic formally integrable finite
form of R;,; then by Proposition 17.3, H(P/,)n.. = 0. Since f” is analytic
and P, is integrable, the proof of Theorem 17.3 gives us the existence of f.

Theorem 17.4. Let R, C J(T; p) be a formally integrable Lie equation satis-
Sfying conditions (1), (II) and (111) of § 9. Assume that the finite form P, of R, is
formally integrable and integrable, and that there exists an integer r > O such
that, for all m > m,, ae X and f” € H(P{)n.r, o) there is an element fe
H°(P,)... satisfying pf = f”. If m > m,, a € X and the image of « ¢ H'(P,, ).,
in H'(P) ., vanishes, then o = 0.

Proof. Letm > my,ae X and awe H "(Pr)m.q; Suppose that the image of
a in H(P,),... vanishes. According to Theorem 9.2 (i), there exists " e
H(P})m+19sr+1.0 SUch that 6% = a. Let fe H(P)n. 1041, With of = f'; then
the image of f”/ in H'(P,),,,,.. vanishes and hence so does .

The following theorem is a non-linear analogue of Theorem 17.2:

Theorem 17.5. Assume that X, Y are real-analytic manifolds, and that p:
X — Y is an analytic submersion. Let R, C J(T; p) be an analytic formally inte-
grable Lie equation satisfying conditions (I), (II) and (III) of §9. If Ry, C
J.(Ty; Y) is elliptic and m > m,, a € X, then we have:

(i) the mapping of cohomology

(17.15) H'(Pr)m,a = H' (P,

is surjective;



LIE EQUATIONS. IV 465

(i) if the image of @« € H\(P1,) .o in H(Py)y,, vanishes, then o« = 0;

(iii) H'(P,,). = 0 if and only if H'(P,), = 0.

Proof. (i) We may assume that P, and P} are analytic finite forms of R,
and R;.. By Theorem 17.1, we see that H'(P}),., ., = 0; therefore, since P;,
is integrable, by Theorem 9.2 (ii) the mapping (17.15) is surjective.

(ii) Since any solution of P;’ is analytic by Theorem 17.1, Corollary 17.1
implies that the hypotheses of Theorem 17.4 hold with r = [, 4+ 1; this last
theorem gives us the result.

(iii) is a direct consequence of (i) and (ii).

If in Theorem 17.5 we replace the hypothesis that R} is elliptic by the stronger
hypothesis that it is of finite type and remove all assumptions of real-analyticity,
we obtain the stronger assertions of the following

Theorem 17.6. Let R, C J(T; p) be a formally integrable Lie equation satis-
fying conditions (1), (1) and (I11) of § 9. If RY, C J,(Ty; Y) is of finite type and
if my > m, is an integer such that g, = 0, then, for allm > m,, 1 > I, ae X,
we have:

(i) the mapping

Hl(Pk)m,a - Hl(Pk)m,a.

is an isomorphism of cohomology
(ii) the mapping of cohomology

H](P/mo)m,a, - Hl(Plc)m,a

is surjective;

(i) if a, ay€ H'(Pp)m.1,o have the same image in H'(P,),,,.., then m, o,
= mw,a, as elements of H' (P )n.o; if P, is integrable and the image of « ¢
HY(P )m,o in H'(P),,. vanishes, then « = 0;

(iv) the mapping

H'(Pry). — H'(Py),

is an isomorphism of cohomology.

Proof. For m>m,, a e X, by Proposition 17.2, P, is integrable, H'(P;.).n, ,(a)
= 0and H(P{)n.1,. = {idy 0} Since a'¥r»@ = « for all « € H'(P,),,,, Prop-
osition 9.1 tells us that (i) holds and Theorem 9.2 (ii) gives us (ii). If a,, a, €
H'(Py,)mi1,0» With [ > I, have the same image in H'(P,),,, . according to
Proposition 9.1 the images of «;, @, in H'(P,),.,,,, are equal; by the commuta-
tivity of (9.9), so are their images in H'(P,, ).... The second assertion of (iii)
follows directly from Theorem 9.2 (i). Finally (iv) is a consequence of (i).

We now proceed to show how the above results on the sequence (9.11) can
be used to derive relations between the non-linear cohomology of a pair of ana-
lytic formally integrable Lie equations R,, RY C J(T) on X satisfying
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R, CRL, [Zh & C Ry,

if R{ is formally transitive. In particular if Rf, ,/R. , is an elliptic transitive
Lie algebra for all x € X, the non-linear cohomology of either of these equations
vanishes if and only if the other one does (Theorem 17.7); if these Lie algebras
are finite-dimensional, we obtain a stronger result (Theorem 17.8).

Let W be an integrable sub-bundle of 7. For m > 0, let

Jm+1(T; W) = {S € Jm+1(T)|[E’ Jm+l(W)] C Jm(W)} )
F(J,(W),) = (W), }

lif a = source F, b = target F

Qni(X; W) = {FE O i

It is easily seen that J(T; W) is a formally transitive and formally integrable
Lie equation whose m-th prolongation is J,,,,(T; W), and Q(X; W) is a for-
mally integrable finite form of J,(T; W) whose m-th prolongation is Q.,, . ,(X; W).
Moreover J, (W) C J, (T; W), form > 1.

Assume that X is connected. Let R, C J,(T) be a formally transitive and
formally integrable Lie equation such that

(17.16) (%, T (W) C T ()

By [10, Lemma 10.5] and Lemma 1.5, the relation (17.16) is equivalent to the
inclusion R, C J(T; W). By [10, Proposition 10.3 and Lemma 10.3 (ii)] and
[6, Theorem 1], we see that n,,(R,,,; N J,.,(W)) is a sub-bundle of R,, for all
m >k, | >0, and we obtain a formally integrable Lie equation N,  C R,,
with k, > k, and an integer /, > 0 such that

Nm = ”m(Rm+l m Jm+l(W)) ’
for all m > k,, | > I,, and
N, =R, N J (W) ;

moreover, for a € X, the closed ideal N., , of R, , is defined by a foliation in
(R...., R,,). In particular, J (W), is a closed ideal of J..(T; W), defined by
the foliation J(W), in (J.(T; W),, Jo(T; W),) for a e X. We denote by L, the
transitive Lie algebra J_(T; W),/J. (W), for a € X; according to [10, Proposi-
tion 10.2], the image LY, of Jo(T; W), in L, is a fundamental subalgebra of L,.
Let L', be the closed subalgebra which is the image of R, , in L,; then the se-
quence

0—-N,.,—R

©,a w0, a

— L) —0

is exact. Since L, = L’ + L%, we see that L? = L’ N LY is a fundamental
subalgebra of the transitive Lie algebra Lb. If x,N,, , = Jy(W),, then LY is
equal to the image of R, , in L;. We write
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L = DTQLZO , form>1,
Lyt =L

we denote by gr L’ the graded Lie algebra Pg__, L/L™+.

Let P, C Q.(X; W) be a formally integrable finite form of R,. If a, be X,
since R, is formally transitive, there exists ¢ € Q..(a, b), with =4 ¢ P,, for all
m>k. Asw,pe Q,(X; W) form > 1, we have

ST W),) = J(T; W)y s gU(W)o) = J.(W)y» $(R..) = Reyp

Therefore ¢ determines an isomorphism +: L, — L, sending L}, onto L} and
Lb, onto L. Hence

Vi (L L) — (L, L)
is an isomorphism of pairs of topological Lie algebras and so induces an iso-
morphism
gry:grLi —grly

of graded Lie algebras. In turn, this last isomorphism gives us an isomorphism
of bigraded vector spaces

H*(Ly/LY, gr Ly) — H*(LY/LY, gr L}) .

From these isomorphisms, we deduce the existence of an integer k, > 1 such
that
HO™(L, L, gr I5) = 0,
forallj >0, m>k — l,ae X.
Let Z be a differentiable manifold, and z: U — Z be a surjective submersion

defined on an open subset U of X such that W, is the bundle of vectors tan-
gent to the fibers of z. Then for m > 1, by Proposition 6.1 (i) we have

JoT570) = (T W), Q) = Q.(X; W)
on U. The mapping r determines a canonical isomorphism
(17.17) L, — J.(Ty; Z). 0

for all a ¢ U; the image of L under this mapping is J%(7;; Z)..,- If U and the
fibers of ¢ are connected, by [10, Corollary 11.1 and Theorem 11.2 (i)], there is
a formally transitive and formally integrable Lie equation R:, C J,.(T;; Z),
with k, > k, such that

T(Rm,ll) = R["m,r(u) >
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for all m > k,, ae U. The equation R, C J(T,; Z) on U therefore satisfies
conditions (I), (II) and (II) of § 9 with respect to the submersion z, and the
sequence

0—>N.y—>R. ,— >R, . —>0

,7(a)

isexact for all ae U. Let R, = x,,R:, for m < k,, and ¢, be the sub-bundle of
S™I(T2)* @ J(T,) such that the sequence

0—> g —> R, 3R, —0

is exact with m > 0. Let H™/ denote the cohomology of the complex
. [ ) 0 )
(17.18) NTEQ Gnis —> NTER g5, —> N TR g5,

For ae U, the image of L under the mapping (17.17) is R, .., and so this
mapping determines an isomorphism of graded Lie algebras

grLb —>grR, . -
According to § 15, we obtain isomorphisms
H™ N(Lo/Ly, gr Ly) — HIY

for all j, m > 0. Hence the sequence (17.18) is exact for j > 0, m > k,. By the
first remark of § 6 of [9], we may assume that k, = k,; moreover g% is 2-acyclic.
Using the above discussion, we now derive from Theorem 12.1 and results of
[10] the following
Proposition 17.6. Assume that Y is a connected differentiable manifold. Let
R C J,(Ty; Y) be a formally transitive and formally integrable Lie equation,
and R;] C R/* a formally integrable Lie equation such that

[, R L

Then there exist a connected differentiable manifold X, a surjective submersion
p: X — Y, a formally transitive and formally integrable Lie equation R} C J(T'; p),
a formally integrable Lie equation R, C R and integers m, > ki, I, > 0 such
that the following assertions hold.:

(i) the equations R, R, satisfy conditions (1), (II) and (III) of § 9 with re-
spect to the submersion p;

(ii) R!is a prolongation of R}* and R, is a prolongation of R;;

(i) [, 2] C A:;

(iv) 7R, is an integrable sub-bundle W of T and Rt C J(T; W), R, C J(W);

(v) gu% gms 9 9, are 2-acyclic and
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(17.19) (Rt N T (V) = 7Ry N T (V) =0,
(17.20) Tn(Rois N T (W) = R, ,

forallm > my, [ > I;

(vi) for all ae X, the subspace R, , of R%, , is a closed ideal defined by the
Sfoliation J(W), in (R, ,, RY );

(vii) if ae X and L', denotes the transitive Lie algebra R, ,/R., ., the image
LY of R® , in L), is a fundamental subalgebra and

HI™Li/LY, gr Ly) =0,

for j = 1,2 and all m > m, — 1; for all a, b e X, there are an isomorphism L,
— L of transitive Lie algebras and an isomorphism of graded Lie algebras

grL; —grl;

(viii) for all x e X, there are a neighborhood U of x, a differentiable manifold
Z, a surjective submersion t: U— Z, a formally transitive and formally integrable
Lie equation R®,, C J,,(T; Z) such that:

(a) W,y is the bundle of vectors tangent to the fibers of t;

(b) the equation Rt C J(T; 1) on U satisfies conditions (1), (II) and (I11) of
§ 9 with respect to the submersion v and

T(Rﬁn,a) = Ri;n,f(d) >

forallm > m,, ae U;
(c) for all ae U, the sequence

T
0—>R.,—>R., R, .0y —>0

is exact and the mapping t determines an isomorphism of pairs of topological Lie
algebras
(LSA le,zo) - (Rl;,r(a)’ Rzg,r(a)) ;

(d) g5, is 2-acyclic.

Proof. Let y,e Yandset L = R’*,, L* = RI’¥ ; by [10, Proposition 10.1],
there exists an integer k > k, such that the closed ideal R , of R’ is defined
by a foliation in (L, D%L"). According to Theorem 12.1, there exist a connected
differentiable manifold X, a surjective submersion p: X — Y, a formally transi-
tive and formally integrable p-projectable Lie equation Rf C J(T; p) and a
formally integrable p-projectable Lie equation R, C R} such that (ii) and (iii)
hold and such that, for all a € X, with p(a) = y,,

p: (RL . RZ,) — (L, DL
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is an isomorphism of pairs of topological Lie algebras; moreover z,R, is an in-
tegrable sub-bundle W of T and R, C J,(W; p). By [10, Proposition 10.3 and
Lemma 10.3 (ii)], we see that = ,(R%,., N J,..,(V)) and 7,(R,.., N J,,..(V)) are
sub-bundles of R for allm > 1,/ > 0, and that ¥ N W is a sub-bundle of T,
and so (i) holds. From (ii) and [6, Theorem 1], we now obtain integers p, > 1,
Iy > 0 such that (17.19) holds for all m > p,, [ > /. From (iii), we deduce that

(2, T C J(7)

As we have seen above, this implies that R C J,(T'; W), and we have a formally
integrable Lie equation N,, C R} with k, > p,, and an integer /, > /, such that

Nm = 7rm(R§n+L m J1n+l(W)) ]
for all m > k,, | > I, and
N, =R, N J.(W).

Then R, C N, and thus n,N,, = J(W). If ae X satisfies p(a) = y,, by the
choice of integer k& and the construction of N,, the closed ideals R.,, and
N, of R, , are both defined by the foliation J(W), in (R% ,, R¥ ,); we there-
fore obtain the equality N, , = R, ,. Consequently N,, = R, for all m > k,,
and

R. =R, NJ.(W).

From the discussion preceding the proposition, we obtain an integer p, > k,
such that (vi) and (vii) hold with m, replaced by p,. Finally, let m, > p, be an
integer such that g7%, g, g%., 9., are 2-acyclic. Assertion (viii) follows also
from the above discussion.

Remark. If y e Y and x e X satisfy p(x) = y, then the transitive Lie algebras
R R’ , and L are isomorphic. If R’* /R’ , is finite-dimensional, by (vii)
there is an integer m, > m, such that L:"/L™*' = 0, forallm>m, — 1, ae X;
then g%, = 0 for m > m,.

We continue to consider the objects of Proposition 17.6. Let P;*, Py, C
Q..(Y) be formally integrable finite forms of the Lie equations R;*, R;, on Y,
and

PIC 0o N QX5 W),  P.C Qo) N QW)

be formally integrable finite forms of the Lie equations Rf, R, on X. Let ye Y
and x € X with p(x) = y; consider the submersion ¢ defined on a neighborhood
U of x and the Lie equation R%,, on the manifold Z given by (viii). Let P%, C
0...(Z2) be a formally integrable finite form of R, . According to § 9, for m >
m, we have the commutative diagram of cohomology
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H'(P),., —> H'(PY), . —> HP%)m o
(17.21) l,, lp
HI(P;cll)m,y —> H](Pllc/f m,y

whose horizontal arrows in the left-hand square are induced by inclusions of
Lie equations and whose top row is a complex, in view of (viii) and (17.20).
Moreover the mappings p satisfy the assertions of Theorem 9.3 (with
m; = m,).

Now suppose that Y is endowed with a structure of a real-analytic manifold
compatible with its structure of differentiable manifold and that R;*, R}, are
analytic equations. We may assume that X, Z are real-analytic manifolds, that
r is an analytic submersion and that all Lie equations considered and their
finite forms are analytic. Suppose moreover that for some point y, € Y the tran-
sitive Lie algebra R”*, /R is elliptic; by (vii) so is L, for all ae X, and by
(viii) so is R, , for all ze Z. Theorem 16.4 (iii) tells us that R’ is an elliptic
equation. For m > m,, by Theorem 17.5 (i) the mapping H'(P)),.,, — H'(P})...-
is surjective and by Theorem 9.3 (i) so are the mappings p of diagram (17.21).
Therefore using the commutativity of this diagram, we see that the mapping

(17.22) H'(P)n,, = H (P,

is also surjective for m > m,. Next, let « € H'(P})),,,, with m > m,, and assume
that its image in H'(P.¥),,,, vanishes. According to Proposition 17.1, choose
o, € H'(P)m 1., With [ > [, satisfying x,,a, = «; by Theorem 9.3 (i) choose
Be H'(P),.,,, satisfying pf = «,, and let y be the image of B in H'(P,.;.0
From the commutativity of (17.21), we deduce that z,,0y = 0; since P * is in-
tegrable, by Proposition 7.6 we infer that py = 0. Hence by Theorem 9.3 (ii),
we have 7y = 0. Theorem 17.5 (ii) implies that =, 8 = 0; therefore « = pr,,f
= 0. These facts imply that H'(P;,), = 0 if and only if H'(P;’*), = 0.

We no longer assume that the equations R.*, R, are analytic. We now sup-
pose that for some point y, € Y the Lie algebra R”*, /R’ ,, is finite-dimensional;
according to the remark following Proposition 17.6, there is an integer m, > m,
depending only on R;* and Ry, such that ¢!, = O for m > m,. By Theorem
17.6 (ii), the above argument concerning the surjectivity of (17.22) shows that
this mapping is surjective for m > m,. Let «,, a, € H'(P}),..,.,» Where m > m,,
[ =2l,+ 1, have the same image in H'(P;),,.,.,; we shall now show that z,a,
= m,a,. Indeed, according to Theorem 9.3 (i) choose B, B, € H'(P,),,,,,, satis-
fying pfB, = ay, pP, = «a,. By the commutativity of (17.21), the images 7,, 7, of
By . in H'(PY),,,,,, verify oy, = pr,, and so by Theorem 9.3 (ii) we have z,, , .7,
= Ty, 1, Therefore z,, .8, 7,,,5, have the same image in H'(P%), ., .5
from Theorem 17.6 (iii), we deduce that =8, = =, B, and hence that r,a, =
7., The injectivity of the mapping H'(P;.), — H'(P;*), is an immediate con-
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sequence of the property of the mappings (17.22) we have just verified. To prove
that it is surjective, it suffices by the Mittag-Leffler theorem (see [1, § 3, No. 5,
Corollary 2]) to show that if (8,,) ¢ H'(P/Y),, with B, € H' (P, m > ki,
then, for all m >m, and all r >m + 2/, + 1 and for « € H'(P;),,21,.1,, Whose
image in H'(P;#), 21041, 1S €qual to B,,,4,.,, there exists &’ € H'(P}),,, whose
image in H'(P;’*), , is equal to 8, and which satisfies z,a’ = 7. To verify that
this condition is satisfied, we choose a’ ¢ H'(P}.),,, whose image in H'(P.*),,
is equal to 8,. Then x,,,,,,& and « have the same image B, ,,,., in
H'(P{®) 210.1,,- Hence by the above, 7.« = n,«. Finally, if P;/* is integrable
and the image of « € H'(P})),,,,, with m > m,, vanishes in H'(P}*),, ,, by Prop-
osition 17.1 choose a; € H'(Py )n.1,,» With [ = 2I, + 1, satisfying 7,2, = a.
Then the image §, of «, in H'(P}*),,,,,, satisfies =, 8, = 0. By Proposition 7.6,
we see that 8, = 0. Thus the two elements «, and 0 of H'(P})),,.,,, have the
same image in H'(P;}),,.,,,; therefore « = 7,a, = 0.

We state the above results as the two following theorems:

Theorem 17.7. Assume that X is a connected real-analytic manifold. Let R,
be an analytic formally transitive and formally integrable Lie equation, and let

R, T R: be a formally integrable Lie equation such that
[‘@z+17 ‘%k] c ‘%k .

Let P} and P, be formally integrable finite forms of R} and R, respectively. If
x e X and R:, /R, . is an elliptic transitive Lie algebra, then there is an integer
my, > k such that, for all m > m,, a € X, we have:

(i) the mapping of cohomology

Hl(Pk)m,a g Hl(Plg)m,a

is surjective;

(ii) if the image of « € H'(P,) .., vanishes in H'(P}),, ., then « = 0;

(iii) H'(P,), = 0 if and only if H'(P§), = 0.

Theorem 17.8. Assume that X is connected. Let R be a formally transitive
and formally integrable Lie equation, and let R, C R} be a formally integrable
Lie equation such that

’[g’iﬂ» R C Ay .

Let P} and P, be formally integrable finite forms of Ri and R, respectively. If
x e X and R, ,/R.. . is finite-dimensional, then there are integers m, > k, I, > 1
such that, for all m > m,, | > I, a € X, we have:

(i) the mapping of cohomology

H'(P)n,o = H' (P

is surjective;
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(ii) ifay, 0, € H(P)m,1,o have the same image in H'(P}),. . ,.q, then r,a, =
n.0; If P is integrable and the image of « € H'(P,),., in H'(P}),.., vanishes,
then ¢ = 0;

(iii) the mapping of cohomology

H'(P), — H'(P}),

is an isomorphism of cohomology.
Remark. Let R, C R: be a formally integrable Lie equation satisfying

(%, 2] C 2 R, C R;.

Then in Theorems 17.7 and 17.8, we may replace the equation R} by R;.

We now give consequences of some results of this section concerning the co-
homology of transitive Lie algebras and their closed ideals.

Theorem 17.9. Let L be a real transitive Lie algebra, and I a closed elliptic
ideal of L. Then

HW(L,I)=0 forj>0, H(L,I)=0.

Proof. By [9, Corollary 6.1] and [10, Theorem 10.1], there exist a formally
transitive and formally integrable analytic Lie equation R% C J,(T) on a con-
nected analytic manifold X, a point x € X, and a formally integrable Lie equa-
tion R, C Ri such that [Z%,,, #,] C %, and (R, ., R..,) and (L, I) are isomor-
phic as pairs of topological Lie algebras. By Theorem 16.4 (iii), R, is an elliptic
equation; therefore from Proposition 17.4 and Theorem 17.1, we obtain the
desired vanishing of cohomology.

Theorem 17.10. Let ¢: L — L be an epimorphism of real transitive Lie al-
gebras, and I C L, I C L” be closed ideals of L and L such that ¢(I) = I".
Let I’ be the closed ideal of L which is the kernel of ¢: I — I". Assume that 1"
is an elliptic ideal of L". Then we have an isomorphism of cohomology

H/(L,I')— H/(L, I) , forj>0,
and a mapping of cohomology
(17.23) AL, 1) — H(L,I) .

If the image of a € H(L, I') under the mapping (17.23) vanishes, then a = 0;
moreover, H'(L, I') = 0 if and only if H\(L, I) = 0. If I" is finite-dimensional,
the mapping (17.23) is an isomorphism of cohomology.

Proof. We apply Theorem 10.1 to ¢: L — L and to the ideals /. /” of L
and I of L”, and consider the various objects and relations connecting them
whose existence is asserted by that theorem. We may assume that the kernels of
Tor: Ny > Jo(T), i Np — J_(T) and n,,_;: N — J,,, (Ty; Y) are 2-
acyclic. Let P, C Q.(p), Py C Q(V) and P;, C Q,(Y) be formally integrable
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analytic finite forms of N, C J(T’; p), N, C J(V) and N;. C J,(Ty; Y) re-
spectively. By Theorem 16.4 (iii), N;, is an elliptic equation; if 7 is finite-di-
mensional, then N/ is of finite type. Theorem 17.2, Theorem 17.5 (ii) and (iii)
and Theorem 17.6 (iv) give us the desired result.

Corollary 17.2. Let ¢: L — L” be an epimorphism of real transitive Lie al-
gebras, and let J be the kernel of ¢. Assume that L" is elliptic. Then we have an
isomorphism of cohomology

H(L,J)— H'(L),  forj>0,
and a mapping of cohomology
(17.24) HY(L,J)— HY(L) .

If the image of a € H'(L,J) under the mapping (17.24) vanishes, then o = 0;
moreover, H'(L, J) = 0 if and only if H'(L,I) = 0. If L" is finite-dimensional,
the mapping (17.24) is an isomorphism of cohomology.

18. The cohomology and structure of abelian Lie equations

We begin by recalling the construction of abelian Lie equations given at the
beginning of § 11 in the case where Z = Y and ¢ is the identity mapping of Y.

Let X be an affine bundle 4 over Y, whose associated vector bundle we de-
note by F, and let p: X -— Y be the projection of the affine bundle 4 onto Y.
If V is the integrable sub-bundle of T of vectors tangent to the fibers of p, we
have a canonical morphism of vector bundles 2: V' — F over p such that the
corresponding mapping

(18.1) 2V —p'F

is an isomorphism of vector bundles over X (see [4, Proposition 3.6]). A section
f of Fover Y determines a difftfomorphism y,: X — X sending x into x + f(o(x))
and a vector field

_ 4
Hr dtrtfjt

on X, which is a section of ¥”,. If f,, f, are sections of F over Y, then
(182) 7f1°7’fz = sz°7’f1 = rf1+f2 ’

(18.3) [ 7] = 0.

The mapping
2 (V3 2) —> J(F; Y)
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induced by (18.1) is a morphism of vector bundles over p sending j.(x,)(x) into
J()(»), where x € X and y = p(x), such that the corresponding mapping

20V — p  J(F; Y)
is an isomorphism of vector bundles over X. Then by (18.3), we have
(18.4) (V5 D, J(V; 0] =0,
and J,(V; ) is a formally integrable abelian Lie equation.
The image Q,(V; 1) of the injective mapping
rio  W(F; Y) — Qu(V)

sending (x, 7.(/)(»)), with y = p(x), into j(7,)(x), is a sub-bundle of Q.(V) and
a finite form of J,(V; 2). We set 2,(V;2) = 2, N 2.V; 7). Let

a:Q (V) —J(V; 2,
B: 0V ) — J(F; Y)

be the mappings sending j,(7,)(x) into j(x,)(x) and j.(f)(») respectively, where
y = p(x). Then the induced mapping

B: o.V;2) — P_le(F; Y)

sends j(y)(x) into (x, j.(f)(»)) and B = 20 a.
We have

Tt 1)@l )(X)) = Jilpes)x + £O)
so if ¢ € O,,,(V; 2), the diagram

LV 0. s v 2,

(18.5) lx | iz

JUF: V), —55 J(F; ),

commutes, where a = source ¢, ¢ = target ¢ and b = p(a). If g € 2,,,(V; A,
ue (NNT*Q J(?; ))e and Au is the element v of (N'T ¥ Q J(F; Y)),,
where b = p(a), then, since 7, € Z,(V), we see that ¢~'(u) is the unique element
of (N'T*® J(¥"; 2)),. satisfying (¢ '(u)) = v, where ¢ = source m,(a)*
and p(c) = b. In particular if 7,¢(a) = a, then ¢~'(u) = u.

We shall identify J,(F; Y) with F. Ifu e T*®J(V;2), thenu e (T*QJ (V; )"
if and only if the element 2 + A(zwu) of V* @4 F is invertible, where A(z,u) is
defined by

Azu)(§) = Amu(§) , forée V.
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Consequently
(18.6) (T*QI50), C(T*QJL(V; )" .

By [4, Proposition 5.1], it is easily verified that the diagram

T*® Ju(V; D) > J(QuV: D)
lid@u l]l(a)
T* @ J(V: ) —> J(J(V: D)
is commutative, where the mapping 9-' sends u € (T* ® J,(V; 2)),, with x ¢ X,
into j,(I,)(x) + u. Let g € Z,,(V; ), with x e X; if ¢(x) = j..,(7,)(x), where s
is a section of F over Y and x’ = 7,(x), by (2.27) and (1.2) we obtain
(2¢)(x) = Ji(a)-07"-(id ® v~ WD P)(x)
= Jx(“)(u@(x)_l) 'jl(ﬂ'ka)(x))
= Jx(a)(jl(jk(T— D) 'jl(ﬂk¢)(x))
= jile(j(y_y)- ”k¢))(x)
= jl(jk(#-s) + a(”kﬁé))(x)
= j1(a(77k¢))(x) — jl(jk(ﬂs))(x)
= (eDa(@))(x) .

We have thus shown that the left-hand square of the diagram

2 (Vi2) s (THRIG D) L NT RT3 D)
(18.7) la lid lid
T2 TEQUM D) s NT*® T3 )

is commutative; the commutativity of the right-hand square is a consequence
of (18.4), and ¢ € 2,,,(V; 2) belongs to 2, ,(V; 2) if and only if Da(¢) belongs
to (T* ® J(7; D))" (see Proposition 11.1). From (18.6) and [6, Proposition 4
(ii)], it follows that

2.V 2),9 - Qk+l(V; A,
and that, for a ¢ X with b = p(a), the diagram
92
24 V5 Wy =25 (T ® TV s Ms —2> (NT* @ T (Vs D
(18.8) s |2 lz
v D l D
S F5 V) —> (T % R J(F;Y), —> (/\Zg';k R J. (F;Y)),,
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whose vertical arrows are bijective, is commutative. Moreover, from (18.2) we
deduce that if ¢, y» € 2, ,(V; 2)s,., then - € 2, (V3 2),, and

Blg-) = () + B(¥) -

Ifue (T* QI Niw ¢ € 2y, (V5 2), With m,d(a) = a, then as ¢ '(u) = u,
we have

(18.9) wW=u-+ 2¢ = u+ Da(¢) .

Thus if ¢ € 2, ,,(V; 2)s,4, then by Lemma 3.1, u? belongs to (I * ® J(¥"; 2))..
The first statement of the following lemma should be compared with Lemma
6.5 and the second with Proposition 6.4 (ii). Here we consider the mapping

BT*RJ (Vi) — V* Qy J(F; Y) .

Lemma 18.1. (i) Let e 2,,,(V; ) and ue T*QJ(¥"; 2). Then A(u) =0
if and only if Au*) = ;- dx;yf(¢).

(i) Letu, u, e (T* QI (Vs Niqand ¢ € D, \(V; A, with a e X and r,d(a)
=a. Ifu, = u, then g€ 2, ,,(V; 2);.

Proof. (i) By the commutativity of (18.5) and (3.2), by (18.7) and the fact
that = =,¢ preserves V,

Aw?) = Aw)o f + ADe@)) = Au) o f + m-dy/f(P) »

as elements of 7* ®Q J(F; Y)y. Now A(u) = 0 if and only if A(u)of = 0,
which is equivalent to A(uf) = =, - dy,y ().

(i) By (18.9), Da(g) belongs to (I * Q@ J(¥"; 2)),; Lemma 3.1 implies that
a(@) e J,.(7"; 2), and hence that g e 2, ,(V; 2),.

Let N, C J(F; Y) be a formally integrable differential equation. Let R, ,, C
J..(V; 2) be the inverse image of p™'N,,, under the isomorphism 2: J,, ,(V; 2)
— p . (F; Y). According to [6, Proposition 5 (ii)], R,,; = (R,),, for I >0,
and R, is formally integrable. Let k, > k be an integer such that g, is 2-acyclic.
By Proposition 17.5 (ii), the natural mapping

(18.10) i{(R)m,a > H'(R),a

is an isomorphism for all m > k,, a € X, and so determines an isomorphism

(18.11) 2 H'R) o —> H' (N, ooy

for all m > k,, a e X. Moreover, according to [6, Theorem 3] the mapping
22 H*R)y — H* (N ooy » forae X,

given by (17.7), is an isomorphism.
By (18.4), we have
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[Ri.;, R, ]=0, forall/>0;

therefore by [19, Proposition 4.4], R, is an abelian Lie equation, and the graded
Lie algebra H*(R,), is abelian forae X. Let P,,, = « (R, ,;); by (18.2), P, .,
is a groupoid. If a € X and f'is a section of F over a neighborhood of b = p(a)
such that j,, (f)(®) € N,.,, then the element of R, ., ,

Feid@ = )@

di

belongs to V.0, (Pe.,0), since ji, (r:)(@) € Py, Thus R,y o C Vi, (Pis )
as the dimensions of these vector spaces are equal, we see that P, ,, is a finite
form of R,,,. It can easily be seen that P,,, = (P,),, and that P, is a formally
integrable finite form of R,.

For m > k, let

Zi(R,) = Z'(R,) N (T* ® Ay, ;
then by (18.7)
Z{(R,) ={ue(T*R@A,),|Du = 0} .
For ae x, let

'@m,ﬁ = ‘@m ﬂ "Qm(V; 2),9 1)
@;n,ﬁ,a = gm,ﬁ,a N '@:m.,a .

For m > k, a € X, according to (18.8) and (18.9), the group ;. , . operates
on Z}(R,), and the set of orbits

Hll(Pk)m,a = Z}(Rm)a/‘@:m+l,ﬂ,a

under the right operations of the group #;,., , ., on Z}(R,), is the quotient of
the vector space Z}(R,,), by its subspace

{Dulue R, 1,4 ua = 0}.

The cohomology H}(P,), .. is therefore a vector space. We have the mapping
of cohomology

(18.12) Hiy(P)p,o = H'(P),a

which sends the class of u ¢ ZX(R,,), in HX(P,),. , into the orbit {u” | Fe Z;,., .}.
The proof of the following theorem is analogous to that of Theorem 9.1,
although it is considerably simpler.
Theorem 18.1. Let ae X with b = p(a) and m > k,. The mapping (18.12) is
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an isomorphism of cohomology. Moreover, if ue Z'(R,),, there exists
Fe P,,,,, such that u¥(a) = 0 and u ¢ ZX(R,,),.

Proof. If u,u,e ZXR,), and if ¢ € Z,, ., , satisfy uf = u,, then by Lemma
18.1 (ii), ¢ belongs to &, ,, , , and so (18.12) is injective.

Let ue Z'(R,),; then since g, is 2-acyclic, by [5, Theorem 2] there exists
u; € Z'(R,,,), such that z,u, = u. By Lemma 7.1, there exists ¢, € ;. , such
that uf'(a) = 0. We set u, = uf'; then Du, = Q,u, = 0, and the element w =
T 1 A(Wy) Of (V¥ @ N, ,1,x), satisfies w(a) = 0 and dy,,w = 0, by the com-
mutativity of diagram (3.2). There exists ¥ € A", x,, such that j,(%)(@) = 0
and dy,,7 = w. Choose v € #,,,,,, satisfying A(x,,,,v) = ¥ and j,(v)(a) = 0. If
¢y = a (V) € P, .04, since j(¢.)(@) = ji(I,, ..)(a), we see that ¢, belongs to Z;, ,, ,
and that (2¢,)(a) = 0. Set u; = (z,,,,u,)** . As ua) = 0, we have u,(a) = 0
and

z(u:?z) =Ww= 7r7n+1'dX/Yﬂ(¢2) 5
it follows from Lemma 18.1 (i) that A(#,) = 0 or equivalently that
uy € Fi(Jp1(¥V75 2))

Since Du, = 9D,u, = 0, by [6, Proposition 4 (i)] we know that u, = = ,u, belongs
to (7 * ® J,(7"; 2)),. Finally, we note that u, = «* and wu,(a) = 0, where ¢ =
Tomsr®1 T sy € P10 Hence u, € ZX(R,,), belongs to the same cohomology
class in H'(P,),,. as u, showing that (18.12) is surjective and completing the
proof of the theorem.

We have a mapping of vector spaces

(18.13) H{(P)m,o = Hi(R)m,a 5

for m > k, ae X, which is clearly surjective. By means of the isomorphisms
(18.12), (18.10) and (18.11), for ae X with b = p(a), and m > k,, we obtain
surjective mappings of cohomology

(18-14) Hl(Pk)m,a - Hl(Rk)m,a s
(18.15) H'(P)w,o = HN ), 5

by Proposition 7.5, these mappings give rise to surjective mappings of
cohomology

(18.16) H'(Py), — H'(RY).
(18.17) HY(P,), — H'(N,), -

Theorem 18.2. Let ae X and b = p(a). Assume that N, is integrable.
(i) For m>k,, the mappings (18.14)-(18.17) are isomorphisms of cohomology.
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() Ifm>kand ue (7*Q%,), satisfies Du = 0, then the cohomology
class of u in H'(P,),,, vanishes if and only if the cohomology class of u in
H'(R,)... vanishes.

Proof (cf. Proposition 11.2). Let ue (7*Q®Z%,,),, with m > k, satisfy u =
Dv forsomeve#,,, ., Then 2w(a)e N, ,, ,, and we can write 2v(a) = j,, . (/)(b)
for some solution f of N, over a neighborhood of b. We see that &£ = p,is a 2-
projectable section of V over a neighborhood of a which is a solution of R,
and satisfies j,,,,(€)(@) = v(a). If we also denote by & the germ of & in ¥,
clearly j, . (&) € #1120 and v, = v — j,,,,(€) belongs to £#,,,,, and satisfies
vy(a@) = 0 and Dv, = u. If v belongs to Z,, . ,.,., so does v,, showing that (18.13)
is injective for all m > k; this last fact implies (i). By the commutativity of
(18.7), ifue (7 *®Z,),, the equations Dv, = u, v,(a) = 0, withv, € Z,,, .o,
are equivalent to 9¢ = u, ¢(a) = I,,,,(a), with ¢ = a”'(v,) € &, ,, and thus
(ii) holds.

It follows from Theorem 18.2 (i) that the mappings

n'm: Hl(Pk)m+1,a e Hl(Pk)m,a

are isomorphisms of cohomology for all m > k,, a e X.

We shall now construct the formally transitive and formally integrable Lie
equation 4, C J,(T) corresponding to the pseudogroup of transformations of
X whose restriction to a fiber of p is an affine mapping of that fiber to another.
For x e X, we shall endow J_.(F; Y),,, with the structure of a geometric module
over the transitive Lie algebra 4., ,.

Let {f}, - - -, f,} be a frame for F and ¢: Y — X a section of p over an open
subset U of Y. Then, for x € p~*(U), we can write

x = o(p(0) + 3 %,

thus defining functions x', - - -, x" on p~'(U). Let ()', - - -, %) be a system of
coordinates on U; we write for simplicity y’ = y?op. Clearly (x', - - -, x", ',
.-, »9) is a system of coordinates for X on p~'(U) and g, = dfox?, for 1 <i
< r. If f= 37, cY; is a section of F over U, then

r r : a
(18.18) = 2 ("o ppy, = 25 (¢ op)—
i=1 i=1 ax
on p~'(U).
Let £ e J,,,,(T), where x e p~(U); there exist functions a', - - - a’, ', - - -, b?
on a neighborhood of x such that
) -

r q
¢ = (e 2 )@+ Siwa (07
i=1 ox? i=1 dy
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For 1 < j < r, we have

|eima(2 )]
- fij’"([ai*aii' : azf ]>(x) + é:lj "‘([bl"éif’ "3’27])0‘)

(2 B S

If
(18.19) o dmalp ) e (V32 ,  for 1 <j<r,
there exist sections f;;, = >17_, ¢} f; of F over U such that
|&7ma( 2 )] = =)0 = —Z (o0 0 Y.
i=1 0x

by (18.18). We deduce that
. ( 3a' o (b N\,
i 25)00 = intese o)) (2 )0 =0,

for 1 <i,j<r, 1<I<gq;hence we can find functions d!, ---,d", b', - - -, b*
defined on U such that

@) = (%00 + T ¥-(c500)
jm+1(bl)(x) = im +1(b_L ° P)(x) s
for1<i<r,1<I<gq,and
1820) ¢ = joo( 5 (@0 + Foeion) Lo 4 FEen 0w
Moreover, if f = Y.7_; €f, is a section of F over U, then
(&, m i(e )] = Jn(pt,)() 5

where f is the section

T q aei 7 A
r=B(B0 5 - Bee)
i=1 = J=

of F over U. Thus, if we set
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Ay = {8 (DIIE T, (V5 D] C TV D}

for m > 1, then & belongs to 4,,,,,, where x e p~(U), if and only if (18.19)
holds, or equivalently if we can write £ in the form (18.20), where c%, d?, b' are
functions on U. It is easily verified that 4, is a formally transitive and formally
integrable Lie equation, with A4,,, = (4,),, and 4,,, C J,,(T; p) for I > 0;
moreover

A, = 4, = J(T; P) > Ay = md, = J(T) ,
and 4, is p-projectable, with
P(Am,z) = Jm(TY; Y)p(z) )

for all m > 1, x e X. For m > 0, we have J,(V; 1) C A4,, and so J.(V; ), is a
closed abelian ideal of the transitive Lie algebra 4., , for x ¢ X. Let B,, C Q,.(p)
be the bundle of m-jets of p-projectable diffeomorphisms f of X whose restric-
tion to the fiber p~'(y) is an affine mapping from p~(y) to p~'(p(f(x))), where
xe X and y = p(x). Then B, is a formally integrable finite form of 4,, with

B,,, = (By)., for [ > 0.
Let

be the mapping sending (&, u) into &-u = A[¢, A;'u], where xe X, £e A4, ,,
uelJ, (F;Y),. and 2;' is the inverse of the isomorphism 2:J,,,,(V; 2), —
Jpii(F5 Y), . If x e X and y = p(x), then (18.21) induces a mapping

(18.22) Aue ® TAF: ¥), — J(F: V), .

which endows J_.(F; Y), with the structure of a module over the Lie algebra
A., .. We see that

A, JNF;Y), CJrF; Y),, form>1,
Al JMF; Y), CJNF; Y), , form>0,

and since A, is formally transitive,
JMF;Y), =Dy JUF;Y),, form>1.

It follows that J..(F; Y), is a linearly compact 4., ,-module and, by Proposition
14.2 (iii), that J%(F; Y), is a fundamental subspace of J(F; Y),. Thus J.(F; Y),
is a geometric 4, ,-module.

The following theorem gives the essential ingredients in the construction of
certain Lie equations derived from abelian Lie equations; this theorem and the
following lemma, namely Lemma 18.2, will be used in § 19.
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Theorem 18.3. Let R C J(Ty; Y) be a formally integrable Lie equation.
Assume that F is associated to R and that

(18.23) R/\;Nyy C N, .

For all m > h, let 9, be an O y-submodule of < ,, satisfying the following con-
ditions:
(@) for all m > h, we have

T o)) = Ry s DHp)) CT* QAo s | Roirs Aol © 0

(b) if x e X and R, , denotes the image of the mapping &, , — A, . sending
ue R, . into the value u(x) of u at x, where m > h, we have

o(R,) = R0y, form=>sup(h q);
(©) forall xe X withy = p(x), if R%,,, = h(_m R°, ., the diagram
R, , &J(F;Y), —> J.(F;Y),
(18.24) l"@id lid
R., @ JAF; V), —> J.(F; Y),

commutes, where the top horizontal arrow is the restriction of (18.22) and the
bottom horizontal arrow is given by the R, -~module structure of J.(F; Y),;
(d) for all m > sup (h, k), there is a sub-bundle R%, of A,, such that

Ry = R, + R,

Then there exists an integer p > sup (h, k) such that R' is a formally integrable
o-projectable Lie equation satisfying

R, =(RY),,, forall>0,
(18.25) (%, #,) C R, ,
(18.26) [Re.. R..]C R,
and R’, , is a closed Lie subalgebra of Rt, , for all x e X, and
(18.27) o(RE) = Rl s

for allm > sup(p, q), xe X.
Assume moreover that the following condition holds:
(e) for all x € X, the mapping

p: R, ,— Rl

o, p(Z)
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is an isomorphism.

Then:

(i) for all xe X, the linearly compact Lie algebra R, . is the semi-direct
product of its closed subalgebra R’, , and the linearly compact R’, ,-module R, ,
and is the inessential abelian extension

(18.28) 0—>R.,—>R. , >R

o, p(ZL) ) 0

of the linearly compact Lie algebra R’

2 oz by the linearly compact R, , ,,-module
R

©,T

(ii) for all x e X, withy = p(x), the diagram

R . QJF; Y), —> J(F} ),

lp ®id lid

R, ®J.(F;Y), —> J.(F; Y),

commutes, where the top horizontal arrow is the restriction of (18.22) and sends
R, ,®N.,,, into N, ,, and the bottom horizontal arrow is given by the R” -
module structure of J.(F; Y),;

(iii) if Ry is formally transitive and m,: N, — F is surjective, then R is
Sformally transitive and R, , is defined by the foliation J(V), in (R%, ., R® ), for
all x e X.

Proof. From (a), we infer that

To(Ronir,2) = R, (R RLIC R, ,

m,T

for m > h, x e X, and that R:, , is a closed Lie subalgebra of 4., ,. From (a)
and (d), it follows that

Rie =Ry, + R, R CRY,, mu(RL) = R,

for all m > sup (4, k), x € X. The Cartan-Kuranishi prolongation theorem (see
[5, Theorem 1]) gives us an integer p > sup (4, k, 2) such that R%,, = (R}),,
for all />> 0. Then R, C A4, is a formally integrable differential equation in
J,(T). From (18.23) and the commutativity of (18.24), we deduce (18.26); for
x e X, we have =, (R, ,) = R®,, . and hence

[R]],J+1,z9 Rp+l,z] C Rp.z‘ .
Thus by (a), we have
[R;+I’ -Rp+1] C Rp ) [R;+19 R’;H-l] C R; .

Therefore by [19, Proposition 4.4], R is a Lie equation, and by Lemma 1.5,
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(18.25) holds. Since R, C J,(V; 2), by (b), we see that R} is p-projectable and
satisfies (18.27). Now assume that condition (e) also holds. To show that (18.28)
is exact, it suffices to prove that

(18.29) RL.NJ.(V), CR.,,
for xe X. In fact, fix xe X; form > hand [ > 0, set

Rirlt) = ”m(RI;H»L,x ﬂ ‘]m+L(V)1:)7 Rm = m R;rLL) .
120

‘Then r,(R,,,) = R,, for m > h, and since p: R’ ,— R’ ., is an isomor-
phism, we have

. D _ 1 b —
lim R, = lim (R;, , N J,(V),) = 0.

Hence R,, = 0 for all m > h. Since R{*Y C R% and these are finite-dimensional
vector spaces, for each m > h there is an integer /,, > 0 such that R = 0 or

(18'30) Tcm(Rl;rwlm,.t m Jm+lm(V)z) = 0 .

Letée R, , N J.(V),, and for m > sup (h, k) let | = [,,; we have r,,, Ee R, .
and we can write =x,,,§ =7+ {, with »eR,,,, and {e R, , .. Since
TmiiE €Jpn(V),, we see that e J, (V),. Now (18.30) implies that r,& = 0
and hence that z,,£ € R,,. Therefore & € R, , and so (18.29) holds. The remaining
assertions of (i) are consequences of the exactness of (18.28) and the fact that
p: R, ,— R ., is an isomorphism of linearly compact Lie algebras for x e X.
Finally, (ii) follows from (i) and (c), and (iii) from the exactness of (18.28) and
[10, Proposition 10.2].

If we are in the category of real-analytic manifolds and real-analytic map-
pings, if 7, N, — F is surjective and the equation R; of Theorem 18.3 is formally
transitive, then the following lemma shows, under an additional assumption of
coherence, that condition (d) of that theorem is implied by conditions (a)-(c).

Lemma 18.2. Assume that Y is connected and is endowed with a structure of
real-analytic manifold compatible with its structure of differentiable manifold,
that A is an analytic affine bundle over Y and that n,: N, — F is surjective. Let
R} C J(Ty; Y) be an analytic formally transitive and formally integrable Lie
equation. Assume that F is associated to R], that the mapping R} ® J(F) — F
is analytic and that (18.23) holds. For all m > h, let R®, , be a coherent O -
submodule of o, , satisfying the following conditions:

(i) for all m > h, we have

ﬂm(gi;n+l,w) = gl;n,w H D('%k;n-ﬂ,m) - g—f ®‘%l;n,m ’
(Poir,00 Binir,0] © X,

mye >
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(i) if xe X and R, , denotes the image of the mapping &’ , ,— A, . sending
ueR,,., into the value u(x) of u at x, where m > h, we have

p(Rl;n,z) = -R:ri,p(z) > for m 2 sup (h5 ‘I) s

and condition (c) of Theorem 18.3 holds.
Then for all m > sup (h, k), there is an analytic sub-bundle Rt, C A,, such that

R = RBopoow + X -

Proof. The hypotheses imply that N,, and hence also R,, are analytic
equations. For m > h, we write %", , = v"'%", ,; for m > sup (h, k),

Lo = Rno + R
is a coherent ¢, ,-submodule of «/,, , and, if %%, , = v~'%", ,, we verify that
(18.31) (Zir,00 Rl s) C Sy, -
First, since R, is a Lie equation, we have
[P ritier o] C P s form >k .
From (i), using (1.15) we infer that

[Zrir0 Bl © Hipyos form>h.

Next, from (18.23) and the commutativity of (18.24), for m > sup (4, k), x € X,
we deduce

[Ri100 Rpi1al € Ry s
since 7,(R% ) = R®, ., and
(21,00 Ponir,a] © R -
Therefore by (1.15) and (i),
(Zoriror Rnad C R s [Pmir,or Fon, o] C R

for m > sup (h, k), and so (18.31) holds. If m > sup (4, k), x € X, choose &,
56 € g’mﬂ,m,x and §,,,, -+, §, € '@L;n+l,w,z‘ such that {r,&,(x), - - -, 7, (x)} is

a basis of ¥, and {pn,&, (%), - - -, pm,&,(x)} is a basis of T, ,,,. Then {z&(x),

oo, mEL(x)} is a basis of T,, and #(¢&,) is a m,&;-derivation of &, , , With

y(gi)(‘%fn,w,z) C ‘%fll,m,‘l' b
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by (18.31), for i = 1, - - -,n. Since X is connected, Lemma 17.2 gives us the
desired sub-bundle R¥, of 4,,.

Remark. Let R, C A, be a formally integrable and p-projectable Lie equa-
tion, with 4 > 2, which is a prolongation of the equation R; of Theorem 18.3
satisfying the following condition:

(d) R, + R, is a sub-bundle of 4,, for all m > sup (4, k) .

Then the @,-submodules %, , = (%), of «,,,, with [ > 0, satisfy conditions
(a), (b), (d) and (e) of Theorem 18.3. If the category is the real-analytic one, if
Y is connected and r,: N, — F is surjective, if F is associated to ﬁfl’ and (18.23)
holds, and if R/ is formally transitive and condition (c) of Theorem 18.3 holds,
then by Lemma 18.2 condition (d’) is satisfied.

Remark. In Theorem 18.3, if we do not consider the vector bundle F and
the equation N,, and we replace the affine bundle X over Y, the abelian Lie
equation R, and A4, by any manifold X fibered over Y, a formally integrable
Lie equation R, C J(V) and J,(T; p) respectively, and the hypotheses that
(18.24) is commutative and that z,N, = F by the relations (18.26) and =R, =
V respectively, then the proof of Theorem 18.3 can be modified to show that
all its conclusions hold, other than (ii) and the fact that (18.28) is an abelian
extension. A similar remark is valid for Lemma 18.2.

We now assume that X is an open subset of the affine bundle 4 over Y, and
that the surjective submersion p: X — Y is the restriction of the projection of
A onto Y.

The following theorem is a partial converse of Theorem 18.3; this is made
more explicit after its proof. It shows how, under certain assumptions, a
formally transitive and formally integrable Lie equation Rf, C J(T), withp > k,
satisfying R, C RY and (18.25) gives rise to a Lie equation R, on Y to which
the vector bundle F is associated in such a way that

R;,n+lc'Nk+1 c Nk .

Theorem 18.4. Assume that n,: N, — F is surjective and that N, is integrable.
Let R: C J(T) be a formally integrable Lie equation, with p > k, satisfying

[@?7+15 %;n] C ‘%p .
(1) Foralll > 0, we have
R, CA,,,.

(ii) If x e X, the subspace R:, , N J..(V; ). of R%, , is a closed abelian ideal.
If X is connected and R’ is formally transitive, and if

(18.32) R NIV, = R, NJ(V),
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for some x e X, then the equality
(18.33) RENJ(V; D) =R NJ(V)

holds.

(iii)  Assume that X and the fibers of p are connected and that R', is formally
transitive; then R} is p-projectable. Let R C J(T; Y) be the formally transitive
and formally integrable Lie equation such that

(18.34) o(R: ) = R o)

holds for all m > sup (p, q) and x e X. If R, C R%, and if (18.33) holds and R,

is integrable, then there exists an integer q, > q such that F is associated to 1?;;,

R:1:1+Ic'Nk+1 - Nk )

and assertion (ii) of Theorem 18.3 holds.
Proof. (i) We set

R =R, for0<m<p,
R,=mn,R,, N,=nmn,N,, for0<m<k.
We have A(R,,.) = N, for all m >0, ac X. Let ye Y. Since N, is inte-
grable, there exists a frame {f}, - - -, f,} for F consisting of solutions of N, over

a neighborhood U of y; then {y,, - - -, p,,} is a frame for V consisting of solu-
tions of R, over p~(U). By Lemma 1.5,

(18.35) [Rt,.1, R, C R, , forallm >0,
therefore any element £ ¢ RY,,, ., with x € p~'(»), satisfies (18.19) and thus be-
longs to 4,,,, if m > 1. Therefore

R C A,

for m > 2.

(i) The first assertion is a consequence of (i) and (18.4). Assume that X is
connected. By [10, Lemma 10.3 (ii)], R, R,, and N,, are vector bundles for
all m > 0. Let [, > 0, p, > 1 be the integers and R, C R* be the Lie equations
given by [5, Theorem 1] and [10, Proposition 10.3 (ii)] satisfying

R:n = n-m(anHo n Jm+lo(V)) = ﬂm(Rﬁo m JDO(V)) )

R',m.+r C (R{m)+r > ﬂ"mR;n+T = R;n >
(18.36) (%1 P) C R s
R;)o+r == (R;)o)+r >

for all m, r > 0. From (i) and Lemma 1.5, it follows that
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for m > 1. If (18.32) holds, then R, , C J,(V; 2),; by [10, Lemma 10.3 (i)],
relations (18.36) and (18.37) imply that R,  J,(V; 1) for m > 0 and that

R.NJ(V)CTJ.(V; 2.
(iii) By [10, Corollary 11.1] and (i), R} is p-projectable; then R;, = =, R, is
a formally transitive Lie equation on Y, and (18.34) holds for all m > 0 and
x € X. From (18.35), we obtain a mapping
R5n+1 ><Y Nm+1_—) Nm 5
which is the restriction of (18.21), and a mapping

#
Rw,x ® Noo,p(x) - Nwm(x) >

for x € X, which is the restriction of (18.22). Assume that (18.33) holds. For
x € X, with y = p(x), and m > 0, consider the mappings

24
Rm+lo+l,y ® Nm+l,1/ - Nm,y 3

(18.38) .,
Rm+lo+1,y ®Jm+l(F; Y)y g Jm(F; Y)y ’
sending ¢ @u into &-u = x,,,,& -u, where &' e R ., ., . satisfies p& = &. If

‘E” € R?n+lo+l,;v SatiSﬁeS 405// = E’ then &l - 5// € R$n+lo+l m Jm+lo+l(V)s and
e 1(& — &) belongs to R),,, and hence to J,,, (V; 4); by (18.4)

Tui(§ — &) u=0, forued, (F;Y),,

and so the mappings (18.38) are well-defined. If R, C R}, we now show that
the mappings (18.38) depend only on y and not on the choice of the point x of
the fiber p~'(y). Indeed, let P} be a formally integrable finite form of R}, whose
[-th prolongation we denote by P}, ,. Then, for m > p, the intersection P, N P
is a neighborhood of I,, in P,,. Since the fibers of p are connected and ,: R, —
Jy(V) is surjective, given a,be X with p(a) = p(b), we see that there exists

¢ € Pyiiyee N PE,,, ., With source ¢ = « and target ¢ = b; we have
¢(R‘:n+lo+1,:u,) = R§n+lo+l,b > '

and ¢ € Qm+lo+2(V; Z)' If 5 € R:’i+lo+1,p(a)’ ue Jm+1(F; Y)p(a)’ s/ € R$n+Lo+1,a’
7€ Jni(V; A), satisfy p(€’) = &, A(y) = u, then by the commutativity of (18.5),

7rm+1$, U= 2[n'erIEI’ 77] = R(ﬂm+l¢)([n’m+151’ 7]])
= Amp (3N, (T )] = (1 19(E)) -1t

since A(r,,,.0)(n) = u. As the element ¢(§’) of R, ., , satisfies pp(§’) = &, we
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see that the mappings (18.38) do not depend on x € p~*(y) for m > p, and hence
also for all m > 0. Thus the diagram

R§n+Lo+1 ®Jm+l(V; 2) —> Jm(V’ 2)

(18.39) lﬂ®* lx
Ry yii @Jp (F3Y) —> T (F; Y)

m+1lo+

is commutative, where the top horizontal arrow sends & ® into [£, 5] =
[7 . .:&, 7], and the bottom horizontal arrow is (18.38); we deduce that

(18'40) ['%tn+lo+l,p5 Jm+1(V; 2)1] C Jm(,V; /2)2 .

To complete the proof of (iii), we now verify that the mappings (18.38) satisfy
the following properties:

(@ foralléeR,,, ., ,ueS™'T¥QF,
§-e(u) = e(v'§ N ou) ;
(b) forall&,pe R, ued, (F;Y),
(& 9] Tttt = T 1 (1) — T g (§-)
(c) the diagram
Ry ®@Tn(F3Y)  —— J(F;Y)
(18.41) lm@m lid
In(Riy.13 Y) ® Ty o (F; Y) ——> J(F3 Y)

commutes, where the top horizontal arrow is (18.38), and the bottom horizontal
arrow sends j,(§)(¥) ® jn . 1(s)(¥) into j, (€ -/i())(»), with & € #;.,,,, € F, and
yeY.

Indeed, if €€ R),,, .1, € (S™"'T§ ® F), with y e ¥, choose x € p~'(y) and
EeR, . WeS™'T*QV),, satisfying p& =& and ' = u; then by
(1.15) and the commutativity of the diagrams (17.9) and (17.10) with £ =V
and ¢ = 2, we have

E-e(w) = Ar, L&, ] = 2e(v & R~ ou')
= el ¥ Now) = e(v o8 N o) = (v 'E A u),
and so (a) holds. Next, if &, 9¢€ Ry, .0, U € J,, (F; Y), and &, 7" € R, .5 2

e lJ, (V; 2, with x e X and y = p(x), satisfy p&’ = &, py’ = pand W' = u,
then by (6.5), pl&’, 7'] = [£, 7] and by the Jacobi identity,



LIE EQUATIONS, IV 491

& 7] ikt = 7o l€ 7l ot = Amp [E 7] 7 ]
= A7y i&s [T s W — [T s [ 18 W'D
= Tyl Aot s W] — ) Amy o, 0]
= T & T a) W) — s - (T 1)

= Tt (1) — T ggeay (§-10)
and (b) is verified. Finally, by [9, Proposition 5.4] we have
An(Riyim) CIn(Ri D 5 ARy ) C TR YD,
and so diagram (18.41) is well-defined; in fact, since R? is integrable

zm(R?o+m+l) C Jm(R‘lto-H; P) M
Consider the diagram

An X id
R i ® TV ) 2B 1 (R ) ® T (V3 2) —> T(Vi D)

lp ®1 lp ® 2 ll

Ry st0s ® T B ¥) 222 1 (R ¥) @1, (F3 ¥) —> T (F3 Y)

whose second top horizontal arrow sends j,,(£)(x) ® j,, ..(n)(x) into 7, ([&,/,(DD(x),
with £e Zf, .1, 7€ 7 1. x€ X, and is well-defined by (18.40), and whose
second bottom horizontal arrow is the bottom horizontal arrow of diagram
(18.41). The left-hand square is clearly commutative, and the right-hand one
commutes because of the commutativity of (18.39) with m = 0. The composi-
tion of the arrows of the top row is equal to the top arrow of diagram (18.39).
Therefore, by the commutativity of (18.39), the composition of the arrows of
the bottom row is equal to the bottom arrow of (18.39), and we have proved (c).

Ifée I'(Y, R, ,,..), we define

LE:IFY) > T (F;Y)

to be the differential operator sending  into the element #(£)u given by (15.24),
where ' € J,,,(F ; Y) satisfies 7,/ = u and & = €. From properties (a) and
(b), it follows that J,(F; Y) is associated to R/, werr If go =sup(q, I, + 1),
then J,,(F; Y) is associated to ﬁ’g’ow by setting

g(é)l[ = g(ﬂm+lo+1§)u >

for £e I'(Y, ﬁ;’o wm)s e JJ,(F; Y). Property (c) implies that these operators
#() acting on J,(F ; Y) are precisely the ones arising from the action of @,’1’0
on % . The remaining properties of this action are immediate consequences of
those of the mappings (18.38).
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Remark. If R! is formally transitive and R, C R}, then, for all x € X, the Lie
algebras R., , and Rf, . N J..(V; ), are closed abelian ideals of the transitive
Lie algebra Rf, ., and

R..CR,,NJ.(V;2), .

Under these conditions, since z,R.. = J,(V), if x e Xand R, , is defined by the
foliation Jy(¥), in (RY, ., R¥ ,), then (18.32) holds.

Theorem 18.4 is a partial converse of Theorem 18.3. Indeed, let X = 4 and
R} C J(Ty; Y) be a Lie equation on a connected manifold Y, and forall m > h
let #%, be an @4 -submodule of .o/, satisfying conditions (a)-(¢) of Theorem
18.3. Assume moreover that N,, R* ‘are integrable for m > sup (4, k), that z,: N,
— F is surjective and that R} is formally transitive. Then the formally transitive
Lie equation R, = R, 4+ R’ given by Theorem 18.3 satisfies (18.25) and (18.33).
Therefore all the assumptions in Theorem 18.4 are satisfied; the Lie equation
R;/o on Y, obtained from Theorem 18.4 to which F is associated, is none other
than a prolongation of our original equation R

The following theorem describes the structures of graded module induced in
the cohomology corresponding to the equations of Theorems 18.3 and 18.4.

Theorem 18.5. Let R, C A,, R, C J(Ty; Y) be formally integrable Lie
equations, with p > k, satisfying

Rp - R"p s [ggul’ '%p] C gp s P(R?n,r) = R:ri,p(z) 5

for all m > sup (p, q) and x € X. Assume that the sequence (18.28) is exact for all
x € X, that F is associated to ﬁ;’, and that (18.23) and assertion (ii) of Theorem
18.3 hold. Then for x ¢ X, the linearly compact Lie algebra R, , is an abelian ex-
tension of R. ., by the linearly compact R ,,-module N, ., Moreover, if

R satisfies condition (II1) of § 9, the mapping
(18.42) p: H¥(RY), — H*(R)) iz »

given by (17.7), is a morphism of graded Lie algebras, and H*(R,), is a graded
H*(RY),-module, and H*(N,),,, a graded H*(R),.,-module; if 2: H*(R,), —
H*(N,), ., is the isomorphism given by (11.7), we have

(18.43) - M- B) = pa-28,

Sor all « e H*(R}),, B € H*(R,),.

Proof. Since : R.,,, — N..,,., is an isomorphism for x € X, the first assertion
is a direct consequence of the hypotheses. The structures on the Spencer coho-
mologies of graded Lie algebras or of graded modules over these graded Lie
algebras are given by § 15. That the mapping (18.42) is a morphism of graded
Lie algebras follows from (6.10). Assertion (ii) of Theorem 18.3 implies that the
diagram
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o

q+m ®Jm+1(F; Y)—>Jm(F; Y)

is commutative, where the top horizontal arrow sends £ ® 7 into [§, 5] =
[Tmiésyl I ue N'T*@ R, belongs to FUJ,,.(T);p), and ve N'T*®
J (V5 2) belongs to Fi(J,,(V); 2) with ¢ 4+ m > p + 1, then we see that
the element [u, v] = [x,, 4, v] of A"/ T* @ J,(V; A) satisfies

[u, v] e FiLi(J.(V); D), Au,v] = pu-2v,
where 1 is the mapping
2F(J(V); D) —> NTEQJ(F; Y),

with/ =iandr =m + 1, or / = i + jand r = m, and where the product of
pue N\'T¥ @R}, , and 2v is given by (15.30). We deduce that, if ue (\* T *
QAyim)oand ve (N T*QJ, (V5 D), then [u, v] € (N7 T* QT (V"5 D),
and

Au, v] = pu- v .
For m > p, x € X, we therefore obtain the commutative diagram

Ht(Rg;)q+m,z®Hf(Rk)m+l,x '—)H;k(Rk)m,z

lp@z lz

H*(R;/)q+m,p(r) ® H*(Nk)m+l,p(z) —> H*(Nk)

m,p(x)

whose horizontal arrows are induced by the bracket (1.19) and the mapping
(15.30), and whose vertical arrows are given by (17.5). By [6, Theorem 3], there
is an integer m, > p such that the mappings

HY¥R)n,e > H*(Rp,o 5  HFR)p,: > H¥ (R,

p/m,x

are isomorphisms for all m > m,; by means of these isomorphisms and the
above commutative diagram, we deduce (18.43).

We now suppose throughout the remainder of this section that X is again an
arbitrary manifold and that p: X — Y is a surjective submersion. We no longer
assume that R, is the abelian Lie equation constructed from the differential
equation N,.

The first part of the following theorem generalizes Theorem 11.1 when the
equation N, of Theorem 11.1 vanishes. This theorem implies that under certain
assumptions an integrable abelian Lie equation R, C J,(T) is locally of the type
of the examples considered above.
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Theorem 18.6. Let R, C J(T) be an integrable and formally integrable
abelian Lie equation such that R, is a sub-bundle V of T. Let k, > k be an integer
such that g, is 2-acyclic. Then, for all x, e X, with X replaced if necessary by a
neighborhood of x,, there exist a manifold Y, a surjective submersion p: X — Y,
an affine bundle A over Y whose associated vector bundle we denote by F, a diffeo-
morphism ¢: X — A over Y of X onto an open subset of A, and an integrable and
formally integrable differential equation N, C J(F; Y) such that, if we identify
X with its image in A under the mapping ¢, the following assertions hold:

(1) Vs the bundle of vectors tangent to the fibers of p;

(ii) if 2: V— F is the canonical morphism over p given by the structure of
affine bundle of A, we have R,,,, C J., (V; A) for all | > 0;

(iii) the morphism 2:J,,,(V; ) — J,,(F; Y) induced by 2: V — F gives an
isomorphism

'2: Rk+l,a, d Nk+l,p(a) B
foralll >0 and ae X, and n)N, = F;

V) if a: Q. (Vi) —> J(V; A) is the isomorphism given by the structure of
affine bundle of A, and P, is the formally integrable finite form a '(R,) of R,,
then the mapping A induces isomorphisms of cohomology

H*(Rk)a g H*(Nk)b B
Hl(Pk)m,a g Hl(Rk)m,a i Hl(Nk)m,b b
H'(Py), — H'(R)), — H'(N,), ,
for all m > k,, ae X, with b = p(a).

Furthermore, let R, C J(T) be a formally transitive and formally integrable
Lie equation such that

R, C R, (% ., R,] C R, .

Then, with X still replaced by this neighborhood of x, considered as a subset of

A, we have:
(v) foralll >0,

R‘;wrl - Ak+l H

and R% is p-projectable;

(vi) if R% is integrable and the closed ideal R., ,, of R:. ., is defined by a
foliation in (RY, ., R ,)) and if R} C J(Ty:Y) is the formally transitive and
formally integrable Lie equation such that

p(R#m,x) = R:Y:,p(.l‘) s

for all m > sup (k, q) and x € X, there exists an integer q, > q such that F is
associated to Rf,’0 ,
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Rt/z,,,+k'Nk+1 - Nk >

and such that assertion (ii) of Theorem 18.3 holds, and for all x € X, with y = p(x),
the diagram

RL.®R..,—>R.,
(18.44) lp@z iz
R.,®N.,—>N.,

commutes, where the top horizontal arrow is given by the bracket (1.11) and the
bottom horizontal arrow is given by the R’ ~module structure of N..,,; moreover
the conclusions of Theorem 18.5 are valid.

Proof. The existence of the objects described in the theorem satisfying (i)-
(iii) follows from Theorem 11.1 (with N, = 0, Z = Y and ¢ the identity map-
ping of Y). We may assume that the neighborhood of x, and the fibers of p are
connected. Then, in combination with Theorem 18.5, Theorem 18.2 (i) gives us
(iv) and Theorem 18.4 together with the remark which follows it implies (v) and
(vi).

Remark. In Theorem 18.6, one may take 4 to be the vector bundle F con-
sidered as an affine bundle over Y.

In the two following propositions R, denotes the Lie equation of § 17 satisfy-
ing conditions (I), (II) and (III) of § 9, and P, is a formally integrable finite
form of R,. The equation R}, C J, (V) obtained from R, satisfies

(Z noirs Boni) © o,

and so if X is connected, by [10, Lemma 10.3 (ii)], noﬁ’m is a sub-bundle of T.
If in Theorems 17.5 and 17.6, R;,, is integrable and abelian, the following two
propositions show that its non-linear cohomology can be replaced by its linear
cohomology.

Proposition 18.1.  Under the hypotheses of Theorem 11.5, if R, is an abelian
Lie equation, then for all m > m,, a € X we have:

(i) a surjective mapping of cohomology

H(Ry)m,o = H'(Pn,q 5

(ii) if the image of « € H\(R}, )., vanishes in H'(P,),, ., then a = 0;
(ili) H'(R,,). = 0 if and only if H'(P,), = 0.
Proof. By Theorem 18.6 (iv), we have isomorphisms of cohomology

HY (R, )m,a = H'(Ppn,a

for all m > m,, a € X. From these isomorphisms and Theorem 17.5, the asser-
tions of the proposition follow.
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Proposition 18.2.  Under the hypotheses of Theorem 17.6, if R, is an integrable
abelian Lie equation, then we have isomorphisms of cohomology

HI(R:no)m,a - Hl(Pk)m,a > HI(R:no)a g Hl(Pk)a >

forallm>m,, ae X.
Proof. By Theorem 18.6 (iv), we have isomorphisms of cohomology

HI(R:no)m,a, - H‘(P;La)m,a
and the mappings
Tt H(Ppmra = H'(Ppm.a

are isomorphisms of cohomology, for all m > m,, a ¢ X. From these isomor-
phisms and Theorem 17.6 (ii) and (iii), we obtain the desired isomorphisms.

The final two theorems of this section are consequences of Theorems 17.7
and 17.8, and assert that, if the equation R, of these last theorems is integrable
and abelian, its non-linear cohomology can be replaced by its linear
cohomology; the proofs, being similar to those of Propositions 18.1 and 18.2
respectively, will be omitted. These two theorems as well as the preceding two
propositions will be used in § 19 and § 20 to derive results on the non-vanishing
of non-linear cohomology.

Theorem 18.7. Assume that X is a connected real-analytic manifold. Let R:
be an analytic formally transitive and formally integrable Lie equation, and let
R, C R be a formally integrable abelian Lie equation such that

['@§c+v '%k] c ‘%k .

Let P} be a formally integrable finite form of Ri. If xe X and R, /R, , is an
elliptic transitive Lie algebra, then there is an integer m, > k such that, for all
m > m,, a e X, we have:

(i) a surjective mapping of cohomology

Hl(Rk)m,a - HI(PI‘:)m,a, ;

(ii) if the image of @ € H'(R,) ., vanishes in H'(P}),, ., then o = 0;

(iii) H'(R,), = 0 if and only if H'(Pf), = 0.

Theorem 18.8. Assume that X is connected. Let R} be a formally transitive
and formally integrable Lie equation, and let R, C R, be an integrable and
formally integrable abelian Lie equation such that

(%1 B] C Ry, -

Let P} be a formally integrable finite form of Ri. If x € X and R%, ./R..,, is finite-
dimensional, then there is an integer m, > k such that, for all m > m,, ae X, we
have isomorphisms of cohomology
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H' (R, = H'(P)p,o s,  H'(R), — H'(P)), .
Remark. Let R, C R% be a formally integrable Lie equation satisfying
(%, #) C R, , R, CR;.

Then in Theorems 18.7 and 18.8, we may replace the Lie equation Rf by R;.

19. The cohomology and realization of geometric modules

Let F be a vector bundle over Y and X be the vector bundle F considered
as an affine bundle over Y, and let p: X — Y be the projection of this vector

bundle F onto Y. Let R, C J(Ty; Y) be a formally integrable Lie equation.
Assume that F is associated to Ry

Consider the morphism ¢ of Lie algebras from I'(Y, ﬁ;’) to the algebra of
p-projectable vector fields on X defined at the beginning of § 15 and determined
by the mappings (15.2)

. D
g,: R}, —>T,,

for x e X with y=p(x). If £ is a section of R” over Y, then, by (15.6), o(§) is a
solution of A4, and pa(§) = =,. For x e X with y = p(x), we thus obtain a
mapping

0 TR YY)y — A s
sending j,(§)(») into j,(a(£))(x), where & € Z/ ; then by (15.4)
(19.1) ol 9l = [0.6,0.7] ,

for &,y J,(R/; Y),, where the bracket on the left-hand side is given by (1.33).
These mappings give us a morphism of vector bundles over X

g:p7! m(ﬁ’q’; Y)—> A4, .

We also denote by ¢, the composition

R s 1 (R Y), 2254

m,x

by the commutativity of (1.37) and (19.1), we have

(19.2) o1&, 7] = 0.€, 0.7 ,
for &, € R}, ., These mappings give us a morphism of vector bundles over X

(19.3) 00" Ry — Ay -
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The diagram

D
A1 —> T *R AL,

(19.4) T" Tid®a
— D ~

is commutative, since
D(jm+1(§) ° Ao) = 0 s D(G(lm +l(§) 0 P)) = D(.]m +1(U(é))) = O >
for £ e Z//, and, by (3.5) and (1.4),

(id ® o)(D(fu)) = df @ or,,u+ f(id ® a)Du ,
D(fou) = df @ n,,ou+ fD(ou) ,

forfe Oy, ue J, . (Z); Y)y. By [26, Proposition 1.4], the diagram
D
Jq+m+1(9~y; Y)X —> T ®Jq+m(‘7~}’; Y)X
(19.5) lz lidcmm
N D .
Jm+1(Jq('7Y; Y); Y)X —> 9-* ®Jm(Jq(9~Y; Y)9 Y)X

commutes. From the commutativity of diagrams (19.4) and (19.5), we see that
the diagram

D
A oy —> T*R A,

m+1

(19.6) T" Ti d®0

74 a7k 24
gq+m+l,X > ‘/ ®%q+m,X ’

whose bottom arrow is the restriction of the top arrow of (19.5) (see [26, § 2]),
is also commutative.
For x e X with y = p(x), define the mapping

o.: (N TE Q@ R )y — (N T*® 4,),
sending u into the element ¢,u given by the formula
(e)E N -+ N &) = o (upé, N -+ N pE)))
for &, ---,&;eT,; then o,u e Fi(J,(T); p), and

olou) = mu .
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It is easily seen that

(19.7) 0. (T @ R/.,); € (T*® 4,); .

Ifue (N'TF @R, nin)y v e (NTF ® R, ,.1), then by (19.2) we have
(19.8) a,lu, v] = [o,u, 0,v] .

We obtain a mapping

(19.9) 0, (NTFQ R ow)y = (NT*Q ),
such that
(19.10) olo, (W) = m,u,

forue (N'T ¥ Q X, ,.),- From the commutativity of (19.6) and [26, Proposition
1.2], we infer that the diagram

. D )
(/\J'g~>|< ® "Q{m+l)p,x — (/\J+1j~* ® "%M)P;I

(19.11) T% T%
(NTH® B )y~ (N T 5 @ H.),
is commutative, and from (19.8) that
(19.12) o [u, v] = [o,u, o,v],
forallue (N'"TF¥ @ X, )y Ve (N T ¥R RY.), If & € Sol (R)),, then
§ = 0,(§") = v0,(ju§")
belongs to Sol (4,), and satisfies
s =¢&".
If " e Sol (R}),, we have
(19.13) ol 7"l = 0.8, 0.7"] .
From the commutativity of (19.11) and (19.12), we obtain the formula
(19.14) 0 (D) = Dy(o,u) ,

forue (7§ Q@ Ry, )y

The image R®, of the morphism (19.3) is a sub-bundle of A4,, with possibly
varying fiber. We denote by 2, the sub-sheaf of .o/, which is the image of the
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mapping of sheaves induced by the morphism (19.3). For all x € X, the image
of the mapping %, ., — A4,, . sending u into the value u(x) of u at x is equal
to R, .. We now verify that the @y-submodules %, of «,, satisfy conditions
(@)-(c) and (e) of Theorem 18.3, with 2 = 0. In fact, since R is formally
integrable, we have

T (R ) = R, form >0,
and from the relation (19.2) we deduce that
[#, .1, #5,.] © S, form > 0.
The commutativity of (19.6) implies that
D&#,.)C T*Q%A, , form >0 .

It is easily seen that, for x € X with y = p(x), the diagram

b
R

S

Reqy—> RY,
commutes. Thus
o(R,.) = Ry, form >0 .
and p induces an isomorphism
(19.15) p: R, ., —R!,,
and ¢, an isomorphism
o R, —> R,

which is equal to the inverse of (19.15). Finally, for x € X with y = p(x) and
m > 0, the diagram

Jm+1(R:1/; Y)y ® Jm+l(F’ Y)y e Jm(F’ Y)y

l%@id lid

Am+1,z ®Jm+1(F; Y)y —)Jm(F’ Y)y

is commutative, where the top horizontal arrow sends j,, ,()()) & jn.1(S)(»)
into j,.(L&)s)(»), with §e #Z),, se F,, and the bottom horizontal arrow is
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given by (18.21). In fact, if £ ¢ %/, s € &, then by (15.6)
0(m 1D Jim 1))
= Jm1(@EN®)  Jn 1)) = Ajn((0(E), p£))()
= An(tte@)®) = ju(LE)() -
Thus the diagram
R;/+m+1,y ® Jm+1(Fa Y)y — Jm(F9 Y)y
l"’@id lid
Am+1,z ® Jm+1(F; Y)y —_—> Jm(F; Y)y

commutes, where the top horizontal arrow sends ¢ ® u into =, ,&-u, and the
bottom horizontal arrow is given by (18.21). We deduce that the diagram

R! ,® J.(F;Y), —> J.(F; Y),

l«u@id lid
A, QJF;Y), —> J.(F; Y),
commutes, where the top horizontal arrow is given by the R’ -module structure
of J.(F; Y), and the bottom horizontal arrow is (18.22); since the mapping
(19.15) is the inverse of g,: R , — R’, ., the diagram (18.24) is commutative,

completing the verification of these conditions of Theorem 18.3.
For x e X, let B;! denote the inverse of the mapping

‘B: Qm+l(V; z)z g m+l(F; Y)p(.z:) H
and ;' the inverse of the isomorphism

2 dn(V5 2, = Ju(F3 Y)

o(x) *

Ifae X with y = p(a), and { e R}, ,, ,, ue J, (F;Y),, then -ue J,(F; Y),
and, if we set b = a + mu, we have p(b) = y; the elements 8;'u of Q,,,,(V; 2),
and ¢, of R, , satisfy

(19.16) (Ba'u)(0.0) = 0ol + A7) .
Indeed, let £ pe a section of R;’, and s a section of F over a neighborhood of y
satisfying j,.(§)(») = 2, and j,,.(s)(») = u; by (15.5) we have
(Ba'10)(08) = Jmr(r)@)0a8) = Ju(7x0(8))(B)
= Jn(@E)®) + jultte)(®)
=0l + 4, (L)) = a,l + ¢ u) .
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Let N, C J(F; Y) be a formally integrable differential equation such that
(18.23) holds. Let R, < J,.(V; 2) be the formally integrable abelian Lie equation
whose /-th prolongation R, ., is the inverse image of p~'N,,, under the isomor-
phism

2: Jk+l(V; 2)_)10_1 k+L(F; Y) .

If P,,, = a”'(R,,,), then P, is a formally integrable finite form of R, with
(P,),, = P,,,. Since R, is a Lie equation and by (19.16) and (18.23), we have

(19.17) $(Rn.0) = Rup
(19.18) ¢(Rt1’n,a) C Rm,b + Ri:n,b B

for all m > k and ¢ € P,,,, with source ¢ = a, target ¢ = b.
For m > k, let R, denote the image of the morphism of vector bundles

(19.19) R, ®p 'Rl — A,

sending (u, v) into u + ¢v, where ue R,,, v € p~'R;, ,,; then
R .=Ry,+ R,.,

for ae X. From (19.17) and (19.18), we deduce that

(19.20) $(R}.) = R},

for all ¢ e P, ,, with source ¢ = a, target ¢ = b.

Proposition 19.1.  Assume that Y is connected and endowed with the structure
of a real-analytic manifold compatible with its structure of differentiable mani-
fold, and that F is an analytic vector bundle. Let R C J (Ty; Y) be an analytic
formally transitive and formally integrable Lie equation. Assume that F is
associated to R/, that the mapping R, ® J,(F) — F is analytic, and that ,: N,
— F is surjective. Then R%, is an analytic vector bundle for all m > k.

Proof. For m >k, let #,,, x. denote the 0 ,-module of analytic sections

of p~'RY,,,, and let &, , be the coherent 0 ,-submodule of <7, , which is the
image of the mapping

. o
O Rsimxo—> A mu -

Clearly, for x € X, the image of the mapping %#’, , — 4,,,, sending u into the
value u(x) of u at x is equal to R’ .. By the above discussion of the sheaves
., we see that conditions (i) and (ii) of Lemma 18.2 hold with # = 0. There-
fore from Lemma 18.2 we deduce that R% is an analytic sub-bundle of 4,
satisfying
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‘%:L,w = ‘%m,w + gi;n,m s

for m > k.
We assume now that R* is a vector bundle for all m > k. Clearly

Ry = R+ R,

for m > k, and so conditions (a)-(¢) of Theorem 18.3 are satisfied with 4 = 0.
Let p > k be the integer given by that theorem such that R} is a formally
integrable Lie equation with

R;H = (RZ)H > for/>0.

Then by Theorem 18.3, all the hypotheses of Theorem 18.5 other than con-
dition (ITN) of §9 for R are verified. If z,: N, — F is surjective and Ry is
formally transitive, then R’ is formally transitive and by Theorem 18.3 it
satisfies conditions (I) and (IT) of § 9; if moreover Y is connected, by [10, Pro-
position 10.3 and Lemma 10.3 (ii)] it also satisfies condition (III) of §9. For
x € X with y = p(x), the linearly compact Lie algebra R, _ is the inessential
abelian extension (18.28) of the Lie algebra R” , by R.. ,, which is split by the
homomorphism ¢,: R. , — R% .. Therefore, if L} denotes the semi-direct pro-
duct of R, and the linearly compact R’ -module N, the mapping
é,: Lt — R, ., sending (u, §) into A;'u + ¢,§, whereue N, ,, £e R, and ;'
is the inverse of the isomorphism 2: J..(V; 2), — J.(F; Y),, is an isomorphism
of linearly compact Lie algebras; furthermore the diagram

0 N.,—> L >R/, —>0

lx;l l¢r lid

0
0 >R, . > Rf, . > R, >0

is commutative and exact, and its vertical arrows are isomorphisms. Thus
¢o: (Ly, N.. ) — (R, ,, R..,)

is an isomorphism of pairs of topological Lie algebras.

Suppose moreover that R: also satisfies condition (III) of §9. By §15
and Theorem 18.5, for x e X the Spencer cohomologies H*(R,),, H*(RY),,
H*(RY),., are graded Lie algebras, H*(R,), is abelian and a graded H *(RY),-
m(:jdule, and H*(N,),, is a graded H*(R),,,-module; the mappings (18.42)
an

I H*('Rk).t - H*(jo)z )}

induced by the inclusion R, C Rf, are morphisms of graded Lie algebras and
¢ intertwines H*(R,), and H*(R}),; moreover the relation (18.43) holds,
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For m > p and x € X with y = p(x), the image of the mapping (19.9) belongs
to (A\'T* ® #),..; by the commutativity of (19.11) and (19.10), this mapping
induces a mapping

az: Hj(R;,)q-Hn,y - H;(Rg)m,z
such that the diagram

HIRY Yy my 2> Hi(RY),0.,
I
[4
H/(R)),0.,

commutes, where the mapping p is given by (17.5). By means of [6, Theorem 3]
we obtain a mapping

(19.21) 0.: H*(R)), — H*(RY),

such that po, is the identity mapping of H*(R;),, where p denotes the mapping
(18.42). Because of (19.12), the mapping (19.21) is a morphism of graded Lie
algebras.

By the exactness of the sequence (18.28), the formally integrable Lie equation
obtained from the vector bundles Rf, N J,,(V), with m > sup (p, g), by means
of [6, Theorem 1] is equal to R, ,, for some / > 0. According to [6, Theorem
3], the sequence

i) ¢
. i~ (R J i(R*
(19.22) —> H'"Y(R] )y —> H'(R), —> H (Rp),

S HIR)), —> -+,

given by (17.8) with x € Xand y = p(x), is exact. The properties of the mappings
(19.21) imply that the mappings 6 of the sequence (19.22) are equal to zero,
and hence that the graded Lie algebra H*(R?!), is the inessential abelian ex-
tension of the graded Lie algebra H*(R])), by H*(R,),, which is split by the
morphism (19.21). Therefore, for x € X with y = p(x), if H} denotes the semi-
direct product of the graded Lie algebra H*(R;/), and the graded H*(RY),-
module H*(N,),, the mapping @,: H} — H*(R}),, sending («, ) into i;'a+ 0.,
where a € H*(N,),, B¢ H*(R)), and ;! is the inverse of the isomorphism
A H*(R,), — H*(N,), given by (17.7), is an isomorphism of graded Lie
algebras; furthermore the diagram

0 ——> H*(N), —> Hj —>H*®R), —>0
(19.23) i -1 J(m lid
0 —> H*(R,), —> H*(R), 2> H*R)), —>0
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is commutative and exact, and its vertical arrows are isomorphisms. Thus
@,: (H}, H*(N,),) —> (H*(R}),, H*(R,),)

is an isomorphism of pairs of graded Lie algebras.

At this point we turn to the consideration of the sequence of non-linear
cohomology which is analogous to (19.22). Let Py C Q,(Y) and P} C Q, be
formally integrable finite forms of R, and R% whose /-th prolongations we
denote by P;,, and P},,. Let m, > p be an integer such that g,,, g%, g.,, are
2-acyclic. If R satisfies conditions (II) and (III) of § 9 and N, is integrable,
then by Theorems 18.3 and 18.2 (i) and by §9 we have the sequence of
cohomology

(19.24) H\(ND ., —> H(PY),.. —> H(P),.., ,

for all m > m, and x € X with y = p(x). If moreover P,’ is integrable, Theorem
9.2 (ii) asserts that the sequence (19.24) is exact. Furthermore the mapping p
of sequence (19.24) is surjective. Indeed, if v ¢ Z'(R],),, by Proposition 17.1 we
choose u, ¢ Z'(R;,, ), such that z,u, = u; then according to (19.7), (19.14) and
(19.10), ¢, (u,) belongs to Z,(R%),, .. and satisfies po (u,) = u.

We summarize some of the above results as:

Theorem 19.1. Suppose that R%, is a vector bundle for all m > k.

(i) The hypotheses (a)-(e) of Theorem 18.3 with h =0 and of Theorem 18.5,
other than condition (II1) of § 9 for R%, hold.

(i) For x e X with y = p(x), the linearly compact Lie algebra Rt , is iso-
morphic to the semi-direct product of R’ , and the linearly compact R -module
N, if R satisfies condition (I1I) of § 9, the graded Lie algebra H*(R%), is
isomorphic to the semi-direct product of the graded Lie algebra H*(R})), and the
graded H*(R})),-module H*(N,),.

(iii)  If R: satisfies condition (1I) of § 9, the mapping of cohomology

.0: Hl(Pz)m,I g H](P;,)m,p(z)

is surjective for all m > m,, x ¢ X.

From the above discussion and Propositions 18.1 and 18.2, we derive the
following:

Theorem 19.2. (i) If the hypotheses of Proposition 19.1 hold and R is
elliptic, then R, is a formally transitive and formally integrable Lie equation, and
H'(P}), = 0 if and only if H'(N,),., = 0, for x e X.

(i) If R is formally transitive and of finite type, N, is an integrable differential
equation, nt,: N, — F is surjective, and R% is a vector bundle for all m > k, then
R is a formally transitive and formally integrable Lie equation, and we have an
isomorphism of cohomology
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H'(NYyo) — H(P))

for xe X.

Proof. 1If the hypotheses of (i) hold, by Proposition 19.1 so do those of
Proposition 18.1; on the other hand, the hypotheses of (ii) imply those of
Proposition 18.2. The conclusions of the theorem follow from these last two
propositions.

Theorem 19.2 gives us two classes of formally transitive and formally
integrable Lie equations Rf, obtained from (i) or (ii), for which the second
fundamental theorem does not always hold; indeed, if H'(N,) + 0, the non-
linear cohomology of R! does not vanish. The first class is related to the
examples considered by Buck [20]. In § 20 we shall construct Lie equations
belonging to these classes.

Henceforth we shall identify two graded modules of linear cohomology
over a graded Lie algebra which are isomorphic.

Although a special case of results which follow, we first make some observa-
tions about a closed ideal 7 of a real transitive Lie algebra L. By [9, Corollary
6.1] and [10, Theorem 10.1], there exist an analytic manifold X, a point x € X,
a formally transitive and formally integrable analytic Lie equation R, C J(T),
and a formally integrable Lie equation R;, C R,,, with k, > k, such that

(%01, Ri) © R,

and (R., ., R, ,) and (L, I) are isomorphic as pairs of topological Lie algebras.
According to § 15, we have structures of graded Lie algebras on H*(L)= H*(R,),
and H*(L,I) = H*(R,,), and of graded H*(L)-module on H*(L,I), and a
morphism

¢: HX(L, I) — H*(L)

of graded Lie algebras induced by the inclusion R;, C R, , which intertwines
H*(L,I) and H*(L) in the sense that

da)-B =1, ], oy =1 )],

for o, pe H*(L,I), y € H*(L). Using Proposition 17.6 and formula (6.10), we
see easily that, without changing the graded Lie algebra and module structures
on H*(L) and H*(L, I) and their relationship, we may suppose that there is an
analytic surjective submersion p: X — Y such that the Lie equation R, is p-
projectable and R, = R, N J.(V); under these additional assumptions, by
[10, formulas (9.11) and (9.10)], the morphism of graded Lie algebras ¢ and the
graded H*(L)-module structure on H*(L, I) coincide with the ones given by [10,
Theorem 13.1 (iii)], which are well-defined. From [10, Theorem 13.1] we obtain

Proposition 19.2. Let I be a closed ideal of a real transitive Lie algebra L.
Then the structure of graded H*(L)-module on H*(L, I) and the morphism
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¢t H¥(L, I) — H*(L)

of graded Lie algebras, which intertwines H*(L, I') and H*(L), are well-defined up
to automorphisms of these graded Lie algebras, and depend only on the isomor-
phism class of (L, I) as a pair of topological Lie algebras.

Let L” = L/I and ¢: L — L” be the natural epimorphism of transitive Lie
algebras. If R, C J,,(Ty; Y) is the formally transitive and formally integrable
analytic Lie equation, with k, > k, such that

p(Ry.0) = R,

mop(a)
for all m > k,, a € X, then the well-defined morphism of graded Lie algebras
¢: H*(L) — H*(L") ,
induced by ¢ and given by [10, Theorem 13.1 (ii)], is equal to
p: H*(Ry), — H*(R),

up to automorphisms of these graded Lie algebras.
Let E be a geometric module over a real transitive Lie algebra L. Consider
a transitive Lie algebra L’ which is an abelian extension

(19.25) 0O E—>L' 51— 50

of L by E, defining the given structure of L-module on E. Let L be a funda-
mental subalgebra of L’ such that the ideal E of L’ is defined by a foliation in
', L.

According to [9, Corollary 6.1] and [10, Theorem 10.1], there exist an analytic
connected manifold X, a point x e X, a formally transitive and formally
integrable analytic Lie equation R} C J(T), a formally integrable analytic Lie
equation R, C Ry, and an isomorphism of transitive Lie algebras v/: L’ - R., ,
such that

['@;cn’ '%k] c '%k ’ 11/(E) = Rcc,z s \I’I(L/O) = Rg’,z .

By [10, Lemma 10.3 (ii)], ¥ = =R, is a sub-bundle of T and by Lemmas 1.5
and 11.3, R, is an abelian Lie equation. Moreover, R., , is defined by the
foliation Jy(¥), in (R, ., R? ). We now apply Theorem 18.6 to R, and R,.
Replacing X if necessary by a neighborhood of x, we obtain an analytic
manifold Y, an analytic surjective submersion p: X — Y, an analytic vector
bundle F over Y, a formally transitive and formally integrable analytic Lie
equation R C J(Ty; Y), and a formally integrable differential equation
N, C J(F; Y) such that p: X — Y can be identified with an open fibered sub-
manifold of the vector bundle F, considered as an affine bundle 4 over ¥, and
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all the assertions of Theorem 18.6 hold with g, = ¢g. Then, if y = p(x), there
is an isomorphism of transitive Lie algebras y: L — R’ , such that the exact
diagram

Ne— m<«— o
lﬁ

PA—
s

-]

O I~
<

is commutative. We set 7 = A0+, where 2 is the isomorphism J.(V; ), —
J..(F; Y),. From the commutativity of (18.44), we deduce that the diagram

LYKE —F

(19.26) l«y@n lv
R!I,®N.,—>N.,

commutes, where the horizontal arrows are given by the L-module structure of
E and the R ,-module structure of N, , From the above discussion, we
obtain the following realization theorem for geometric modules over real
transitive Lie algebras, a formal version of which was given in [29]; namely, we
show that every such geometric module is isomorphic to one of the type con-
sidered in § 15.

Theorem 19.3. Let E be a geometric module over a real transitive Lie
algebra L; let L' C L be a fundamental subalgebra of L, and E° C E be a
fundamental subspace of E such that

L' E'C E°.

Then there exist an analytic manifold Y, a point y e Y, an analytic formally
transitive and formally integrable Lie equation R]} C J(Ty; Y), an analytic
vector bundle F over Y associated to R./, an analytic formally integrable linear
differential equation N, C J.(F;Y), an isomorphism of transitive Lie algebras
Vi L — R, and an isomorphism of topological vector spaces y: E — N.. , such
that
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TN, = F, R:I/+k'Nk+1CNk’
WL = RZ,, 9E)=N.,,

N..., is a closed geometric R, -submodule of J_(F; Y), and the diagram (19.26)
commutes.

Proof. Let L’ be the abelian extension (19.25) of L by E. Leto: L — L’
be a continuous linear mapping such that ¢og = id. Assume that the con-
tinuous 2-cocycle @ on L with values in E defined by (14.7) satisfies a(L°X L")
C E°. In particular, we may take L’ to be the semi-direct product of L and E
and ¢ to be the mapping sending & into (0,&) e E X L; in this case @« = 0.
Then by Proposition 14.6, L' = E° 4 ¢(L°) is a fundamental subalgebra of L’,
and the ideal E of L’ is defined by a foliation in (L', L’°). Consider the objects
we have associated above to (19.25) and L. The isomorphism 2: J.(V; 1), —
J.(F; Y), satisfies 2A(JL(V;2),) = Jo(F; Y),; thus »(E%) = N, and, since
7,N; = F, the mapping 7 induces an isomorphism E/E° — F,. As §(L"°) = L,
we have (L°) < RZ°,, and so + induces a surjective mapping L/L’ - J(Ty),.
Because

dim L/L° = dim L’/L** — dim E/E* = dim X — rank F = dim Y,

this mapping is an isomorphism and hence (L") = R,

Let E be a geometric module over a real transitive Lie algebra L. According
to Theorem 19.3, there exist a formally transitive and formally integrable
analytic Lie equation R; C J(Ty; Y) on an analytic manifold Y, a point
y e Y, an analytic vector bundle F over Y associated to ﬁ;’, an analytic formally
integrable differential equation N, C J,(F; Y), an isomorphism of transitive
Lie algebras +: L — R’ ,, and an isomorphism of topological vector spaces
n: E— N, , such that

R:z,+k'Nk+l c Nk

and the diagram (19.26) commutes. Then H*(L) is the graded Lie algebra

H*(R}),. We define the linear Spencer cohomology of the geometric L-module
E to be the graded H*(L)-module

H*(L,E) = @ H/L,E), with H'(L, E) = H'(N,), ,
i=0 :

given by § 15. We now show that this cohomology is well-defined.

Theorem 19.4. Let E be a geometric module over a real transitive Lie
algebra L.

(i) The graded H*(L)-module H*(L, E) of linear Spencer cohomology of E

is well-defined and depends only on the isomorphism class of E as a topological
L-module.
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(i) If Lt is the semi-direct product of L and E, the graded Lie algebra H*(L*)
is equal to the semi-direct product of H*(L) and the H*(L)-module H*(L, E).

Proof. Consider the objects we have just associated to the L-module E.
Replacing F by 7,N, and Y by the connected component of y, by Lemma 15.2
we may suppose that =,N, = F. Let X be the vector bundle F, and consider
the mapping (19.3) and the abelian Lie equation R, on X obtained from N,.
According to Proposition 19.1, the image R! of the morphism of vector
bundles (19.19) over X is a vector bundle for m > k. Theorems 19.1 and 18.3
give us the formally transitive and formally integrable analytic Lie equation
Rt < J,(T), with p > k, whose [-th prolongation is R},, and which satisfies
conditions (I), (II) and (III) of § 9; moreover they tell us that (18.25) holds
and, for xe X, with y = p(x), that R?, , is isomorphic to the semi-direct
product of R” , and the R, -module N, ,, and that H*(R?), is isomorphic to
the semi-direct product of H*(R;), and the H*(R}/),-module H*(N,),. If L* is
the semi-direct product of L and E, and ¢: L* — L is the natural projection,
the linear Spencer cohomologies of the closed ideal E of L and of L* are given
by

H*(L' E) = H*(R\), ,  H*(L") = H*(R}), ,

with x e X, and the morphism ¢: H*(L¥) — H*(L) of graded Lie algebras
induced by ¢ is equal to p: H*(R%), — H*(R}),.,, With x € X, up to automor-
phisms of these graded Lie algebras. Since the linear Spencer cohomology
H*(L*, E) of the closed ideal E of L* is well-defined by Proposition 19.2 as a
graded H*(L*)-module, from the commutativity of diagram (19.23) it follows
that H*(L, E) = H*(N,),, with ye 7, is well-defined as a graded H*(L)-
module and is equal to H*(L* E). The remaining assertions of the theorem
now hold by [10, Theorem 13.1 (i)].

The following proposition is an immediate consequence of Theorem 19.4 (i)
and the definitions of the Spencer cohomologies involved.

Proposition 19.3. If I is a closed ideal of the real transitive Lie algebra L,
the graded H*(L)-module H*(L, I) of linear Spencer cohomology of the ideal T
of L is equal to the graded H*(L)-module of linear Spencer cohomology of I
considered as a geometric L-module.

Theorem 19.5. Let E be a geometric module over a real transitive Lie algebra
L. Let L’ be the transitive Lie algebra which is the abelian extension (19.25) of
L by E, defining the given structure of L-module on E. If ¢: H*(L') — H*(L) is
the morphism of graded Lie algebras induced by ¢: L' — L, there is an isomor-
phism of graded vector spaces

A: HX(L',E) — H*(L, F)
such that
Nee- B) = ¢(a)- A(P) »
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foralla e H*(L'), B e H*(L', E). Moreover, we have isomorphisms of cohomology
A\L,E) — H\(L',E), H\L,E)— H\(L,E),

and a mapping of cohomology

(19.27) HYL,E) — HY(L)) .

Proof. Let L be a fundamental subalgebra of L’ such that the ideal E of
L’ is defined by a foliation in (L', L°). Consider the objects which we associated
above to the abelian extension (19.25) and to L°. Then we have the equalities
of Spencer cohomologies

HXL') = H*(R),,  H*(L',E) = H*(R)). ,
H*(L) = H(R)),,  H*L,E) = H*(NY),,

and the morphism ¢: H*(L") — H*(L) of graded Lie algebras induced by ¢ is
equal to p: H*(R}), — H*(R)), up to automorphisms of these graded Lie
algebras. The desired results now follow from Theorems 18.5 and 18.6 (iv).

Thus if L’ is the abelian extension (19.25) of the transitive Lie algebra L by
E, the Spencer cohomology H*(L', E) of the closed abelian ideal E of L’
depends only on the geometric L-module E and not on the choice of the ex-
tension (19.25) of L by E.

Applying Theorems 18.7 (ii) and (iii) and 18.8 to the above equations R, and
R}, we obtain the following:

Corollary 19.1. Let L be an elliptic real transitive Lie algebra, and let L' be
the transitive Lie algebra which is the abelian extension (19.25) of L by the geo-
metric L-module E.

(1) If the image of o € H'(L, E) under the mapping (19.27) vanishes, then
a = 0; moreover H'(L, E) = 0 if and only if H'(L’) = 0.

(i) If L is finite-dimensional, the mapping (19.27) is an isomorphism of
cohomology.

The corollary also follows from Corollary 17.2. Let I be a closed ideal of L’
containing E; in the corollary, we may replace L’ by I and L by the image of
Iin L.

From the corollary we deduce that if H(L, E) = 0, then H (L) + 0, from
which fact we shall obtain a class of abelian extensions of transitive Lie
algebras, whose non-linear cohomology does not vanish.

Proposition 19.4. Let ¢: L — L be an epimorphism of real transitive Lie
algebras, and E a geometric L”-module. If ¢: H*(L) — H*(L"’) is the morphism

of graded Lie algebras induced by ¢, there is an isomorphism of graded vector
spaces

¢: H¥(L, $*E) — H*(L", E)
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such that

$a-p) = ¢(e)-4(P)

for all « ¢ H*(L), B € H*(L, $*E).

Proof. Let L* be the semi-direct product of L and ¢*E, and L”* be the
semi-direct product of L” and E; then the epimorphism of transitive Lie
algebras ¢*: L* — L%, which is equal to id X ¢, induces an isomorphism of the
closed ideal ¢*E of L* onto the closed ideal E of L*. From [10, Corollary 13.1
(i1)], we obtain an isomorphism of graded vector spaces

#': H¥(L', §*E) — H*(L"™, E) ;

if we apply [10, Theorem 13.1 (iv)] to the commutative and exact diagram

0— > ¢*E—> L’ L 0
l¢* lsﬁ* lgﬁ
0 E > L//# > L// > O

of topological Lie algebras, we see that there is a commutative diagram of
graded Lie algebras

H*(L*) —> H*(L)
=]
H*(L'*) —— H*(L")
such that
#Ha-p) = ¢'(@)-¢'(B) ,

for all we H*(L¥), Be H*(L!, ¢*E). By means of Theorem 19.5, we now

deduce the proposition.
Theorem 19.6. Let L be a real transitive Lie algebra, and

0 e “SE P Er 50

an exact sequence of geometric L-modules, whose mappings are continuous. Then
we have an exact sequence

) ) ] )
s HAL, E'Y - HYL, E) —'> H(L, E") —2> H"*"(L,E') —> - --
of Spencer cohomology.

Proof. Let L* be the semi-direct product of L and E, and L”* the semi-
direct product of L and E”. Then 8 determines an epimorphism of transitive
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Lie algebras g*: L* — L"*, which is equal to id X 8, and @ a monomorphism
of topological Lie algebras a*: E’ — L* which is equal to (id,0) and which
allows us to identify E’ with a closed ideal of L*. If we apply [10, Theorem
13.1 (iii)] to the commutative and exact diagram

B

0—E -“5sE P5E" 50

.1,

ot ‘BQ L'/# 0

0—>E 5L

of topological Lie algebras, we obtain the exact sequence
4 ’ %
> B E) - B E) P HAL EY)
]
5 Hj“(L”, E') —_— e,

According to Propositions 19.3 and 19.4, if ¢: L* — L is the natural projection,
we have the isomorphisms of Spencer cohomologies

H*(L*, E') > H*(L}, ¢*E") — H*(L, E') .

From these isomorphisms, Theorem 19.5 and the above exact sequence, we
obtain the desired exact sequence of Spencer cohomology.

Let ¢: L — L” be an epimorphism of real transitive Lie algebras, 7 C L,
I” C L” be closed ideals of L and L” such that ¢(I) = I". Let I’ be the kernel
of ¢: I-» 1". Applying Theorem 19.6 to the exact sequence

0T — T g1 50

of geometric L-modules, from Proposition 19.4 we recover the exact sequence
of Spencer cohomology of [10, Theorem 13.1 (iii)].

20. Counterexamples to the integrability problem

In this section, we give examples of Lie equations of the type of the equation
R! of Theorem 19.1 and determine special properties of these examples.

Let R C J(Ty; Y) be a formally transitive and formally integrable Lie
equation. Let y, ¢ Y and let P;” C Q,(Y) be a formally integrable finite form
of R/, whose m-th prolongation we denote by P, . Assume that the projection
of P;/(y,) onto Y sending p e P;(y,) into the target of p is surjective. Then
P/ (y,) is a principal bundle over Y whose group is G” = P,'(y,, »,)- Let F, be
a finite-dimensional G”’-module, and consider the vector bundle

F= Pz;,(yo) X g Fy
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associated to P,/(y,) and to R/. Let X be the vector bundle F considered as an
affine bundle over Y, and p: X — Y the projection of this vector bundle F
onto Y.

According to § 15, to each section ¢ of P,;” over an open set U C Y, for
which z,¢ is a diffeomorphism of U onto an open subset U’ of Y, corresponds
an isomorphism of vector bundles

a(@): Fiy — Fy.

over my$. Then a(¢) is a solution of the finite form B, of 4,. Let J(P,,.; ¥) C
Q..¢.m(Y) denote the bundle of jets of order / of sections of #/, .. For xe X
with y = p(x), we obtain a mapping

o:J,(P);Y), — B,

sending j,(#)(») into j,(a(¢))(x), where ¢ € . . The compositions

Pl/

Am o~ g
q+m,y Jm(P(;,’ Y)y > Bm,z- )

with x € X and y = p(x), give us a morphism of fibered manifolds over X
(20.1) g:p P, — B, .

By (15.8), for ae X, with y = p(a), and ¢e P, ,, V€ P .,y Where
b = o(z,)a, we have

(20.2) oV 0up = 0u(V- ) -
We thus obtain a mapping
(20.3) 00 Piimy = B »
for x e X with y = p(x), such that

0P ) C B s
and

0. Pim) C B -
If f” € Sol (P}),, then

f=af") = a.(io(/)

belongs to Sol (B,), and satisfies
(20.4) of = 1"
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If J(B,) C Q... is the sub-groupoid of [-jets of sections of %, we have the
mapping

Gx Jl(P<;+m’ Y)y - jl(Bm)z s

for x € X, with y = p(x), sending j,(/)(») into j,(¢,)(x), where e 2., ;
is easily verified that the diagram

Oy
—> B

P//
q+l+m,y

(20.5) lh lx,
TP, 3 Y), 2> J(B,).

L+m,x

is commutative.
As F is associated to R/, we consider the mapping (19.3) and we write

0 =v'ogov:p 'R, > 4,

We identify p~'T(P;,,/Y) with V(p~'P;.,). By (20.2),forae X and € P/,,,
with source » = p(a), target v = y and b = o(z\)a, the diagram

~

Am b —> a\lf(Bm)

(20.6) T T
¥
Rt/ll+m Y > T\V(Pq+m/Y)

is commutative, where ¢,y and + operate on the right. Also if x ¢ X, with
y = p(x), and ¢ e #;,,, ,, the diagram
2]

— V.

ax¢(z)(Bm)
(20.7) T% T,,

5 é
Rq+m,y —> T¢(y)(Pz::-m/Y)

m,z

commutes, where ¢,¢ and ¢ operate on the left. From the commutativity of
(20.6), (20.7) and (20.5), by (2.6), if ae X, with y = p(a), for V€ P, .1,
¢£eR/,, , we have

(20.8) (0.9)(0.8) = au(¥($))

where b = o(z,))a.
For x € X, with y = p(x), and + € P i1,y WE have

(20.9) o (D) = D)) ,
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where ¢, on the left-hand side is the mapping (19.9) with j = 1. Indeed, to
prove (20.9) it suffices to show that

(n0.8) N D(o.V) = a7 N D) ,
for &£ e R}, ,; by (2.28) and the commutativity of (20.7) and (20.5) we have

(w0.8) N D(a,4) = (Ao 4(X) "1 0.7 w06 — 0,6)
= W0 (x) " 047ty nl € — 0.6)
= Ua (VX)) Ty § — 0,6)
= a,(me§ N D) .

If a € X satisfies p(a) = y, for e P/, ue (T5Q R, ,.), with target y(»)
= z and b = d(=,\)a, we have p(b) = z and, by (20.9) and (20.8),

(20.10) g (u’) = (a,u)" .

We denote by P}, the image of the mapping (20.1). If a e X, with y = p(a),
and e P, ., (€ R} ., then the elements g, of P, , and ¢,(§) of
R, , satisfy

(20.11) (0.9)0.0) = a,(¥(D)

where b = o(x,\)a. Indeed, let ¢ be a section of P;” over a neighborhood U of
y such that z,¢ is a diffeomorphism of U onto an open subset U’ of Y, and
let € be a section of R over U satisfying j,, ,(#)(}) = A,V and j,(E)(») = 2,L.
Then ¢(€) is a section of R, over U’ and J,((5)(w:$)(»)) = A,.¥(C). Therefore
by (15.10)

(0 )0L) = Jn (@)@ (nlo(©))(@)
= ju(0(@)x0(E)No($)a)
= Jju(a(@ENa($)a) = ao(¥(0)) -

Hence
(20.12) R, = R s

for all + € P2, ,, with source yy = q, target » = b.
If ae X, with y = p(a), and V€ P;, .1, ueJ,(F;Y), then z, ,\r-ue
J.(F;Y),, where z = target +; the elements ¢, of P, ., , and 2;'u of J,,(V; 2),

satisfy
(20.13) (0,025 'u) = 2 (wq il -1)

where b = a(x,\)a. In fact, let ¢ be a section of P;” over a neighborhood U of
y such that z,¢ is a diffeomorphism of U onto an open subset U’ of Y, and let
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s be a section of F over U satisfying j,, . (¢)(») = 2.1\ and j,(s)(») = u; if s’
is the section g(g)oso (m,9) "' of F over U’, then r,, - u = j,(s')(z) and by
(15.15)

(0. 9)(A5'u) = jm s (0(DN@Jm(p2:)(@)
= Jju(0() st )(a($)a)
== jm(#s')(0(¢)a)
= 4'(Un(N2) = & (mgumir-u) -
If a e X, with y = p(a), and € P, ,, ue J, (F;Y), and if we set b = a

+ U and ¢ = G(ﬂqllf)a, then p(b) =Yy and p(c) = target 1!/.’ the elements O'b\!f
of Pt , and B;'u of Q,.(V; 2), satisfy

(20.14) oy Ba'u = B w) o

In fact, let ¢ be a section of P;” over a neighborhood U of y such that z,¢ is a
diffeomorphism onto an open subset U’ of Y, and let s be a section of F over
U verifying j,.(#)(») = A, and j,(s)(») = u; if 5" is the section a(¢) o 5 o (m,p) "
of Fover U’, then v-u = j,(s")(o(c)) and by (15.14)
oy Bz 'u = julo(@))B) -ju(y,)a)
= jm(rs’)(a(¢)a) ]m(a(¢))(a)
= ﬁc—l(w'u)'ga\!’ .
Let N, C J(F; Y) be a formally integrable differential equation such that
m,: N, — F is surjective and (18.23) holds. Let R, C J(V; 1) be the formally

integrable abelian Lie equation whose /-th prolongation R,,, is the inverse
image of p~'N,,, under the isomorphism

220 (VD)= o7 (3 Y) .

If P,,, = a”'(R;,,), then P, is a formally integrable finite form of R, with
(P,),, = P,,,. For m > k, let R%, denote the image of the mapping (19.19).
Proposition 20.1. If

(20.15) P/..-N,C N, ,

then Rt is a vector bundle for all m > k.
Proof. Condition (20.15) implies (18.23) according to § 15. Since

”
Pq+k+l'Nk+l C Nlc+l )

for all / > 0, we see from (20.13) that

1,’(Rm,a) = Rm,b >
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for all m > k and +y € P?,,,, with source » = a, target » = b, and hence by
(20.12) that

(20.16) V(R,,) = R, -

By our hypothesis on P,’(y,) and the fact that the fibers of X are connected,
given a, b e X, there exist ¥ € P, ., with source = p(a), target = p(b)
and ¢ e P, ,, with source ¢ = o(m,)a and target ¢ = b. Then by (20.16) and
(19.20), we have

(¢'0a\1’)(R?n,a = an,b 1)

showing that Rf, is a vector bundle.

We now assume that Rf, is a vector bundle for all m > k. Let p > k be the
integer given by Theorem 18.3 such that R? is a formally transitive and formally
integrable Lie equation with

R, =(R), , forl>0.

If Y is connected or if (20.15) holds, then by results of [10] or the proof of
Proposition 20.1 the equation R} satisfies condition (III) of § 9.

Let P} be a formally integrable finite form of Rf whose /-th prolongation
we denote by P}, ;. Let m > p; since R, C R}, and diagram (20.6) commutes,
we see that

0 (Vian(0 7' Pn)) © RY 00

for ¥ e P, ., a,b e X, with source \» = p(a) and b = a(z,\)a. Since P} is a
finite form of R!, and the image of the section I, ., 0p of p~'P;,,, under the
mapping (20.1) is equal to the section 7,, of P}, there is an open neighborhood
U of the section I, ,,,0p in p~'P;., such that ¢(U) C P}. Therefore for all

x e X, with y = p(x), we have

74

(20.17) 0Py imi) C P s
(20.18) 0 (H(P)gim) C H(Ps 5

if f” € H'(P, )y, m,,» then by (20.18) and (20.4), ¢.(f"’) belongs to H°(P}),,.
and satisfies

pa (f") =f".

Thus if Rf satisfies condition (III) of §9 and P} is integrable, the hypotheses
of Theorem 17.4 hold for Rf, with r = ¢ and m, = p.

Let m, > p be an integer such that g,,, g%, g, are 2-acyclic. If R? satisfies
condition (III) of § 9 and if N, is integrable, we consider the sequence of
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cohomology (19.24) for m > m, and x e X, with y = p(x). If moreover P} is
integrable, Theorem 17.4 tells us that, if the image of @ ¢ H'(N,),,,, in H'(P}),...
vanishes, then @« = 0. For m > p and x ¢ X with y = p(x), the mappings (19.9)
and (20.3) induce, according to (19.14), (19.7), (20.10), (20.17) and (19.10), a
mapping of cohomology

0.t H'(P )y imy = Hy (P,

such that the diagram

H'(P)gmy —> HYPYn o
(20.19) lzm
H'(P)n,y
commutes. By means of Theorem 9.1, for m > m, we obtain a mapping
05 H'(P)gmy = H' (PP,

such that pg, is equal to the projection r,, of diagram (20.19), where p denotes
the mapping of the sequence (19.24). Hence by Proposition 17.1, it follows that
the mapping p of sequence (19.24) is surjective. One verifies easily that the
diagram

HP)srimy —> H(PY1e
lﬂq+m lﬂm
H'(P)gsmy —> H(P), 2
is commutative for / > 0; we thus obtain a mapping of cohomology
o.: H'(P), > H'(P}).

such that po, is the identity mapping of H!(P]’),, where p denotes the mapping
of cohomology

(20.20) p: H'(P}), —> H'(P}), .

It follows that (20.20) is a surjective mapping.
We now summarize some of the above results and obtain part (iii) of the
following theorem as a consequence of (i), (i) and the exactness of (19.24).
Theorem 20.1. Assume that R:, is a vector bundle for m > k. Let m > m,
and x € X. The following assertions hold:
(i) The mapping of cohomology
o: H\(P), — H'(P!)

o(x)
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is surjective.

(ii) If R satisfies condition (II1) of § 9, N, and P} are integrable, and the
image of « € H'(N ), pizy in H' (P}, vanishes, then a = 0.

(iii) If Rt satisfies condition (IIl) of § 9, and N, P} and P, are integrable,
then H'(N,),, = 0 and H\(P,'),,, = 0 if and only if H'(P}), = 0.

Theorem 20.1 (ii) gives us another class of formally transitive and formally
integrable Lie equations R’ for which the second fundamental theorem does
not always hold; indeed, if H'(N,) # 0, the non-linear cohomology of R does
not vanish.

Remark. For m >k, let P,, X, P/, be the set of all (¢, ) e P, X P;,,
satisfying p(source ¢) = source +», and consider the mapping

@:Pm XYPé:-m__)Bma

sending (¢, V) into ¢, - $, where a = target ¢. If (20.15) holds, by Proposition
20.1 and Theorem 18.3, R%, is a Lie equation; then using the relation (20.14), it
can be shown that the image P}, of @ is a differentiable sub-groupoid of B,, and
a finite form of R%. Furthermore by (20.9) and Proposition 7.2, P} ., C (P%).,
and P; is a formally integrable finite form of R} whose /-th prolongation is P},,.
If N, and P;’ are integrable, so is P}; if x € X and /" € Sol (P;"), ., then a,(f”)
belongs to Sol (P}),.

Assume that Y is a Lie group G and that y, is the identity element of G;
let g be the Lie algebra of G with the bracket defined in terms of right-invariant
vector fields on G. Let

t:g—> 1Y, Ty)

be the homomorphism of Lie algebras sending & into the right-invariant vector
field £ on Y whose value at y, is equal to £&. We denote by R/, the image of the
morphism of vector bundles

Y X g L,(Ty; Y),
sending (y, &) into j,(£)(»). We have R}’ = J(T,) and
Tt R, — R
is an isomorphism of vector bundles for m > 0. Clearly
(R RILICRY,  RILLC(R)..,

and therefore R}’ is a formally transitive and formally integrable analytic Lie
equation of finite type such that

R)m =Ry, form=>0.
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The mapping ¢, determines, for y e ¥, an isomorphism of Lie algebras of g
with the transitive Lie algebra R .
The image P,/ of the morphism of fibered manifolds over Y

(20.21) Y X G- 0,.(Y),

sending (y, g) into the m-jet at y of the left-translation of Y by g, is an analytic
sub-groupoid of Q,(Y) and a finite form of R].. Moreover P{’ is formally
integrable’and of finite type with

17 14
(Pl )+m = Pm+1 B
and
. p” 7
Tt Proy — Py,

is bijective for m > 0. For y € Y, we see that P,/(y) is a principal bundle with
structure group {/y .(»)}, and the mapping (20.21) determines a bijective
mapping

t,: G—>P(y) .

Assume that the vector bundle Fis a G-bundle, that is, possesses the structure
of a G-space such that g: F — F is a morphism of vector bundles over the left-
translation g: Y — Y, for g e Y. Then F has a natural trivialization

YXF,—F,

which sends (g, f) into g- f, and thus F is an analytic vector bundle. We con-
sider F as a vector bundle associated to the principal bundle P{(y,) by means
of the mapping

ty, X id: Y X F,,— P{'(y)) X F,, .
The diagram
GXF —F
l:xid lid
P/ Xy F—>F

is easily seen to commute, where the top horizontal arrow is given by the G-
bundle structure of F, and the bottom horizontal arrow is determined by the
structure on F of vector bundle associated to P{’(y,). For g e G, we have an
endomorphism of I'(Y, F) sending s into g-s-g~' and a morphism of vector
bundles
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g:JIn(F; Y) — J(F; Y)
over the left-translation g: ¥ — Y defined by

& Jn)Y) = Jjn(g 58 Ngy) .

where s is a section of F over Y and y e Y; thus J,,(F; Y) is endowed with the
structure of a G-bundle. Then the diagram

(20.22) l:xid lid
P:r{+1XYJm(F; Y)—)Jm(F; Y)

also commutes, where the top horizontal arrow is given by the G-bundle
structure of J,,(F; Y), and the bottom horizontal arrow is determined by the
structure on F of vector bundle associated to P;’(y,).

We say that a differential equation N, C J(F; Y) is G-invariant if N, is a
G-invariant sub-bundle of J,(F; Y). For such an equation, there exist a G-vector
bundle F’ over Y and a G-morphism of vector bundles ¢: J,(F; Y) — F’ such
that ker ¢ = N,. Moreover, the differential operator

P=goj.:I'(Y,F)—>I(Y, F)

is G-invariant in the sense that it commutes with the induced action of G on
I'(Y, F) and I'(Y, F’). Conversely, given G-vector bundles F, F’ over Y and a
G-invariant linear differential operator P: % — &’ of order k, there is a G-
morphism of vector bundles ¢:J(F;Y)— F’ such that P = ¢oj,, and
N, = ker ¢ is a G-invariant differential equation.

Let N, C J,(F;Y) be a G-invariant differential equation; then N, is an
analytic equation, and N,,, is a G-invariant sub-bundle of J,,,(F; Y). In view
of the commutativity of (20.22), we have

’7 .
Pk+l+l’Nk+l c Nk+l >

moreover for y e Y, if we identify g with R , by means of the mapping ¢.., the
R’ -module structure on N, , coincides with the natural g-module structure
on N, , obtained from the G-invariance of N,. Assume now that N, is formally
integrable and that x,: N, — F is surjective; then N, is integrable. Let R, C
J.(V;2) be the inverse image of p~!N, under 1. By Proposition 20.1 and
Theorem 18.3, we obtain from R} and R, the formally transitive and formally
integrable Lie equation R%. Then by Theorem 19.1 (ii), for x € X the transitive
Lie algebra R% , is isomorphic to the semi-direct product of g and the g-

0, T

module N, ., Let P} be a formally integrable finite form of Rf, and let
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m, > p be an integer such that g,,, and g#,, are 2-acyclic. From Theorem 19.2 (ii)
and Proposition 18.2, we obtain

Theorem 20.2. Let Y be a Lie group G, and F a G-invariant vector bundle.
Let N, C J,(F; Y) be a formally integrable G-invariant differential equation such
that ©,: N, — F is surjective. Then R is a formally transitive and formally
integrable Lie equation and we have isomorphisms of cohomology

Hl(Nk)m,y —> H‘(P;;)m,z )
Hl(Nk)y —> Hl(Pz)z s

for all m > my, x € X, withy = p(x).

Thus a formally integrable G-invariant differential equation N, C J(F; Y),
such that z,: N, — F is surjective, gives rise to a formally transitive and
formally integrable Lie equation Rf that belongs to the three classes of Lie
equations of Theorems 19.2 and 20.1 (ii) for which the integrability problem is
not always solvable; in fact, if H'(N,) # 0, the non-linear cohomology of Rf
does not vanish.

More generally, to any G-invariant differential operator on Y corresponds a
Lie equation belonging to these classes, as we now proceed to show. Let F’ be
a G-vector bundle over Y, and P: & — %’ a G-invariant linear differential
operator of order k. If ¢: J(F; Y) — F’ is the G-morphism of vector bundles
such that P = ¢oj, and N, is the G-invariant differential equation ker ¢, then
N,,, is a vector bundle for all / > 0, and the mappings z;.;: Ni,;.m — Ni.,
are of constant rank for all /, m > 0. According to [5, Theorem 1], there exist

a formally integrable differential equation N, C J, (F; Y), with k, > k, and an
integer [, > 0 such that

N,:0+, = 7T;c0+rNkn+lo+T ’
forall » >0, and
N, =N_.

By [5, Theorem 3], there is a vector bundle F”’ over Y and a linear differential
operator Q: F’ — F" of order [ such that the sequence

(20.23) Q .

P
F —>F S F
is formally exact in the sense that the sequences of vector bundles

Do E V) P vy 229 g )

are exact for all m > 0, where p,, ,.(¢), p.(J) are the morphisms of vector
bundles satisfying

il+moP = pl+m(¢)ojk+l+m s ijQ = pm(‘l/‘)o4/‘l+m .
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The differential operator Q is the compatibility condition for P; by [5, Proposi-
tion 8], we have the equality of Spencer cohomologies

H*(N,) = H*(N},) ,

and by [5, Theorem 3] the cohomology H'(N,) is isomorphic to the cohomology
of the complex (20.23). The vector bundle F”” can be chosen to be a G-vector
bundle and the differential operator Q to be G-invariant. If F, is the G-invariant
sub-bundle z,N;, of F, then by Lemma 15.2 we see that N;, C J,(F,; ¥Y)isa
formally integrable G-invariant differential equation in F, whose cohomology
H'(N;,) is isomorphic to that of the complex (20.23). Let X be the vector
bundle F,, and R} C J,(T) be the formally transitive and formally integrable
Lie equation constructed from F,, N, and R;’ by Theorem 18.3; for x e X, the
transitive Lie algebra RY, . is isomorphic to the semi-direct product of g and
the g-module N, ,,,. Since Theorem 20.2 gives us an isomorphism of
cohomology

Hl(Nk)y - ﬁl(R‘;).r )

for all x e X with y = p(x), we thus obtain a formally transitive and formally
integrable Lie equation R} on X, whose non-linear cohomology at x € X is iso-
morphic to the cohomology of the complex (20.23) at p(x). If the differential
operator P is not locally solvable, that is, the complex (20.23) is not exact, the
second fundamental theorem does not hold for the Lie equation Rf, and we
have thus constructed counterexamples to the integrability problem.

Finally, we point out how the counterexample of Guillemin and Sternberg
[15] arises in this way. Let Y be the Lie group SU(2), and let {3, 7,, 7} be a
basis for the Lie algebra of left-invariant vector fields on Y such that the
relations

[721', 77j] =N

hold for all cyclic permutations (i, /,/) of (l,2,3). Under the standard
identification of Y with the three-dimensional sphere S*® imbedded in C? the
differential operator 0,: ¢, — O, determined by the complex vector field
7+ »/ =17, on Y coincides essentially with the tangential Cauchy-Riemann
operator on the real hypersurface S* of C? which is the locally non-solvable
operator of H. Lewy. The example of Guillemin and Sternberg [15] is the
pseudogroup corresponding to the formally transitive and formally integrable
Lie equation R} of order one on Y X C obtained by the above procedure from
the invariant differential operator 8, on Y. By Theorem 20.2, the non-linear
cohomology of R does not vanish.



LIE EQUATIONS. IV 525

References

[1]1 N. Bourbaki, Eléments de mathématique, Topologie générale, Chapitre 2, Structures
uniformes, 3° édition, Hermann, Paris, 1961.

[2]1 C. Buttin & P. Molino, Théoréme général d’équivalence pour les pseudogroupes
de Lie plats transitifs, J. Differential Geometry 9 (1974) 347-354.

[31 H. Goldschmidt, Existence theorems for analytic linear partial differential equations,
Ann. of Math. 86 (1967) 246-270.

[4] , Integrability criteria for systems of non-linear partial differential equations,
J. Differential Geometry 1 (1967) 269-307.

[5] , Prolongations of linear partial differential equations: 1. A conjecture of Elie
Cartan, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968) 417-444.

[6] , Prolongements d’équations différentielles linéaires. 1I1. La suite exacte de
cohomologie de Spencer, Ann. Sci. Ecole Norm. Sup. (4) 7 (1974) 5-27.

[71] , On the Spencer cohomology of a Lie equation, Partial Differential Equations
(Proc. Sympos. Pure Math. Vol. XXIII, Berkeley, Calif., 1971), Amer. Math. Soc.
1973, 379-385.

[8] , Sur la structure des équations de Lie: 1. Le troisieme théoréme fondamental,
J. Differential Geometry 6 (1972) 357-373.

[9] , Sur la structure des équations de Lie: 11. Equations formellement transitives,
J. Differential Geometry 7 (1972) 67-95.

[10] , Sur la structure des équations de Lie: III. La cohomologie de Spencer, J.

Differential Geometry 11 (1976) 167-223.

[11] H. Goldschmidt & S. Sternberg, The Hamilton-Cartan formalism in the calculus of
variations, Ann. Inst. Fourier (Grenoble) 23 (1973) 203-267.

[12] V. W. Guillemin, A Jordan-Hdolder decomposition for a certain class of infinite
dimensional Lie algebras, J. Differential Geometry 2 (1968) 313-345.

[13] V. W. Guillemin & S. Sternberg, An algebraic model of transitive differential
geometry, Bull. Amer. Math. Soc. 70 (1964) 16-47.

[14] , Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc.
No. 64, 1966, 1-80.
[15] , The Lewy counterexample and the local equivalence problem for G-structures,

J. Differential Geometry 1 (1967) 127-131.

[16]1 S. Helgason, Differential geometry and symmetric spaces, Academic Press, New
York, 1962.

[17]1 K. Kodaira & D. C. Spencer, Multifoliate structures, Ann. of Math. 74 (1961)
52-100.

[18] A. Kumpera & D. Spencer, Lie equations. Volume 1. general theory, Annals of
Math. Studies, No. 73, Princeton University Press and University of Tokyo Press,
Princeton, 1972.

[19] B. Malgrange, Equations de Lie. 1, 11, J. Differential Geometry 6 (1972) 503-522,
7 (1972) 117-141.

[20] A. S. Pollack, The integrability problem for pseudogroup structures, J. Differential
Geometry 9 (1974) 355-390.

[21] D. C. Spencer, Overdetermined systems of linear partial differential equations, Bull.
Amer. Math. Soc. 75 (1969) 179-239.

[22] , Deformation of structures on manifolds defined by transitive, continuous
pseudogroups. 1, II, Ann. of Math. 76 (1962) 306-445.

[23] M. Buck, On the analyticity of equations defined by a class of transitive pseudo-
groups, Ph.D. thesis, Princeton University, 1974.

[24] H. Cartan & S. Eilenberg, Homological algebra, Princeton University Press, Prince-
ton, 1956.

[251 H. Goldschmidt, Prolongations of linear partial differential equations. Il1. Inhomo-
geneous equations, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968) 617-625.

[26] H. Goldschmidt & D. Spencer, Submanifolds and over-determined operators, Com-
plex Analysis and Algebraic Geometry (A collection of papers dedicated to
K. Kodaira), Iwanami Shoten Publishers, Tokyo, and Cambridge University Press,




526 HUBERT GOLDSCHMIDT & DONALD SPENCER

Cambridge, 1977, 319-356.

[271 V. W. Guillemin, Infinite dimensional primitive Lie algebras, J. Differential Geome-
try 4 (1970) 257-282.

[28] V. W. Guillemin, D. Quillen & S. Sternberg, The integrability of characteristics,
Comm. Pure Appl. Math. 23 (1970) 39-77.

[29] V. W. Guillemin & S. Sternberg, Notes on transitive Lie algebras, Polycopied notes,
Harvard University.

[30] G. Kothe, Topologische lineare Rdiume. 1, 2nd edition, Springer, Berlin, 1966.

[31] M. Kuranishi & A. A. M. Rodrigues, Quotients of pseudo groups by invariant
fiberings, Nagoya Math. J. 24 (1964) 109-128.

PRINCETON UNIVERSITY





