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THE POINCARE LEMMA FOR dω = F(x, ω)

HOWARD JACOBOWITZ

Introduction

One can locally solve the equation da = β only if the (p + l)-form β satis-
fies dβ = 0. Poincare's lemma states that this condition is also sufficient. We
wish to consider a nonlinear version of this and to relate it to the Frobenius
theorem. This theorem, in its classical formulation concerns a system of partial
differential equations dfjdxj = Fυ(x,f) and asserts that one can solve these
equations and have/take on a given value at any point in a region if and only
\ϊdFijjdxk = dFJdXj when the derivatives dfjdxj which occur in the use of
the chain rule are replaced by F ^ x , / ) . In this paper we consider the equation
dω = F(x, ω) where ω is a p-ΐorm, and F(x, ω) a (p + l)-form. We discuss the
analogue of the condition of Frobenius and show it is a sufficient condition for
local solvability (§ 1). Both the Poincare lemma and the Frobenius theorem are
included in our formulation. In § 2 we consider various geometric applications.
Finally in the last section we return to the analogy with the Frobenius theorem
and show that our sufficient condition is also necessary for the existence of
solutions to a certain special initial value problem.

It might be interesting to try to obtain our results, in the real analytic case,
using the Cartan-Kaehler theorem. Note the proposition in § 1 does not quite
state that {dω — F(ω), dF(ω)} generates under the wedge product a differential
ideal, when the coefficients of ω are admitted as new independent variables.
However, it may be that various generalizations of the Cartan-Kaehler theorem,
for instance the work of Goldschmit [3], do include as a very special case the
present results for real analytic data. See also our comments in § 2 on a paper
by Gasqui.

All our discussion will be local. Let MN be an open subset of RN. Let Λv

x be
the space of ^-forms at the point x e MN, A%T(MN) the dual space of ^-vectors,
and Γv

x the space of germs of /?-forms at x. Recall that forms a and β define
the same element in Γv

x if there is some open neighborhood U of x with a = β
on U. For sanity's sake, we identify a with the element in Γ% which it defines.
Often we delete the base point x. We will sometimes consider submanifolds
M e MN and the associated spaces ΛV

X(M) and ΓV

X{M). We introduce the germs
in order to avoid specifying on what neighborhood of a given point each of
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our results is valid. It will be important to distinguish between the statements
"a\M = β\M" and "a = β on M." In the former case we require that the forms
a and β agree when acting on ΛPT(M), while in the latter a(v) = β(v) for
v ζ. ΛPT(MN)X when x e M. As an example a\x — 0 for any form but in general
a Φ 0 &t (or on )x. For each x in some domain F(x, β) is a map of Ap -> Λp+ι.
In particular, F does not depend on the derivatives of the coefficients of the
form β. We will usually surpress the x-dependence and write F(β).

For X e ΛqT(MN) and ω e Λp, p > q, we denote interior multiplication by
I - J ό ) . This is defined by the equation X _ι ω(Yί9 , Yp-q) = ω(Xλ, , Xq,
Yu • ' -,Yp-q) when X = Xί A • A Xq and then defined by linearity for any
Xa ΛqT(MN). Now for X a T(MN) let &x denote the Lie derivative. Recall
gx<ύ = X _j (dω) + rfpT _J ω).

Finally we use the following multi-index and summation conventions. If / is
the multi-index / = (i19 , ip), then \I\= p and {/} = {i19 , ip}. Summa-
tions will be indicated by Σ, and the sum goes over any index which occurs
more than once. We denote by [L: K] the parity of the permutation which takes
the sequence L to the sequence K if {L} = {K} and zero otherwise. By (a)κ we
mean the coefficient in the form a of dxkl Λ Λ dxkp. This is well defined
under the usual convention that (a)κ = [L: K](a)L when {L} = {K}.

The author would like to thank Frank Warner who refereed the first version
of this paper and contributed many thoughtful suggestions.

1. We say that dώ = F(ω) is solvable in a region D if for each x e D and
each ω0 e Λp there is some ω e Γp with dω = F(ω) and ω = ω0 at x. If dω = F(ω),
as germs, then dF(ω) = 0. Consider the following restriction on Ffor some x:

( * ) dF(β) = 0 at x for any β e Γp satisfying dβ = F(β) at x .

Theorem. The equation dω — F(ω) is solvable in a domain D if F satisfies
(*)for each x € D.

In § 3 we show that the converse of this theorem is false but that there is a
restricted definition of solvability which is equivalent to (*).

We now prove that (*) implies solvability by showing that one can even solve
the following broader class of initial value problems.

Theorem 1. Let F satisfy (*) at each point in a neighborhood of some point
x0 e MN. Let M' be some submanifold of MN containing x0. If ω0 e Γp

0 satisfies
dωo\M> = F(ωo)\M>, then there exists some ω <=. Γp satisfying dω = F(ω) and ω =
ω0 on Mf.

Remarks. It F does not depend on ω so that F(ω) = β for some (p + 1)-
form β, then we have Poincare's lemma with some added initial condition. If
dim Mf — 0 then the condition for dω0 is trivially satisfied for all ω0 e Λp

0, and
the conclusion is that one may always solve dω = F(ω), ω = ω0 at x0. So, if we
also take p = 0, then we recover the Frobenius theorem. If dim M' is arbitrary
and p = M — 1, then any F satisfies (*) and dω = F(ω), with initial data as in
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the theorem, may always be solved.
Our proof of this theorem generalizes to forms the usual proof of the Frobe-

nius theorem. That is, we first find a solution to those differential equations
corresponding to a given direction and then use the compatibility condition to
verify that this solution automatically also satisfies the remaining equations.
Let us start by discussing the compatibility condition (*). It is natural to expect
that if F satisfies (*), then dF(β) can be written for any β <= Γp as a sum of
terms each containing as a factor some component of dβ — F(β). We are able to
give an explicit factorization. Write β = Σ\i\=Pβidχi a n c * F = Σ\j\=v+^j(β)dXj.
Each Fj is a function of the coefficients of the form β and also of the point
xe MN. We assume Fτ = [/: J]Fj if [/: J] φ 0. We make the dependence on
the variables explicit by setting Fj(x19 ,xN9yKl, -9yKτ) = FΛΣ yχdxκ)
From the fact that each Fj is a function of the differential form Σ yχdxκ rather
than just of the coefficients {yκ}, it follows that dFjjdyκ = [K: L](βFj/dyL) when
{K} = {L}. It then also follows that dFJdyj = dFικ/dyκ when {/} = {K}.

Let Xt = d/dxt and for K = {kί9 , kp} let Xκ = Xkι Λ Λ Xkp.
Proposition. Let F satisfy (*). Then for all β e Γ\ dF(β) - Σ (dFiK/dyK)(Xk

Λ Xκ) - J (dβ — F(β))dxκdxkdxί. The sum is taken over all i, k, I < i,'k < N
and all multi-indices K with \K\ = p.

The first step in the proof is to study certain derivatives of Fj.
Lemma. If F satisfies (*) then
(1) 3Fj/dyκ = 0 if{K] is not a subset of{J}9 and
(2) dFίaQ/dyaQ = dFίbQldybQfor all i, a,b9Q(\Q\=p- 1).
Proof We have dF(β) = G(β) + Σ (^FI(β)ldyκ)(dβκldxk)dxkdxI where G(β)

depends on x and the form β evaluated at x but not on derivatives of β. Let β
be any element in Λv

x. Extend β to an element of Γv

x so that dβ = F(β) at x.
So dF(β) = 0 at x. Next let a e Γp

x~
ι be any form with da = 0 at x. Thus also

dF(β + da) = 0 at x. This implies Σ (dF1(β)ldyκ)(d(da)κldxk)dxkdxI = 0 at x.
For notational convenience, take x — 0. The first half of the lemma follows
from considering a = \x\dxφ and the second from a = xaxbdxQ.

To prove the proposition we first note that

XkΛXκ-jdβ=Σ IK k: R, ^
dxr

This together with (2) of the lemma and the fact that dFiKjdyκ = dFu/dVj when
{K} = {/} imply

r)F
Σ -^((X* A Xκ) J dβ)dxκdxk

dy

= c Σ ^
dyR

Thus
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Σ ~^((Xk A Xκ) J dβ)dxκdxkdxί

= c
dyR

The last equality is justified by the fact that the extra terms coming from indices
R and / with {R} ςzί {/} are all zero. Thus

dF(β) = G(β) + Σ 4 r ^ «** Λ Xκ) J dβ)dxκdxkdxi .

Finally df(β) must be zero if F(β) is substituted for dβ. This determines G(β)
and concludes the proof of the proposition.

We now start the proof of the theorem. Let dim Mf = m. Choose coordi-
nates with x0 at the origin so that M'{x\xm + ι = == xN = 0}. Let Mn, n =
m + 1, , N, be the set {x \ xn + 1 = • = xN = 0}. We shall try to inductively
solve dω\Mn = F(ω)\Mn together with an appropriate initial condition. Assume
G: Λp(Mn + ί) -• Λp+1(Mn + 1) is any smooth bundle map.

Lemma 1. For any μ e Γp

x(Mn + ι) there exists some σ e Γp

x{Mn + ι) with Xn + 1

J da = Xn + ί J G(σ) andσ = μ on Mn.
Proof. We wish to convert this equation to a form df/dxn + ί = G(f) and

use the fundamental existence theorem of ordinary differential equations. Let
σ = Σi Ojdxj with sum taken over | / | = p, I a {1, •••,«+ 1}. Similarly

G(σ) = Σ GMdXj , \J\ = p + 1 , J C {1, , /i + 1} .
J

For « + 1 e {Ĵ } set σκ equal to an arbitrary extension of μκ off of Mn. The
equation

Σ -^dXr = Xn + i J Σ GMdXj - Σ —^(Xn + i J dXjdXx) ,
3^ 3 ^

where {/} c {1, , ή\, n + 1 € {AΓ},y ^ « + 1 is a system of ordinary differ-
ential equations for the unknown σl9 {/} C {1, , /ι}. Solve this system with
the initial values σ7 = μx on Mn. It is easy to see that σ = Σ σLdxL> {L} C
{1, •••,«+ 1}' satisfies the conclusions of the lemma.

Remark. There are thus many solutions to Xn + 1 J da = Xn + 1 J G(σ), σ = μ
on Afn for p > 0. We obtain a unique solution if we add the requirement that
* W + 1 J * = * n + 1 J / ι i n M » + 1.

We shall use this lemma and the compatibility condition (*) to solve da =
F(a). It clearly suffices to just prove the following result.
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Lemma 2. Let β s Γp(Mn) with dβ\Mn = F(β)\MΛ. Assume F satisfies (*).
Then there exists a <= ΓP(MN) with da\Mn+1 = F(a)\Mn+1 and a = β on Mn.

Proof. We first try to find a/7-form a defined on Mn+ι (and taking values
in ΛP(MN)) such that Xn + ί J da\Mn+1 = Xn + ι J F(ά)\Mn+1. For γ e Γp(Mn + ι) and
the given β set G(γ) = ( — dβ + F(γ + β))\Mn+i. By the previous lemma we may
find some γ satisfying

7- = 0 on AP .

Let α € ΓP(MN) be any form with <* = p + β on Λ/n + 1. We have

α = β onMn .

To show that actually da\Mn+ί = F(a)\Mn+i we proceed as follows, using the
relation of F(a) to da — F(a). (All forms to be understood are restricted to

J?Xn+1(da - F(a))

= Xn + 1 J d(da - F(a)) + d(Xn + 1 j (da - F(a))

= -Xu + 1_\dF(a)

- - ^ n + i J ( Σ ^(X. Λ ^ J (da - F(a))dxκdxkdxτ)
\ dyκ

= - Σ —^(X. Λ ^ J (da - F(a)))(Xn + 1 J dxκdxkdxt)dyκ J

with the sum taken over {K} \J {k9i} a {I, - ,n+ 1}. Thus, if we decompose

(da - F(a))\Mn+1 = Σ Ώjdxj and use that &Zn+1(Σ ΩJdχj) = Σ (βΩj/dxn + 1)dXj
we see that dΩj/dxn + ί = Σ AJLΩL. But on Mn we have

(da - F(a))\Mn = da\Mn - F(a)\Mn = dβ\Mn - F(β)\Mn = 0 .

Now by the uniqueness theorem of ordinary differential equations, Ωj = 0
for each /. Thus da\Mn+1 = F(a)\Mn+1.

Remark. We needed for this proof not only that dF(ά) is a linear combina-
tion of the coefficients of da — F(a) but also that dF(ά) \M depends only on
(da — F(a))\M for any submanifold.

For the applications it is important to note that all of the above also holds
for systems. For convenience let ω19 , ωR all be forms of the same degree /?,
and let Fί9 - 9FR be maps into Ap+ι. Then the equations dωt = Fi(x,ω19 ,ωR)
= 0 may be locally solved if each Ft satisfies dFt(x, βί9 , βR) = 0 when all
the equations dβt = Ft(x, βί9 , βR) are satisfied at the point x.
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2. We want to use Theorem 1 to give new proofs of several known results.
But first we discuss the case/? = N - 1. For F: ΛN~\MN) -> AN(MN\ Theo-
rem 1 tells us that dω = F(ω) is always solvable. However, solvability in this
case follows immediately from Lemma 1, and so need not be thought of as a
consequence of Theorem 1.

Let K be a smooth function on a two-dimensional manifold. It is now reason-
ably well understood when Â  is the curvature of a Riemannian metric [4], [5].
One simple proof that in a neighborhood of each point of the manifold there
is some metric having K as its curvature, can be found in [4, p. 217]. Here we
give another proof.

Theorem. Let K be a smooth function defined in a neighborhood of some
point p e R2. There exists some Riemannian metric defined near p which has K as
its curvature.

Proof We seek 1-forms ω19 ω2, and ω12 satisfying

dωί = —(ύ12cϋι j dω2 = ωl2ω2 , dωί2 = Kωxω2 .

We know this system of equations may be solved locally on R2. Take initial
data so that ωλ and ω2 are linearly independent at p. Let e1 and e2 be the dual
tangent vectors of ωx and ω2. Define a metric by taking these vectors orthonor-
mal and a connection by setting V xex = —ω12(X)e2 and Vxe2 — + ωl2(X)eλ. This
connection is the Levi-Civita connection of the metric, and its curvature is K.

We next study the curvature tensor of a connection. We shall show that on
a two-dimensional manifold any 2-form with values in Horn (TM, TM) is
locally the curvature tensor of some connection. This raises several related
questions. Can one characterize those Horn (TM, ΓM)-valued 2-forms on mani-
folds of higher dimension which are curvature tensors? The first Bianchi iden-
tity is necessary but as we shall show not sufficient. Are there any obstructions
to a Horn (TM, TM)-valued 2-form on a surface being the curvature tensor of
a globally defined connection?

For any connection on a manifold M set R(X, Y)Z = VXVYZ — VYVXZ —
F [ X , F ] Z. R is a 2-form with values in Horn (TM, TM), the group of linear
bundle maps of TM to itself.

Theorem. Let R(X, Y) be any smooth Horn (TR2, TR2)-valued 2-form defined
in a neighborhood of some point p e R2. There exists some torsion free connection
defined near /?, which has R as its curvature tensor.

Remark. It is not true that R need come from a Levi-Civita connection.
For example, if R is Idxdy, I the identity map, then R cannot arise from a
metric. More generally, if R = Adxdy where A has a real nonzero eigenvalue,
then R cannot come from a metric.

Proof. If ωx and ω2 are linearly independent one-forms on R2, then the dual
tangent vectors eλ and e2 are well defined. Let φ^X, Y) = ωi(R(X, Y)e3), and
consider the system
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for 1 < /, j , k<2.Atp choose initial values so that ωt and ω2 are linearly in-
dependent. Again the equations may be solved. In terms of the now known
vectors ex and e2 we may write R(X, Y)ej = Σ* ^ ( / ^ Y)ei a n d t r n s defines the
2-forms Rijm Finally, note <ptj = Rυ. Thus {ωtj} are the connection forms of a
connection whose curvature tensor is R.

It would be very interesting to know the analogue of the theorem for mani-
folds of dimension greater than two. A Horn (TM, ΓM)-valued 2-form R which
comes from some torsion free connection must satisfy the two Bianchi identities,
namely,

R(X, Y)Z + R(Z, X)Y + R(Y, Z)X = 0 ,

dψij = Σ ωίfcωfcJ — Σ ωifeωfcJ

with ψiS defined as above. Both identities are trivial in two dimensions. For
higher dimensions, the first gives a necessary condition that R comes from some
torsion-free connection. The second identity might be thought to provide no
restriction since it involves the unknown connection. However, the requirement
that for given 2-forms {φυ} there is some set of forms {ω^} such that this second
identity is satisfied, is indeed a nontrivial restriction on <ptj. This can already be
seen by considering forms φiS which all vanish at some point but at least one
of which has a nonzero differential at that point.

Gasqui has used Goldschmidt's generalization [3] of the Cartan Kaehler
theorem to prove that any real analytic bilinear form is locally the Ricci cur-
vature of some torsion-free connection [2]. For dimension two this implies the
above theorem when R is real analytic. Can Gasqui's result be derived using a
generalization of Theorem 1? That is, using ordinary differential equations?
Such a derivation would eliminate the need for analyticity and might illuminate
the relation of Theorem 1 to the Cartan-Kaehler theorem.

We next present two simple results about vector bundles. Let B be a vector
bundle over a manifold M in a small neighborhood of some point p e M. Let
Mf be a submanifold of M which contains p. Choose sections ξ 15 ,ξN which
span B. Assume Fxξt = Σ <*)ji(X)£j i s a connection in the bundle, and (ξi9 ξj}
= gij is a symmetric metric on B\M, with Vxg = 0. This means X(gi3) =
Σ (gij(otej + gkjωki)(X), all X € TM'. Or, in terms of forms, dgiS\M, = Σ (&*ωfc,

+ £*jωfcί)|jf'

Theorem. If the curvature of V is zero, then there exists some metric h defined
on B\υ for some open neighborhood U of p with Vh = 0 and h = g on M''.

Remark. We may take Mf to be the point p itself, and g to be an arbitrary
inner product on B\p. In particular, if B = TM then it follows that any torsion-
free flat connection is locally the Levi-Civita connection of some Riemannian
metric.
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Proof. We take as unknowns the functions hυ for 1 < / < . / < N, and we
define htj = hn for i > j . We want to solve the initial value problem

dhti = Σ (hikOkj + hkjωtei) ,

for I <i<j<N. When restricted to M\ gυ satisfies the equation, so we need
only verify (*).

Since

VxVyξi - FγFzξt - Vιz^ξt - Σj (fan + Σ* 0Jjkωkί)(X, Y)ξj ,

the fact that the connection is flat is equivalent to dωn = — Σ ωjfcωfcΐ. Now
assume some set of functions {hυ} satisfies dhυ = J] (hilcωkj + hkjωkί) at some
point. Then at this point

d Σ (hikωkj + hkjωkί) = Σ (Kr^nc + hrkωrι)ωkj + Σ hik( — ωkrωrj)

+ Σ (hrUrj + hrj<Ork)<t>ki + Σ hkj( — WkrWri)

= Σ hrkωrίωkj + Σ hkrωrjωkί = 0 .

Thus by Theorem 1, the above initial value problem may be solved. Finally
note that Vh = 0.

We now consider a variant of the previous result. Assume that a connection
Vxξt = ωji(X)ξj is given on B\M, and that this connection is flat. Is it possible
to find a flat connection on B\U9 where U is open in M, which extends the given
connection?

Theorem. Let ωυ be l-forms on Mf satisfying dwtj = — Σ ωnc Λ (okj. There
exist l-forms Ωυ on some open set U containing the distinguished point p which
agree with ωυ on Mf and satisfy dΩυ = — Σ Ωik Λ Ωkj on U.

Proof If dβυ = —ΣβίkA βkj at some point q, then

d(Σ βtt Λ βkj) = Σ i-βisβsuβuj + βttβu βsj) = 0 at q .

Our last example, taken somewhat randomly from the literature, shows the
simplicity effected by Theorem 1. Lie's third fundamental theorem states that
the left invariant vector fields of a Lie group from a Lie algebra. A converse
result, that any Lie algebra is the Lie algebra for some local Lie group, is often
reduced to the following.

Theorem. Given n3 constants c)k with c)k — — ckj, there exist n linearly inde-
pendent one-forms ωt satisfying

if and only if these constants satisfy
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Σ (c)kcis + c)rcik + c%c{r) = 0

for all 1 < /, k, r, s, < n.
Pf If th ti

for all 1 < /, k, r, s, < n.
Proof. If the equation is satisfied at one point, then Σ cίjkc3rs^r^sωk

that point. This is equivalent, assuming {ωj is linearly independent, to

= 0 at

Σ (c%c{s + c)rcik + c%c{r) = 0 .Σ
Thus this condition is necessary for a solution to exist, and is also sufficient by
Theorem 1. Further if at some point the set of initial values for {ωj is linearly
independent, the same is true for the set of solutions in a neighborhood of this
point.

This proof may be compared with that in [1, pp. 108-111].
3. We have seen that (*) is a sufficient condition for the solvability of

dω = F(ω). That it is not necessary can be seen from a simple example. Let
f(al9 a29a3) be a smooth function of three variables with nowhere vanishing
gradient. Define F: Λ\R2)-> Λ2(R2) by F(a1dx+a2dy+azdz) = -f(a19a29a3)dxdy.
Pick some point p e R3 and some ω e Λ\. We claim there exists a e Γ\ satisfying

da — F(a) in U ,

a = ω at p .

Thus da = F(a) is solvable. But we also claim that there exists J3GΓ{, with

dβ = F(β) , β = ω , dF{β) φθ at p .

Thus F does not satisfy (*).

Let ω = (ωl9 ω2, ω3) and/? = (Pι,p2,pd To prove the first claim, define aγ to
be the solution of dajdy = — f(aΛ{y), ωZ9 ω3), aΛ(pλ) = ω19 and let a = aγ{y)dx
+ ω2dy + ωzdz. To prove the second claim assume df/dz Φ 0 at ω, and let β =
(βi> A> βd where β1 = β^y), β2 = ω2, 3̂ = βz(z). We take the functions β1 and
βz to satisfy βfo) = ωί9 β[(p) = - / (ω 1 ? ω2, ω8), ]8,(p) = ω,, #(/>) ^ 0. Then ^
= F(/3) at /7, but dF(β) Φ 0. Thus (*) is certainly not necessary for solvability.

However the classical compatibility condition for the Poincare lemma is both
necessary and sufficient. So is the condition for the Frobenius theorem if one
assumes that solutions exist for all appropriate initial values at a point. In
the present case too we may look at solvability for an appropriate initial value
problem, and demonstrate that (*) is both necessary and sufficient for the solv-
ability of this problem.

Theorem 2. The following three conditions are equivalent. At each point x in
some domain D we have:

(a) F satisfies (*) at x9

(b) for each β e ΓP

X(MN) and each n with {dβ — F(β))\Mn = 0 there exists an
ω e ΓV

X(MN) satisfying
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dω = F(ώ) ,

ω = β on Mn ,

Xm }ω = Xm J/3 onMm,m = n + 1, - ,N,

(c) for each β e ΓP

X(MN) with dβ = F(β) at x there exists an ω e ΓP

X(MN)
satisfying

dω = F(ώ) ,

ω = β at x ,

&χ(ύ = <£xβ for all X e TMξ .

Remark. It is easy to see that the ω in (b) must be unique while the solution
for (c) is usually not unique.

We first show (a) => (b). It suffices to show that if (da — F(a))\MT = 0 for
some a € Γ%(MN), then there is some γ e Γ%(MN) with

(dγ - F(γ))\Mr+1 = 0 ,

γ = a on Mr ,

Xm J ϊ = Xm J a everywhere, for each m > r + 1 .

For then starting with β as in (b) we may recursively construct γ19 , γN_n

for which

(dTί - F(Ti))\Mn+i = 0 ,

Yt = β on Mn ,

XmJri = XmJβ onMm for m = Λ + 1, , Λ + i - 1 ,
χm J γt = -̂ m J j8 everywhere for /w > /i + z,

and then ω = γN_n satisfies the conclusion of (b).
So let α e Γ%(MN) be given. As in Lemma 1 solve Xr + 1 J da = Xr + 1 J G(σ)

where σ € Γ^(Mr+1), G(σ) = (F(σ + a) — da)\Mr+1, σ = 0 on M r . As indicated
in the remark following that lemma we may also require Xr + ί J σ = 0 on Mr+ι.
Thus for γ = σ + a we have Z r + 1 J (rfp — ̂ (r))Ur+i = 0, γ = a on Λfr, Xr + 1 J ^
= ^r + i _\a on Mr+1. Finally extend ^ off of Mr+ι so that Xm \y = Xm \a
everywhere for each m > r + 1. Now, as in the proof of Lemma 2, use that
I r + 1 J ( ψ - ^ ( r ) ) U + i = 0, F satisfies (*), and γ = α on ΛP, where (rfα -
^(^))|jf = 0, to show that (dγ — F(γ))\Mr+1 = 0. This concludes the proof.

Next we show (b) => (c). Recall the manifolds M m were defined previously
with respect to some coordinate system. M° denotes the origin of these coordi-
nates.

Lemma. If Ω is a p-form with dΩ = 0 at M° and Xm J Ω = 0 on Mm, m =
1, , N, then &XΩ = 0 at M* for each vector field X.



POINCARE LEMMA 371

For the proof write Ω = Σ ^Aχι where each multi-index satisfies z\ < z2 <
• < ip. For any fixed / it is clear that Ωτ = 0 on Mi if / € {/}, and it follows,
in particular, that dΩj\dXj = 0 at M° if j < max {/}. This enables us to write,
for any L with \L\ = /?, Z L J dΩ = Σ (βΩj/dx^lLij, J] withy = max {L} and
summation over all / with {j, J} = {L}. But dΩ = 0 at M\ Thus dΩIldxj is
also zero if 7 > max{/}. This proves the lemma since any vector field is a linear
combination of d/dxi9 i = 1, , N, and for X = d/dxj one has 3?XΩ =
Σ (βΩj/dx^dXj = 0.

Applying this lemma to Ω = ω — β and setting « = 0we see that (b) implies

(c).
Finally, we assume (c) and derive (a). Note that dF(ω) = 0 everywhere. Since

dF(ω) can only depend on coefficients ωI and their first derivatives, and since
at M° these coincide with the coefficients and derivatives of β we see that dF(β)
= 0 at M° and so F satisfies (*).
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