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TOTALLY FOCAL EMBEDDINGS

SHEILA CARTER & ALAN WEST

1. Introduction

In this paper we investigate manifolds embedded in Euclidean space with the
property that for any distance function either all its critical points are nonde-
generate or all its critical points are degenerate. We will give a complete clas-
sification of such manifolds when the codimension of the embedding is one.

Let M be a connected smooth m-dimensional manifold without boundary.
Let/: M—• Rn be a smooth proper embedding and let TV be the corresponding
normal bundle. Thus N a M X Rn is the subset defined by (p, v) <= N if and
only if f(p) + v lies on the normal plane to/(M) at f(p). The end-point map
η: N —• Rn is then defined by η(p, v) = f(p) + v. The set of critical points of
η will be denoted by Γ. Thus η(Γ) is the set of focal points of the embedding.
Now the distance function from x e Rn is nondegenerate if and only if x $ η(Γ),
(see Milnor [6, P. 36]), so the property which we investigate can be defined as

Embeddings with this property will be said to be totally focal.
The round sphere and a flat plane, with arbitrary dimension and codimen-

sion, are examples of such embeddings. So also are products of such embedd-
ings. This follows from the following two propositions.

Proposition 1.1. Let f: M-^Rn be totally focal then, for any d>0,jof:M
-+Rn+d is totally focal where j : Rn —• Rn X Rd = Rn+d is given by j(x) = (x,0).

The proof of this is trivial.
Proposition 1.2. Let f: Mi^-R71* (i = 1, 2) be embeddings. Then the product

embedding

/i X / 2 : Afx X M 2 ^ Rni X R712 = Rni+n*

is totally focal if and only if both f andf2 are totally focal.
Proof We write ηl9 η2 and η for the end-point maps of fl9 f2 and/i X f2 re-

spectively, with a similar notation for the normal bundles and critical point
sets. Then it is easy to check that N = Nλ X iV2, η = -ηι X η2 and thus Γ =
( Λ X N2) U (Nx X Γ2). Hence
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foΓ^fliίΛ) X N2] U [N, X

The result follows immediately.
However although by the above theorem the flat torus Sι X S1^ R4 is totally

focal, the torus does not have a totally focal embedding in R\ In fact the main
theorem of this paper is the following classification theorem.

Classification theorem. The only totally focal embeddings with codimension
1 are

( i ) the round spheres/: Sn~ι -> Rn,
(ii) the flat hyperplanes g: Rn~ι -• Rn,
(iii) the round cylinders h X 1: SL~ι X Rk -+Rι X Rk = Rn, where I + k

= « and h: S1'1 -^ Rι is a round sphere.
The proof is the cumulation of a series of results which form the body of the

paper. Results that apply to any codimension are collected together in § 2.
Then in § 3 we specialize to codimension one and show that the manifold must
be a convex hypersurface. Finally in § 4 we look at special cases which enable
us to complete the classification theorem.

2. General results

We prove some general theorems about the end-point map η: N'-> Rn as-
sociated with a fixed totally focal embedding/: M—• Rn. For this we need the
Morse index theorem [6]. For x e Rn the distance function Lx: M —• R is de-
fined by Lx(p) = H/O) - JC||2. If (p, v) <= N\Γ and η(p,v) = x, then p is a
nondegenerate critical point of Lx and we define the index of the normal (p, v)
to be the index of Lx aX p.

Theorem 2.1. Let f: M -> Rn be a totally focal embedding. Then Rn\η(Γ) is
connected and contains f(M).

Proof First observe that since η has no critical points on the zero section
M X {0} c N, the condition Γ = η~ι o ̂ (Γ) implies that/(M) Π 37CO = 0.

Now take Λ: e Rn\η(Γ) and consider the distance function Z^. Since/is pro-
per there exists an absolute minimum for Lx, that is, we can find p 6 M such
that for all q 6 M, \\f(p) — x\\ < \\f(q) — x\\. This minimum is nondegenerate
and has index zero. Thus, if v = x — f(p), then η(p, v) = x ,and (p, v) has
index 0 and so the Morse index theorem tells us that

{(p,tv):te[0, 1]} Π Γ = 0.

Since η'1 o η(Γ) = Γ, then the path γ where γ(t) = η(p, tv) lies in Rn\η(Γ) and
joins x to a point in /(M). As M is path-connected this is sufficient to prove
the theorem.

Remark. We have actually proved that η(Γ) lies in the cut-locus of the em-
bedding, that is, in the closure of the set of points x e Rn such that Lx does not
have a unique nondegenerate absolute minimum. However we do not need this
result.
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A central fact in our investigation is that η: N\Γ —• Rn\η(Γ) is a covering.
We know of course that η restricted to N\Γ is a local homeomorphism but to
show it is a covering we require something more. In fact the following theorem
suffices.

Theorem 2.2. Let γ be a smooth path in Rn\η(Γ) with initial point x09 and let
(p0, v0) e N be such that η(p09 v0) = x0. Then γ can be lifted to a unique smooth
path f in N\Γ with initial point (p0, v0) such that η o f = γ.

Proof. Let / = [0, 1] be the unit interval so that γ: /-> Rn\η(Γ). The tech-
nique is to show that the subinterval of / over which γ can be lifted is open
and closed and thus must be / itself. It is easy to show that it is open since η
is a local homeomorphism. Thus we have only to prove that it is closed. This
amounts to assuming that f is defined on [0, 1) C / and showing that it can be
extended uniquely to /.

Let *i = γ{\) e Rn\η(ΓX and suppose f: [0, 1) -> N\Γ with ηo f = γ. Let I
be the length of the curve γ. First we show that if for s e [0,1) we write f (s) —
(ps, vs) then

\\v,\\-l<\\vs\\<\\v,\\ + l.

To do this we define / and v as maps N-^Rn by f(p, v) =f(p), v(p, v) = v>
and then we can write η = / + v. Hence dη = df + dv. However by definition
we have (βj, ι/> = 0 and so

<dη,v> = <v,Λ> = \d<y,vy = Irfllvll)2 = ||v||</||>;|| .

This means that |||v|| d\\v\\\ < \\dη\\ \\v\\ and therefore | < * H | < \\dη\\.
Consequently, integrating along the path f, we obtain

< [\\dη\\ = \S\\dr\\
Jo Jo

This can be written ||i;0 | | - / < \\vs\\ < \\vo\\ + /.
Now observe that since γ(I) is compact we can find k > 0 such that for all

ssl, \\γ(s)\\ < k. Hence, since γ(s) = ηo f(s) = f(ps) + vS9

\\f(Ps)\\ = IIrW - v.ll < k + / + llvoll = K9 say .

Now the ball Bk = {x <= Rn: \\x\\ < K] is compact and/ i s proper sof-\Bk)
is compact. We have now shown that if s e [0, 1) then (p, vs) € (f~ι(Bk) x Bk)
Π N which is a compact subset of N. Thus there exists

Π
• 6(0,1)

Further, by continuity of η, η(pl9 vλ) e Π.e(o,i) {Λs):s e (ε

? 1)} = K1)- Now since
$ η(Γ) then (pl9 vλ) $ Γ9 so η is a diίfeomorphism on some neighborhood
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V of (/?!, Vx) in N\Γ. If η(V) = U we can extend f by defining f(s) = 5?"1 o f(s)
for f̂ y) € U and obtain the required lifting f: I-* N\Γ.

Theorem 2.3. Γλe map η: N\Γ -> Rn\η(Γ) is a covering.
Proof. We would like to use a theorem such as Theorem 4.6, Chap. IV,

Vol I of [4], or the theorem given in the appendix of [3]. However N\Γ is not
complete in the obvious metric, and instead we modify the proof given in [3].

We show that for any x0 ς Rn\η(Γ) there is an open ball B centre x09 radius
p, with B Π η(Γ) = 0 such that for any ut e η~\x0) there is a corresponding
neighborhood Ui of ui in N\Γ for which η: Ui -> £ is one-one and onto, J7€

Π Uj = 0 if wf =£ Wj € ^ ( X Q ) , U i Ut = η"\B\ and Ut is open. Since 27 is a lo-
cal diίfeomorphism on N\Γ, this is enough to ensure that η: U -^ B is a dif-
feomorphism on any connected component U of η~\B), and consequently η:
N\Γ->Rn\τ]{Γ) is a covering.

Choose any open ball 5*, centre x0, radius p* with 5 * Π ^(Γ) = 0, and take
p < |0* so that .δ C 5*.

Now from Theorem 2.2 if γ is the radial line joining x0 to any Λ: in B there
is a unique path f which covers γ and joins ^ to a point ψ^x) in rj~l{B). This
defines a map ψ ί : B -^ η~ι(B), and we take its image to be Ut. Thus by defini-
tion η°ψi and ψt o^ are identity maps, and so 57: JJi-^B is one-one and onto.

Also C/j Π Uj = 0 if wf 7̂  Wj € ^ (xo) s i n c e if w E C/̂  Π C/̂ , η(u) = x, there
would be two paths covering the radial line from x to xQ: one from u to ut and
another from u to w,. This contradicts Theorem 2.2.

It is just as easy to see that U i Ut = η~\B) since if u € η~\B), η{ύ) = x, the
radial line from x to x0 lifts to a path from x to some x5 6 ^"X^o)- Reversing
these paths we see that by definition we Uj.

Now there exists an open neighborhood Vt of ui in N\Γ such that 3y: F^ —>
is a diίfeomorphism, and without loss of generality we may suppose that
= Bt is an open ball, centre x09 radius pt < p. Clearly Vt C Ut so Ut is

a neighborhood of ut. We define a map β^: Vt -> C/̂  by first projecting to ^
then dilating ^ to B and then lifting to Ut as in the diagram

Bi > B

where the dilation Bt -> B is given by x ^ χ0 + (plpτ)(x — xo) We show that
0* is the restriction of a diίfeomorphism η~\B*) -> ^"X^*), and hence Ui is
open and the theorem is proved.

To construct this diίfeomorphism we take the radial vector field on B. In
fact it is convenient to extend it to a vector field on B* defined by

x -> (x, μ(\\x - xo\\)(x - x0))
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where μ: R —> R is given by μ(r) = 1 if r < p and μ(r) = (p* — r)j(p* — ̂ o) if
r> p. We lift this vector field to η~ι(B*) and consider its maximal flow. It is
easy to deduce from Theorem 2.2 that this is complete, in other words, it is a
map F: η'\B*) X R -• J ? " 1 ^ * ) . By the properties of flows if Ft(w) = F(w, t)
then for any t z R, Ft: -η~ι{B*) —> ̂ ( U * ) is a diίfeomorphism. A straightfor-
ward calculation shows that Θt is the restriction of Ft where t = log p/^. This
finishes the proof.

Of course N\Γ is not in general connected, and ^ will be a covering when
restricted to any connected component of N\Γ. Note that the index is a con-
tinuous function on N\Γ taking only integer values. So to each of the con-
nected components of N\Γ there is associated a fixed index which is an integer
k, 0 < k < m.

Let U be a connected component of N\Γ with maximal index k (if M i s
compact k = m but this need not be true in general). We may as well assume
k > 0, otherwise Γ — 0 and /(M) must be just a hyperplane. Then since the
zero section of N has index 0, U does not intersect this zero section.

Theorem 2.4. Let U be a connected component of N\Γ with maximal index,
then the closure of U in N is homeomorphίc to dU X [1, oo), anddU is connected.

Proof Observe that Ό Π Γ = dU. In fact, if (/?, v) e U there exist a unique
τ, 0 < τ < 1, such that (p, τv) € .Γ and (p, sv) e U if and only if τ < s. Fur-
ther the map σ: U -> R, defined by σ(p, v) = τ, is continuous. Essentially this
is because 1/τ is defined as the smallest positive eigenvalue of a certain matrix
(associated with the second fundamental form, see [6]), and this matrix varies
continuously with (/?, v) e N. Also if (/?, v) € U this minimum eigenvalue is
never zero and so also varies continuously with (/?, v). We deduce that σ is con-
tinuous, and a homeomorphism φ:U -^ dU X [I, oo)is given by φ(p, v) =
((/?, rv), 1/τ) where τ = σ(p, v\

Since £/ is connected, so is U, and hence so is dU.
Theorem 2.5. η(dU) = η(Γ) and η(Γ) is connected.
Proof. Suppose x e η(Γ) and let p be a minimum for the distance function

Lx. Define a path ?-:/-> 2Γ by γ{s) = (1 - *)/(/?) + JX. Since 27-1 o η{Γ) = Γ
the Morse index theorem tells us that γ(s) € Rn\η(Γ) if s e [0, 1).

Take a point-(/?0, v0) e U with ^(/?0, v0) = /(/?); such a point exists since η: U
-+Rn\η(Γ) is a covering. Then we can lift γ: [0, l)-^i?w\37(Γ) to a path f: [0, 1)
—• £/. We then apply the method in Theorem 2.2 to show that there exists

• 6(0,1)
{Ks):se(e,l)}c:U

such that η(pί9 vλ) = γ(l) = x. Since x e η(Γ\ (pl9 v 1 ) s Γ Π ί / = dU. Hence

φU) = V(Γ).

Since 3C/ is connected it follows that η(Γ) is connected.
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3. Hypersurfaces

Now let us consider the case when the embedding / i s of codimension 1.
Thus n = m + 1, f(M) separates Rn, M must be orientable and the normal
bundle is trivial.

The aim in this section is to prove the following:
Theorem 3.1. Let f: M-^Rn be a totally focal embedding with codimension 1.

Then f(M) is a convex hypersurface, that is, the boundary of an open convex set
in Rn.

The proof is given by Lemmas 3.2-3.4.
Let us change our notation somewhat and identify TV with M X R. We can

do this by choosing a field of unit normals n: M —• Rn (we write np for the
image of p). Then (p, t) e M X R is identified with (p, tnp) e N in the last sec-
tion. We can thus write η(p, t) = f(p) + tnp, if necessary.

As in the previous section we let U be a connected component of N\Γ with
maximal index k > 0. We may as well assume that if (p, t) e U then t > 0.
We let W+, W~ be the two connected components of Rn\f(M) (labelled arbi-
trarily).

Lemma 3.2. One of the two sets W+ or W~ does not intersect η(Γ). Further,
supposing W~ Π η{Γ) = 0 then U Π η~\W+) is connected.

Proof. From Theorem 2.5, η(Γ) is connected, and from Theorem 2.1, η(Γ)
C W+ n W~. Hence, since W+ Π W~ = 0, η(Γ) is contained in ^ + or W~.
We assume ^(Γ) c W+.

Let us write U+ = U Π 3y"1(FF+) and C/- = £/ Π ^ ( J F " ) .

We construct a continuous function a\dJJ^ R such that if (p,τ) z dU then

<*O> r) > ^?

 a n d (,P? 0 s U+ for all ί, r < / < a(p, τ).
To show that this can be done we observe that if we define v(p, τ) = τ and

μ(p, τ) = inf{t: (p, t) e U~} for all (/?, τ) e dU, then ^(/?, τ) < μ(p, τ). Now
μ'.dU-^ R is a lower-semicontinuous function and v: dU-+ R is continuous.
Moreover d£/ is σ-compact, so there exists a continuous function a: dU —> i?
such that y(/?, r) < αr(/?, r) < μ(/>, τ) for all (p, τ) z dU, (see also [7, Ex. 21B]).
Then since U+ Π C/" = 0, and C/+ U £/" = J7, α has the required property.

Now since d£/ is connected (Theorem 2.4), so is the "collar" C = {(/?, t): τ
< ί < a(p, τ), (/?, τ) € dU} C C/+. Also dU d C. Further we showed in the
same theorem that U is homeomorphic to dU X [1, oo). Under the homeomor-
phism, dU U C maps into an open set containing dU X {1} and hence dU U C
is an open set in £/ containing dU. So any component of U+ whose closure
intersects dU must intersect C, and this component must contain C since C C
C/+ and is connected.

On the other hand, if t/0
+ is any connected component of U+, then η(U£) =

W+\η(Γ) since η: U^Rn\η(Γ) is a covering,. Now consider the way in which
a point (pl9 ^ e Γ ί l E7 was chosen in Theorem 2.5. The path γ defined there
lies in W+ if s e (0, 1], and so the same method shows that we can find (pl9 vj



TOTALLY FOCAL EMBEDDINGS 257

€ Γ Π U£, and hence ί/0

+ intersects dU. It follows that C C £/0

+. Hence there
is only one connected component of U+. This proves the lemma.

Lemma 3.3. If μ: X —> Rn\η(Γ) is a covering where X is connected, then
μ-ι(W+\η(Γ)) is connected.

Proof We use the notation of Lemma 3.2. Consider the following com-
mutative diagram of the fundamental groups and the induced homomorphisms,
where ί and / are inclusions:

^ πλ(U)

I ,

Since η: U^Rn\η(Γ) is a covering, the fact that U+ is connected (Lemma 3.2)
is equivalent to saying that im (/*) meets every coset of im (η*) in 7τ1(i?

7Z\^(JΓ)),
[5]. Also the fact that the collar C c U+ is a strong deformation of £/ implies
that j * is onto. Then a simple algebraic argument shows that z* must be onto.
Applying the same argument in reverse to the corresponding diagram with η
replaced by μ we obtain the required result.

Lemma 3.4. W+ is convex.
Proof Let V denote the connected component of N\Γ which contains the

zero section. So Fhas index 0. Put V+ = V f] η'\W+\ V~ = V Π η~\W~).
As before η: V->Rn\η(Γ) is a covering and so by Lemma 3.3, F + is connected.
But F + Π v'ιof(M) = 0, so in particular V+ Π (M X {0}) = 0. Hence either
V+ C M X (0, oo) or V+ c M X (— oo, 0). Without loss of generality we sup-
pose that V+ a M x (0, oo).

Now since η(Γ) C ^ + and a F C Γ, dV~ f] dV = 0. Hence dV C 5 F + C
M X [0, oo). Thus, since we certainly cannot have V c M X [0, oo), we must
have M X (— oo, 0) C V~. In fact, this means that M X (— oo, 0) is a con-
nected component of F~ since the zero section does not meet V~. Note also
that η~ι o/(AΓ) C M X [0, oo). This shows that M X (— oo, 0] is a connected
component in Vof ^ ( f F " U /(M)), and so η\ M X ( - oo, 0] -> ^F" U f(M)
is a covering. But f(M) is covered just once (i.e., by the zero section), and so
this covering is in fact a homeomorphism.

Now take any p e M. Consider x <= η(p, t) where t < 0. We will show that
Lx has a unique absolute minimum at p. Observe that (p, t) e V~ and s o x e
W~. Suppose that Lx has an absolute minimum at pf so that x = ??(//, ί7) for
some /'. Clearly no point η(p', s) with s between 0 and tf can belong to f(M)
so τ](p\ s) e W~9 and hence (p\ s) € F", for all s between 0 and t'. But for s
sufficiently small this implies s < 0. Hence tf < 0. Since ^ is a homeomorphism
on M X (— oo, 0], x = η(p, t) = η(p\ tf) impliesp = p'. Thusp is the unique
absolute minimum of Lx. This means that f(M) lies outside every open ball
with boundary touching f(M) at f(p) and centre η(p, t) for some t < 0. We
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deduce that, for any p e M, f(M) lies on one side of the tangent hyperplane at
f(p). Hence/(M) is the boundary of a convex set which must be W+.

This completes the proof of Theorem 3.1. The classification theorem is now
reduced to classifying totally focal convex hyper surf aces.

The convex hypersurfaces, i.e., the boundaries of convex sets in finite dimen-
sional Euclidean spaces, have been classified [1]. There are two basic types;
these are given by embeddings (i) f: Sn~ι -> 2?nand (ii) f2: Rnl -> Rn where
f2{Rn~ι) does not contain any (complete) straight line. The others are given by
product embeddings; either/; X 1: Sn~ι X Rd -• Rn X Rd or/ 2 X 1: Rnl X
Rd->RnX Rd, or just the inclusion Rnl^Rn as a flat hyperplane. Of course
these are only classified up to Euclidean transformations of Rn.

By Proposition 1.2 this reduces our problem to considering the totally focal
convex hypersurfaces fx\ Sn~ι -• Rn and/ 2 : Rnl -• Rn.

4. Special cases

Theorem 4.1. Letf: Sn~ι -> Rn be a totally focal embedding, then η(Γ) con-
sists of a single point xoe Rn.

Proof We put M = Sn~1 and use the notation of § 3. If p e M, then the
normal line {η(p, t): t e R} through p must intersect f(M) in precisely two
points, since/(Af) = dW+ and W+ is convex. This means that η~ι °f(M) con-
sists of the zero section and some other cross-section in M X (0, oo). This in
turn implies that η~ι(W+) is homeomorphic to Af X (0, 1), and η~\W~) is ho-
meomorphic to M X [(— oo? 0) U (1, oo)].

Now since M is compact the distance function Lx for any x € W~ must have
a critical point of index 0 and a critical point of index (n — 1). But η~\W~)
only has two connected components and η~ι(W~) C N\Γ, so we can say that
one of these, V~, has index 0 and the other must have index (n — 1). Since
every connected component of N\Γ intersects Ύ]~\W~), this means that N\Γ
has just two components, one with index 0, and the other with index (n — 1).

The Morse index theorem then enables us to deduce that each point p e M
is an umbilic and the result is then well-known if n > 2 [4, Vol. II]. For the
case n = 2 we need to use more of the information available and in fact the
method we use will prove the result in general anyway.

We have already shown that η: V~ -> W~ is a homeomorphism, so the con-
nected component of N\Γ with index 0 must cover Rn\η(Γ) just once. Hence
for every x e Rn\η(Γ) the distance function Lx has just one minimum and at
least one maximum, but no other critical points. But in this case the Morse in-
equalities show that Lx must have just one maximum also. Now take any p €
M, and then there exists a unique t0 > 0 with (p, t0) <= Γ. Let x0 = η(p, t0), and
z = f(p) — x0. Then p is the unique minimum of Lx if x = xQ + sz9 s > 0. So

f(M) C {x: | |* - x0 - sz\\ > (1 - s) \\z\\, s > 0} ,
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and it is the unique maximum of Lx if x = xQ + sz, s < 0. So f(M) c {x:
||JC - χ0 - jzll < (1 - s) \\z\\, s < 0}. We deduce that/(M) = {x: \\x - xo[| =
||z||}, and then y(Γ) = {x0}.

Note that we have in fact shown that embedding is taut [2]. Notice also that
the conclusion η(Γ) is z single point just says that f(M) is a "round" sphere.

Theorem 4.2. There does not exist α totally focal embedding f: Rnl —• R71

such thatf(Rn~ι) does not contain a straight line.
Proof. Suppose otherwise. We put M = Rnl and use the notation of § 3

so that W+ is convex but f(M) = dW+ does not contain a line. This means
that W+ contains at least one half-line but no lines.

We require the notion of the characteristic cone [1] C of W+. This is defined
as follows: we take any point x <= W+ and defines y <= C if and only if x + ty
e W+ for all t > 0. It is known that C does not depend o n x e W+ and is a

closed convex cone. In our case C is nonempty and pointed. This means that
there exists at least one supporting hyperplane for C which intersects only at the
origin.

We define another cone D associated with C, by putting z e D if and only if
<y, z) > 0 for all y € C, y Φ 0. Clearly D is an open convex cone and, since C
is pointed, it is nonempty.

Note that the closure of D is defined by z € D if and only if < j , z> > 0, for
all yeC.Ύo see this observe that if ζy, z> > 0 and zf e D so that <>, z'> > 0
for all y <= C, y φ 0, then (1 - t)z + tz' a D for all t, 0 < ί < 1.

We claim that C Π D Φ 0. Suppose not, then, by the Hahn-Banach theorem,
since D is open we can separate C and D by a hyperplane which must go
through the origin. More precisely we can find w Φ 0 (the normal to the hy-
perplane) such that (w, Ϋ) > 0 far all y e C and <w, z> < 0 for all z e D. But
this means that w e D, wφO and <w, z) < 0 for all z e D, which is impossible.

The next step is to show that there exists a pointp o e M such that η~ιof(p0)
is a single point. In other words only one normal line passes through f(pQ).
Choose z e C Π D with | |z| | = 1. The idea is to show that z e D implies that
there is some point po€ M with nPo = z, and z & C implies that for any q e M,
j(q) + z e W+. From this we deduce that no other normal line passes through

f(Pol
Consider the height function φ: M —> R given by φ(p) = <z,/(/?)>. Suppose

x0 € W+ and consider the hyperplane H = {x: <(z, x> = <z, xo>}. The intersec-
tion H Π W+ is convex, relatively open in H, and contains no half-lines since
z € D. Hence H Π W+ is homeomorphic to a closed (« — l)-ball in H. This
means that the boundary of H Γl W+ in /f, which is the level curve {p e M: 0(;?)
= <z, xo>}, is homeomorphic to an (n — 2)-sphere in M = Rn~\ Hence φ must
have a maximum or minimum point p0 e M. In fact nPQ = z, and φ has an ab-
solute minimum at p0.

We now claim that there is no other normal through po; in other words
η(q9 t) = f(p0) implies t = 0 and thus q = p0. Suppose that η(q, t) = f{q) +
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inq = Λpo). Then 0 < φ(q) - φ(p0) < (zj{q) - f(po)> = - t<z, nq}. Further,
equality would imply that the tangent planes at p0 and q were identical and so
z = nq. In particular this means (z, n9> Φ 0. But z € C and f(q) + C C W+

and the tangent hyperplane at / (#) supports W+ so <#ιQ, z> > 0. Hence ί < 0.
But also/Oo) <= ΪF + so 0 < ζnq,f(p0) — f(q)} = t. Hence f = 0 as required.

Thus η~ι of(pQ) is a single point. This means that η: N\Γ -• Rn\η(Γ) is a
homeomorphism and so TV \Γ is connected. Hence Γ = 0 and/fT?7*"1) is a flat
hyperplane. This contradicts the hypothesis that f(Rn~ι) does not contain a
straight line.

We have now completed the proof of the classification theorem stated in the
introduction, § 1, of this paper, apart from the trivial observation that the in-
clusion Rnl c Rn as a flat hyperplane is totally focal.

5. Taut and totally focal embeddings

The classification of totally focal embeddings with higher codimension re-
quires further study. One might conjecture that they must be products of the
embeddings given above. However the Mδbius band has a totally focal embed-
ding in R\ Such an embedding can be obtained by taking the embedding of
the real projective plane as a Veronese surface lying on the sphere 5 4 a R5 and
using a stereographic projection from a point in the image of the projective
plane. This embedding is taut (see [2]) and is an example of a more general re-
sult given in Theorem 5.2 below. For this theorem we require the following
general lemma.

Lemma 5.1. Let f:M—>Rn be an immersion and let x e Rn, p e U c M
where U is a neighborhood of p. Suppose that p is the only critical point of the
distance function Lx: M —• R which lies in U, and that it is nondegenerate with
index k. Then there exists a neighborhood E of x in Rn such that ifyzE, then
Ly has a nondegenerate critical point q e U which has index k.

This lemma was proved in [2]. It is a weak version of Lemma 3.1 in [2]. In
fact this Lemma 3.1 as it stands is incorrect although the given proof is valid
for Lemma 5.1 above, which was all that was needed in the theorems of [2].
The stronger version of this lemma in which q is unique can be proved provided
that U is compact.

Theorem 5.2. Let f:M-*Rn be a taut embedding of a connected manifold
where Hr(M; Z) = Z for some r > 0 and Ht{M\ Z) = 0 if i Φ 0, r. Thenf is
totally focal.

Proof. Observe that, by hypothesis, any nondegenerate distance function
Ly, y € Rn, has precisely two critical points, one with index 0 and one with in-
dex r.

Now suppose that / i s not totally focal so that there exists x e Rn such that
Lx has both a degenerate critical point p and a nondegenerate critical point q
of index k, say.
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Let U, Vbe disjoint open sets in M with/? e U, q e V. Applying Lemma 5.1
we can find an open set E C Rn with x z E such that if y e E, then Ly has a
nondegenerate critical point of index k in V. We can find y e E, lying on the
line segment joining /(/?) to x. Then p is a nondegenerate critical point of Ly

with index /, say. Again applying Lemma 5.1 we find an open set Ef C Rn with
y € Ef such that if z e £ ' , then L2 has a nondegenerate critical point in U with
index /. We can choose z e E Π £ ' so that L2 is nondegenerate. Then Lz has
only two critical points which must be of index 0 and r. Hence k = r, I = 0 or
k = 0,l=r.

Using a similar argument, but choosing y e E, lying on the extension of the
line joining /(/?) to x, so that/? is a nondegenerate critical point of Ly with in-
dex /' > /, we can find z e Rn such that Lz is nondegenerate and has a critical
point in F with index k and another in U with index // > /. We deduce Γ = 0,
k = r or /' = r and A: = 0 which contradicts the above.

Hence no such point x exists and thus the embedding is totally focal.
Note that this result only gives more information about totally focal embedd-

ings if 2r < dim M < n — 1 since otherwise we could apply Theorem 3.10 of
[2] to deduce that / is essentially one of the embeddings already described in
the classification theorem.

Note also that it makes sense to consider totally focal immersions but again
some details need further investigation. However one would conjecture that
these must be just covering projections combined with totally focal embeddings.
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