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INTEGRAL INVARIANTS OF CONVEX CONES

SALVADOR GIGENA

Introduction

Let E be an (n + l)-dimensional real vector space, E* its dual space,' K a
convex nondegenerate pointed cone in E, and K* the dual cone in £ * . It is our
main purpose to study geometric objects in K (and K*) from the viewpoint of
invariance under transformations of the general linear group GL(n + 1, R),
and of the unimodular group SL(n + 1, R). So, this matter will occupy most
of the present work. However, since there is a natural correspondence between
flat bounded cross-sections of (n + l)-dimensional convex cones and rc-dimen-
sional convex bodies, our first chapter will be somehow diverse from that main
object.

More precisely, if B is a convex body with nonempty interior, relative to an
^-dimensional affine space F, we can imbed F in E as a hyperplane not passing
through the origin and define a convex nondegenerate pointed cone in E by

K(B) = [λX:XeB,λ > 0} .

Conversely, given E, E*, K and K* as above, for each nonzero 2£ e £ * we can
define a hyperplane Px C E by

Pv Π K is a convex body with nonempty interior, relative to the ̂ -dimensional
affine space P& if and only if 2£ e Int (K*). This correspondence suggests a con-
nection between geometrical properties of (n + l)-dimensional convex cones
and those of ^-dimensional convex bodies.

In § 1 we study a class of real valued functionals on the set of convex bodies
with nonempty interior, relative to an ^-dimensional affine space F; these func-
tionals will be invariant under the action of the group AGL(n, R) of all affine
transformations as acting on F, and one of them, which we shall call the mean
square fractional volume, will play a fundamental role in the sections which
follow.

The volume of truncated cones in K can be expressed in a natural way by
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means of a function defined on Int (K*). The properties of this volume func-
tion Vffi) are discussed in § 2. In particular it is shown that V {&) is analytic,
convex, positively homogeneous of degree — n — 1, and infinite at the bound-
ary.

In § 3 we show that Int (K*) and Int (K) are analytically diίfeomorphic in a
canonical way. This realizes, for each c > 0, the identification as abstract
manifolds of the level hypersurface M* of V{2£\ in K*, with its "dual" hyper-
surface Mc d K, which is characterized as being the envelope of the hyperplanes
Px as 3£ ranges over Mf. We shall call Mc the constant volume envelope of
hyperplanes relative to the cone K with volume equal to c. Some general prop-
erties of Mc are also discussed in this section.

For each &c e Λf *, let us call Xc e Mc the corresponding element under the
above identification. We show in § 4 that the quadratic form «3ΓC d2Xc =
— d&c-dXc = d2&c-Xc is positive definite as 2£c ranges over Mc*, and hence
it defines a natural Riemannian structure on M* (or Mc). As hypersurfaces
immersed in the (aίfine) spaces E and is * respectively, Mc and M* can also be
equiped with the so called Berwald-Blaschke Riemannian metric, denoted by
dsB and ds2

B*. In addition to relating these metrics, we also compare their vol-
ume elements to two more volume elements induced by the immersions of Mc

and M* in the vector spaces E and E*. Furthermore, we extend the compar-
ison to the Laplace-Beltrami operators, and prescribe a suitable condition for
the manifolds (Mc, ds2

B) and (M*, ds%*) to be affine hyper spheres.

The mean square fractional volume for a convex body, mentioned above,
leads to the concept of the volume ratio function of a convex cone, defined on
Int (K*) (or Int (K)). All of the relations mentioned in the previous paragraph
are expressed in terms of this function, which we shall denote by ρκ. In § 5 we
show that the asymptotic behaviour of pκ(X), as X approaches infinity in the
direction of any ray in the boundary of K9 depends only on the local behavior
of the boundary of K near that ray.

The author is indebted to Professor Eugenio Calabi for suggesting the
problem, and for providing time and effort in many fruitful discussions during
the preparation of this paper, which was presented as his doctoral dissertation
at the University of Pennsylvania.

1. Affine invariant functionals of convex bodies

The subject matter of this section originates historically with a problem by
J. J. Sylvester, to which a first solution was given by M. W. Crofton. Our treat-
ment has been inspired by the work of Blaschke in the plane (cf. [1]), who uses
the generalization of a lemma by Carleman (cf. [2]) :

Let Fbe an ^-dimensional real vector space. If we choose a nonzero «-covec-
tor Δ e Λn(F*), then the (J)-volume of the parallelepiped
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X: X = Xo + Σ ri(Xi - Xo), 0 < rt < l]
i

will be denoted by

\[XX - X09 , Xn - Xo]\ = \Δ(XX -X0,...,Xn- Xo)\ ,

and if X: Rn —• F is an affine coordinate map, the volume element associated
with X, relative to J, will be denoted by

o)χ = [dX, dX, , dX] ,
n\

where [ ] denotes a determinant.
Let S3 be the set of convex bodies with nonempty interior relative to F. For

B € S3, we denote by V(B) the volume of B, and by <X0, Xl9 - -, Xn}B the
(absolute) fractional volume of the simplex with vertices Xo, , Xn9 with re-
spect to B:

<X0, Xlf -..,XnyB = - i - I K - X09 . , Xn - X,W(B) .
n\

We define the following class of real valued functional on 83: if / e i^[0'1] is
any integrable, real valued function defined on the closed unit interval, the
functional μf: S3 -> R is defined to be the average value of f((X0, , X^B) on
B, i.e.,

μf{B) = (V(B))—' f / « Z 0 , , XnyB)ωXo X X ωXn .
J.BW + 1

It is clear that the functional μf is invariant under the group AGL(n, R) of
all affine transformations as acting on F. This fact makes μf independent of the
choice of the nonzero element Δ e An{F*).

We shall denote by % C Rί0A1 the subset of those functions which are strictly
monotone increasing. In the special case where/is defined by/(/) = t2, we shall
denote μf by μ and call it the mean square fractional volume. In the following
sections we find some geometrical applications for this particular functional μ.

For the time being, we concentrate our attention to the subclass of func-
tionals indexed by the set ^ and state the following two propositions:

Proposition 1.1. For any function fe $, the functional μf has a greatest
lower bound μf > /(0), which is attained only in the case where the boundary of
B is an ellipsoid.

Proposition 1.2. For any function f z $, the functional μf has a least upper
bound μf < / ( I ) ; when n = 2 this bound is attained only in the case where B is
a nondegenerate simplex (i.e., a triangle).
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We shall preface the proof of the above propositions by some remarks and
a couple of lemmas.

Let S be an affine line in F. We choose an affine coordinate system in F so
as to have S as one of the axes, and call s the corresponding coordinate func-
tion. Let SQ, Slt - , Sn be straight line segments in F parallel to S, m the
midpoint of each Si9 and st the restrictions of the coordinate function s to the
affine line containing St.

For any strictly monotone increasing function g: R+ -> i^ we define

Jg(XQ; Su , Sn) = f f g«X0, Xl9 ,Xny)dSι X . X dsn ,
J Si J Sn

where

\X0, Xl9 , Xn/ = ——I [Xι Xo, - , Xn Xo] I
n\

denotes the (absolute) volume of the simplex with vertices X09 Xl9 , Xn.
We want to study the variations of the above integral when XQ ranges over

any affine line parallel to S. Obviously, if ml9 m2, , mn are all contained in a
hyperplane parallel to S (including the case where they may lie in an affine
subspace of dimension strictly less than n — 1), Jg(X0; Sl9 , Sn) is constant
with respect to Xo. In fact, in this case (Xo, Xl9 , Xny is in itself constant
with respect to the variation of XQ9 for any choice of the remaining X/s. How-
ever, if ml9 m29 , mn actually determine a hyperplane M transversal to S, the
value of Jg(X0 Sl9 , Sn) depends on the absolute value of the difference in
^-coordinates between Xo and its projection on M, parallel to S. More precisely,
calling Ao this projection and assuming that M is characterized as

M= {X:XeF9s(X) - 0} ,

we have
Lemma 1.3. Within the above conditions, Jg(XQ; Sl9 -- 9Sn) is a strictly

monotone increasing function of\s(X0)\.

Proof. First, we observe that by extending g to be an even function, i.e.,
by defining g: R-^ R, go(t) = g(\ 11), we can write

= ί * * * ί U^Aχi -Xo, -,Xn- ^j)ds1 X X dsn .
J Si J Sn \ HI /

Next, calling Ax the point on the affine line passing through AQ, parallel to S,
such that s(Ad = 1, and writing
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Xo = Ao + s(X0)(Aι - A,) ,

Xt = nti + s{Xύ(Ax - Ao) , i = 1, , n ,

we have

_J_ΪY y Y vi

where

a0 = — A m , - A,, m2 — Al9 , mn - A,] ,
n\

/γ ΓMΛ A TΛ>| A A Λ Ί/Vt Λ Wl A I

/ = 1, , 7 2 .

The conditions prescribed assure that a0 is always different from zero. Let us
assume, for the time being, that all of the remaining a^s are also nonzero.
Then, denoting by Zί9 Z^ the endpoints of each segment Si9 such that

bt = s(Zt) > s(Zτ) = — bt ,

we define inductively the following set of functions: g0 as above,

Gt:R->R, byGί(x)= Γ gt(t)dt , ί = 0, 1, , n - 1 ,
Jo

gt: R -> R, by gt(x) = — {G^x + αA) - G^x - aφ,)} ,

i = 1, -,n .

All of the functions g/s have the two leading properties of gQ, namely, all are
even, and, for each z, the restriction of gi to R+ is strictly monotone increasing.
Therefore, since Jg(X0', Sl9 , Sn) = gn(aos(Xo)), the lemma would be proved.
Finally, if for some i Φ 0, the corresponding at = 0, (let us observe, though,
that not all of them can be zero), for that particular / we put, instead of the
above,

gt(x) = Ibigi^x) ,

and proceed to the next inductive step. This concludes the proof of the lemma.
With the same notation as above, let SO be another straight line segment also

parallel to S, and m0 its midpoint. Let us define now
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It(S0, . , S n ) = f . . . f g«X0, . . , Xn})ds0 X . . . Xdsn
JSo JSn

We shall study the variation of the above integral in the case where the seg-
ments Sl9 S2, - , Sn are kept fixed, while *S0 is translated parallel to itself
along the affine line in which it is contained, i.e., the relative rigid displace-
ments of So, parallel to S, with respect to the remaining S/s.

Lemma 1.4. If the points m1? m2, , mn determine an affine hyperplane M,
transversal to S, then Ig(S09 Sl9 , Sn) is a strictly monotone increasing function
of\s(m0)\.

Proof We can assume, without loss of generality, that s(m0) > 0. Then,
with h > 0, we call hSQ the segment obtained by translating SQ parallel to itself
along the aίBne line in which it is contained, h units in the positive direction.
Let Zo, Z o be the endpoints of SO, such that s(Z0) > s(ZQ), and hZ0, hZ0 be the
corresponding endpoints of hS0. If for each point Xo in the segment Zo, Λ Z 0 ,
we call X£ the point in the segment Zo, ̂ Zo such that s(X0) — S(XQ) = s(Z0) —
^(Zo), then obviously

\s(X0)\> \s(X{)\,

equality holding only for Xo = Z o and for the special case where s(m0) = 0.
This together with Lemma 1.3 imply that

g

fs(hZo) rs(hZa)
Jg(X0; S,, • • •, Sn)ds0 - - Je(X0; Slt • • •, Sn)ds0 > 0 ,

J S(-ZΌ) J s(Zp)

which concludes the proof of the lemma.
Proof of Proposition 1.1. Let S be an affine line in F, and H be any affine

hyperplane transversal to S. We assume that an affine coordinate system is de-
fined in F so as to have S as the last axis, the remaining axes being contained
in H. More precisely, let XQ be the point where S meets H, Xn be another point
in S different from Xθ9 and Xl9 - , Xn be points in H such that Xτ — Xo, ,
Xn — XQ are linearly independent. Then we define an affine coordinate map X:
Rn -• F by

X(μl9 -", un_λ, s) = X0 + s(Xn - Xo) +
i

The volume element associated with X is given by

ω χ = [X1-X09 . ,Xn- X0]duλ Λ Λ dun_λ A ds ,
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and we can without loss of generality normalize the constant factor in this equa-
tion, and also write

ωx = dH Λ ds

with

dH = dux Λ Λ dun_λ .

Let B € 33 be a convex body. If pH denotes the projection on H parallel to S,
and g, g: pH(B) —> R are suitable continuous functions, then we can character-
ized B as

B = {(7, s): YepH(B), g(Y) < s < g(Y)} .

If we symmetrize B in the sense of Steiner's respect to H, in the direction of S,
we obtain a convex body Bf e 33, which is g ven by

B' = {(Y, s): YspB{B\ i(g - g)(Y) < s < i(g - g)(Y)};

more descriptively, each affine line parallel to 5, intersecting B nontrivially,
determines a segment. Each of these segments is imagined to slide in such a
way that its center falls on H. The transformation B \-+ Bf is obviously volume-
preserving, and we can assume without loss of generallity that V(B) = V(B')
= 1. The affine invariant functional μf9 as applied to B and B\ can thus be
written

μf{B) = J ^ + / « ^ o , , Xn»ωXo X X ωXn ,

μf(B') = f / « J T 0 , , Xn))ωXo X ... XωZn.
J JB'ra + i

By using Fubini's theorem, we can also write

μf(B) = f dHoχ ... χdHn[ f(X09 .,Xn})ds0 X . . - χdsn9

μf(B') = f dHoχ ••• χdHπ

• ί /«^o, X , X X»y)dst X x dsn ,
JίS'l

where

[S]= U {(Yu& s(Yύ< s<
i = 0
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[S'] = f[ {(Y« s): i(g -
ί=o — —

Hence as a consequence of Lemma 1.4 we get that

μf{B) > μf{B>) .

The equality sign can hold only if B is affinely symmetric in the direction of S,
i.e., if the set

{(7, s): YzpH(B), s =

is contained in an affine hyperplane of F. Therefore μf(B) can be minimal only
if for every direction the centers of the corresponding set of parallel chords of
B lie on the same affine hyperplane, i.e., only if B is bounded by an ellipsoid.

In order to prove that the minimum is actually achieved, we use a suitable
sequence {Sj} of affine lines, and symmetrize successively B = BQ with respect
to suitable affine hyperplanes Hά so as to get a sequence {Bj} c S o f convex
bodies converging to an ellipsoidal convex body B^. Thus for a given ε > 0
there exists ay0 such that for every j > jQ

B^ C (1 + ε)Bj ,

which implies that for every j > j0

μf(BJ < ί /«JΓ0, ,Xn»ωXo X X ωXn ,
J ((l+e)β_7 )

ϊ ι + 1

where in the last integral we extend trivially, if necessary, the domain of defini-
tion of/by putting, for example,/(0 = /(I) for t > 1. But observing that the
right-hand side of the above inequality can be written as

X X ωXn ,
P "

where

[Bhp(e)] = ((1 + e)5, - Bj)' X

we find that for every 7 > j 0

This inequality, together with the fact that the sequence μf(Bj) is monotone
descreasing, concludes the proof of the proposition.
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As for proposition 1.2, the first part of the statement is fairly obvious. A
proof of the second part can be found in [1, § 25], while it is still an open ques-
tion to prove that the proposition is true with the restriction n = 2 removed.

In § 4, as an application of the differential geometric properties of the con-
stant volume envelopes, we shall compute the actual values of the mean square
fractional volume in two distinguished cases, namely, the minimum value
(achieved, as we have just proved, only by the interior of an ellipsoid), and in
the case of a nondegenerate simplex, which is conjectured to represent the maxi-
mum.

2. Convex cones: The volume function

Let E be an (n + l)-dimensional real vector space, and E* its dual space,
Unless specified otherwise, the elements of E will be denoted by capital
letters X9 Y, Z, , etc., and those of E* by script capital letters &,<&,
etc. The scalar product describing the duality between E and E* will be denoted
by a dot. Thus for S£ € E* and X e E the map (&, X) -+ & X is a bilinear
function from E* X E to the field of real numbers.

A subset K C E is called a convex cone if
(1) XeE,r>0 imply rX e K,
(2) X, 7e dimply X + Ye K.

The set defined by

K* = {&:$•<=: E*,&X> 0 for every X <z K)

is a closed convex cone in £*, called the dual cone of K. In using the qualifica-
tion "closed", for future reference we assume that E and £ * are provided with
their natural topologies as real vector spaces.

The convex cone K is said to be pointed if
(3) Int (K*) is nonempty (equivalently, K contains no affine line),

and to be nondegenerate if
(4) Int (K) is nonempty.

In what follows, those sets K satisfying conditions (1) through (4) will be called,
for brevity, convex cones.

Given a convex cone K, it is easy to see that Int (K*) is characterized by

Int (K*) = {9£\ % € E*9 %'X > 0 for every J e f - {0}} .

For each nonzero 2E e E* we define a hyperplane Px C E by

x has a nonempty intersection with Int (K) if and only if 9C e Int (£*). More-
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over, P# (Ί K is a convex body with nonempty interior relative to P^. Corres-
pondingly, the set defined by

is a convex body with nonempty interior in E. We shall call the sets of the
form KS9 for 9C € Int (#*), truncated cones.

The invariants of E under the action of SL{n + 1, R) are generated by a
nonzero exterior (n + l)-form D € Λn+1(E*), which we choose once and for
all; its absolute value represents an invariant measure under translations. In
the sequel we will abbreviate D(A0, Al9 , An) by denoting its value by [A09

Al9 -9An]. We also consider the corresponding dual (n + l)-fom D* in
Λn+ι(E), and similarly D*(s/09 , J&n)

is denoted by [s/θ9 , J / J and defined
by the equation

[s/Q, s/l9 - -, s/n]-[A09 Al9 , An] = det (j^< Aά) .

The choice of D induces in a natural way geometrically natural volume ele-
ments on certain immersed hypersurfaces in E. Let M be an ^-dimensional
abstract differentiable manifold, together with a differentiable immersion Y: M
—> E, then by writing the differential of the map in terms of local parameters
(tl9 , tn) as

dY = Σ diYφdti
i

we consider the «-form defined by

[7, (rfr)*] = [Y, dY, > 9dY] = nl [Y, d,Y, '9dnY]dtλ A Λ dtn .

The immersion is said to be radially transversal if [7, (dY)n] is uniformly non-
zero on M in this case the «-form

-L[Y, (dY)»]
n\

will be called the prismatic volume element of the immersion.
Let C/be a bounded connected open subset of Rn. An immersion Y: U —> E

is said to be cross-sectional to the convex cone K if it satisfies the following con-
ditions :

( i ) Y is of class C\
(ii) each ray in K meets Y(U) in exactly one point,
(iii) Y is radially transversal.
Given a convex cone K, the existence of such Y is obvious; for instance

Y(U) could be a properly chosen relative open subset of an affine hyperplane,
or a suitable subdomain of a euclidean hypersphere.
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Let % e Int (K*). If Y: U' -* E is cross-sectional to K, then so is

The latter map immerses U into the hyperplane Px = [X: 9£-X = 1}. Further-
more, we have

from which we deduce that if Z: K-+ £ is another such immersion, X <= Int (K*)
_ ^

and Z = , then

\ [F, (rfF)»] = f [Z, (dZ)»] ,

where we have denoted, by definition,

ί [7, (d7)«\ = f [?, (rfF)»],

and similarly for the right-hand side. From now on we shall omit the domain
of integration in the cases where there is no possibility of confusion. In every
instance integration shall be interpreted in the sense just defined.

The volume of the truncated cone Kx, for any X e Int (£*), can therefore
be written as

(2.1) v(&) = — - — ί [F, (dΎy\ = - ί [Y>(Jy)w] .
(n+ 1)! J V ; (n + 1); J (^ 7)-+1

The map V: Int (K*) -> R thus introduced is a real analytic function, positively
homogeneous of degree — n — 1, and will be called the volume function as-
sociated with the convex cone K.

We can get a second integral representation for V(3f) as follows :
Let X e Int (X*). Then taking A to be any element in E such that XΆφύ,

writing

λ ± 7= Y

ar-A ar-γ

and using the fact that Y is radially transversal, we have
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[A, (dT>»] = [F,

so that

Finally, it is also possible to represent the volume function by means of an
(n — l)-dimensional integral:

Since the (n - l)-form [A, Ϋ; (dΫy-1] satisfies

d([A, Y, («*?)»-']) = [A, (</?)»] ,

from Stoke's theorem it follows that

(2.3) V(30 = . * ,., ί
(ft + 1)! J+ 1)!

During the course of the present work we will need to use the volume func-
tion only as given by expressions (2.1) and (2.2), leaving (2.3) for possible future
use.

Proposition 2.1. The volume function V(&) tends + oo when 9£ approaches
any point on the boundary of K*.

Proof Let {&j} be a sequence of points in Int (K*) converging to the point
^ 0 on the boundary of K*. We have #*0 Y(m) > 0 for every point m on the
compact set Y~\K). So, if &0 = 0, the result follows at once from (2.1). Let
us assume next that <%Ό Φ 0. Then there exists a point A = Y(mQ) on the
boundary of K such that «T0 * A = 0, while ^ 0 Άm) > 0 for every Y(m) e Int (K).
Thus using this same A, and substituting ^ for 2£ in the right-hand side
member of (2.2), we prove the proposition since the integral is uniformly
bounded away from zero in terms of j for every ££j in a suitable neighborhood
of «T0, and (&j A) -+ 0 as &ά -> ^ 0

From now on we will need to use the following extensions of the scalar
product between E* and E to vector-valued and tensor valued products.

Let M be an abstract differentiate manifold, and 2£: M-* E* a differentiable

immersion. Write the differential of the map in terms of local coordinates (tl9

• , h) as

and put, for X e E,

dsε x=
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1 = Σ (dί%'X)(dj%; X)dti ® dtj ,

d22C -X = Σ (dίj^'X)dtί (x) dtj .

It is easy to check that these products are well defined. We go on to prove an
important differential property of the volume function.

Proposition 2.2. The volume function is a strongly convex function at each
point 2£ e Int (K*) in the sense that the quadratic form d2V is definite every-
where.

Proof Using one of the above definitions, from (2.1) we get that d2V{&) is
given in any affine coordinate system by

2 ) (dar ®d&)>[ Y® Y [Y, (dY)n] .
Y)n+3

nl ()

It is fairly obvious to observe that this quadratic form is definite at each SC e
Int (A:*).

Note. Since Int (K*) is a convex set, Proposition 2.2 implies, in particular,
that V is a strictly convex function. This latter property can also be obtained
independently from the same expression (2.1) by putting t = 3£Ύ and using

the fact that the function /1-> is strictly convex on the interval (0, oo).

3. Constant volume envelopes: General properties

As we pointed out in the previous section, for any 2£ € Int (A*), the affine
hyperplane P% = {X: 9C X = 1} intersects Kin a convex body with nonempty
interior relative to Px. There is a point in this hyperplane which should be of
particular geometrical interest in connection with our convex cone K, namely
the barycenter of the convex body Bx = Px Π K.

If for each & € Int (A*) we define

( i + 1)!

the barycenter of Bx is given by

= 1 f Y [Y, (dY)n] ,
( i + 1)! J (&.Y)n+2 V J j

Lemma 3.1. The map & —> X(2£) is an analytic dijfeomorphίsm from Int (K*)
onto Int (K). For each ££ e Int (K*)9 the hyperplane Px minimizes the volume
which it cuts out of K, among all hyper planes passing through X(3£).

Proof Since the volume function V (&) is analytic and uniformly positive



204 SALVADOR GIGENA

on Int (X*), it is obvious that both of the above maps X •-• Z{X) and X »->
X(X) are analytic functions. We also observe that both are positively homo-
geneous : the first of degree — n — 2, the second of degree — 1. Hence either
of them maps each ray in Int (K*) bijectively onto some ray in Int (K). From
the expression of Z(X) above we get

-dZ(X) = ( " + 2 ) dX ί Y ® Y [7, (dY)n] .
(n + 1)! J (χ.Y)n+*1

Thus the differential map of Z is definite, and it follows from the inverse
function theorem that Z is locally invertible. Since Int (X*) is a convex set,
the mean value theorem implies that Z is injective. This and the above men-
tioned homogeneity property imply that X is injective. To prove that X is onto,
we let A be a given point in Int (K), and consider the afϊine hyperplane in E*
defined by

PA = {X:XΆ = 1} .

By Proposition 2.2, the restriction of V(X) to the convex set PA Π Int (K*) is
a strictly convex function, and by Proposition 2.1 it tends to infinity when SC
approaches the boundary of this set. Hence it has a unique minimum at an
interior point. Let us call this point 2£A. Then by the Lagrange multipliers'
theorem it follows that

A =

This concludes the proof of the first part in the statement of the lemma. The
second part follows by observing, in the above proof of surjectivity, that as 2£
ranges over PA Π Int (K*) the set Px = {X: % X = 1} describes the family of
all hyperplanes passing through A and cutting out of K a truncated cone Kx,
and that the unique minimum volume is achieved precisely at the interior point
2CA such that X{&A) = A.

Before definitg what we shall call the constant volume envelopes of the con-
vex cone K, we will make a few remarks about the level hypersurfaces of the
volume function.

As we stated in the previous section, the volume function satisfies a homoge-
neity relation of degree — n = 1, that is, for any real number r > 0 and any
X e Int (tf *),

Hence by the implicit function theorem, for any fixed real number c > 0 the

set
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M* = {&: % 6 Int (K*), V(&) = c]

is a radially transversal, analytic hypersurface in £ * . From Proposition 2.2 it
follows that Mc* is a (strictly) convex hypersurface, in the classical sense of
being the boundary of a convex set in E*. Moreover, it will follow from the
implicit function theorem and Proposition 2.2 that Mf is a strongly convex
hypersurface, in the following sense:

Let M be an /z-dimensional differentiate manifold, and let 3t\ M —> E* be a
differentiate immersion of class C2 from M into the (affine) space £ * . We
consider the quadratic form [d2$t, {dStγ\ which in a local coordinate system
(tlf , tn) is defined by

ψθt, {0γ\ = Σ \$iβ> (dfr)n]dti (x) dtji
id

this definition is invariant both under changes of coordinates and under the
action of the unimodular affine group ASL(n + 1, R). Its geometrical interpre-
tation, that represents an affinely invariant analog of the second fundamental
form, is of importance. In particular, we will say that 3t (or 3t{M)) is strongly
convex at a given point m e M if [d23Γ, (d£Γ)] \.m is definite. In this case, there
exists a neighborhood U of m such that 3t(Ό — {m}) is interior to one of the
halfspaces determined by the tangent hyperplane to 3t{M) at #(m), in other
words, #(m) is an "elliptic" point, borrowing the term from classical theory of
surfaces in euclidean 3-space.

Let/: £ * —• R be a differentiate function of class C2, and let us assume/to
be strongly convex at a given, noncritical point 3Γ0 e E*. Then it follows from
the implicit function theorem that the level hypersurface

is strongly convex at 3£Q. Thus, in particular, for any fixed c > 0, the level
hypersurface of the volume function M*is a strongly convex hypersurface, by
Proposition 2.2.

The properties of M* which we have discussed insofar are enough to ensure
the existence of its "dual" hypersurface, a concept which we now define.

Let M be an ^-dimensional differentiate manifold, and 3t\ M -> E* a, radi-
ally transversal, differentiate immersion of class Ck, k > 1. For each m e. M>
we call X{m) the point in E defined by the conditions

St(m) X(m) = 1 , d§t(m) -X(m) = 0.

The existence of X(m) is guaranteed by the radial transversality of 9t. It is also
obvious that X(m) Φ 0 and that as m ranges over M the map X: M -> E is of
class Ck~ι\ in particular, the map X could be reduced to a constant: this is the
case when 3t{M) is contained in an affine hyperplane. We can avoid this trivial



206 SALVADOR GIGENA

case by prescribing strong convexity. Actually, something weaker is needed.
Lemma 3.2. Let 3t be of class Ck, & > 2, and let us assume that the bilinear

form [d2&', (d$t)n] is nondegenerate at some point and hence on a nonempty open
subset U C M. Then X\Ό\ U'—> E is a radially transversal, differentiably im-
mersed hypersurface in E, and the bilinear form [d2X, (dX)n] is uniformly non-
degenerate on U. In particular, if Sf is strongly convex, then so is X on the same
open subset of M.

Proof We observe first that the conditions

§t-X = 1 , dSt'X = 0

imply that 3t-dX = 0 and d2r X = - d& dX = 2t d2X. The latter bilinear
form is invariant under changes of coordinates and, unlike [d2&\ (d?t)n], it is
also invariant under the action of the general linear group GL(n + 1, R).
However, in the present case we can relate one to the other. In fact, since 3t is
radially transversal we can write the identiffication

which implies that

(3.1) [dΨ, {d§t)n\ - [#, (d&)n](d2ar X) .

Hence dS X is nondegenerate on the same set as [d2&, (d§t)n\. In a local co-
ordinate system (tl9 - , tn) let us write

and define a set of vector fields

{Z^Z^, . . . , ί n ) : ' " = 1

by requiring that at each point the set

{X,Z19 "-,Zn)

be the linear basis of E, dual to the basis of E*,

Therefore we can write the equations

3tX = -
3

[x,dλx, •••,dj] = ( - i ) n det ( g i 3 ) [x , , z 1 ; , z j
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(3.2) = ( _ 1 ) w detfe,)

This last implies that X\υ: £/—• E is rdially transversal. Finally, by considering

the relation dual to (3.1)

(3.3) [d2X, (dX)n] = [X, {dXγ\{3t d2X) ,

we get that the bilinear form [d2X, (dX)n] is nondegenerate on U. The last part
in the statement of the lemma is now obvious.

If the conditions prescribed in the preceding lemma are satisfied, we shall call
X(U) the dual hyper surface of #(£/). We observe that, for each m e U, the
hyperplane tangent to X{U) at X(m) coincides with P^(m) = {X: 3t(πί) X = 1},
hence X(U) could also be described as the envelope of the set of hyperplanes
Pχ{m) f° r m ranging over U.

We shall denote by Me the dual hypersurface of Mf, that is, the envelope of
hyperplanes Px as 2£ ranges over the level hypersurface of the volume function
Mf. Mc will be called the constant volume envelope of hyperplanes relative to
the convex cone K, corresponding to the positive real number c.

Theorem 3.3. The constant volume envelope Mc is a real analytic convex and
strongly convex hypersurface in E asymptotic to the boundary of K at infinity,
and is canonίcally dijfeomorphic to Mf: let &c •-• Xc denote the natural corres-
pondence Mf -» Mc. As 2£c ranges over Mf, the corresponding point Xc is the
center of gravity of the n-dimensional convex body B^c = P^c Π K. The hyper-
plane PgC minimizes the volume which it cuts out of K, among all hyperplanes
through Xc.

Proof Let X: Int (K*) —> Int (K) be the analytic diffeomorphism of Lem-
ma 3.1. As Sec ranges over Mf, the restriction of X to Mf sends &c »-> X{βc),
and this ranges over the analytic hypersurface X{Mf) c Int (K). From the
identity V(&c) = c we get that d&c X(&c) = 0, and it is also obvious that
&C'X(&C) = 1. Therefore the hypersurface

X(Mf) = Mc

is the constant volume envelope of the convex cone K corresponding to the
positive real number c. From now on we shall call X(J%C) = Xc. Thus the map
&c ι-> Xc is a canonical diffeomorphism from Mf onto Mc. Most of the state-
ment of the theorem is now an immediate consequence of Lemmas 3.1 and 3.2.
We show next that Mc is convex in the classical sense: let Ac be a fixed point
on MC9 and j / c the corresponding point on Mf. As &c ranges over Mf the

age
point — ranges over PAc Γ) Int (K*) and, as in the proof of Lemma 3.1,

the volume function restricted to this set attaches a unique minimum precisely
at s/c, i.e.,
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= c 9

the equality sign holding only for &c = stfc. Hence, since Fis positively homo-
geneous of degree — n — 1, and F(«TC) = c for every &c e M*, we get that

&CΆC > 1 , for every 9£c e M* ,

with equality holding only for %?c = s/c. Therefore Mc is contained in the con-
vex set

Mc = {X: %c X > 1, for every &c <= M*} ,

and a standard continuity argument shows that Mc is precisely the boundary of
Mc.

Finally, we prove that Mc is asymptotic to the boundary of K in the sense
that there exists no affine ray totally contained in Int (K) — Mc. In fact, let us

assume that there is a ray AB = {A + rB: r > 0} C Int (K) — Me9 and con-
sider the cone Q defined by

Q = {A + r(X - A): r < 0, Xz Mc} .

Tt is obvious that Int (Q) Π Int (K) = 0. Hence, if H is an affine hyperplane

transversal to AB passing through A and such that H Π Int (Q) = 0, we can
choose n points Alf , An <= H f] Int (K) such that [Aλ — A, , An — A, B]
> 0. On the other hand, if for each r > 0 we call Tr the hyperplane tangent to

Mc at the point where the ray 0, A + rB meets Mc and Kr, the corresponding

truncated cone, it follows that Tr meets AB at a point A + sB such that s > r
(otherwise Kr would be unbounded). Thus Kr contains the simplex with verti-
ces Al9 A29 > - -, An, A, A + rB. But, for r —> oo, we have also [Aγ — A,

An — A, rB] —> oo, and therefore vol (Kr) —> oo where vol (Kr) is the volume
of Kr. This is a contradiction, since vol (Kr) = c for every r. Hence the theo-
rem is proved.

Remark. The property stating that Xc is the barycenter of Bxc for each S£c

characterizes the pairing of dual hypersurfaces Mf, Mc. In fact, it is easy to see
that if # , X are dual immersions of a manifold M into Int (K*) and Int (K)
respectively, and X(m) is the barycenter of P^(m) Π K for each m € Λf, then
there exists a constant c > 0 such that <T(M) C M* and X(M) C M e.

4. Constant volume envelopes: Riemannian metrics,

volume elements and normal vectors

With notatation as in the previous section, we identify Me and Mf as
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abstract analytic manifolds under the canonical diffeomorphism of Theorem
3.3, and consider the bilinear form

invariant under the action of the general linear group GL(n + 1, R). Since M*,
and hence MC9 are strongly convex hypersurfaces, it follows from (3.1) that
d22£c - Xc is definite. In the present case we can find a suitable integral represen-
tation for this quadratic form. In fact, we saw in Theorem 3.3 that

v
Λc —

1 (Λ + 2) f 7I f - [Y,(dY)n] .
! J (g-c γy+2c (n + 1)!

Hence the relation between the differentials of the position vectors is given by

γ®γ

dχc

c c (n+ 1)!

and we get for the quadratic form

-d9CG-dXc = — fo + 2 ) (d^c (x) d&c) ί Γ ( 8 ) 7 [7,
c (n + 1)! J (^ c 7 ) w + 3

from which it follows that — d%c dXc is positive-definite everywhere. Thus by
denoting it by2 ds we have defined in a natural way a Riemannian structure on
M* or Afc.

We shall denote by a the volume element corresponding to the above
Riemannian metric. Also by considering the radially transversal immersions of
M* and Mc into the vector spaces E* and E respectively, we have two more
(prismatic) volume elements which are invariant under the action of the uni-
modular group SL(n + 1, R):

i [&, (arγ] i, τc = - L | [xe9

n\ n\

We are now going to compare these three volume elements: first we observe
that, since the volume function is homogeneous of degree — n — 1, and the
canonical diffeomorphism of Lemma 3.1 is homogeneous of degree — 1 , we
have the relations

Hence there exists a real analytic function/, independent of c, such that

τc =
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where # c is any point in the same ray as &cΛn other words, the map/can be
extended to a real analytic function, denoted also by/: Int (K*) —• R, homo-
geneous of degree 0. More precisely:

With notation as in Lemma 3.2, let the bilinear form d2S X be nondegen-
erate on the open subset U c M, and let σ denote the corresponding pseudo-
Riemannian volume element, the other two volume elements being given by

τ=\\[X9 (dX)]\ , r* = - i - | [#, (</#)»] | .
nl n\

From (3.2) it follows that these volume elements are related by

(4.1) σ=VΛ.

Furthermore, since the map from $t(U) onto X(U) defined by 3t(m) •-• X(m)
is a local diίfeomorphism of class Ck~\ there exists a positive valued function
p: St(U) -+ R+, also of class Ck~ι such that for each meU

(4.2) I [X, (dX)η I |m = p(r(m)) I [#, (rf£)] IU .

p is uniquely determined up to a multiplicative positive constant. We shall call
it the volume ratio function of the pairing of dual immersed hypersurfaces #(£/)
and X(U).

By using (3.2) again we get

(4.3) I det fe,) I = p(St{m))[&9 d&, • , dn%\* .

We denote by pκ the volume ratio function corresponding to the dual hyper-
surfaces Λf *, Mc.

Theorem 4.1. 77ze volume elements τc, τ*, σ are related to one another by the
equations

where

(4.4) Px&
e) = «/W/) ,

Bxc being the n-dimensional convex body P^c Γ\ K, μ the mean square fractional
volume defined in § 1, and an an absolute constant equal to (n + 1)! (n + 2)ri.

The following lemma will be useful in the proof of the theorem, as well as
in providing an alternative expression for the calculation of the mean square
fractional volume.

Lemma 4.2. Let Y be a cross-sectional immersion to the convex cone K. By
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denoting Ύ = - X p , ω7 = _ L _ [ F , (</F)n],

K(#")J

to 6e ίΛe barycenter of the n-dίmensίonal convex body Px Π K, we have the identity

j[Y0, . . . J X x ••• χ ω r .

= (n + l)F(έΓ) J [X, F,, , F j ω Γ l X • X α»r.

Proof of Lemma 4.2. From

[Fo, , F J = [X, F u ., F J + Σ i-mx, Ϋo, - , Ϋi-u F 1 + I , , F,]
i = l

we get

f [Fo, , Fn]V
Λ+1> = Σ f [*, Fo, , t, , F»]V»+1)

J » . . t , ., 7n][x, Fo> , r,, ., F><»+» ,

where ω(B+1) = <up0 X X ωFn, and the "hat" * over a certain variable Γ4

indicates, as usual, that that variable is omitted. But by using Fubini's theorem
it follows that

J [X, Ϋo, • • •, t , • • •, FJW» + 1 > = V(ar) J [X, Ϋu • • •, ΫJωFl X • • • X o) Γ , ,

and, for / ψ j ,

J [X, Yo, • • , t , • •., FJ[ΛΓ, Fβ, , fJt • • •, 7nW
n+1)

= f [X, Fβ, , F i ; , Fjωro X X ώr,

X ••• X α . r , J [ ^ , F β , •• , F J , . . . , F > 7 4

= J [ΛT, F o , , F f f , Tn]ωτ, X X ώ F i

X X ωTnV(3?)[X, •••,X,-- ,Yj,- - , Y n ] = 0.

Hence the lemma is proved.
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Proof of Theorem 4.1. The first two equations hold in general for any pair
of dual hypersurfaces, as we can see from (4.1) and (4.2). To prove (4.4) we
let as before 2£c be the position vector on Λf *, and Y a cross-sectional immer-
sion to the convex cone K. By denoting

F = — — , ωΫ = - [F, (d7γ\ ,
&C Y ( i + 1)!L V }

we can write for the Riemannian structure on M*

= (/1 + 2 )
ds2 = -d^c-dXc = (/1 + 2 ) d&* <g> d&e) ί (F (x) F)ωF ,

c J

and if (tlt , tn) is a local coordinate system, the components of this tensor
are

c j 3

By putting

g = det(gfi) = - L ^ i . - ^ ^ . - ^ g ^ . g ί n J . n ,

and observing that

\θfc ps arc . . . o OfcV Xy V . . . V 12

we get, by using also Lemma 4.2,

(n -\- 2)n I c c Γ — —

" " ( / i + 1)! cn+ι ' ' J

Hence, if we replace # for &c in (4.3) and compare with the above, we get

e) = (/I + 2)n - i - ί [Fo, , F n ] 2 ω ( n + 1 ) ,
' ( Λ + i ) t c » + i J L nl

and since the mean square fractional volume of the ^-dimensional convex body
Bxc = P&C Π K is given by

the proof of the theorem is concluded.
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As an application of Theorem 4.1 we shall compute the mean square frac-
tional volume in two particular cases, namely, the minimum possible value
which according to Proposition 1.1 is attained only when the ^-dimensional
convex body is bounded by an ellipsoid, and for the conjectured maximum
which should occur only when the convex body is a nondegenerate /2-simplex.
We preface those computations by observing, also from the above theorem,
that the value of the volume ratio function pκ(&c) is not constant, in general,
as &c ranges over M*9 since the ^-dimensional convex bodies B^c = P^c ΓΊ K,
although projectively equivalent, do not carry necessarily the same affine
shape. However, if K happens to be a homogeneous cone, all the convex bodies
Ba-c are affine equivalent and hence pκ is constant on M*.

It is equally easy to observe that the computation of μ will be independent
of the choice of any particular positive value for the constant c, since for each
2£ e Int (K*) the ^-dimensional convex bodies Brs. = Pra. Γl K, parametrized
by r > 0, are all affinely equivalent. In other words, the function

ί [FO f , F n ] W n + l )

(n+ I) ! 2

is homogeneous of degree zero, as defined on Int (K*).
Thus we consider first the quadric cone

Q = {(x0, , xn): x0 > Vxl + + xl) .

It is well known that this is a selfdual homogeneous convex cone. In this case
1 πn/2 1

it is convenient to take c = , that is, times the vol-
n + 1 Γ(n/2 + 1 ) n + \

ume of the ^-dimensional euclidean unit ball. Then a parametrization for M* is
given by the function SCC: i?n->Int (β) defined by the equation

are(ul9 , n n ) = ( 7 1 + Σ u l ui, •-,")>

and, correspondingly, Xc can be written

A straightforward computation shows that pQ(&c) = 1. Hence by using (4.4)

we get

= (n + mΓ{nβ + I)}
μK * ' (n+ !)!(» + 2)V
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Next, we consider the simplicial cone, that is, the cone subtended by a non-

degenerate /z-simplex:

This is also a selfdual homogeneous convex cone, and we put now c =

, the volume of the standard (n + l)-simplex. We can parametrize M*
(n + 1)!
be the function &c: (R+)n -> Int (S):

&c(uu --,un)= ( , ul9 - - -, un) .
\ux " - un J

Hence Xc is given by

Λ + 1

and again a straightforward computation shows that ps(&c) = (n + l)~ ( 7 l + 1 ).
Therefoore we get

(n + l)n+1(n + 2)n

Retaking the notation preceding the statement of Theorem 4.1, let #(C/) and
X(U) be hypersurfaces dually immersed into the vector spaces E* and E re-
spectively. We are now going to compare the pseudo-Riemannian metric ds2 =
— dSF dX with the Berwald-Blaschke pseudo-Riemannian metrics, which are
defined on T(U) and X{U), as hypersurfaces immersed into the (affine) spaces
£ * , E. This will enable us to relate the corresponding Laplace-Beltrami opera-
tors and, consequently, to furnish a suitable condition for those manifolds to
be affine hyperspheres.

First, a brief definition: following Blaschke (see [1, § 65]) we put, for a local
coordinate system (t19 , tn)9

Λu = [dijX, dλX, --, dnX] , A = det (Atj), Gυ =
\A\1/in+2)

The bilinear form

ds\ = Σ Gi3du ® dtj ,

which is invariant under the unimodular affine group ASL(n + 1, R), is the
Berwald-Blaschke pseudo-Riemannian metric on the hypersurface X(U).
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Similarly, we denote by Afj9 A*, and ds\ the corresponding objects associat-

ed with hyper surf ace #

A straightforward computation and the use of (3.3), (4.2) and (4.3) provide

the relation

(4.5) ds\ = p(£)1/(n+2)ds2 .

Similarly, by using (3.1) and (4.3) we get

(4.6) ds\ =

We now compute the Laplace-Beltrami operator corresponding to the metric
ds2 = — dSt - dX = Σ gtjdti (x) dtj, as applied to the position vectors 3t and X.
As usual, let us denote |det (gtj)\ by g, gίj the contravariant components of the
metric by gij

9 and the star operator by *.

From the differential of the position vector

dX = Σ KX ® dth

we get

*dX = Vg Σ (-l)*-1ghkdhX®dt1 A - Λ dtk A Λ dtn .
h,k

Hence, if as in the proof of Lemma 3.2 we define the set of vector fields {Zf

= Zi(tl9 - , tn): ί = 1, , n} in such a way that the linear basis {X9 Z l 5 -,
Zp} of E be dual at each point to the basis {#, a # , , dn?t} of JE1*, we can
write

V g Σ ( - l ) k - ι Z * ® d t 1 A ••• A d t k A ••• Adtn.
k

Then by making use of the identification

and (4.3), we get

*dx =
(n - 1)!

from which it follows that

**** = (W _ i)! { T κ l r Λ [#

The identification
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and (4.3) furnish

[_, (d%γ\ = n\ p(ryl/2σ <g> X .

Therefore we finally write

(4.7) ΔX = -*d*dX = nX - i*{d\ogp(£) A *dX} .

An analogous calculation shows that

(4.8) Δ3t = nSt + %*{dlogp(&) A

Proposition 4.3. The following conditions are equivalent:
(1) The volume ratio function p is constant on #( [/) .
(2) The manifold (X(U), ds2) satisfies the equation ΔX = nX.
(3) The manifold (#(£/), ds2) satisfies the equation Δ3t = n3t.

If any of the above conditions holds, then both (X(U), ds\) and (#(£/), ds\) are

affine hyperspheres contained in E and E* respectively.
Proof The equivalences follow at once from (4.7) and (4.8). These same

relations, together with (4.5) and (4.6), provide also easily the last part of the
statement.

We close this section by observing that the above proposition shows, in par-
ticular, that if K is a homogeneous convex cone then Mc and M* are both
affine hyperspheres, also homogeneous.

5. The volume ratio function: symptotic behavior near the boundary

In the previous section we introduced the volume ratio function ρκ of a con-
vex cone K as defined on the level hypersurfaces M*. In particular, we saw that
if K is a homogeneous cone, then pκ is constant on each Mc*. The question
arises whether the converse holds. Namely, if the condition pκ = const, on
each M* would imply that the convex cone K be homogeneous. We can assert
this to be the case when the boundary of K is of class C2 the proof will be a
consequence of Proposition 1.1 and the study of the asymptotic behavior of ρκ

near the boundary of A'*. This motivates the current section.
It is clear that ρκ can be extended in a natural way so that it is defined on

the whole Int (^*). Moreover, pκ(2£) can be written in terms of integrals on
the /2-dimensional convex body Px (Ί K. Hence it will be possible to link the
asymptotic behavior of pκ(^) with the local behavior of the boundary of K.

However, it is more convenient to study, rather than pκ itself, the function
μκ defined by μκ(&) = μ(P^ ΓΊ K), for the reason that the latter is homogene-
ous of degree zero and absolutely bounded. (4.4) can then be applied to relate
one to the other, restricted to the hypersurfaces M*.
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More generally, we shall consider a wide class of functions: with notation as
in § 1, for each/e g w e define μκ,f' Int (^*) —• i? by

μκ,f(β0 = μ,(Pr Π K) .

The function μκ>f is homogeneous of degree zero and absolutely bounded. We
observe that, by using the inverse of the natural diίfeomorphism defined at the
beginning of § 3 (Lemma 3.1), we can think of it as defined on Int (K). Further-
more, by its homogeneity property we can also assume it to be defined on the
quotient space Int {K)/R+, and this can be identified in an obvious way with a
cross-sectional space of the form Px Π Int {K), for some 2£ € Int (K*). This
setting will be particularly suitable when we prescribe the condition that the
convex boundary of K be locally smooth we will discuss this particular situa-
tion later in this section. For the time being, without assuming any smoothness,
we shall prescribe instead a strong contact condition on the boundary.

For technical reasons we assume, throughout this section, that the vector
space E is provided with a Euclidean metric. We use the notation ZΓto denote
directed distance from X to Y; it will be clear however from the context that
the results we are about to present are independent of the choice of the
Euclidean structure.

If K is a convex cone, for each s/ e dK* — {0} we denote

^ * = {X:&.X= 0,XzdK} .

Let 2£ 6 Int (K*). A subset U C Px Π dK is called a capped neighborhood of
s/* Π P, if:

(i ) j / * Π Px is interior to U relative to Pr Π dK,
(ii) there exist a point A e jtf* (Ί\PX and a hyperplane π = {X: &-X = 0}

such that π separates A from 3U where d indicates now the boundary relative
to P r Π dK,

(iii) the closure π Π Q(A) is contained in Int (K), where Q(A) denotes the
cone (in Px) defined by

Q{A) - {A + r(X - A): X€ P^ Π dK - U, r > 0} .

We are now in a position to state the first result of this section.
Theorem 5.1. Let Kl9 K2 be convex cones with nonempty Int (Kf) Π Int (K?)

such that for some % e Int {Kf) Π Int {Kf) and stf e dK? Π dK*, the set dKx

Π dK2 Π Px is a capped neighborhood ofs/* Π Px. Then the absolute value of
the difference between the corresponding functions μKuf and μK2ff is arbitrarily
small on suitable neighborhoods of J / .

Proof Let U be a capped neighborhood common to both Kλ and K2, with

notation as in the definition for A, π, and Q{A). For each ray AB in Q(A) we
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denote by V the point at which AB meets π, and by Y, Z the corresponding
points, other than A, on the boundaries 3Kl9 3K2, respectively. We can assume,
without loss of generality, that the absolute value of the cross-ratio \(A, Y; V, Z) \

AV YV
• < 1, uniformly. Let {&h} be a sequence of points in Int (K?) ΠAZ YZ

Int (X2*) converging to s/. For each h we denote by πh the hyperplane πh =
{X: &h X = 0}, and let Ph be the hyperplane parallel to πh, passing through

If Q~(A) denotes the cone in PX9 opposite to Q(A), then we are going to show
that given ε > 0 there exists an hQ such that the absolute value of the cross-ratio

\(A,V;X,Y)\ = AX . VX

AY VY
<ε

for every A>A0

 a n d (uniformly) for every X e Ph Π Q (A). In fact, we observe
first that the limit hyperplane π^ = {X: stf X = 0} supports the cone Q(A).
Moreover, since it also supports both Kx and K2, and by condition (iii) in the
definition of a capped neighborhood, the closure π Π Q(A) of a cross-section of

Q(A) is contained in Int (JQ Π Int (K2), it follows that no ray AB in Q(A) can
be contained in π^. In other words, π^ Π Q(A) = {̂ 4}. Hence, if we consider
now the level set

Q-(A, a) = {X:Xe Q~{A\ \(A, V; X, Y)\ = ε} ,

to each X e Q~(A9 ε) we can associate a pair (N(X), h(X)), where N(X) is a
neighborhood of X, and A(X) is an integer such that, for every h > h(X), πh

separates N(X) from A. Since β"(^4, ε) is compact, from the covering {N(X):
X e Q~(A, ε)} we can extract a finite number of neighborhoods {NC^Ί), N(X2),
- , A^Xfc)} also furnishing a covering for β~04, ε). Therefore defining Λo =
max {/z(lΊ), , Λ ^ ) } we have that for every h > Λo, TΓ̂  separates β"(^4, ε)
from A, thus proving the above inequality.

If T »-> Γ7 denotes the perspectivity centered at the origin 0 of E, mapping
Px onto PΛ, the invariance of the cross-ratio under projective transformations
implies that

104', V'\X\ r) |<ε

for every h > h0 and for every X' = XzPhf) Q~(A). Also, since \(A,Y; V9 Z)\
< 1, we can assume to have chosen h0 so that | Y'Z'\ <\Y'V'\ uniformly. On
the other hand, since \V'X'\ is uniformly bounded and \A'X'\ > j\OA\9 we

V'X'
have that

get that

is also uniformly bounded, say by a constant k. Therefore we
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ZΎ'

AΎ'

ΎVΎ
AΎ'

< kε, uniformly .

Now if for each r > — 1 we denote by Bh(r) the π-dimensional convex body in

Ph defined by

Bh(r) = {V + r{V - A'): V e Ph Π Kλ) ,

then the last inequality implies that

Bh{-kε) (ZPhΓ\ K2CI Bh(kε) , for every h > h0 .

Hence, by the continuity of the functional μf as defined on rc-dimeniional con-
vex bodies, the theorem is proved.

Remark. Let Vl9 V2 denote the volume functions of Ko and K2 respectively.
The above inequality of sets implies, in particular, that

for every h > Ao. By homogeneity the same relation holds for any # Λ in the
same ray as 9Ch. Hence, if the sequence {2th} is taken in such a way that one
of the sequences {JΊ(#*Λ)} or {V2{$th)} is bounded, then so is the other and the
absolute value of the difference \Vλ{βt^) — V2($th)\ converges to zero. There-
fore, since the value at 3th of each volume ratio function ρκ. can be written

l μzX&t) , i = 1, 2 ,

it follows that the corresponding difference

also converges to zero.
We are now going to prescribe suitable local conditions on the boundary of

a convex cone K, so that the behavior μKtf near the boundary is similar to that
of the corresponding function of a quadric cone. The latter, being obviously
constant, it also takes the minimum possible value, as a consequence of Prop-
osition 1.1.

Let K be a convex cone. We assume now that for some SC e Int (K*)9 Px Π
dK has third order contact with an ellipsoid L in Px at a given point A, and
consider the geometry the so called Kleinian model of Lobachevsky's hyper-
bolic geometry, defined by the projective transformations of P% leaving the
ellipsoid L invariant. It will be handy to make use of some of the objects from
this particular geometry:

Given a straight line M through A, intersecting also the ellipsoid L at a sec-
ond point B, the set of points which are at constant distance from M in the



220 SALVADOR GIGENA

sense of hyperbolic geometry is an (n — l)-ellipsoid contained in L, and having
strictly second order tangential contact with L at A and B only. We shall call
it a hyperbolic tube with endpoints A, B.

We introduce here a non-standard topology on the union of P% Π Int (K)
with {A}: In the interior Px Π Int (K) we define it as usual; for the boundary
point A we define it by means of convergent sequences as follows: given a se-
quence of points {ZJ in Px Π Int (K), we say that {X^ is h-convergent to A if
it is eventually in the interior of some hyperbolic tube with A as one of its end-
points, and converges to A in the usual sense.

Denoting by mQ>f the (constant) value of the function μQtf for any quadric
cone, we have

Lemma 5.2. With notation as above, if {ZJ is h-convergent to A, then

{μκ,/(xi)} ^verges to mQtf.
Proof. For each X e Px Π Int (K) let Y be the point, other than A9 where

the straight line AX meets the boundary Px (Ί dK, Z the corresponding point
on the ellipsoid L, and (A, Y\ X, Z) the cross-ratio of these four points. Let
{Xτ} be a sequence in Px (Ί Int (K) which is /^-convergent to A, H a hyperbolic
tube with A as one of its endpoints and eventually containing {A }̂, and H the
region bounded by H. For each i let Pt be the hyperplane tangent to the con-
stant volume envelope passing through Xi9 St the halfspace determined by Pt

and containing A9 and PiA the hyperplane parallel to Pi passing through A. If
0 denotes again the origin of E, for each T z P^ let T' be the point where the

ray 0T meets Pί9 and T" the corresponding point on PίA. We observethat, in a
deleted neighborhood of A, H is interior to K. This, together with the facts that
L has third order contact with, and H is tangent to, Px Π dK at A9 imply that
given ε > 0 there exists an i0 such that, for every i > i0 the inequality

\(A, Y; X, Z)\ < ε

holds uniformly for every X e 3(H Π S^ where d indicates now the boundary
relative to Px. The invariance of the cross-ratio under projective transforma-
tions implies that

for every ί > i0 and uniformly for every X <=. d(H Γ) St). Simultaneously, the
contact conditions also imply that there exists a positive constant k depending
on A9 L and H such that

ΛrΠ ΛS//

<k

for every / > 4 and uniformly for every X e d(H Π ^ί). Hence
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Y"Z"

A"Zr
< ke , uniformly .

A continuity argument, completely analogous to that in the last part of the
proof in Theorem 5.1, concludes this lemma's proof.

Remark. We can rephrase the outcome of the proof in the previous lemma
as follows:

With K, ££, A, and L as before, if H is a hyperbolic tube in L with A as one
of its endpoints, and H is the region bounded by H, then given ε > 0 there
exists a ball B(A) centered at A such that for every V e B(A) Π H if Pv denotes
the hyperplane tangent to the constant volume envelope passing through V,
and PVA the hyperplane parallel to Pv passing through A, then every ray ema-
nating from A, contained in PVA, and meeting the boundary of the cone K at
Y'\ also meets the boundary of the cone subtended by L at a point Z " , and
the inequality

" " " " < kε
A"Z'

holds uniformly with k being a positive constant depending on A, L and H.
We are now going to prescribe a suitable condition on the boundary of Ky

which will enable us to remove the restriction of /z-convergency and replace it
by convergency in the usual sense.

Theorem 5.3. Let K be a convex cone, 2£ e Int (K*), and U be a relative
open subset of P^ Π dK. IfP^ΠdK is smooth of class C2 and strongly convex in
U, then μκ>f(X) approaches mQ)f uniformly as X approaches any A e U.

Proof Since Px Π dK is smooth and strongly convex in U, we can associate
to each A e U an ellipsoid L(A) having third order contact with Px Π dK at A,
and a hyperbolic tube H{A). Furthermore, we can choose the families {£04)}
and {H(A)} to be continuous. The cross-ratio \(A9 Y; X, Z) | , as defined in the
preceding lemma, is therefore continuous in both arguments Z a n d A. Hence
given ε > 0 the family of (n — l)-hypersurfaces defined by

S(A;e) = {X:\(A,Y;X,Z)\ = e}

is also continuous. It follows that there exists a continuous family of balls {B(A)}9

centered at each A € U, such that if H(A) denotes the region bounded by the
hyperbolic tube H(A), then for every V e B(A) Π H(A) the conditions stated in
the remark preceding this theorem are satisfied. A standard continuity argument
now concludes the proof.

Remark. It is clear how to apply the above theorem (or the lemma) to the
volume ratio function pκ as defined on Mf (or Mc). To each X e P^ Π Int (K)

we make it correspond to the point Xc at which the ray OX meets Mc. As X
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approaches A e 3K, Xc converges asymptotically to dK in the direction of the

ray OA and, correspondingly, if the conditions of either Lemma 5.2 or Theorem
5.3 are satisfied, then ρκ{SCc) = anc

2μκ{&c) converges to anc
2mQ.

We can now prove the particular case of the conjecture stated at the beginning
of this section. In fact, if for some & e Int (K*), P& Π dK is of class C2, then
there exists an open subset U C Px Π dK such that U is strongly convex. By
Theorem 5.3 and the above remark ρκ{&c) converges to anc

2mQ as Xc converges

asymptotically to dK in the direction of any ray OA, A e U. Hence assuming
pκ(&°) to be constant we have precisely pκ(^c) = an

c2μκ(^c) for every Xc z
Mc. By Proposition 1.1 all of the ^-dimensional convex bodies P%c Π K, with
a quadric cone K which is well known to be homogeneous, should then be

ellipsoidal and, therefore, in an appropriate affine coordinate system.
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