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LINEARLY INDUCED VECTOR FIELDS
AND ^-ACTIONS ON SPHERES

GILDA DE LA ROCQUE PALIS

1. Introduction

We prove here results on the generic and structurally stable properties of li-
nearly induced vector fields and ^-actions on spheres. These actions are ob-
tained from linear actions on Rn which are naturally extended to the standard
sphere Sn via central projection. Similarly, one can use radial projection to get
quite a large number of vector fields and inactions on spheres which are struc-
turally stable or at least β-stable.

In 1881 Poincare [12] began the qualitative theory of polynomial vector fields
on the plane R2 looking at the central projection of their trajectories on the
sphere S2. This work appears in other texts [3], [6], [11], [13] always in a form
similar to the original one. More recently Gonzalez [5] characterized the poly-
nomial vector fields on R2 which are structurally stable in a neighborhood of
infinity. He also began the study of linearly induced vector fields on S3.

In § 2 we consider linearly induced vector fields on the sphere Sn. Let X(x)
= Ax be a linear vector field on Rn. The central projection is the map which
associates to each point x = (xl9 , xn) of Rn two points in Sn, f(x) =
(xl9 •••,*„, \)\Δx and f{x) = —(xl9 •••,*„, 1)1 Δx where Δx = (1 + x\ +

• + 4) 1 / 2 . The linearly induced vector fields Df(X) and Df(X) extend
naturally to the whole Sn, and one gets a vector field called the Poincare vector
field π(X). Let πJJC) be its restriction to the equator Sn~ι which is an invariant
set. The radial projection τ\ Rn — 0 —> Sn~\ τ(x) = x/\x\9 also induces a vector
field Dτ(X) on the sphere Sn~\

Theorem 1. Let π(X), X{x) = Ax, be a Poincare vector field on Sn. Then
π(X) is a Morse-Smale vector field if and only if the eigenvalues of A have dis-
tinct {except for pairs of conjugate complex eigenvalues) nonzero real parts.

Let π(β£) be the set of Poincare vector fields on Sn with the Cr-topology,
r > 1, and Σ C π{β) the subset of structurally stable ones. In Theorem 2 we
prove that the Morse-Smale Poincare vector fields on Sn form an open and
dense set in π(β£) which coincides with Σ.

Similar results hold for linearly induced vector fields by radial projection, as
shown in Theorems 3 and 4.

Communicated by S. Smale, May 10, 1976.
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In the proof of Theorem 1 we exibit the phase diagrams of the Morse-Smale
vector fields on Sn. It is not true in general that isomorphism between phase
diagrams implies topological equivalence. An example in S2 is given by Peixoto
[10]. In our context we have

Theorem 5. Two Morse-Smale Poincarέ vector fields on Sn are topologίcally
equivalent if and only if their phase diagrams are isomorphic.

Thus we obtain a complete classification up to a topological equivalence of
the Morse-Smale Poincare vector fields on Sn.

The work of Camacho [1], [2], introduced the study of actions of the group
Rk X Zι on manifolds from the viewpoint of generic properties and structural
stability. In § 3 we study linearly induced inactions on spheres. Let p: R2 —>
Aut (Rn+ί) be a linear action and ψ be the action ψ: Gl(n + 1, R) -> Dif (Sn),
ψ(Ax) = Ax/\Ax\ where A e Gl(n + 1, R) and x e Sn. An action p of R2 on Sn

where p = ψ o p is called a linearly induced action of R2 on Sn. If the action p
is generated by commuting linear vector fields X and Y in Rn+\ then ~ρ is gener-
ated by Dτ(X) and Dτ(Y). Similarly one can use the central projection.

Theorem 6. Let jo = ψ o p be a linearly induced action of R2 on Sn where
X(x) = Ax and Y(x) = Bx are generators of p. Then the compact orbits ofp
are hyperbolic if and only if for some basis of Rn+1, A and B are represented as

(i) A = diag (λl9 , λn+1), B = diag Ql9 -,λn+1) and (λj - λ^Qt - λt)
— (λj — λi)^ — λi) φ Ofor all distinct i,j, I,

( i i ) ^ = d i ( (

βor]i nonzero and

(a - λτ)β -(a- λjβ Φ 0 ,

(a - λ^λj - λd ~ (jx - Wj -λt)Φθ,

(λj - λt)(it - lt) - (λj - Ufa -λt)Φθ

for all distinct i, j , I.

Let stf(R\ Sn) be the set of linearly induced actions of R2 on Sn with the Cr

(r > 1) topology.
Corollary. The set of linearly induced actions of R2 on Sn having only hyper-

bolic compact orbits forms an open and nonempty set in s/(R2, Sn). This subset
is not dense in <$f(R2, Sn)for n > 3.

The following theorems characterize the β-stability of these actions on Sn

and the structural stability on S3.
Theorem 7. A linearly induced action ofR2 on Sn is Ω-stable in <srf(R2, Sn) if

and only if it has only hyperbolic compact orbits.
Theorem 8. A linearly induced action ofR2 on S3 is structurally stable if and

only if all its compact orbits are hyperbolic.
Let χr(R\ S3) be the set of Cr, r > 1, actions of R2 on S3. From the Cr-to-

pology on the space of Cr vector fields on S3, one can define in a natural way
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a Cr-topology on χr(R2, S3) using generators of the actions. Then we have the
following theorem.

Theorem 9. A linearly induced Reaction on S3 having only hyperbolic com-
pact orbits is structurally stable in χr(R2, Sz).

It is an interesting open question if this last theorem is true for linearly in-
duced inactions on Sn when n > 4. Also one can pose similar questions for
actions of Rk, k > 3.

The results which were announced in [7] and are presented here correspond
to the author's doctoral thesis at the Institute forPure and Applied Mathematics
at Rio de Janeiro under the guidance of M. Peixoto. The author expresses her
gratitude to him, C. Camacho, J. Palis and to her colleagues at the Catholic
University of Rio de Janeiro for their constant support.

2. Linearly induced vector fields on spheres

Consider in Rn+1 the hyperplane Rn = {y e Rn+1\yn+ι = 1} and the sphere
Sn — {y € Rn+11 |j>| = 1}. The central projection associates to each point x =
(xu , xn) of Rn two points in Sn,f{x) = (xl9 , xn, l)/Jx and fλ(x) =
- O i , - ,xn, ϊ)IΔx where Δx = (1 + x\ + +x2

n)
ί/2. The points at infinity

in Rn are in a one-one correspondence with the points in the equator S71'1 =
{y e Sn\ yn+1 = 0}. Let Uί9 Vi9 φt and ψi9 1 < / < n + 1, be coordinate neigh-
borhoods and maps in Sn:

Vi = {yeSn\yi<0}9 f = 1, — , / i -+- 1 ,

t\ t/* - > R n , <pi(y) = (yl9 -"9yi9 -,yn+i)lyi,

, : Vt -> Rn ,

where yt means that the /th coordinate yt is to be deleted.
Let X(x) = Ax be a vector field in Rn where A is an n X « constant real

matrix. By means of the central projection one gets the induced vector fields
Df(X) and Dfλ(X) in the north and south hemispheres of Sn. This field on Sn

— S71'1 extends naturally to a field on the whole Sn, which is denoted by π(X)
and called a Poincare vector field. If X(x) = Ax where A = (a^), 1 < i9j < n,
then the field π(X) is given in Ui9 Vi9 i — 1, , n, by the following expressions:

where x̂  = (x1? , 1, -9xn_ι)9 1 being the /th coordinate, 1 < r < /, i < I
< n, and (α^)(:^) is the multiplication of the row matrix (au, , ain) by the
column matrix
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In Un+1 and Vn+ι, π(X) is given by (Σ%i ¥ J > Σ ? = I β 2 Λ , , Σ%ι <*njX,)>
Note that the equator S71'1 is an invariant set. Let π^X) be the restriction

of π(X) to S*"1. In particular if A = (α o ) is such that « ί n = 0 for / Φ n and
anj = 0 for / Φ n, then the (n — 1) x (n — 1) matrix £ = (b^), where Z>̂  =
α^ for ί Φ j and Z?̂  = au — ann, is such that πoa{X{x) = Ax) = π(Y(x) = Bx).
For X(x) = Ax a linear vector field in i?71, the radial projection τ\ Rn — 0 —>
571"1, τ(x) = X/|JC|, also induces a vector field Dτ(X) on the sphere Sn~\ If TΓ(Z),
X(x) = Ax, is a Poincare vector field on Sn, then the linear vector field Y(x)

= Bx in Rn+\ B = (^ ^V is such that π(X) = Dτ(Y). Also given a linearly

induced vector field Dτ(Y) one has Dτ(Y) = π^Y).

A vector field X on a compact manifold Λf without boundary is called Morse-
Smale if

(1) Z h a s only a finite number of critical elements (singularities and closed
orbits) all of which are hyperbolic,

(2) the stable and unstable manifolds of the critical elements of X have
transversal intersections,

(3) the a and ω-limit sets of every trajectory of X are critical elements.

The phase diagram of a Morse-Smale vector field X is the set of critical ele-
ments of X partially ordered by the relation: A < B if and only if WS(A) Π
WU(B) Φ 0, where WS(A) and WU{B) are the stable and unstable manifolds of
the critical elements A and B. We recall that the index of a hyperbolic critical
element is the dimension of its stable manifold. Let D{X) and D(Y) be the
phase diagrams of the Morse-Smale vector fields Xand Y. A map H: D(X) —>
D(Y) is a diagram isomorphism if it is bijective, index and order-preserving.
For more detailed discussion of the above definitions we refer to [8] and [14].

Theorem 1. Let π{X), X(x) = Ax, be a Poincare vector field on Sn. Then
π(X) is a Morse-Smale vector field if and only if the eigenvalues of A have dis-
tinct {except for pairs of conjugate complex eigenvalues) nonzero real parts. In
this case, the number of closed orbits is the number of pairs of complex conjugate
eigenvalues of A, and there are 2k + 2 singularities where k is the number of
real eigenvalues of A.

Proof We may assume the operator A given, in standard coordinates, by a
matrix in real canonical form. The theorem can be proved by induction on the
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dimension n. The coordinate neighborhoods and maps (Ui9 ψi), (Vi9 ψt) are the
ones defined previously in this section.

For n = 2, πJJC) is very simple and the result can easily be checked by
looking at the expressions of the vector field π(X) in the coordinate neighbor-
hoods considered. If X(x) = Ax in R2 is such that A is not diagonalizable, then
π(X) has a nonhyperbolic singularity and the phase portrait looks like Fig. A.

A =
λ 1

0 λ

λ<0

Fig. A

If A is diagonalizable, then it has one of the following two forms:

<•> e -βj •
In the first case, π(X) has only a finite number of singularities if and only if λλ

and λ2 are nonzero and distinct. Furthermore these are sufficient conditions for
π(X) to be a Morse-Smale vector field. In the second case, π(X) has only a finite
number of closed orbits if and only if a is nonzero. Again this suffices for the
Poincare vector field π(X) to be Morse-Smale. The phase portrait and diagrams
for these cases are given in Fig. B and Fig. C.

Assume the truth of the theorem for dimension less than n, and let us con-
sider the case where the dimension is n > 2.

If X{x) — Ax in Rn is such that A is not diagonalizable, then π(X) has a
nonhyperbolic critical element. In fact, if A has a real eigenvalue, from the ex-
pressions of the associated Poincare vector field π{X) we conclude that π(X)
has a singularity such that its linear part at this fixed point has zero as eigen-
value. In the case where A has a complex eigenvalue, there is a nonhyperbolic
closed orbit. To see this it is useful to consider the previously mentioned rela-
tion between vector fields linearly induced by central and radial projection. Let
Y be the linear vector field in Rn+ι such that Dτ(Y) = π(X), and Zt the flow
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Fig. B

A =

Λ

x 0

o2

A =
β a

a < 0 , β > 0

r

oι o2

Fig. C

determined by Dτ{Y). One can check that DqZτ has 1 as eigenvalue with multi-
plicity greater than one, where τ is the period of some closed orbit γ and q a
point in γ. It then follows that γ is nonhyperbolic.

If A is diagonalizable we have to consider two possibilities:
(I) A has a real eigenvalue.

" " Ή ( s ~5)-(s "«;)•-•& -£)•*• ••••4'*™
^ ^ 0 for / = 1, , m and A: > 1. The vector field π{X) is given by the fol-
lowing expressions:

in U2ί_l9 V2i_l9 1 <i<m:
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*2«-2(<*i-l — «ί + βiX2i-d> βiO- + *2ί-l) >

*2m+,/-l(^ — α i + βίX2ί-d> ' ' ' -> xn(βiX2i-l — aj)) 9

where 1 <j<k;

in C/am+if ^2m + j ,

_! + x27ϊl(am — ̂ ) ,

in Un+l9 κ n + 1 :

( v R v R v I /v v ί v >? V "̂

^ 1 1 Pi'X'2> ' ' ' > P771^2771 — 1 I £•*-771 "^'2771 > ^ 1 2772. + 1 * * ' ^ΊC^nJ '

Notice that in the coordinate neighborhoods Ul9 Vlf , U2m, V2m the vector
field π(X) has no singularities.

Suppose π(X) is a Morse-Smale vector field. Then π(X) has only a finite
number of singularities, in which case we have that λt Φ λ3 for all / Φ j and
λj Φ 0 for every j . Let Oί9 O2 be the singularities on the neighborhoods Un+1,
Vn+l9 and PJ9 Qό the ones on the neighborhoods U2m+j9 V2m+j. The linear part
of π(X) at Pj and Qό is given by

~ λj) ~βidiag ((fe ~ ̂

( * )

The hyperbolicity of the singularities implies that at Φ λj for all i, j ; λt Φ λj
for all i Φ j ; λj Φ 0 and a5 Φ 0 for every/

We now consider the closed orbits of π(X). For that take the linear vector

field Y = Bx in Rn+\ B = (A °X where Dτ(Y) = π(X) and the flow Zt de-

termined by Dτ(Y). In this way we can see that the trajectories by pt =

(0, , 1, ., 0) e Sn C Rn+\ where 1 is the (2/)th coordinate, are closed or-

bits of period r< = 2π/βi9 i = 1, , m. The fact that these are hyperbolic criti-

cal elements implies the following inequalities: at Φ ad for all i Φ j \ λά Φ at

for all ί,j and at Φ 0 for every /. This is because Dp. Zτ. is given by

(**) diag (eiai-aί)τί(cos^ιTί ~ s i n

where 1 is the (2ί — l)th diagonal element. Therefore if π(X) is a Morse-Smale
vector field the eigenvalues of A have nonzero distinct real parts.

Next we prove that these are sufficient conditions for π(X) to be Morse-
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Smale. We now assume that A has eigenvalues with distinct nonzero real parts.
Let us consider the linear vector field W(x) = Cx in Rn+1 where

= diag ( (

As previously mentioned we have that πJJC) — π(W). By induction hypothesis,
πJX), a vector field in the equator Sn~\ is a Morse-Smale vector field, and
has m closed orbits and 2k singularities, and the a and ω-limit sets of its trajec-
tories are critical elements. Observe that π(X) in Sn — S71'1 consists of two
copies of the linear system X{x) = Ax. We conclude that outside equator Sn~ι

there are only two more singularities, and the geometrical behaviour of the
trajectories can be completely analysed. It follows that π(X) has m closed orbits
and 2k + 2 singularities, all hyperbolic as we can see in the expressions (*)
and (**). Also the a and ω-limit sets of its trajectories are the critical elements.

It remains to show that the stable and unstable manifolds of the critical ele-
ments have transversal intersections. For simplicity let us call uλ<u2< <
ur < 0 < ur+1 < < um+k the ordered set of real parts of the eigenvalues
of A, and Ol9 O2, Ωv , Qm+k the critical elements of π(X). Interpret the no-
tation as follows: if ut = lt for some /, then ΩL consists of two singularities,
and if Wj = a3 for some./, then Ωt is a closed orbit. If ut < uά then Ws(Ωά) Π
Wu(Ωi) Φ 0 in Sn~ι. This can be verified by looking at the special cases for
lower dimensions. For πm{X), a Morse-Smale vector field on Sn~\ by induc-
tion hypothesis we then have that W*(Ωj) is transversal to Wu(Ωί) in S n - 1 . Sup-
pose p e Ws(Ωj) Π Wu(Ωί), the invariant manifolds now on Sn and determined
by π(X). Ifp £ S71'1 then / > /, for otherwise^ would be a nonwandering point.
Note that foτj > i, the tangent space TpW

s(Ωj) or TpW
uφi) contains the nor-

mal direction to S71-1 by p. This implies that the manifolds W(Ωj) and WU(Ω^)
are in general position. On the other hand if p <£ Sn~λ we must have ut > 0 and
Uj < 0. Also the phase portrait for π(X) outside S71'1 is completely known. The
transversality is then easily checked. The same procedure can be applied to
show that if p € WS(O^ Π Wu(Ωj), then \<j <r and the manifolds intersect
transversally. We conclude that π(X) is a Morse-Smale vector field, and this
completes the proof. The phase diagram of π(X) has the following configuration:
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(II) 4̂ has only complex eigenvalues.
Let

aj \βm a

where βtφ0 for every i. We can write the expressions of π(X) in the coordinate
neighborhoods Ult , E/2m, V2m, Un+l9 Vn+ι as it was done in case (I). From
these expressions it is clear that π(X) has only two singularities Oγ and O2.

Suppose π(X) is a Morse-Smale vector field. Then it has only a finite number
of closed orbits so that at Φ 0 for every i. Consider, as before, the linear vector

field Y = Bx in Rn+\ where B = (i Q) and Dτ(Y) = π(X), and the flow Zt

determined by Dτ(Y). In this way we can see that the trajectories by pt =
(0, , 1, ., 0) € Sn C Rn+\ where 1 is the (2/)th coordinate, are closed or-
bits of period τt = 2π/βi9 i — 1, , m. Since Dp. Zτ. is given by

(***) diag ( l ,
sen βfa cos

the hyperbolicity of these closed orbits implies that at Φ 0 for every / and at

Φ cij for all iΦj. Hence, if π(X) is a Morse-Smale vector field, the eigenvalues
of A have nonzero distinct real parts.

Next, to prove sufficiency, let us suppose that the eigenvalues of A are such
that oil Φ 0 for every / and at Φ aά for all / Φ j . Assume aγ < a2 < < am.

The singularities Oλ and O2 are hyperbolic, and from the expression (***) it fol-
lows that π(X) has m hyperbolic closed orbits γlf , γm. We now examine the
limit sets of the trajectories of π(X). For trajectories in Sn — S71'1 the limit sets
are completely known since π(X) on this region consists of two copies of X(x)
— Ax. To investigate other trajectories, let p be a point in the equator Sn~\
In what follows, if M is a subspace of Rn, M will mean the continuous exten-
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sion of its central projection to the equator Sn~\ Let D1 = {(xl9 x2, , xn) e
Rn I χn_ι = xn = 0}. By induction hypothesis if/? e Dl9 the limit sets of the traj-
ectories through p are critical elements. If neither p e Dx nor p e γm, we have to
examine further. Consider the subspace D2 = {(xlf , xn) e Rn \ xγ = =
*n-2 = 0}. Now let V be a neighborhood of ym, F C Ws{γm). Observe that if
am < 0, F i s a neighborhood in Sn~\ Next choose θ such that

(i) if wx = {x e Rn I the slope of x with A is < θ}9 then /? $ W ,̂
(ii) if Wi = {xeRn\ the slope of x with A is < θ}, then JF2 ΓΊ S71"1 C F.
Let # e 7?n, ^ $ ^ u w^ and let Z, be the flow in Rn determined by X(x)

— Ax. It can be verified that there exists T such that Xτ(q) e W2. Assume p is
a point in the equator Sn~\ p $ Dx and/? $ fm. Consider a sequence fe) on the
sphere Sn converging to p, such that qt $ Sn~ι and also does not belong to the
central projection of Dλ U D2. Since Xτ is a diίfeomorphism, one can see that
Xτ(p) e F which implies that the ω-limit set of the trajectory through/? is γm.
The same procedure can be applied to study the α-limit sets of the trajectories
of π(X). It follows that the critical elements Ol9 O2, γu , γm are the a and ω-
limit sets of the trajectories of π(X). As we proved before, these critical elements
are all hyperbolic. Next we show that the invariant manifolds of these critical
elements have transversal intersections. Assume aY < a2 < < ak < 0 <
tfft+i < * * < am Let/? e W8(γi) ΓΊ Wu(jj), ί Φ j . We may suppose that neither
i = m nor j = m, in which cases the transversality is obvious. If p is in the
equator S71'1 and /? € Dl9 the transversality of ^F5(^) and Wu(jj) can be checked
by induction hypothesis and by looking at a special four-dimensional case. To
see this consider the Poincare vector fields: π(Y) in Sn~2 C Sn where Y(x) = Bx,

and π{Z) in 5 4 C Sn where Z(x) = CΛ:,

Now, if/? € Sn~ι and/7 ^ j5x then yi — γm, and since dim Ws(γi) = n the mani-
folds Ws(γi) and Wu(γm) are in general position. On the other hand ifp$Sn~\
we must have at > 0, a3 < 0, the phase portrait of π(X) in S n — S71'1 is known,
and the transversality is easily checked. Similarly we can verify that the invari-
ant manifolds of singulalities (O1 and O2) and closed orbits intersect transversaly.
As a conclusion π(X) is a Morse-Smale vector field, and this finishes the proof
of this last case. The phase diagram for π(X) is given below:
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Let X be the set of linear vector fields in Rn, χ = {X(x) = Ax}, identified
with the Euclidean space Rn\ space of the entries of the matrices A. Let π(β£)
be the set of Poincare vector fields on Sn with the topology which arises from
the metric \\π(X) — π(Y)\\ = \X — Y\. This coincides with the topology induced
by the Cr-topology on the space &(Sn) of C r vector fields on Sn, r > 1. A
vector field X e &(Sn) is structurally stable if there exists a neighborhood V(X)
such that if Y € V(X) then Y is topologically equivalent to X, that is, there is a
homeomorphism of M taking trajectories of X onto trajectories of Y.

Theorem 2. The Morse-Smale Poincare vector fields on Sn form an open and
dense set in π(&) which coincides with the subset Σ C π(&) of the structurally
stable ones.

Proof From Theorem 1, density is obvious and openess follows from con-
tinuity of eigenvalues with linear operators.

Next we show that a Poincare vector field π{X) on Sn is structurally stable
if and only if it is Morse-Smale.

To prove necessity let us examine a Poincare vector field π(X) which is not
Morse-Smale. If π(X) has an infinite number of critical elements, it can not be
structurally stable as a consequence of the density mentioned above. On the
other hand if π(X), X(x) = Ax, has a finite number of critical elements then
the operator A is not diagonalizable. Furthermore if (x — λ^Pl, (x — λ2)

P2,
are the elementary divisors of A, pl9 p2 > 2, then λt Φ 0 for every i and λt Φ λ3-
for all pairs /, j . Also if [{x — zλ)(x — Zi)]Pl, [(x — z2)(x — Z2)]p% are ele-
mentary divisors of A, pl9 p2 > 2, zt = at + ίβί9 then at Φ 0 for every i and
there is a pair /, j such that at = a3 with βjjβi irrational. We now perturb X
so that all the real eigenvalues become distinct or the ratios βjlβt above be-
come rational. In both cases, the perturbed vector field has a larger number of
critical elements which proves that it is not structurally stable.

Sufficiency follows directly from a theorem of Palis-Smale [9]. This finishes
the proof.
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For linearly induced vector fields on Sn by radial projection, we have the
following similar results.

Theorem 3. Let Dτ(X) be a linearly induced vector field on Snby redial pro-
jection, where X(x) = Ax is a linear vector field in Rn+1. Then Dτ(X) is a Morse-
Smale vector field if and only if the eigenvalues of A have distinct {except for
pairs of conjugate complex eigenvalues) real parts.

Let Dτ{%) be the space of linearly induced vector fields on Sn by radial pro-
jection with the topology induced by the Cr topology on &(Sn), r > 1.

Theorem 4. The Morse-Smale linearly induced vector fields on Sn by radial
projection form an open and dense set in Dτffi), which coincides with the subset
Σ C Dτ(&) of the structurally stable ones.

We conclude this section with the following statement.
Theorem 5. Two Morse-Smale Poincare vector fields on Sn are topologically

equivalent if and only if their phase diagrams are isomorphic.
Proof. Let π(X), X(x) = Ax, and π(Y), Y(x) = Bx, be two Poincare Morse-

Smale vector fields on Sn. If they are equivalent it is obvious that they have
isomorphic phase diagrams. To prove the converse let us suppose that they
have isomorphic phase diagrams. Let ap ± iβp where p = 1, , m, and λt

where / = 1, , k be the eigenvalues of A, and ap ± i~βp where p=l, ,m,
and λι where / = 1, , k the eigenvalues of B. In the following, interpret the
notation as in the proof of Theorem 1. Let us call ux < < um+k and ΰγ <
ΰ2 < < ΰm+k the ordered set of the real parts of the eigenvalues of A and
B respectively. Consider the vector fields π(X^), Xι(x) — Aλx, Ax = diag ((u^,
. . ., (um+k)) and π(Yd, Yfc) = BlX, Bλ = diag (fa), ., (ΰm+k)). Then π(X)
is topologically equivalent to π(Xτ)9 π(Y) is topologically equivalent to π(Yλ),
and the two vector fields π{X^) and π(Y^) have isomorphic phase diagrams. Ob-
serve that if ux < < ur < 0 < < um+k and ΰλ < < ΰs < 0 <
< ΰm+k with rφs then k Φ 0. In particular if r < s, then ΰr+ί is a real eigen-
value of Bλ. The vector field π{Y^) on Sn coincides with the vector field linearly
induced on Sn by Y2(x) = B2x, B2 = diag (fa — « r + 1), , (—ΰ r + 1)) through
the coordinate maps φj1 and ψj1 for somey, defined previously in this section.
Moreover, π(Y^) coincides with Dτ(Yz), Yz(x) — Bzx being a linear vector field
in Rn+\ where if B2 = (bu)9 then

bn ' ' blfj_λ 0 bυ bίn

bj_hl bj_ltJ_ι0 bj-

0 ••• 0 0 0

bji ' ' ' bj,j-i 0 bjj - - b
j n

bn\ ' ' bn,j_λ 0 bnJ bnn

Also Dτ(Yz) is topologically equivalent to Dτ(Y4) where Γ4(x) = B4x, BA
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c o m c i d e s w i t h ^(^a) W e conclude that π{Y^) is topologically

equivalent to π(Y2). Consider B5 = diag ((i^), O2X , 0>m+*)) where vλ < v2

< . . . < Vr < 0 < < ^ m + f c are the ordered real parts of the eigenvalues
of B2. Then π(Y2) is topologically equivalent to π(Y5), Yb{x) = B5x. Denote by
ap ± i~βp and λt the eigenvalues of Bδ. Observe that we can suppose βp and βp

with the same sign for each p. Now let γ: [0, 1] —> {π{β)} be the continuous
function defined by γ(s) = π(Zs), Zs(x) = Csx where

+ (1 - sfa), -,(svm+k + (1 - φ m + f c ) ) .

Here interpret the notation as follows: if ut is the real part of a complex eigen-
value ap ± iβp, then

(sVί + (i _ J ) l ί t ) = ( 'fp + (1 - ^ K - [ ^ P + (1 " ^ p l
V JiSp + (1 - s)βp sάp + (1 - s)ap

Therefore ^(0) = π(Xλ\ γ(l) = π(Y5) and for each s e (0, 1), γ(s) = π(zs) is a
Morse-Smale vector field. By compactness of f[0, 1] and the fact that Morse-
Smale vector fields are structurally stable we conclude that π(X^ and π(Yb) are
topologically equivalent. It follows that π(X) and π(Y) are topologically equi-
valent, and hence the proof is complete.

3. Linearly induced actions of R2 on spheres

Let φ: G —> Dif (M) be a C r , r > 1, action of a Lie group G on a differenti-
able manifold M. The orbit Θx(φ) of £> through x e M and the isotropy group
Gx(φ) of φ on x € M are the sets ^^(9) = {φg(x)\g e G}, G^(^) = {g e G\φg(x)
= x}. An action φ: G —> Dif (M) is said to be transitive if for x 6 M one has
0a?(0 — M. Given two actions ^ and ψ of a group G on M, they are topologi-
cally equivalent if there is a homeomorphism of M taking orbits of φ onto or-
bits of ψ.

Definition. Let p: G^Aut (Rn) be a linear action of a group G on Rn. Sup-
pose that G is isomorphic to i? or Z. Then the action p is hyperbolic if for every
g e G, g Φ 0, the eigenvalues of p(g) have absolute value different from one. In
the case where G is isomorphic to R2 or R X Z, the action p is said to be hy-
perbolic if the following hold:

(i) There exists a ^-invariant splitting Rn = 0 Ei such that p is transitive
on the connected components of each Ei — {0}.

(ii) Let Gi be the isotropy group of some nonzero element of Et. By (i) Gt

is isomorphic to R or Z. Let pt: Gt —> Aut (Θy^i £,) be ^| σ < acting on (BjΦi Ej.
Then for each i, ρt is hyperbolic.

Moreover, if G — Z 2 we say that the action is not hyperbolic.
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Definition. Let φ: G -> Dif (M) be a C r , r > 1, action of G on M, and γ a
compact orbit of φ. Then f is hyperbolic if

(i) there exists an invariant continuous splitting of the tangent bundle of
M restricted to γ: Tr(M) = E+ Γ, where Γ is the subbundle of tangent vectors
to j%

(ii) the induced linear action p\Gχ^> Aut (Ex) is hyperbolic, where x e γ and
/>&) = Dψg\Eχ.

In particular, a fixed point x e M of ψ is said to be hyperbolic if the induced
linear action Dφg(x): G —> Aut (^(M)) is hyperbolic.

Definition. Let ψ: G —> Dif (M) be an action of G on M. A point x e M is
said to be nonwandering if for an increasing sequence Kn of compact neighbor-
hoods of zero covering G and for every neighborhood V of x and noe Z + , there
exists g $ 7^0 such that ^ ( F ) Π V Φ 0. The set of nonwandering points of 9
is denoted by Ω{ψ). An orbit Φx(φ) through x is a singular orbit if G^(^) Φ 0.
Observe that if Gx(ψ) φ 0 then ί P ^ ) c Ω(φ).

One can give similar definitions for Rk X Zι actions [1].
Let p: R2 -> Aut (Rn) be a linear action. Then p can be written as p(s, t) =

esA+tB whQfQ A and B are n X « commutative matrices. The linear vector fields
X{x) = 4̂x and Γ(x) = i?x are generators of the action. We may assume the
operator A given in standard coordinates by a matrix in the real canonical form.

Proposition. Let p: R2-* Aut (Rn) be a linear action of R2 on Rn where X(x)
= Ax and Y(x) = Bx are generators of p. Then p is hyperbolic if and only if
there exists a basis of Rn where

^ i — jSt̂ i Φ 0, Λ ^ — ^ 3 t Φ 0, tf^ — a^a< Φ 0, α^^ — α^ ̂  Φ 0 /or
α// distinct i, j . In this case all orbits are homeomorphίc to R2 except for one fixed
point, 2k orbits homeomorphίc to R, and m orbits homeomorphic to R X S1. The
nonwandering set Ω(p) consists of the singular orbits.

Proof If the action p: R2 -• Aut (Rn), p(s, t) = e

sA+tB, is such that either
the operator A or B is not diagonalizable, then there exists a ^-invariant and
transitive splitting of Rn. This implies that the action is not hyperbolic. On the
other hand, if both A and B are diagonalizable, we can suppose the action p
expressed in standard coordinates in the following form: p(s, t) = esΛ+tB where

α

α
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In this case, the necessary and sufficient conditions for the action p to be hy-
perbolic follow easily from the definition of hyperbolicity, as well as the orbit
structure. We proceed now to examine the nonwandering set Ω(p), p being a
hyperbolic linear action. This is done by induction on the dimension n. For
simplicity we will consider next a special case. Let us suppose that the action
p: R2 — Aut (Rn), p(s, t) = e

sΛ+tB, where

; ~βJ-x ••••'-)•

and either β or β is nonzero, is hyperbolic. Then aβ — aβ Φ 0, aλt — aλt Φ 0
for every i and λiλj — λiλj Φ 0 for all distinct i, j . The orbit set of p consists
of a fixed point (origin), 2k orbits homeomorphic to R, one orbit homeomor-
phic to R X S1 and all the others homeomorphic to R2. We will prove, by in-
duction on k, that the nonwandering set Ω{p) of p consists of the orbits non-
homeomorphic to R2. Therefore we have to show that if x = (xlt , xn) is
such that xm and xt are nonzero, and either / or m greater than 2, then x is a
wandering point of p. For k=l, the inequalities which hold for hyperbolicity
permit to check the result without difficulty. By induction hypothesis, let us
suppose that the conclusion holds for a linear action of R2 on Rk+2, k < n — 3.
Now we want to prove for k = n — 2. Set Rn = E12 © ® En where E12 is
two-dimensional. If x = (xlf , xn_ι, 0) is a wandering point for the induced
action pn: R2 —+ Aut (E12 © © En_^), then it is a wandering point for p. To
see this it is enough to observe that the projection in E12® ®Ej, 2<j<n,
of the orbit through (xίf , xn) is the orbit through (xlf , Xj). Now, if x =
(xv , xn), xn Φ 0, we have the following three cases to consider.

( i ) There exist i and j \ either i or j greater than 2, i,j = 1, ••-,«— 1,
both xt and Xj being nonzero. Here the projection (xlf , xn_i, 0) being a
wandering point for an induced linear action of R2 on R71'1 implies that x is a
wandering point of p.

(ii) There exists j φ nj Φ \J Φ 2 such that JC< = 0 for i Φ j , ί = 1, ,
n — 1. In this case, x is a wandering point for an induced linear action of R2

on Ej © En. Then it is a wandering point for p
(iii) The point x is such that xi = 0 for z > 2, / = 2, , n — 1. x is a

wandering point for p since it is a wandering point for an induced linear action
of R2 on E12 © En. Thus the proof for this special case is finished. The proof
for the other cases being similar to this one will be omitted. Therefore the pro-
position holds.

The conditions for hyperbolicity of linear actions of R2 on Rn given on the
previous proposition, equivalent to the ones found in [1], will be useful in the
study of linearly induced actions on spheres.
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Let s/(R2, Rn) be the set of linear actions of R2 on Rn with the topology in-
duced by the following metric. Let p^s, t) = e

sAl+tBl, p2(s, t) = e

8A2+tB* be two
linear actions of R2 on Rn, and put Xt(x) = At(x) and Yt(x) = Bt(x). Define
Wp2 — P\\\ = max {\Xλ — X2\,\Y1 — Y2\}. As an immediate consequence of the
previous proposition one has the following corollary.

Corollary. The hyperbolic linear actions of R2 on Rn form an open and dense
set in <xf(R2, Rn).

Let p:R2-^ Aut (Rn+1) be a linear action, and ψ be the action ψ : G1 (n + 1, R)
-• Dif (5W), ψ(^x) = Ax/\Ax\ where ^ e Gl(« + 1, i?) and * e Sn. An action jo
of R2 on Sn where p = ψ o/is called a linearly induced action of R2 on 5 n . If
the action p is generated by commuting linear vector fields Z a n d 7 in Rn+\
then jδ is generated by Dτ(X) and i)r(7). Note that if x e Sn then d)x(p) =

Theorem 6. Let ]5 = ψ o p be a linearly induced action of R2 on Sn where
X(x) = Ax and Y(x) = Bx are generators of p. Then the compact orbits of~p are
hyperbolic if and only if for some basis of Rn+\ the operators A and B are re-
presented asA = άmg(λu , λn+ι), B = diagfo, ,λ n + 1 ) and(λj - λ^Qi - λτ)
— (λj — λiXλt — λi) φ Ofor all distinct i,j, I or

''••••• ' '

(; -%•>*••••>-)•

where β or β is nonzero and

{a - λt)β -(a- λt)β Φ 0 ,

{a - λMλj - λt) - (a - λMλj -λdΦO,

{λj - Wit - λt) - (λj - λMt -λt)Φ0

for all distinct i, j , I.
Proof Observe that if <p: R2 —> Dif (Sn) is an action with fixed point y then

in some local coordinates the derivative is the linear action Dψ{Stt)(y) = esA+tB

where

A =
dxj \ ds

B = ( (
dxj \ ds

»•

»

As in the case of linear actions we can restrict the study to the cases where the
operator A is given in standard coordinates by a matrix in the real canonical
form. We will show first that if A is not diagonalizable, the action p will present
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a nonhyperbolic compact orbit. Let us suppose the elementary divisors of A to
be

(x - λ^\ (x ~ λdPl\ • • - , ( * - ^ T 1 , (* ~ « P M ,

[(x -zλ){χ - zdr\ l(χ - z&x - zj[qi*>

[(* - z2)(x - Z2)T\ [(x - z2)(x - Z2)r\

(x - ux), , [(* - H^X* - wλ)l

where ^ , w* are reals, z ί9 ω€ are complex numbers, and/?^ > pi2 > > 2 ,
^1 > ^2 > > 2 , ^ > pi+ul, qa > qi+ltl. We have four possibilities to
examine.

( i ) Pn> Pu I n t n is c a s e t n e action ^ presents a fixed point /? with Dpg(p)
nonhyperbolic. Therefore p has a nonhyperbolic fixed point.

(ϋ) pn = pl2 = . . =plm. Here there exists a sphere 5 of dimension m — 1
consisting of singularities of £>τ(X), and this sphere S is an invariant set for
Dτ(Y). Then either Dτ(Y) has on S a singularity ^ which will be a nonhyper-
bolic fixed point of p, or the action ~ρ will present a nonhyperbolic orbit homeo-
morphic to S1 on S.

(iϋ) pn = 0, qn > g12. In this case the action ^ has a nonhyperbolic orbit
homeomorphic to Sι.

(iv) /7U = 0, qn = q12 = = qlra. Here there is a sphere 5 of dimension
2m — 1 consisting of closed orbits of Dτ(X), and this sphere is an invariant
set for Dτ(Y), Then either the action ~p will have a nonhyperbolic orbit homeo-
morphic to Sι or a nonhyperbolic orbit homeomorphic to T2.

Now if both operators A and i? are diagonalizable, then we can suppose the
action p expressed in standard coordinates in three different ways, each of
which we will consider separatedly.

(1) p: R2 -> Dif (S*), p = ψop, p(s, t) = esA+tB, A = diagft, , λn+ι),
B = diag (λlt , λn+ι). The vector fields X(x) = Ax and Y(x) = 5x are gener-
ators ofp; Dτ(X) = πJX) and Z>τ(7) = π^Y) are generators of jδ. The 2(/i + 1)
points /?ί = (0, , 1, •) and ^ = (0, , — 1, •), where all but the zth
coordinate are zero, are fixed points of the action p. In the local coordinate
systems (Ui9 <pt), (Vi9 ψi) defined in the beginning of § 2, the derivative D^g{pt)
= Dpgfai) = esI+tE is such that

A = d i a g ( ^ — λo - -, h-x - It, λ i + 1 - λ i f , λ n + 1 - λ t ) ,

B = d i a g ( Λ - λ i t ••• J « _ ! - λ i 9 λ i + ι - λ i f - - , λ n + 1 - λ t ) .

These fixed points are hyperbolic if and only if

(λj - λ<)Qk - λt) - (λj - λdiλ, -λJΦO

for all distinct z, j9 k. Observe that if the above inequalities hold for points
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x e Sn such that x Φ pt and x Φ qt, then the isotropy group Gx(p) = {0} or
R. It follows that the action jo has these 2{n + 1) hyperbolic fixed points as its
only compact orbits. Therefore all compact orbits are hyperbolic if and only if
the previous inequalities hold. In this case the action ^ has all orbits homeo-
morphic to R2 except for 2{n + 1) fixed points and 2n(n + 1) orbits homeo-
morphic to R. Also the nonwandering set Ω(p) is formed by the singular orbits
which form \n(rι + 1) spheres of dimension one. To see this it is enough to use
induction on the dimension n and observe that outside the equator Sn~ι =
{x € Sn\xn+1 = 0} the action p consists of two copies of the linear hyperbolic
a c t i o n ψ w h e r e φ 9 1 ) = e

sAl+tB\ A x = d i a g ( ^ — λ n + l t - - , λ n — λ n + 1 ) a n d
B λ = d i a g ( Λ - K+ι> - > λ n - λ n + d >

In the case where n = 2, the orbit structure is shown in the figure below:

(2) p : R2 - > D i f ( S n ) 9 p = ψop,p:R2^ A u t (Rn+1% p(s, t) = esΛ+tB, w h e r e

; " f ) *•• •••>>)•

and β or ~β is nonzero. As before, the vector fields X(x) = Ax and Y(x) = Bx
are generators of p; Dτ(X) = π^{X) and Dτ(Y) = ^oo(Γ) are generators of p.
The 2k points pt = (0, , 1, •) and qi = (0, , — 1, •), where all but
the ith coordinate are zero, i = 3, , k + 2, are fixed points of the action p.
Evaluating Dpg(pi) = D~pg(q^) we can see that these are hyperbolic fixed points
if and only if

(a - λjβ -(a- lt)β Φ 0 ,

{a - Wλj - λz) -{a- λM for all distinct /, y, /,
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Now let us suppose that the above inequalities hold. For points x e Sn,
x Φ pi9 x φ qi9 and x φ (xl9 x2,0, , 0), the isotropy group Gx(p) = {0}, Z
or R. It follows that the only compact orbits are the hyperbolic fixed points pi9

qi and one orbit γ homeomorphic to S\ This orbit γ is the intersection of the
plane xl9 x2 with the sphere Sn. It is easy to verify that a linear action ψ: R X
Z -> Aut (Rn), n>2, given by <p(s, ή) = esΛBn, where A = diag (λu ,λn),

B = diag (uu , ι/n), ^ ^ 0 and ŵ  > 0 for every /, is hyperbolic if and only
if λι lg Uj — λj igUiΦO for all distinct ij. Using this fact and calculating the li-

near action Dpg\Ep: Gp(p) —> Aut (Ep), where/? € f and = Rx Z, we can
conclude that the orbit p is hyperbolic. Hence all compact orbits are hyperbolic
if and only if the above inequalities (*) are true. In this case the action p pre-
sents 2k fixed points, 2k(k — 1) orbits homeomorphic to R, one homeomorphic
to S\ 2k homeomorphic to R X S1 and all the others homeomorphic to R2.
The nonwandering set Ω(p) consists of the singular orbits which form a complex
of \k(k — 1) spheres of dimension one and k spheres of dimension two. As
previously, to verify this we use induction on the dimension n and note that
outside the equator Sn~ι the action ~p consists of two copies of the linear hyper-
bolic action ψ where

φ(s, t) = esΛι+tBl

A1 = dia

In the particular case where n = 2, k = 1, the orbit structure is shown in
the figure below:

o2

(3) p: R2 -> Dif (Sn), p = s, t) = es
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β1 αj \β2 α

and ^ or ^ is nonzero for z = 1,2.
Now we can show that there is a nonhyperbolic orbit homeomorphic to S\

Let us restrict ourselves to the case where n = 3, the generalization to « > 3
being similar. Suppose ~βλ Φ 0. Then the intersection of the plane xxx2 with S3

an orbit of p homeomorphic to Sι. Let p e γ. By computing the linear action
Dpg\E: Gp(p) -> Aut (Ep) which is given by φ(s, ή) = esABn where

A

V (A/3, - ft^/ft [(α2 - αdβi ~ (α2 - αjβj/βj '

B =

- sin
βjβ)/ '

\
sin (Iπβtlβj cos (Iπβjβ,)/

we can verify that this is not a hyperbolic action. It follows that the orbit γ is
nonhyperbolic. By putting all these results together the theorem is proved.

Let stf(R\ Sn) be the set of linearly induced actions of R2 on Sn with the
topology which arises from the following metric. If pγ is generated by Dτ{Xτ)
and Dτ(Y^), and p2 is generated by Dτ(X2) and Dτ(Y2), define ||jo2 — joj|| =
max {\Dτ(X^ — Dτ(X2)\, |Dr(yi) — Dτ(Y2)\}. As a consequence of the previous
theorem we have the following corollary.

Corollary. The set of linearly induced actions of R2 on Sn having only hyper-
bolic compact orbits forms an open and nonempty set in sf(R2, Sn). This subset
is not dense in <xf(R2, Sn)for n>3.

We now discuss the important concepts of structural stability and β-stability
for linearly induced ^-actions on Sn.

Definition. A linearly induced action ρλ e <$/(R2, Sn) is structurally stable if
there is a neighborhood V(p^ such that if p2 e Vfa) then p2 is topologically
equivalent to ~px.

Definition. A linearly induced action ~pλ 6 <$/(R2, Sn) is fl-stable if there exists
a neighborhood V{p^ such that if ~p2 6 V(pι) then there is a homeomorphism
h: Qfa) —> Ω(ρ2) taking orbits of ~pλ onto orbits of p2.

Theorem 7. A linearly induced action of R2 on Sn is Ω-stable in <sf(R2, Sn) if
and only if it has only hyperbolic compact orbits.

Proof Sufficiency follows easily from Theorem 6. To prove nesessity let us
suppose p is not an action with all compact orbits hyperbolic. We have to ex-
amine several possibilities. In each case we want to show that p is not β-stable.

( I ) -px = ψ o p, p(s, t) = esA+tB where both A and B are diagonalizable,
and the action p has at most one pair of complex conjugate eigenvalues such
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as in cases (1) and (2) in the proof of Theorem 6. Since it does not satisfy the
inequalities of Theorem 6, ~ρx has an infinite number of singular orbits. In this
case every neighborhood V(pi) contains an action ~p2 with a finite number of
singular orbits, namely, ~p2 satisfying the inequalities of Theorem 6.

( Π ) -px = ψ o p9 p(s, t) = esA+tB where both A and B are diagonalizable
but the action p has more than one pair of complex conjugate eigenvalues such
as in case (3) in Theorem 6. Here ~pγ presents at least two orbits homeomorphic
to S1, and every neighborhood Vfa) contains two actions ~ρ2 and p3 with the
following orbit structures. Besides the two orbits homeomorphic to S\ p2 has
all orbits homeomorphic to R X S1 and p3 to R2. It follows that pγ is not bi-
stable because it can be approximated by actions ~p2 and 3̂ with an infinite and
only a finite number of singular orbits respectively.

(Ill) ~p — ψ o p9 p(s, t) = esΛ+tB where either A or B is not diagonalizable.
Let us suppose that A is not diagonalizable. We can apply the same procedure
as in the proof of Theorem 6. If A has (x — Z)q, λ real, q > 1, for elementary
divisor, then either p has a finite number of singular orbits and can be approxi-
mated by an action with a larger number of singular orbits or p presents an
infinite number of singular orbits and can be approximated by an action with
only a finite number of singular orbits. On the other hand if A has
[(x — z)(x — z)]q, z complex, q > 1, for elementary divisor, then we can per-
turb ~ρ in order to get an action with more than one pair of complex conjugate
eigenvalues. By what we have seen, an action of this kind is not β-stable imply-
ing that p is not β-stable either.

As an immediate corollary of case (II) before we have

Corollary. The structurally stable linearly induced actions of R2 on Sn do not
form a dense set in s/(R2

9 Sn) for n > 3,

However in <$/(R2, S3) the structurally stable actions form an open and dense
subset which is characterized in the next theorem.

Theorem 8. A linearly induced action of R2 on S3 is structurally stable if and
only if all its compact orbits are hyperbolic.

Proof Necessity follows directly from the proof of the previous theorem.
To prove sufficiency let us suppose p: R2—>Dif (S3) is a linearly induced action
with all its compact orbits hyperbolic. Then by Theorem 6 we only have to ex-
amine the two cases below.

(I) p = ψ o p f p(s, t) = esΛ+tB where A = diag(λ l f >,λA), B = d iag(λ l f

> -,λA) and (λj - λi)(λt - λt) - (λj - λi)(λt - λι) Φ 0 for all distinct i9j9 I.
This action p is generated by the vector fields Dτ(X), X(x) = Ax and Dτ(Y),
Y(x) = Bx. Consider S2 with the Riemannian metric induced by the usual metric
on R\ It is easy to show that Dτ(X) and Dτ(Y) are gradient vector fields. Thus
the action p is a gradient action, meaning that is generated by commutative
gradient vector fields. From a theorem in [2] p is a structurally stable action.

(II) p = ψop, fa t) = esA+tB where
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(a - λjβ - ( a - λdβ Φ 0 ,

(a - λtXλj - h) - ( a - λtXλj -λt)Φ0 for all ij .

First we can find a real k such that the operator B + kA = diag ((= fj,
\\β al

λlf I 2 ) has the following properties: (a — I θ and (a — I2) have the same sign,

and both (^ — I2) and ~β are nonzero. Since the vector fields (B + kA){x) and
B{x) are generators of the action p we proceed with the additional hypothesis
that A has the above properties, meaning that (a — λλ) and (a — λ2) aie of the
same sign, and both (/̂  — λ2) and /3 are nonzero. Consider the following vector
fields in R3:

X&) = AιX where A, = diag ((a " ^2 " ^ ), (Λ -
\\ β a — λ2/

where Bx = diag ( ( δ " λ> _~~β \ ft - λ2)) ,
\\ β a — λ2' /

and

β

The Poincare vector fields 7r(lΊ) and ^(Fi) are also generators of the action jo,
and we can verify that π(X^) is a Morse-Smale vector field and e

sAl+tBl is a hy-
perbolic linear i^-action. We know from a corollary of Theorem 6 that the li-
nearly induced actions of R2 on Sn having only hyperbolic compact orbits form
an open set in s/(R2, Sn). Hence it follows that there exists a neighborhood
V(p) in <$f(R2, S3) such that if p* e V(p) then jo* has all its compact orbits hy-
perbolic. Besides, V(p) can be chosen such that jo* = ψ o ̂ * where p*(s, t) =

(α:* — λf) and (α* — λ}) have the same sign as (a — ^j), (/if — ^2*) has the
same sign as (λλ — λ2), and β* Φ 0. Our goal is to show that such an action
jo* 6 V(p) is topologically equivalent to δ̂. Let us consider the vector fields

X*(x) = A*x where A* = diag ( ( α * " λί

 a~f

Y*(x) = B*x where B* = diag ( ( δ * " ^2* _ "^*_ J , (ί* - # ) ) .
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Here π(Xf) and π(Yf) are generators of <o*, (X?) is a Morse-Smale vector field,
and e

sΛ*+tB* is a hyperbolic linear i^-action. For simplicity let us adopt the
following notation:

where # = α - Λ2, λ = λλ - λ29 a* = a* - λf and A* = λf - λf. We also
denote π(X1) by Xl9 and τr(Xί) by Xf. Let f be the orbit of the action p which
is homeomorphic to S1. This coincides with the closed orbit of the vector field
Xx. In the local coordinates (Ul9 φ^)9 defined in § 2, consider the coordinate
plane Σ transversal to γ. The Poincare map fx associated to this transversal sec-
tion Σ is given hy fx{xl9 x2) = (e2πa-5)/βxl9 e~2π5rβx2). Observe that/ x is the flow
Xu restricted to Σ for t = 2π/β9 and/ x is a contracting or an expanding diffeo-
morphism. We will proceed by considering fx expanding (hence a < 0 and
(λ — a) > 0) and also λ > 0. The proofs on the other cases are similar.

By taking the real number r such that β + rβ = 0, the operator C1 = Aι + rB1

has the form Cx = diag (5, a, γ). Then the vector field Zλ{x) = π(Cλx) has Σ as
an invariant set, and Pλ = γ (Ί Σ is a hyperbolic singularity for Zλ\Σ. Note
that the trajectories of Zλ are contained in the orbits of p, the flow Zlt \Σ com-
mutes with fl9 and the orbits of p are invariant by/j. By the same procedure,
consider the corresponding f2 and Z 2 for the action jδ*. In order to construct
the desired homeomorphism we have to analyse two cases according to the in-
dex of the singularity Pλ of Zλ\Σ.

(1) Pλ is source or a sink for ZX\Σ. In a neighborhood of Px in the trans-
versal section Σ, fix one orbit of Z x in each quadrant, and its image by fx and a
circle S transversal to Z±. Do the same for Z2.
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We will restrict to a quadrant, for the others proceed similarly. Define an orien-
tation preserving homeomorphism H: AιBι —> A2B2 where Aλ and Bλ are the
points of intersection of the above orbits of Zx with Sx. To obtain an extension
for ASΊ, set H(x) = f^n{ΘH{y)(Zί)) Π S2. Here x does not belong to the coordi-
nate axis (in which case the definition is the natural one) and n is such that
y =fϊ(0χ(Zj) Π ΛΛA In order to define H in /(Si), let x e/CSΊ) and take
y = ^(ZO Π Si. Then put H(x) = ΘHm(Zd Π /2(S2). Now we may extend #
to the interior of the annulus with boundaries S1 and /i(SΊ), proportionally to
the arc length of trajectories of Zλ and Z2. If xx belongs to the interior of the
annulus, consider the points of intersection yλ = ΘX(Z^) Π Sx and zλ =

1Ί MS,). Define by 9HlVl)(ZJ and For x in

the interior of the disc bounded by SΊ there exists « such that/?(x) belongs to
the annulus. Let H(x) = f2nWΐ(x)- Thus we have a homeomorphism defined
in the disc bounded by/(SJ taking orbits of ^ onto orbits of ^* and such that
Hfi=f*H.

(2) Px is a saddle point for Z ^ . Here fix an orbit of Zx in each quadrant,
its image by/, circles S1 and/(SO which are tangent to these orbits, and the
analogous/ and S2 for Z2.
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Z»fι

As before let us restrict ourselves to one quadrant, the procedure for the others

being similar. Define first an orientation preserving homeomorphism H: A^

A2B2Tϊn order to get an extension to/iOSΊ), for x <= BXCX set H(x) = ΘHm(Z2) Π

B^C2 where y - Θx{Zλ) Π XBV For x e AΛ_define H(x) = f;\(9Hm{Z2)) Π

£)^A2 where n is such that j = / i ( ^ ( z 0 ) Π ^ i ^ . Now we want to define H on

Sx. Let Λ:X € ξ ? ! and consider ^ = ^^(ZO Π A ^ x . Then set H(xλ) = ΘHm)(Z2)

Π £"2̂ 2. The extension of H to the interior of the disc bounded by fx{S^) is done

as in the previous case.

Up to this point, regardless of the index of the singularity Pλ of Zλ\Σ9 we
have an orbit preserving homeomorphism defined in a neighborhood TV of Px

in the transversal section Σ. Now we want to extend H to a neighborhood V
oΐγ. If x £ V, let tx be minimum such that X1_tχ(x) = y belongs to N and set
H(x) = Xft(H(y)) where t = β^/β*. Restrict # to a neighborhood of p whose
boundary is a torus T transversal to Xλ.
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/' κ-γ

Consider now a circle CΊ in the plane OJ*^ such that all positive trajecto-
ries of Xλ beginning at points of C\ have arc length k, and a point Rλ on the
axis OλP3 such that the arc length of the trajectory of Xλ from O1 to Rx is /.
Assume Vx is a neighborhood of γ whose boundary is a torus Tλ transversal to
Xx and which intercepts the plane OJ*^ on Cl9 and P^ is a sphere centered
at P3 also transversal to Xx and intercepting OλP3 in Λj. Similarly take C2, i?2>
Γ2 and W2 corresponding to Xf. Next we define H on Tλ. If x e Γ1? consider
j = Θx(Xλ) Π Γ and set H(x) = ΘH(y)(X*) Π T2. The extension of if to (7; - T)
can be done proportionally to the arc length of trajectories of Xx and Xf. The
definition of H in Wx can be obtained similarly as it was set for Tl9 the exten-
sion to the interior of Wx can be obtained by the time parameter on the trajec-
tories of Xλ and X? and between Tλ and W1 in an analogous manner as in (7^
— Γ). Therefore intakes orbits of ~p onto orbits of p*.

It remains to prove continuity for points in the interior of the disc bounded by
Cx and in the line segment O^. This proof depends on the following lemma.

Lemma. Let J be a set with accumulation point x0 in the interior of the disc
bounded by Cλ. For x e J let L(x) be the arc length of the trajectory of Xλ start-
ing at x and with final point in Wx. Then limα,_+iro L(x) = k0 + I where k0 is the
arc length of the positive trajectory of Xγ starting at x0.
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Proof of the lemma. Let T(x) be such that XιT(x)(x) e Wλ. Then T(x) =

(lβ)\g(llx2). Put

= A(x, t) = V(x* + xl)(ά2 +

B = B(x9 t) = x,λelt .

Then

ΓT{x) nτ(x)

L(x) = VA2 + B2dt = V(A + B)2 -
Jo Jo

Let
_ rτ(x) rτ(x) pτ(x)
L(x) = (A + B)dt - \ VA2 + B2dt =

Jo v y Jo ^ Jo ^ +

lABdt.

B
Λt.

One can verify that lim L(x) = 0 and that lim (A + B)dt = ko + I. There-
X-^XQ X-*X0 J O

fore l i m ^ ^ L(x) = k0 + I which proves the lemma.
We return to the proof of the theorem. Notice that if T(x) is such that

Xi-T(x)(x) = y εTl9 L(x) is the arc length between x and y through a trajectory
of Xl9 and x0 belongs to the interior of the disc bounded by Cl9 then l i m ^ ^ y
= Jo £ Cl9 and l i m ^ ^ L(x) is the arc length of the trajectory of Xλ between x0

and y0. We apply the above arguments to convergent sequences to a point in
the interior of the disc bounded by Q and to a point in O&. We have thus
obtained an orbit preserving homeomorphism in part of S3. But by considering
the other fixed points of p we can make the same construction simultaneously
for the whole S3. Thus we obtain a homeomorphism of S3 taking orbits of p
onto orbits of p*9 proving the theorem.
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Let %r(R\ S3) be the set of actions of R2 on S3 with the Cr (r > 1) topology.

The method used to prove the previous theorem yields the following stronger

result.

Theorem 9. A linearly induced R2-action on S3 having only hyperbolic com-

pact orbits is structurally stable in &r(R2, S3).

Proof. Let ~ρ: R2 —> Dif (S3) be a linearly induced action of R2 on S3. As in

the proof of Theorem 8 we can consider a Morse-Smale generator Xγ of p, the

Poincare map J[ corresponding to the transversal section Σ, and the vector field

Zx. By a theorem in [8], there exists a neighborhood V(p) C &(R2, S3) such

that if η € V(p) then η has a Morse-Smale generator X? with the same proper-

ties as Xλ. Let/2 be the Poincare map corresponding to the section Σ, and sup-

pose Xfτ(Pύ = Λ for Pλ in the intersection of Σ with the closed orbit of Xf.

We can reparametrize Xft in such a way that the new Poincare map f2 = Xfτ,

where Xft is the reparametrization. To obtain the corresponding vector field

Z2 let Z2(x) = a(x)X*(x) + Ϋ*(χ) where X*(x) and Ϋ*(x) are generators oΐη.

The function a(x) can be chosen in such a way that Z2 has Σ as an invariant

set. With Xft, f2 and Z2 so defined the proof is the same as in the previous

theorem.
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